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Abstract.  In the Dial-a-Ride Problem (DARP), a fleet of vehicles must serve 
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efficiently prove the infeasibility or to provide a feasible solution. Such an algorithm could 

be used in a dynamic setting for determining whether it is possible or not to accept an 
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1 Introduction

The Dial-a-Ride Problem (DARP) is a Pickup and Delivery Problem (PDP) in which

a fleet of vehicles must serve requests which consist in transporting users from an origin

to a destination. The main application of the DARP is the door-to-door transportation

services offered for the elderly and handicapped people in many cities. Case studies

have been conducted in Toronto [Desrosiers et al., 1986], Berlin (Borndörfer et al., 1997),

Bologna [Toth and Vigo, 1996], Copenhagen [Madsen, Ravn, and Rygaard, 1995], and

Brussels [Rekiek et al., 2006]. For a review of the different models and algorithms for the

DARP, the reader is referred to Cordeau and Laporte [2007].

The DARP generalizes many problems of the vehicle routing literature, such as the

Capacitated Vehicle Routing Problem (CVRP) and the Traveling Salesman Problem with

Time Windows (TSPTW) among others. Since the feasibility problem for the TSPTW

is NP-complete [Savelsbergh, 1985], checking whether a DARP instance is feasible or not

is also NP-complete. In addition to the precedence constraints which are not present in

the TSPTW and CVRP, the DARP generally assigns tight time windows to pickup and

delivery vertices as well as a maximum user trip time to reduce their inconvenience. These

constraints make the problem of finding a feasible solution for the DARP a challenge.

Detecting whether a DARP instance is feasible is relevant in static and in dynamic

settings. In a static setting, finding a feasible solution could be the first step inside an

optimization algorithm that is executed the night before the service day. In a dynamic

setting, an algorithm to detect whether or not a DARP instance is feasible can be used

as a tool to accept or reject incoming user requests as follows. When a new request is

received, a new DARP instance I is constructed which contains all the previously known

requests plus the new incoming request. The algorithm used to find a feasible solution

is executed with the constraint that the new solution for I must not modify the partial

routes already traveled. If such a feasible solution is found the request can be accepted,

whereas if no solution exists, the request is rejected. From a quality of service point of

view, proving that a given request cannot be inserted, while satisfying the constraints, is

a more convincing statement than simply saying that no solution has been found.
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In this article, we present an algorithm to determine whether a given instance of the

Dial-a-Ride Problem is feasible, based on Constraint Programming which is particularly

effective to solve feasibility problems. To achieve this, we have modeled the DARP as a

Constraint Satisfaction Problem (CSP) and we have then developed filtering algorithms

to determine whether or not a partial solution can be extended into a complete solution

taking into account different sets of constraints.

The remainder of this paper is organized as follows. In Section 2 we give a brief

introduction to Constraint Programming (CP) and we survey the most relevant literature

on the use of CP to solve vehicle routing problems. The CP model of the DARP and

some important definitions that are needed later are given in Sections 3 and 4 respectively.

Section 5 describes two algorithms that we have developed to use in CP to speed up the

search. The methods for selecting variables and values in the branching tree are described

in Section 6, while techniques to reduce the search space are described Section 7. Finally,

computational results and some conclusions are given in Sections 8 and 9 respectively.

2 Constraint programming and its applications to ve-

hicle routing problems

Constraint Programming (CP) is a programming paradigm applicable to the solution of

combinatorial problems, and based on inference and search techniques [Rossi et al., 2006].

In CP, a problem is modeled as a Constraint Satisfaction Problem (CSP). Informally, a

CSP consists of a set of variables and a set of restrictions, called constraints, over the

variables. A constraint on a sequence of variables is a relation on the variable domains.

It states which combination of values from the variable domains are permitted and which

of them are not.

A CSP is a triple P =< X, D, C > where X = (x1, . . . , xn) is an n-tuple of variables,

D = (D1, . . . , Dn) is an n-tuple of domains such that xi ∈ Di for i ∈= {1, . . . , n} and C =

{C1, . . . , Cm} is a set of constraints. A constraint Ci is defined on a subset {xi1 , . . . , xik}
of the variables in X, and describes the allowed combinations of values for these variables
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as a subset of Di1 × . . .×Dik

A tuple A = (a1, . . . , an) such that ai ∈ Di is said to satisfy a constraint Ci =<

RSi
, Si > of the CSP P if the projection of A onto Si belongs to RSi

. A solution for

the CSP P is a tuple A = (a1, . . . , an) such that ai ∈ Di and it satisfies every constraint

c ∈ C. A CSP is consistent (or feasible) if it has a solution and inconsistent (or infeasible)

otherwise.

CP solves a model using inference algorithms to reduce the search space and search

methods. The inference algorithms, called constraint propagation algorithms or filtering

algorithms, try to simplify the problem by removing values from variable domains while

preserving the same set of solutions. Search methods consist generally of backtracking or

branch-and-bound combined with constraint propagation.

Constraint propagation algorithms manage the scheduling of specific rules to reduce

the domain of the variables of a CSP. These algorithms generally terminate when they

can achieve a property called domain consistency. On a CSP, this property states that

for every constraint Ci, each domain value of every variable xij of Ci appears in Di1 ×
. . .×Dik . Constraints can be partitioned according to the number of variables they relate.

A constraint is said to be unary, when only one variable is affected (e.g., the constraint

x1 < 5). When a constraint affects two variables is called binary, such as the constraint

x1+x2 < 5. A global constraint, is a constraint that relates a non-fixed number of variables.

A well known example of a global constraint is the constraint allDifferent(x1, . . . , xn),

which states that the variables x1, . . . , xn must be pairwise different. Generally, a global

constraint can be substituted by a set of simpler constraints. However, global constraints

are usually preferred: because of their global view, their filtering algorithms are able to

eliminate more values from the variable domains than by using the equivalent set of simpler

constraints. Whenever a filtering algorithm eliminates all the values from a variable

domain, it means that the actual CSP is infeasible and the filtering algorithm returns

‘fail ’.There are many global constraints in the constraint programming literature [see,

e.g., Beldiceanu et al., 2005, van Hoeve and Katriel, 2006]. Most global constraints have

polynomial time algorithms to achieve arc consistency, such as the allDifferent constraint.

There are many fields in which CP is being successfully applied such as scheduling,
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planning, molecular biology, finance, and numerical analysis. These and other applications

of CP are surveyed in Rossi et al. [2006].

The construction of vehicle routes constitutes a major problem for many organizations

and has been studied in the literature for more than 50 years [Laporte and Osman, 1995].

We describe the main applications of constraint programming to solve vehicle routing

problems which were