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Abstract. This article proposes a stochastic programming approach for coordinated 

contract design, allocation and selection decisions, from a manufacturer’s point of view, in 

a three-tier manufacturing supply chain. In a capacitated make-to-order manufacturing 

system, the manufacturer wishes to offer different customer-contracts to satisfy their 

needs, to accept the contracts that optimize resource capacity allocations, and to select 

supplier-contracts that guarantee the satisfaction of the demand in order to maximize 

profits. Using a two-stage stochastic programming model with recourse, these decisions 

are addressed under a stochastic economic, market, supply, and system environment. 

The computational results show that the proposed model provides more realistic and 

robust solutions, with expected 12% performance improvement over the solutions 

provided by a deterministic mixed integer programming model. 
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1. Introduction 

Effective supply chain management requires collaboration and coordination between 
independently managed business entities along the supply chain. This function is generally 
governed by supply chain contracts (or agreements). There is a growing body of research on 
supply chain contracts defining relationships between supply chain partners. Most of the existing 
literature focuses on two-tier supplier-buyer contracts, with few exceptions that expend the 
contract decisions to a general supply chain network context (D’Amours et al. 2000). We 
consider a three-tier manufacturing supply chain, as illustrated in Figure 1, where a multi-site 
manufacturer purchases various raw materials from multiple suppliers, and produces different 
specialty and commodity products for a random demand and price market. Thus, there are 
contract relationships at both demand and supply ends of the supply chain.   

 
Figure 1. Three-tier Supply Chain in a Stochastic Environment 

Generally, contract decisions are made at the beginning of the planning horizon. In a capacitated 
make-to-order manufacturing system, this decision involves selecting the contract customers so 
that their demand satisfaction is guaranteed and selecting the contract suppliers so that the raw 
material supplies are guaranteed while the manufacturer’s financial objectives are reached. The 
manufacturer signs a contract with a customer only if there is enough capacity to satisfy the 
customer’s demand. Hence, the manufacturer would typically allocate a certain proportion of the 
capacity to contract customers, keeping a capacity buffer for unexpected demand increases and/or 
to serve spot markets possibly for greater profitability. From a financial point of view, if the 
market becomes stronger, preserving or increasing contract sales would possibly cause contract 
demand backlogs and limit the opportunities for greater profitability. However, if the market 
weakens, reducing contract sales would potentially put the manufacturer at risk of incurring 
lower profits. Similar scenarios apply to the supply end where the manufacturer has the options to 
purchase raw materials through contract suppliers or from the open market (spot market) where 
greater discounts may be possible.   

Once the demand contracts are signed with the customers, both contract and capacity allocations 
are determined, which blocks a proportion of the capacity for the entire contract duration term. 
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Consequently, sub-optimal contract decisions would have significant impacts on both contract 
and spot sales, production and logistic performances, as well as raw material supply. Therefore, 
the demand contract decisions cannot be made in isolation. They must be coordinated both 
horizontally across different functions of the supply chain and vertically anticipating the impacts 
on the down stream operational decisions. This is a typical hierarchical planning problem where 
one has a decision time hierarchy. The objective of this article is to develop an optimization 
model to help the manufacturer to coordinate contract decisions at both demand and supply ends, 
and to allocate capacity, in such a way as to maximize the manufacturer’s profitability while 
hedging against uncertainty. 

In reality, during the course of the contract period, many uncertain events may happen related to 
economic conditions, market prices, customer demand, supply availability, and system capacity 
due to machine failures. This renders the decision-makers under significant risks when making 
contract decisions. In order to making robust contract decisions that are capable of coping with 
various uncertainties, a mathematical model that can anticipate the system performances under 
different plausible futures is required. In this article, we propose a stochastic programming 
approach to address coordinated contract design, allocation and selection decisions in a three-tier 
manufacturing supply chain. The research was carried out based on a real case in the Oriented 
Strand Board (OSB) industry. 

OSB is a wood based structural panel widely used in North America as building material for 
wall, roof, and floor sheathings as well as I-joists. It is made of wood strands mixed with 
synthetic resins and wax compressed under high temperature and pressure in a hot press. The 
production is carried out on a highly automated production line, either in batch or in a continuous 
manner, depending on the type of hot press used. The production line is capable of making a 
wide range of OSB products including specialty and commodity products with different physical 
and mechanical properties. The products are mainly sold on contract and non-contract basis, in 
different markets, to four categories of customers: manufacturers (producing houses or house 
components), distributors, wholesalers, and retailers. The demand is highly seasonal with strong 
correlations with the activities in the building construction industry, whereas the supply, 
particularly for wood logs from forests, is affected by seasonal harvesting operations and long 
replenishment lead-times.  

We address the three-tier supply chain contract design, allocation, and selection problem from the 
manufacturer’s point of view. The manufacturer wishes to offer different contracts to suit the 
customers’ needs and effectively allocate its resource capacities to the right customers, products, 
and locations. Among different types of contracts found in the literature and practice, we consider 
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four types of contracts that the manufacturer may offer: i) price-only, ii) periodical minimum 
quantity commitment, iii) periodical commitment with order band, iv) periodical stationary 
commitment. The manufacturer also needs to determine which supply contract to accept from 
which suppliers in order to guarantee the satisfaction of the contract and non-contract demand at 
lowest procurement cost. In this study, we limit the supply contracts to total minimum quantity 
commitments with different terms and prices from different suppliers.  

We begin the article with a literature review in Section 2 to establish the foundation for this 
research. In Section 3, the problem definitions are provided with supply chain characteristics, 
economic, market, and contract descriptions. The two-stage stochastic programming model is 
presented in Section 4, followed by the solution approach in Section 5. Scenario sampling and 
model implementation are discussed in Section 6 with computational results being presented in 
Section 7. Section 8 provides the concluding remarks and future research directions. 

2. Literature Review 

Since the 1990s, extensive work has been carried out in the general area of supply chain 
contracts. Tsay et al. (1999) and Cachon (2003) presented detailed reviews of various forms of 
contracts. Among them, the price-only contract is probably one of the simplest dominant forms of 
contracts used in practice. In this type of contract, a manufacturer quotes a unit wholesale price to 
a customer, and the customer has the flexibility to order any quantity in each period during the 
contract duration term. Lariviere (1999) pointed out that in price only contracts, suppliers tend to 
sell at a wholesale price above the production marginal cost, which induces the retailer to set a 
retail price above what an integrated firm would charge (also known as double marginalization), 
which could result in lower sales and profits than what an integrated channel would achieve. 
Lariviere and Porteus (2001) studied the price-only contract in a two-echelon distribution channel 
with a supplier selling to a single retailer facing a single-period newsvendor problem. It was 
concluded that price-only contracts cannot provide supply chain coordination.  

Another widely applied form of contract is quantity discount contract. This type of contract 
introduces price incentives so as to stimulate sales and maximize supplier’s profits. Monahan 
(1984) studied a single period quantity discount contract between a buyer and a supplier 
assuming the buyer is likely to react to any supplier’s discount proposal. Weng (1995) 
investigated the effects of a single period quantity discount model on channel coordination and 
profit maximization. The analysis shows that quantity discount contracts do not guarantee joint 
profit maximization. However, channel coordination can be reached by employing quantity 
discounts and franchise fees simultaneously. Munson and Rosenblatt (2001) studied a quantity 
discount model in a three-echelon supply chain with the middle echelon being the decision maker 
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offering different discount schemes. Clearly, discounts can be offered in combination with 
different contract forms where price incentives are necessary.   

Under total minimum quantity commitment contracts, while a supplier offers a discounted price, 
a total minimum quantity commitment is required and, as the total minimum commitment 
increases, the unit price decreases. The buyer commits to purchase, during the entire contract 
horizon, at least the minimum quantity at the discounted price. There is no restriction on the 
maximum amount that can be purchased, nor requirement on the exact amount purchased in each 
period. Observations found that in a stochastic demand environment, the buyer inclines to 
purchase exactly its demand requirement, thus passing its demand uncertainties onto the supplier. 
Nevertheless, total minimum commitment contracts have been widely used as suppliers wish to 
increase market shares by locking-in buyers to commit to purchase in a longer term. On the other 
hand, if there is any uncertainty in the supply process, a buyer may wish to enter into such a 
contract to ensure long term supply (Anupindi and Bassok 1999). Bassok and Anupindi (1997) 
provided early work on supply contracts with total minimum quantity commitment for a single-
product periodical review inventory problem with random demand. By studying a multi-period 
setting, Anupindi and Bassok (1999) argue that although the total minimum quantity commitment 
provides buying flexibility at discounted price, it may lead to supplier loss.  

One of the remedy to this problem is the periodical commitment contract. Unlike the total 
minimum commitment contract, the periodical commitment contract imposes restrictions on 
periodical purchases and, thus, reduces the uncertainty in the order process. This contract may 
take various forms depending on the nature of periodical commitments and the flexibility offered. 
Broadly, the commitments could be stationary or dynamic. Stationary commitment contracts 
were analysed by Moinzadeh and Nahmias (2000) and Anupindi and Akella (1997). With a 
stationary commitment, a buyer is required to purchase a fixed minimum amount in each period. 
Discounts are given based on the level of minimum commitment. Additional units can be 
purchased but at an extra cost and the delivery may be delayed. This contract provides a greater 
level of demand certainty for the supplier and just-in-time delivery for the customer. With 
dynamic commitments, the minimum amount can be updated periodically in a rolling horizon 
manner. The use of rolling horizon procedures in contract based planning was investigated by 
D’Amours et al. (2000) in a manufacturing supply chain context. More recently, Lian and 
Deshmukh (2009) studied a rolling horizon planning contract with dynamic commitment and 
quantity flexibility between a buyer and a supplier for a single product. The flexibility in the 
contract can be offered in the form of an order band, where all order quantities are required to be 
within stationary lower and upper limits. Order-band contracts were initially studied by Kumar 
(1992) and Anupindi (1993) in a game-theoretic setting. Scheller-Wolf and Tayur (1998) 
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extended the study in a Markovian demand environment. These contracts can also offer quantity 
flexibility through changing minimum and maximum limits revised in percentages that vary in 
accordance with the number of periods away from the delivery (Anupindi and Bassok 1999). 
Earlier studies on quantity flexibility contracts were published by Bassok and Anupindi (1997), 
Tsay (1999), and Tsay and Lovejoy (1999).   

In supply chain contract design, a decision-maker has to determine what types of contract to 
offer, with what terms and conditions, and what reactions are possible from the customers. To 
tackle these questions, most of the researchers adopted an agent-based approach focusing on a 
contract between a buyer and a supplier. The buyer’s optimization problem is solved first to 
determine his optimal order quantity according to the contract offered by the supplier. Then the 
supplier’s optimization problem is solved for the buyer’s optimal order quantity to determine the 
optimal supply contract. A Nash-equilibrium is reached and the costs (profits) of the buyer and 
supplier are examined to determine the optimal contract setting (Corbett and Tang 1999, 
Schneeweiss et al. 2004). When a manufacturer serves several customer-product-locations 
competing for its limited capacity, such as in our case, contract decisions becomes more complex. 
Unfortunately, such concerns have not yet been considered in most of the literature. One of the 
difficulties of addressing the coordinated contract design and allocation problem in a single 
supplier serving multiple customers is the ability to understand the possible reactions of the 
customers to the contract(s) offered. Consider that, instead of addressing the supplier’s contract 
design problem based on a single-factor customer cost structure, like what has been assumed in 
most of the contract analysis and design problems, it is possible that the customer’s choice of a 
contract is affected by several factors, the combined attributes of the contract policy, for instance. 
In this context, whether or not the customer will choose an offered contract policy is a 
probabilistic discrete choice problem, depending on the economic evaluation of the customer, as 
well as his perceived product qualities, the services provided, and socio-economic considerations. 
According Ben-Akiva and Lerman (1994) and Vila et al. (2007), such probability may be 
determined based on random utility theory using a logit discrete choice model. Vila et al. (2007) 
applied this method to determine the customer-contract choice probabilities for several 
customers, where the customers’ reactions to the contracts offered are anticipated in a strategic 
supply chain design model. Similar approaches are adopted in bidding problems for a 
manufacturer facing multiple customer classes, as shown in Easton and Moodie (1999) and 
Watanapa and Techanitisawad (2004). 

Furthermore, in the contract analysis and design problems, most of the models proposed assume a 
deterministic structure, with a few exceptions found in van Delft and Vial (2001), Zou et al. 
(2008), and Xu and Nozick (2008). Van Delft and Vial (2001) presented a stochastic 
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programming approach for multi-period supply contract analysis between a buyer and a supplier. 
Zou et al. (2008) proposed a stochastic dynamic programming approach to design a supply 
contract between an assembler and two suppliers in an assembly system. Xu and Nozick (2008) 
proposed a two-stage stochastic model for facility location and network design with the 
possibility of using option contracts to hedge against uncertain events which could cause capacity 
loss at one or several suppliers in a geographic area.   

In this study, the contract design and allocation problem at the demand end is addressed, and the 
possible customer reactions to a contract offer are anticipated through probabilistic customer-
contract choice analysis. The stochastic programming model presented in the following section is 
based on the deterministic model for multi-site supply chain sales and operations planning (SC-
S&OP) developed by Feng et al. (2008) and the case therein. 

3.  Problem Definition 

3.1  Supply Chain Characteristics 

In this study, we consider a manufacturing supply chain network, consisting of a manufacturer, 
and several customers, suppliers and third-party distribution centres (DCs), as shown in Figure 2. 
The manufacturer has many production sites scattered in different regions. We define 

( )S ,M ,D,CV =  as the set of network nodes (vertices), where S, M, D, and C are subsets 
associated to raw material suppliers, manufacturing sites, DCs, and customers respectively. Let 

( )S M ,M D,M C,D C× × × ×R =  be the set of inbound and outbound arcs, corresponding to 
ordered pairs of elements of V . The manufacturer produces both specialty and commodity 
products. The specialty products ( spei I∈ ) are sold through contract agreements, and commodity 
products ( comi I∈ ) can be sold through contract agreements or on the spot market. Both contract 
and spot market demands are highly seasonal. Customers ordering specialty products prefer a 
contract relationship in order to secure their supply. If the contract is not awarded, the customer is 
likely to seek other sources from competitors. A customer ordering commodity products may also 
choose a contract relationship, however she may purchase from the manufacturer through spot 
sales when a contract is not signed. The spot market is considered as a recourse which can absorb 
any production amount.  

Each manufacturing site m M∈  has a single capacitated production line producing a set 

spe comI I I= ∪  of product families1 on an MTO basis with small on-site inventory capacity. Every 
manufacturing site can produce all products Ii ∈  and everyone can contribute to satisfy a given 

                                                 
1 In the reminder of the text, the word “product” should be interpreted as “product family”. 
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contract subject to capacity constraints. However a contract may be satisfied more economically 
by one site than others due to its efficiency and location. We assume that production capacity is 
affected by unexpected machine down time, and hence, for plant m in planning period t T∈ , it is 
an independent random variable mtK  with cumulative distribution function (.)

mtKF .  

 
Figure 2. Contract Relationships in a Three-tier Manufacturing Supply Chain Network 

The production of each product Ii ∈  consumes a set of J raw materials with different ratios 
defined by a product recipe. The manufacturer purchases these raw materials from suppliers 

Ss ∈ , including several potential contract suppliers ( CS S⊂ ) as well as non-contract spot 
market suppliers ( NS S⊂ ). Suppliers have different procurement lead-times s

jL  for raw 
material j J∈ . Raw materials are classified into different categories and stored using different 
storage technologies. Let G be the set of storage technologies and g, a particular technology with 
storage capacity mgKI  for mill m. Also, let gJ J⊂  be the subset of raw materials that can be 
stored with technology g. The raw material inventory is managed internally complying with 
safety stock policies. We assume that inbound raw material shipments are carried out by the 
suppliers, and that their shipping costs are included in the procurement costs.  

The outbound shipments of the products from the manufacturing sites to the customers are 
carried out by third party logistic (3PL) providers, either directly or indirectly via a DC d D∈ . 
The manufacturer has an access to several third party DCs which are assumed to have unlimited 
capacity. We assume a shipment cost is incurred for the flows on each outbound arc with a unit 
variable rate.  
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3.2 Economic Trends  

At the time of making contract decisions, the manufacturer faces uncertainties in market prices, 
customer demand (both contract and non-contract), customer-contract preferences, raw material 
prices, and raw material supply availability. These uncertainties are related to the actions of 
competitors and, in particular, to the state of the economy. In order to take this into account, we 
assume that the random variables used to model these exogenous factors depend on a finite set Ξ  
of plausible economic trends over the planning horizon considered. The probability ( )P e  that 
economic trend e∈Ξ  will prevail over the horizon is estimated subjectively by a panel of 
industry experts. More specifically, we assume that the probability distribution of the random 
variables associated to planning period t T∈ depends on the prevailing economic trend e∈Ξ  . 
The trend is defined by a function of the period index t T∈  and it is applied to the value of the 
original random variables. A typical case would be the consideration of expending, stable and 
weakening economic trends defined by multiplying a given random variable by a linearly 
increasing (decreasing) per-period inflation (deflation) factor. 

3.3 Customer Contract Policies 

As described in Section 1, we examine four potential forms of contracts that the manufacturer 
may offer to customers: price-only, periodical minimum quantity commitment, periodical 
commitment with an order band, and periodical stationary commitment. These forms of contracts 
provide different levels of quantity commitments and flexibilities. For each form of contract, the 
manufacturer may develop different policies with different contract duration terms and price 
incentives. Let CK  be the entire set of potential customer contract policies the manufacturer 
offers. Each contract policy Ck K∈  is characterized by a number of distinguishing attributes that 
influence customer decisions. Without loss of generality, such attributes may include a price 
discount factor kφ , a fixed contract charge ka , a quantity flexibility expressed by minimum and 
maximum quantities klb  and kub , a contract starting period kt , and a contract duration term kN  
(in periods). These attribute values may be determined by the manufacturer’s observations of the 
historical customer ordering behaviours, contract strategies, and pricing experiences. Obviously, 
the price-only contract provides the greatest quantity flexibility with klb  being “0” and kub  being 
a sufficient large number, while periodical stationary commitment has the least flexibility with 

kk ublb = .  

Given the contract commitments and flexibilities, since contract demand may vary randomly, it 
may be impossible to satisfy the entire contract demand in each period with the finite capacity 
available. Hence, backlogs are allowed for contract demand. Different backlog penalty costs are 
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used for different forms of contracts, so that backlog, should it becomes necessary, is more likely 
to occur for contracts with greater quantity flexibilities (such as price-only contract). 

3.4 Customer-Contract Choice Analysis  

A manufacturer’s decision to offer a contract to a customer does not guarantee that the contract 
will be signed, but implies that it is feasible and economically advantageous for the manufacturer. 
Whether or not a customer c will accept a contract k offered, under economic trend e, is modelled 
using a discrete choice random variable c

keξ . In an industrial environment, this choice is affected 
by many factors such as prices, commitment requirements, customer demand, contract duration 
terms, product quality, service standards, location, and socio-economic considerations. It is also 
affected by the competitors’ offers available in the market. Let K be the universal contract set 
offered to some customer population, including all the contract policies offered by the 
manufacturer, the competitors, as well as the virtual contract (k = 0) offered by the spot market, 
( )CK K⊃ . Each customer c in the customer population has a preference to a subset of the 
contracts K c K⊂ . According to Ben-Akiva and Lerman (1994) and Vila et al. (2007), the 
customer’s preferences for one contract over the alternative subset of contracts can be modeled 
based on economic consumer theory, assuming that the customer has the ability to compare all 
possible contracts, using discrete choice analysis. 

In discrete choice analysis, the attractiveness of each alternative contract can be evaluated by a 
vector of the attribute values, such as ( )id( )k k k k kv = ,lb ,ub ,N , kφ , where id( )k  provides the 
identity of the manufacturer who is making the offer. Based on random utility theory, the choice 
preference of customer c for a contract k under economic trend e can be modeled as a linear 
utility function:  

 ( ) id( )c
e 1e k 2e k 3e k 4e k 5e cekU k = β + β lb + β ub + β N + β k + εφ ,  K cc C ,e ,kΞ∈ ∈ ∈  

where 1eβ , …, 5eβ  are parameters to be estimated, and cekε  is an independent Gumbel distributed 
random disturbance. This random disturbance is introduced to take into account any unexpected 
influences.  

Customer c will likely choose a contract policy K ck ∈  that has the highest utility value. Thus, 
the probability that customer c chooses a contract k under economic trend e can be expressed by: 

 ( )( ) ( ) ( ) Kc c c c
e e eP k P U k U l , l ,l k= ≥ ∀ ∈ ≠  

Note that for a given contract horizon { }k k k kT t ,...,t N 1= + − , the manufacturer could only offer a 
single contract policy Ck K∈  to a customer. In order to calculate the probability ( )c

eP k , only 
offer k and offers of the competitors should be considered. Let ( )K Kc ck ⊂  be the set of these 
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offers. When using a Multinomial Logit discrete choice model, the probability that the contract k 
would be signed if offered to customer c under economic trend e can be calculated using the 
expression: 

 
( )

( )
( )

id( )

id( )
( )

K

4 e 5 e1e 2 e 3ek k k k

4 e 5 e1e 2 e 3el l l l
c

c
e

k

β β lb β ub β N β k

β β lb β ub β N β l
l

P k e
e

μ φ

μ φ

+ + + +

+ + + +
∈

=
∑

 , ( )K cc C ,e ,k kΞ∈ ∈ ∈  

where μ  is a positive scale parameter. 
In order to calculate these probabilities, it is necessary to estimate the parameter values 1eβ , …,

5eβ , e∈Ξ . This can be done using revealed preference data (Ben-Akiva and Lerman, 1994) or 
stated preference data (Louviere et al., 2000). The former is derived from the analysis of each 
customer’s behaviour based on the demand observations available. The later is obtained from a 
questionnaire with hypothetical offers submitted to a sample of customers. With this data, 
maximum likelihood estimators are used to obtain the parameter values. This can be 
implemented, for example, with the BIOGEME software developed by Bierlaire and available on 
the Web at http://roso.epfl.ch/biogeme. Alternatively, with insufficient customer preference data, 
subjective preference probabilities ( ), Ξc

eP k e ∈ , may be assigned by the company sales force to 
each customer c for each contract k.  

3.5 Customer Demand  

When a customer c chooses a contract Ck K∈ , his demand must comply with the contract 
duration terms and quantity commitments. We assume that the requirements of customer c C∈  
for product i I∈  during period t T∈ , under economic trend e∈Ξ , is an independent random 
variable c

ited  with cumulative distribution function (.)c
ited

F . Taking into account the contract 
terms, quantity commitments, and customer choices, the contract demand of customer c under 
contract k  for product i in periods t is defined by:  

 ( )( )min max if  1
0 otherwise

c c
c k ite k ke
kite

lb ,d ,ub ,d
,

ξ⎧ == ⎨
⎩

 C
ki e k K t T∀ ∈ ∈, , ,  

Note that the contract demand therefore depends on three random variables: the economic trend 
e, the discrete choice c

keξ , and the customer requirements c
ited . When no contract is signed with 

customer c for period t, the potential spot demand is assumed to be equal to the customer 
requirements c

i ted  for commodity products comi I∈ , and to “0” for specialty products spei I∈ . 

3.6 Contract and Spot Market Pricing  

In the OSB industry, the manufacturers’ contract and spot sales price are influenced by a market 
reference price, which depends on the economic trend e∈Ξ . In order to win customer contracts, 
manufacturer may use different pricing strategies. For contract pricing, we assume the 
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manufacturer uses an n-period backward moving average of the market reference price, adjusted 
by an appropriate contract discount factor kφ . The contract price of product i for customer c 
under contract k in period t and economic trend e can thus be defined by c c ,reft 1

t ' t nkite k it ' ep p / nφ −
= −= ∑ , 

c,k ,i,t ,e∀ , where c ,ref
itep  is the market reference price in the customer’s market under economic 

trend e, which is an independent random variable having cumulative distribution function 
(.)c ref

itep
F , . For spot sales pricing, we assume the manufacturer uses the market reference price, i.e. 

c c ,ref
ite itep p , c,i,t ,e= ∀ . 

3.7 Supply Contracts and Spot Market Alternatives  

At the procurement end, the manufacturer may purchase raw materials from contract suppliers 
( )s CS∈  or on the spot market ( )s NS∈ .  At the beginning of each planning horizon, potential 
contract suppliers offer several supply contracts. Let SK  be the entire set of potential contract 
policies offered by the suppliers. We assume that suppliers offer only “total minimum quantity 
commitment” contracts, where each contract policy Sk K∈  is characterized by a unique pair of 
unit purchase cost s

kjtc  and total minimum quantity commitment requirement s
klb . Alternatively, 

the manufacturer may purchase raw materials from the spot market at price s
jtec , subject to the 

market availability s
teK S . The spot market prices and availabilities are assumed to be 

independent random variables affected by the plausible economic trends, and with cumulative 
distribution functions (.)s

jtec
F  and (.)s

teKS
F .   

4.  Stochastic Programming Formulation 

The superposition of specific realizations of the random variables defined previously gives rise to 
a set Ω  of plausible future scenarios. This is the set of all the scenarios that may occur over the 
planning horizon under the different plausible economic trends considered. As explained later (in 
section 6.2), scenarios can be generated using Monte Carlo methods, and a scenario ω ∈Ω  is 
associated to the following set of specific random variable realizations  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }c c c c c s s
k kit it kit it jt t mt,d ,d , p , p ,c ,KS ,K , c,s,k ,i, j,m,tξ ω ω ω ω ω ω ω ω ∀  

We assume that all the contract decisions must be taken at the beginning of the planning horizon, 
which enables us to model the problem as a two-stage stochastic program with fixed recourse. In 
the model, the contract decisions (for both demand and supply) are first stage decision variables. 
In the second stage, future operational decisions and performances are anticipated for given first 
stage contract decisions, under a given scenario ω ∈ Ω . The objective of the model is to find 
efficient and robust solutions, (1) for the selection of customer demand contracts according to 
perceived customer choice probabilities, in order to best allocate the manufacturer’s capacities; 
and (2) for the selection of supplier contracts in order to guarantee the satisfaction of the demand. 
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The model maximizes the manufacturer’s expected global profitability while hedging against 
uncertainty. 

4.1 Mathematical Notation 

The following notations are required to formulate the model: 

Indexes and sets 

Mm∈  Set of manufacturing mills  
c C∈   Set of customers  

Ss ∈  Set of contract (CS) and spot (NS) raw material suppliers ( S CS NS= ∪ ) 
Dd ∈  Set of distribution centres (DCs) 

i I∈  Set of specialty ( sp eI ) and commodity ( co mI ) products  ( sp e co mI I I= ∪ ) 
Jj ∈  Set of raw materials  

g G∈   Set of raw material storage technologies 

gJ  Set of raw materials requiring storage technology g  ( gJ J⊂ ) 
R MCr∈  Set of outbound arcs from mills to customers ( MC M C= ×R ) 
R MDr∈  Set of outbound arcs from mills to DCs ( MD M D= ×R ) 
R DCr∈  Set of outbound arcs from DCs to customers ( DC D C= ×R ) 
R Or ∈  Set of all outbound arcs (R R R RO MC MD DC= ∪ ∪  ) 

Ck K∈  Set of contract policies the manufacturer offers to customers 
Sk K∈  Set of contract policies offered by the raw material suppliers 

e ∈ Ξ  Set of plausible economic trend over the planning horizon 
Tt ∈  Set of planning periods  

kT   Set of planning periods covered by contract k ( kT T⊆ ) 
 
Parameters 

Sales  

( )c
kξ ω  Binary choice parameter of customer c for contract policy Ck K∈  under scenario ω   

ka  Fixed charge of a demand contract policy Ck K∈  
s
ka  Fixed cost of a supply contract with supplier s under contract policy Sk K∈   

( )c
kitp ω  Sales price of product i for customer c with contract policy k in period t for scenario ω   

( )c
itp ω  Spot sales price of product i for customer c in period t for scenario ω  

( )c
kitd ω  Contract demand of product i from customer c choosing contract policy k in period t 

for scenario ω  
( )c

itd ω  Spot demand of product i from customer c in period t for scenario ω  

kπ  Multiplicative penalty factor for contract Ck K∈  demand backlogs 
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Production 

mic  Unit production cost for product i at mill m 

mih  Inventory holding per unit for product i at mill m 

miα  Capacity consumption coefficient for product i at mill m 
( )mtK ω  Production capacity of mill m in period t for scenario ω  

mjiu  Quantity of raw material j required to produce one unit of product i at mill m 

mjh  Unit inventory holding cost of raw material j at mill m 

mjss  Safety stock of raw material j at mill m 

mKI  Finished product storage capacity at mill m (expressed in terms of an upper bound on 
the inventory level) 

mgKI  Raw material storage capacity of technology g G∈  at mill m (expressed in terms of an 
upper bound on the inventory level) 

 
Distribution 

ric  Unit shipping cost for product i on arc r  

dih  Inventory holding cost per unit for product i at distribution centre d 

ditr  Transhipment cost per unit for product i through distribution centre d 
 
Procurement 

s
kjtc  Unit raw material j purchase cost from supplier CSs ∈  in period t under contract 

Sk K∈  

( )s
jtc ω  Unit raw material j spot purchase cost from supplier NSs ∈  in period t for scenario ω 
s
klb  Minimum purchase quantity defined by contract policy Sk K∈  offered by supplier 

CSs ∈   
s
tKS  Supply capacity of contract supplier CSs ∈  in period  t 

( )s
tKS ω  Supply capacity of spot supplier s NS∈ in period t for scenario ω  

s
jL  Procurement lead-time of raw material j provided by supplier s S∈  

 
Decision variables 

First stage variables 
c
kZ  Binary variable equal to “1” if sale contract policy Ck K∈  is offered to customer c, and 

“0” otherwise 
s
kZ  Binary variable equal to “1” if procurement contract Sk K∈  is signed with supplier s, 

and “0” otherwise 
 
Sales recourse variables 

( )c
itS ω  Spot sales of product i to customer c in period t for scenario ω  
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( )ωc
kitz  Product i  backlog for the demand of customer c under contract k at the end of period t 

for scenario ω  
 
Production recourse variables 

( )ωmitX  Production quantity of product i at mill m in period t for scenario ω  
( )mitI ω  Inventory of product i in mill m at the end of period t for scenario ω  
( )ωmjtI  Inventory of raw material j at mill m at the end of period t in scenario ω  

Distribution recourse variables 

( )ritX ω  Quantity of product i shipped on arc r in period t for scenario ω  
( )ωditI  Inventory of product i in distribution centre d at the end of period t for scenario ω  

Procurement recourse variables 

( )s
kmjtX ω  Amount of raw material j purchased by mill m from contract supplier s CS∈  under 

contract Sk K∈  in period t for scenario ω  

( )s
mjtX ω  Amount of raw material j purchased by mill m from spot supplier NSs ∈  in period t 

for scenario ω  
( )s

kjz ω  Raw material j procurement underage with respect to the minimum commitment 
quantity imposed by contract Sk K∈  with supplier CSs ∈  for scenario ω  

 

4.2 Scenario Based Stochastic Programming Model 

The first stage program is formulated as follows: 

( ) [ ]max ( , )
S

s s
k k

s CS k K

f Ε Q a ZωΩ
∈ ∈

= − ∑ ∑Z Z   (4.1) 

subject to 

|
1

C
k

c
k

k K t T
Z

∈ ∈
≤∑  c,t∀  (4.2) 

S

s
k

k K
Z 1

∈
≤∑  s CS∈  (4.3) 

{ }c C
kZ 0 ,1 , c ,k K∈ ∀ ∈ ;             { }s S

kZ 0 ,1 , s ,k K∈ ∀ ∈    (4.4) 

In the objective function (4.1), [.]EΩ  denotes expected value over all scenarios ω ∈Ω , and Z 
the vector of all first stage decision variables c

kZ  and s
kZ . The function ( ),Q ωZ , provides the 

value of the optimal solution of the second stage program for a given Z and ω ∈Ω . Constraints 
(4.2) state that the manufacturer cannot have more than one contract with a customer in any 
period t. Constraints (4.3) state that the manufacturer cannot have more than one contract with a 
supplier and (4.4) define the domain for the demand and supply contract decision variables. 
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The objective function of the second stage program is following:  

( ) ( )
( )

, max  , ( )Q q
ω

ω ω
≥

=
Y 0

Z Z Y
 

(4.5)
 

( ) ( )( ) ( ) ( ) ( ) ( ), ( )
C C

k

c c c c c c c
k k k kit kit k it it

c C c C i I t T c C i I t Tk K k K
q a Z p d Z p Sω ξ ω ω ω ω ω

∈ ∈ ∈ ∈ ∈ ∈ ∈∈ ∈

⎛ ⎞= + +∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑⎜ ⎟
⎝ ⎠

Z Y
 

( ) ( )( )( )mi mit mi mit
m M i I t T

c X h Iω ω
∈ ∈ ∈

− +∑ ∑ ∑
  

( ) ( ) ( )
R RO MD

ri rit di rit di dit
i I t T d Dr r

c X tr X h Iω ω ω
∈ ∈ ∈∈ ∈

⎛ ⎞
− + +⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ ∑

 

( ) ( )( ) ( ) ( ) ( )
S

s s s s s s
kjt kmjt kjT kj jt mjt mj mjt

m M j J t T s CS s NSk K

c X c z c X h Iω ω ω ω ω
∈ ∈ ∈ ∈ ∈∈

⎛ ⎞
− + + +⎜ ⎟

⎝ ⎠
∑ ∑∑ ∑ ∑ ∑

( ) ( )
C

k

c c
k kit kit

c C i I t Tk K

p zπ ω ω
∈ ∈ ∈∈

⎛ ⎞
− ⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑    (4.6) 

where  ( )ωY  is the vector of all the second stage decision variables for scenario ω . The function 
( )q ⋅  defines the net profit calculated by summing the revenues from the fixed contract charge, as 

well as contract and spot sales, as shown in the first two sets of brackets, minus the total cost of 
production, distribution, procurement, and any penalties as expressed by the third, forth, fifth, 
and sixth sets of brackets. In the first set of brackets, the fixed contract charge is applied only 
when the contract is accepted by both parties ( )( )c c

k kZ 1ξ ω = = . In the third set of brackets, the 
production cost includes the costs of making and inventory holding at the mills. The backlog 
penalty cost is considered in the last set of brackets. The distribution cost, as shown in the forth 
set of brackets, consists of the total cost of shipping, transhipment, and inventory holding at the 
DCs. The procurement cost, as shown in the fifth set of brackets, includes the costs of both 
contract and non-contract raw material purchases, the inventory holding, as well as the raw 
material purchase underage ( )s

kjz ω , with respect to the contract minimum quantity commitment. 
The last set of the brackets provides the penalty cost for the backlogs of the contract demand

( )c
kitz ω . The recourse variables, ( )c

kitz ω  and ( )s
kjz ω , ensure the feasibility of the second stage 

program for all Z.  

The second stage program includes the following constraints: 

Constraints concerning sales: 

( )
( )

( ) ( ) ( )( ) ( )
CMC DC

c c c c c
rit k kit kit 1 kit it

k Kr
X Z d z z Sω ω ω ω ω−

∈∈
= + − +∑ ∑

UR R  
c,i,t ,ω∀   (4.7) 

( ) ( )c c c
kit k kitz Z dω ω≤  Cc,i,t, ,k Kω∀ ∈  (4.8) 

( ) ( )(1 )c c c
it k itS Z dω ω≤ −  C

comc ,t , ,k K ,i Iω∀ ∈ ∈  (4.9) 
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Constraints (4.7) describe the flow balance at a customer node, stating that the shipments to the 
customer must be equal to the contract sales quantity (if a contract is provided) plus the backlog 
in the previous period minus the backlog at the end of the current period, or otherwise, the spot 
sales quantity. Constraints (4.8) provide the bound for the contract demand backlog. Constraints 
(4.9) state that, when a customer is not served by a contract, spot sales should not exceed the 
customer’s non-contract demand ( )ωc

itd .  

Constraints concerning production and distribution: 

( ) ( ) ( ) ( )
( )

1
R RMD MC

mit mit mit rit
r

X I I  Xω ω ω ω−
∈

+ − = ∑
U  

ω,,, tim∀  (4.10) 

( ) ( ) ( ) ( )
MD DC

rit dit 1 dit rit
r r

X I I Xω ω ω ω−
∈ ∈

+ − =∑ ∑
R R

 ω,,, tid∀  (4.11)  

( ) ( )∑
∈

≤
Ii

mtmitmi ωKωXα  ω,, tm∀  (4.12) 

( )m it m
i I

I K Iω
∈

≤∑  ω,, tm∀  (4.13) 

Constraints (4.10) and (4.11) are the flow conservation constraints at the mills and the DCs.  
Constraints (4.12) and (4.13) are capacity constraints for production and inventory, respectively. 

Constraints concerning procurement: 

( ) ( ) ( ) ( ) ( )s
S j

s s
mjt mjt-1 mjt mji mitkmjt Ls CS s NS i Ik K

X X  I I  u Xω ω ω ω ω
−

∈ ∈ ∈∈
+ + − =∑ ∑ ∑ ∑  s

jm, j, t 1 L ,...,T,ω∀ = +  (4.14) 

( ) ( )( )s s s s
km jt kj k k

j J m M t T
X z Z lbω ω

∈ ∈ ∈
+ ≥∑ ∑ ∑  Ss CS ,k K ,ω∀ ∈ ∈  (4.15) 

( )s
S Sj

s s s
k tkmjt Lm M j Jk K k K

X  Z KSω
−

∈ ∈∈ ∈
≤∑ ∑ ∑ ∑  , 1 ,..., ,s

js CS t L T ω∀ ∈ = +  (4.16) 

( ) ( )ωKSωX s
t

Mm Jj

s
mjt ≤∑ ∑

∈ ∈

     ω,, tNSs ∈∀  (4.17) 

( )
g

mjt mg
j J

I ω KI
∈

≤∑  m,g,t,ω∀  (4.18) 

( )mjt mjI ω ss≥  ω,,, tjm∀  (4.19) 

Constraints (4.14) are the flow balance constraints for raw material requirements at mills, taking 
into account the supplier lead times. Constraints (4.15) impose the total minimum quantity 
commitment the manufacturer must comply with when a supply contract is signed. Constraints 
(4.16) and (4.17) are capacity constraints for the contract and spot suppliers, respectively.  
Constraints (4.18) are raw material inventory capacity constraints. Safety stock requirement 
constraints are given by (4.19).  

Valid cuts: 

In order to improve the solution time, the following cuts are added to the model:  
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( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( )C

c c c c c
mit mit 1 mit dit 1 dit k kit kit 1 kit it

m M d D c C k K
X I I I I   Z d z z Sω ω ω ω ω ω ω ω ω− − −

∈ ∈ ∈ ∈
+ − + − = + − +∑ ∑ ∑ ∑   

 ω,, ti∀  (4.20) 

These cuts define the aggregate flow balance over the manufacturing sites, DCs and customers. 
They are valid since they are a linear combination of constraints (4.7), (4.10) and (4.11). Our 
preliminary tests have shown that the cuts reduce computation time by a factor of about 6. 

5. Sample Average Approximation  

In most applications, the set Ω  includes an infinite number of scenarios, which makes the 
proposed stochastic programming model impossible to solve. The Sample Average 
Approximation (SAA) method can however be used to obtain near optimal solutions. This 
method has been theoretically analysed by several authors (Mak et al., 1999; Sharpiro, 2003) and 
applied to solve various stochastic supply chain design problems (Santoso et al., 2005; Vila et al., 
2007). It involves solving the problem for samples of scenarios randomly selected from the 
population Ω . For this purpose, B random samples { }1,..., ,N N

b b bω ωΩ =  1,...,b B= , of N scenarios 
are generated using Monte Carlo methods. For a sample b, the true problem (4.1) – (4.19), with 
the expected value function ( ),Ε Q ωΩ ⎡ ⎤⎣ ⎦Z  in (4.1), is replaced by the following SAA program:    

( )
1

1ˆmax ( ) , ( )
S

N
N n s s

b b k k
n s CS k K

f q a Z
N

ω
= ∈ ∈

= −∑ ∑ ∑Z Z Y   (5.1) 

subject to constraints (4.2) – (4.4)  and  (4.7) – (4.19). 

Note that in this program, the second stage constraints (4.7) – (4.19) are defined over the 
scenarios N

bω ∈Ω  of the sample considered. Program (5.1) is solved for the B samples generated 
and the best solution found is selected. The SAA program (5.1) is a large mixed integer program 
(MIP) but, for a moderate sample size N, it can be solved using commercial solvers such as 
CPLEX. Even if a moderate sample size is used, we expect that the contract decisions made using 
this approach are considerably more robust than the solutions provided by a deterministic model.  
Clearly, as the number of scenarios N increases, the quality of the decisions improves. As shown 
by Shapiro (2003), under mild regularity conditions, the solution of the SAA model converges 
with probability one to the optimal solution of the true problem, as sample size N increases. Also, 
using B independent random samples of size N increases the probability of finding the true 
optimal solution. 

An important issue is how to select the best solution among the B solutions found, and how close 
this solution is to the optimal solution of the true problem. The quality of a candidate solution can 
be evaluated by estimating a statistical optimality gap and confidence intervals. In the following 
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paragraphs, we present the SAA solution algorithm developed to solve our model. Similar 
procedures are found in Santoso et al. (2005) and Vila et al. (2007).  

SAA Algorithm: 
Step 1.  Generate B independent samples of N scenarios , 1,...N

b b BΩ = . For each sample, solve 
the SAA model (5.1). Let N

bv  and ˆ N
bZ  be the corresponding optimal objective value 

and optimal solution, respectively. 
 
Step 2:  Compute the statistical upper bound and variance estimators. 

,
1

1 B
N

N B b
b

U v
B =

= ∑  (5.2) 

It can be shown that *
,N BU v≥ , where  *v  denotes the optimal value of the true problem 

(Mak et al. 1999). Thus ,N BU  provides a statistical upper bound.  Since the B samples 
generated, and hence 1 , ...,N N

Bv v , are independent, the variance of ,N BU  is given by: 

( ) ( ),

22
,

1

1ˆ
1)N B

B
N
b N BU

b

v U
B B

σ
=

= −
− ∑  (5.3) 

Step 3: Compute the statistical lower bound and variance estimators. 
For each distinct candidate solution ˆ N

bZ obtained in Step 1, estimate the true objective 
function value ( )ˆ N

bf Z  as follows: 

( )
1

1ˆ ˆ ˆ ( ) , ( )
l

l S

N
N N n s s N

N b b k k b
n s CS k K

l

f Q a Z
N

ω
= ∈ ∈

= −∑ ∑ ∑% Z Z  (5.4) 

where lNωω ,...,1
 is a sample of size lN N�  generated independently of the samples 

used to obtain ˆ N
bZ  in Step 1.  Note that ˆ( )

l

N
N bf% Z

 
is an unbiased estimator of ( )ˆ N

bf Z .  
Since ˆ N

bZ  is a feasible solution to the true problem, we have ( ) *ˆ N
bf v≤Z . Thus, 

ˆ( )
l

N
N bf% Z  provides a lower statistical bound on *v . Since we have an independent sample, 

the variance of this estimator is given by: 

( ) ( ) ( ) ( )( )2
2

ˆ
1

1 ˆ ˆ ˆˆ , ( )
1)

l

N lSN bl

N
N n s s N N
b k k b N bf n s CS k Kl l

Q a Z f
N N

σ ω
= ∈ ∈

= − −∑ ∑ ∑
−%

%
Z

Z Z  (5.5) 

Step 4: Calculate the optimality gap and the confidence interval.  
 Having determined the statistical upper and lower bounds from Step 2 and 3, the 

optimality gap of solution ˆ N
bZ  can be estimated by: 

( ) ( ){ }, , ,
ˆ ˆmax 0,

l l

N N
N B N b N B N bGap U f= − %Z Z  (5.6) 

The estimated variance of the gap is given by: 

( ),

2 2 2
ˆˆ ˆ ˆ N

N B N bl
Gap U f

σ σ σ= + % Z  (5.7) 
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An approximate 100 ( )1 α−  percent confidence interval for the optimality gap at ˆ N
bZ  is 

given by: 

( ) ( ), ˆ, 1 , 1
2 2

, ,

ˆ ˆ
ˆ0,

N
N B N bll

l

U fB NN
N B N b

l

t t
Gap

B N

α ασ σ
− −

⎡ ⎤
⎢ ⎥+ +
⎢ ⎥
⎣ ⎦

% Z

Z  (5.8) 

assuming random variables N
bv  and ( )ˆ ,N n

bQ ωZ  follow a t-distribution with 1B −  and 

1−lN  degrees of freedom, respectively (Mak et al. 1999). 
 

Step 5:  Select the solution ˆ , 1,...,N
b b B=Z , with the highest estimated true objective function 

value ˆ( )
l

N
N bf% Z . 

Having selected the best contract solution, its quality can be evaluated by examining the gap and 
confidence interval.  If the gap and confidence interval are not acceptable, a larger number of 
samples B and/or sample size N must be used in order to find better solutions. 

6. Application to an OSB Industrial Case 

6.1 Case Description 

In order to validate the methodology, the two-stage stochastic programming model proposed was 
applied to the real industrial case context presented in Feng et al. (2008). The numerical tests 
were based on the field data obtained from a single OSB mill. The mill has a single capacitated 
production line. Production is carried out in batches using a multi-daylight hot press. The 
production line produces 11 products, on an MTO basis, and it consumes 8 raw materials 
supplied by 11 raw material suppliers. The products are sold to 140 customers across 5 different 
regions in North America. In order to effectively apply the methodology, following a Pareto 
analysis, 20 customers, accounting for 80% of the sales in the 5 regions, were explicitly 
considered. The rest of the customers and their demands were aggregated to form the spot market 
in each of the regions. The shipping unit costs to each of the customers are known, and for the 
spot markets they were estimated based on the weighted cost to each of the customers within the 
region. On the raw material procurement side, the lead time varies depending on the suppliers and 
raw material types, being either 0 or 1 period. For demand contracts, 4 forms of contract were 
offered to the customers, as described in Section 3.3, with different discount, fixed charges, 
minimum/maximum quantities, and contract horizons, yielding 28 contract policies. For 
procurement contracts, we considered 7 supply contract offers from 7 suppliers all with yearly 
contract duration term. The study was conducted with monthly planning periods and a planning 
horizon of one year. The scope of the case is outlined in Table 1.   
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Table 1.  The Scope of the OSB Case 

 Indexes Sizes 
Mills 1 
Facilities 1 
Distribution centers 2 
Products 11 
Customers 20 
Spot market 5 
Raw material suppliers 11 
Raw materials 8 
Demand contract potential offers 28 
Supply contract offers 7 

 Planning horizon 12 months  
 

In this study, the deterministic parameters were derived from field data as explained in Feng et al. 
(2008). For the random parameters, probability distributions were estimated respectively, using 
five years market data for the reference price, and one year’s data for customer demand, 
production capacity, raw material spot price, and raw material spot capacity. The best fit for the 
market reference price, demand, raw material spot price and raw material spot capacity was a 
Normal distribution, and the standard deviations were obtained by multiplying the historic means 
by an estimated coefficient of variation (0.05, 0.20, 0.05, and 0.20, respectively). The best fit for 
the manufacturing capacity, based on down time analysis, was a Uniform distribution. Three 
possible economic trends were considered: stable (S), expanding (E), or weakening (W). The 
corresponding estimated probabilities were ( ) 70%P S = ,  ( ) ( )20%, 10%P E P W= =  and the 
trends were defined by linearly increasing (decreasing) annual inflation (deflation) factors 

( ) 1et ea T tλ = +  with ea , being 0%, 10%, and -10%, respectively, for all { }, ,e S E W∈ Ξ = , over 
the planning horizon of T = 12 monthly periods. The distributions for the random variables and 
corresponding inflation (deflation) factors are shown in Table 2. 

Table 2.  Random variables, their probability distributions and inflation (deflation) factors 

 Random Distributions inflation/deflation 
 Variables  factors 

 Market reference price c ,ref
itep  ( ) ( ) ( )( )c ,ref

ite

c ,ref c ,ref
ite itep

F . Normal p , pμ σ=  etλ  

 Demand c
ited  ( ) ( ) ( )( )c

ite

c c
ite ited

F . Normal d , dμ σ=  etλ  

 Raw material spot price s
jtec  ( ) ( ) ( )( )s

jte

s s
jte jtec

F . Normal c , cμ σ=  etλ  

 Raw material spot capacity s
teKS  ( ) ( ) ( )( )s

te

s s
te teKS

F . Normal KS , KSμ σ=  KS e
et

a t 1
T

λ = − +  

 Production capacity mtK  ( ) ( )mt mt

mt

K K
K 1 2F . Uniform ,θ θ=  -- 
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The notations ( )μ . and ( )σ .  are the mean and standard deviation of the Normal variables, mtK
1θ , 

mtK
2θ  are the lower and upper bounds of the Uniform variables ( 85% and 98% of the standard 

production capacity, respectively). Due to the sensitivity of the contract issues on customer-
manufacturer-supplier relationships, and a confidentiality agreement, the detailed data is not 
presented. 

The SAA model generator was written using Optimization Programming Language OPL 6.3, 
with a Microsoft Access database connection to automatically read data inputs and write solution 
outputs. The MIPs were solved using CPLEX 11.2. The program was run on a Intel Core 2 Duo 
workstation with CPU 2.00GHz, 4.00GB of RAM, and Windows Vista Home Edition Version 
2007.  

6.2 Scenario Generation 

Plausible scenarios are generated using the following Monte Carlo procedure, which is based on 
the stochastic processes defined in Section 3. In the procedure, u denotes a uniformly distributed 
pseudo random number in [0,1]. The procedure starts by selecting an economic trend. It then 
sequentially generates demands and prices for the customers, capacities and prices for the spot 
raw material suppliers, and manufacturing capacities. In order to obtain a sample of N scenarios, 
one simply runs the procedure N times. 

Scenario ω  Generation Procedure: 

Step 1.  Select an economic trend e randomly using ( ) , P e e ∈ Ξ  
Step 2. For all customers Cc ∈ , do: 

Generate customer-contract choices   

( ) ( )1 if 0,
 ,   

0 otherwise

c
ec C

k

u P k
k Kξ ω

⎧ ⎡ ⎤∈⎪ ⎣ ⎦= ∀ ∈⎨
⎪⎩  

  Generate customer requirements and market reference prices 
( ) 1 ( )c

ite

c
it et d

d F uω λ −= , ( ) ( )c ,ref
ite

c ,ref 1
it et p

p F uω λ −= , i,t T∀ ∈  
Derive contract and spot demands from customer requirements 

 
( ) ( )( )( ) ( )min max , , , if  1

0, otherwise

c c
c k it k k
kit

lb d ubd ω ξ ωω
⎧ == ⎨
⎩

, C
ki,t T ,k K∀ ∈ ∈  

( ) ( ){  
0 otherwise

c
c it
it

dd ωω =
  
, comi I ,t T∀ ∈ ∈  

Derive contract and spot prices from market reference prices 

( ) ( )
t 1

c c ,refk
kit it '

t ' t n
p p

n
φω ω

−

= −
= ∑ , C

ki,t T ,k K∀ ∈ ∈  
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 ( ) ( )c c ,ref
it itp pω ω=  , ,comi I t T∀ ∈ ∈ ,      

Step 3. For all spot suppliers NSs ∈ , and all periods t T∈ , do: 
Generate the spot supplier’s raw material capacity and prices 

( ) 1 ( )s
te

s KS
t et KS

KS F uω λ −= ,     ( ) 1( )s
jte

s
jt et c

c F uω λ −=   j J∀ ∈  
Step 4. For all mills  m M∈ , and all periods t T∈ , do: 
 Generate the manufacturing capacity 
   ( ) 1 ( )

mtmt KK F uω −=   

7. Computational Results 

In order to investigate the solvability of the SAA program (5.1),  and the quality of the solutions 
obtained, experiments were initially carried out using 5 samples of scenarios ( )B 5= , each of 
size N = 1, 5, 10, 15, 20 and 25. Table 3 shows that as the sample size N increases, the SAA 
program size and the computational times grow significantly. Figure 3 illustrates the time 
variance in solving the problem for the 5 different samples of the varying sample sizes. 
Obviously there is a trade-off between the problem size, computational efforts, and solution 
quality. To obtain good quality solutions while preserving the solvability of the model, we used 

10B =  samples of N = 25 scenarios in our calculations, yielding 10 candidate solutions.  

Table 3.  Comparison of Model Complexity with Different Sample Size N. 

  Sample size (N) Continuous variables Binary variables Constraints Time (Sec) 
 1 6952 177 8570 3 
 5 40687 245 5338 18 
 10 84417 264 112189 55 
 15 140246 294 193378 758 
 20 204442 354 290038 377 
 25 270500 385 390118 2223 

Figure 3. Computation Times Variation. 
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The statistical validation of the solutions is carried out by evaluating the objective function values 
with respect to each of the candidate solutions using 100, 200,300lN =  sampled scenarios.  
Table 4 presents the statistics for three candidate solutions, denoted 1Ẑ , 2Ẑ , and 3Ẑ . Among the 
three candidate solutions, the performances are very similar. The objective function values 
increase and the optimality gaps and confidence intervals become very tight as the sample size 

lN  increases. This result indicates that the stochastic modeling method can produce robust 
solutions with good performances in various uncertain environments. The candidate solution 1Ẑ  
provides slightly superior results among the three solutions. Note that when lN 300= , we 
observed ( ) ,

ˆ
l

N
N b N Bf U>% Z  resulting in a negative gap. This negative gap is known to be caused by 

the separate sampling approach used to estimate the statistical upper and lower bounds, and the 
relatively smaller values of B  and lN . A similar phenomenon was observed by Mak (1999), 
where a common random number (CRN) sampling approach was proposed. In the CRN sampling 
approach, instead of developing a confidence interval of the optimality gap by estimating the 
upper- and lower- bounds separately using independent sample scenarios, the same set of sample 
scenarios is used. It was reported that using CRN sampling can eliminate the negative gap with 
improved confidence interval without significantly increasing the sample sizes.  

In order to investigate the necessity of applying stochastic programming in solving contract 
design, allocation, and selection problems, the problem is also solved using MIP deterministic 
model. The performances of the contract solutions derived using the two models are then 
compared. In the deterministic model, the random variables such as demand, market price, raw 
material supplier price and capacity, as well as the manufacturing capacity, are replaced by mean 
values under a stable economic environment. The customer-contract choice parameters are 
generated randomly and independently. Ten replicates of customer-contract choice parameters 
are generated and the MIP model is solved for each replicate yielding ten candidate solutions. 
These solutions are also evaluated using 300,200,100=lN  sampled scenarios. The 
performances with respect to the deterministic contract solutions are compared in Figure 4 with 
those obtained from the stochastic contract solutions. The contract solutions obtained from the 
stochastic programming model perform significantly better than those obtained from the 
deterministic model with a 12% performance improvement on average equivalent to $ 7 million 
dollar increase in profit. The performances from the ten candidate solutions obtained using 
stochastic programming model are consistent with little variations, while those from the 
candidate solutions obtained using deterministic model vary considerably, ranging from $53 to 
$64 million dollars. 
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Figure 4. Comparison of objective function values from stochastic and deterministic 

contract solutions with 300,200,100=lN   samples, respectively. 

Table 5 present the statistics for three candidate solutions from the deterministic model, denoted 

1
ˆ

MIPZ , 2
ˆ

MIPZ , and 3
ˆ

MIPZ . Note that in deterministic case, contract decisions that yield high 
objective function values do not necessarily perform well in uncertain business situations. As 
shown in Table 5, particularly candidate solution 3

ˆ
MIPZ , despite an objective function value 

higher than the upper bound ,N BU  obtained from the stochastic programming model, has a low 

( )3
ˆ

lN MIPf% Z  value and a large gap. Contract decisions are affected by many factors, such as, 
market price, customer demand and customer-contract choices, among other factors, which are 
rarely known with certainty. Yet, since in deterministic models, mean parameter values are used 
and a single customer choice scenario is considered, the decisions made adapt poorly for different 
plausible scenarios. Thus, decisions provided by deterministic models are less robust, and often 
inadequate. Stochastic programming is therefore a more appropriate modeling approach for 
contract decision problems, and the SAA solution approach can be practically applied. 

Table 6 presents statistics on the contract decisions provided by the three stochastic and 
deterministic candidate solutions, respectively. It can be observed that the demand contract 
decisions vary in terms of contract forms, policies, allocations, and the number of contract 
customers. This indicates that the decisions are sensitive to the sample scenarios, particularly the 
customer-contract choices, customer demand, and market prices. This is particularly true for the 
contract decisions obtained from the deterministic model as shown by the larger variations 
observed. With the scenarios generated, not all 20 potential high volume customers have been 
offered a contract. The models have suggested reserving a proportion of the capacity to absorb 
the contract demand variation and/or serve the spot market. The manufacturer may choose an 
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alternative contract decisions based on particular contract relationship considerations with full 
awareness of the financial implications. For the supply contract decisions, the results are rather 
consistent. Six distinct supply contracts are selected from the 7 contract offers in most of the 
cases. This indicates that the contract decisions are relatively insensitive for the level of raw 
material market price and availability changes studied in this case.  

Table 6. Candidate solutions. 
 Candidate No. of contract  No of contract Contract demand No of contract No of supply 
 solution forms policies allocation customers contract 

 1Ẑ  2 6 63% 16 6 

 2Ẑ  2 7 60% 16 6 

 3Ẑ  3 7 63% 15 6 

 MIP1Ẑ  2 9 67% 17 7 

 MIP2Ẑ  1 7 67% 18 6 

 MIP3Ẑ  4 11 73% 17 6 

 

8.  Conclusions and Future Research Opportunities 

In this article, we present a two-stage stochastic programming model for coordinated contract 
design, allocation, and selection decisions from a manufacturer’s point of view, in a divergent 
three-tier manufacturing supply chain, under stochastic economic, market, supply, and system 
environments. In this capacitated make-to-order manufacturing system, the manufacturer wishes 
to offer different contracts to satisfy customers’ needs, to accept the contract that optimize the 
resource capacity allocation, and to select the right contracts from the suppliers that guarantee the 
satisfaction of the contract and non-contract demand at lowest procurement cost. Four forms of 
contracts are evaluated for the demand contract design including the price-only, periodical 
minimum quantity commitment, periodical commitment with order band, and periodical 
stationary commitment contracts, each with different duration terms and price incentives. 
Stochastic customer-contract choices are incorporated in the scenarios generated in order to 
provide meaningful solutions for the demand contract decisions. The two-stage stochastic 
programming model with fixed recourse proposed is solved using the SAA approach. Feasible 
solutions are obtained in all cases. Computation analysis shows that by using stochastic 
programming model, more realistic and robust solutions can be obtained, with expected 12% 
superior financial performances, on average, to those obtained using a MIP deterministic model.   
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This research has been focused on two-stage stochastic programming to solve a contract decision 
problem in which all contract decisions are made at the beginning of the planning horizon. In real 
industrial environments, customer may choose a short term contract, for example, a three month 
contract, and leave the decisions on future contracts to a later date. A multi-stage stochastic 
programming approach could thus be investigated to address multiple contract decision points 
during the planning horizon. Note however that, given the additional complexity introduced by a 
multi-stage stochastic programming approach, using our model on a rolling horizon basis 
provides a practical way to reach contract decisions that are near optimal. A comparison of these 
two approaches would certainly be interesting, despite the fact that the multi-stage models would 
be much more difficult to solve. 

Acknowledgements 

The authors would like to gratefully acknowledge the financial support provided by the FOR@C 
Research Consortium, and would like to thank our research partner, FP Innovations, Forintek 
division, and our industrial partner for their valuable collaboration and support. We would also 
like to thank Professor Denis Bolduc for his advises on the application of the BIOGEME 
software and Mr Philippe Marier for his technical advises. 
  

A Stochastic Programming Approach for Coordinated Contract Decisions in a Make-to-Order Manufacturing Supply Chain

27 CIRRELT-2010-11



 

 
 

References 

[1] Anupindi, R., 1993, Supply management under uncertainty.  PhD thesis, Graduate School 
of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA 15213. In: Tayur, 
S., Ganeshan, R., Magazine, M. (Eds.) Quantitative Models for Supply Chain Management.  
Kluwer Academic Publishers, Boston, pp. 199-232. 

[2] Anupindi, R., Akella, R., 1997, An inventory model with commitments.  Working paper.  
IN: Tayur, S., Ganeshan, R., Magazine, M. 1999. (Eds.) Quantitative Models for Supply 
Chain Management.  Kluwer Academic Publishers, Boston, ISBN 0792383443, 
9780792383444.  pp. 199-232 

[3] Anupindi, R., Bassok, Y., 1999, Supply contracts with quantity commitments and 
stochastic demand.  In: Tayur, S., Ganeshan, R., Magazine, M. (Eds.) Quantitative Models 
for Supply Chain Management.  Kluwer Academic Publishers, Boston, pp. 199-232 

[4] Bassok, Y., Anupindi, R., 1997, Analysis of supply contracts with total minimum 
commitment.  IIE Transactions, 29, 373–381. 

[5] Ben-Akiva, M., Lerman, S., 1994. Discrete Choice Analysis: Theory and Application to 
Travel Demand.  MIT, Cambridge, Massachusetts, USA. 

[6] Cachon, G.P., 2003. Supply chain coordination with contracts.  In: Graves, S.C., de Kok, 
A.G. (Eds.), Handbooks in Operations Research and Management Science: Supply Chain 
Management: Design, Coordination and Operation, Vol. 11.  North-Holland, Amsterdam, 
pp. 227-339. 

[7] Corbett, C.J., Tang, C.S., 1999, Designing supply contracts: Contract type and information 
asymmetry.  In: Tayur, S., Ganeshan, R., Magazine, M. (Eds.) Quantitative Models for 
Supply Chain Management.  Kluwer Academic Publishers, Boston, pp. 271-297. 

[8] D'Amours S., Montreuil, B., Moke, J., Desaulniers, G., 2000. Contract-based tactical 
planning of supply chain, INFORMS Conference, San Antonio, TX, U.S.A.  

[9] Easton, F.F., Moodie, D.R., 1999.  Pricing and lead time decisions for make-to-order firms 
with contingent orders.  European Journal of Operational Research, 116, 305-318. 

[10] Feng, Y., D’Amours, S., and Beauregard, R., 2008a. The value of sales and operations 
planning in oriented strand board industry with make-to-order manufacturing system: cross 
functional integration under deterministic demand and spot market recourse. International 
Journal of Production Economics, 115 (1), 189–209. 

[11] Kumar, A., 1992, Supply contracts and manufacturing decisions.  PhD thesis, Graduate 
School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA 15213.  
In: Tayur, S., Ganeshan, R., Magazine, M. (Eds.) Quantitative Models for Supply Chain 
Management.  Kluwer Academic Publishers, Boston, pp. 199-232. 

[12] Lariviere, M.A., 1999, Supply chain contracting and coordination with stochastic demand.  
In: Tayur, S., Ganeshan, R., Magazine, M. (Eds.) Quantitative Models for Supply Chain 
Management.  Kluwer Academic Publishers, Boston, pp. 235-268. 

[13] Lariviere, M.A., Porteus, E.L., 2001, Selling to the newsvendor: An analysis of price-only 
contracts.  Manufacturing and Service Operations Management, 3(4), 293-305. 

[14] Lian, Z., Deshmukh, A., 2009, Analysis of supply contracts with quantity flexibility. 
European Journal of Operational Research, 196, 526-533. 

A Stochastic Programming Approach for Coordinated Contract Decisions in a Make-to-Order Manufacturing Supply Chain

CIRRELT-2010-11 28



 

 
 

[15] Louviere, J., D. Hensher and J. Swait, 2000, Stated Choice Methods, Cambridge University 
Press. 

[16] Mak, W.K., Morton, D.P., Wood, R.K., 1999.  Monte Carlo bounding techniques for 
determining solution quality in stochastic programs.  Operations Research Letters, 24, 47-
56. 

[17] Monahan, J.P., 1984, A quantity discount pricing model to increase vendor profits.  
Management Science, 30(6), 720-726. 

[18] Moinzadeh, K., Nahmias, S., 2000, Adjustment strategies for a fixed delivery contract.  
Operations Research, 48(3), 408-423.   

[19] Munson, C.L., Rosenblatt, M.J., 2001. Coordinating a three-level supply chain with 
quantity discounts. IIE Transactions 33 (5), 371–384. 

[20] Santoso, T., Ahmed, S., Goetschalckx, M, Shapiro, A., 2005, A stochastic programming 
approach for supplychain network design under uncertainty.  European Journal of 
Operational Research, 167, 96-115. 

[21] Scheller-Wolf, A., Tayur, S., 1998, A Markovian Dual-source Production Inventory Model 
with Order Bands.  Working Paper, #1998-E200, Graduate School of Industrial 
Administration, Carnegie Mellon University, Pittsburgh, PA 15213.  In: Tayur, S., 
Ganeshan, R., Magazine, M. (Eds.) Quantitative Models for Supply Chain Management.  
Kluwer Academic Publishers, Boston, pp. 199-232. 

[22] Schneeweiss, C., Zimmer, K., Zimmermann, M., 2004.  The design of contracts to 
coordinate operational interdependencies within the supply chain.  International Journal of 
Production Economics, 92, 43-59. 

[23] Shapiro, A., 2003. Monte Carlo sampling methods. IN: Ruszczynski, A., Shapiro, A., (eds), 
Stochastic Programming, Handbooks in Operations Research and Management Sciences, 
10, Elsevier. 

[24] Tsay, A.A., 1999, The quantity flexibility contract and supplier-customer incentives. 
Management Science, 45, 1339–1358. 

[25] Tsay, A.A., Lovejoy, W.S., 1999 Quantity flexibility contracts and supply chain 
performance.  Manufacturing and Service Operations Management, 1(2), 89–111. 

[26] Tsay, A.A., Nahmias, S., Agrawal, N., 1999, Modeling supply chain contracts: A review. 
In: Tayur, S., Ganeshan, R., Magazine, M. (Eds.) Quantitative Models for Supply Chain 
Management.  Kluwer Academic Publishers, Boston, pp. 300-336. 

[27] van Delft, Ch., Vial, J.-Ph. (2001). Quantitative analysis of multi-periodic supply chain 
contracts with options via stochastic programming. Working Paper, Department of 
manangement Studies, University of Geneva, 40 Bd du Pont d’Arve, CH-1211 Geneva 4, 
Switzerland. 

[28] Vila, D., Martel, A., Beauregard, R., 2007. Taking market forces into account in the design 
of production-distribution networks: A positioning by anticipation approach.  Journal of 
Industrial and Management Optimization, 3(1), 29-50. 

[29] Watanapa, B., Techanitisawad, Anulark, 2004.  Simultaneous price and due date settings 
for multiple customer classes.  European Journal of Operational Research, 
doi:10.1016/j.ejor. 2004.02.011 

[30] Weng, Z.K., 1995, Channel coordination and quantity discounts.  Management Science, 
41(9), 1509-1522. 

A Stochastic Programming Approach for Coordinated Contract Decisions in a Make-to-Order Manufacturing Supply Chain

29 CIRRELT-2010-11



 

 
 

[31] Xu, N., Nozick, L., 2008, Modeling supplier selection and the use of options contracts for 
global supply chain design. Computers & Operations Research, 
doi:10.1016/j.cor.2008.12.013 

[32] Zou, X., Pokharel, S., Piplani, R., 2008, A two-period supply contract model for a 
decentralized assembly system.  European Journal of Operational Research, 187, 257-274. 

 

A Stochastic Programming Approach for Coordinated Contract Decisions in a Make-to-Order Manufacturing Supply Chain

CIRRELT-2010-11 30


	CIRRELT-2010-11pp
	CIRRELT-2010-11-abstract
	CIRRELT-2010-11



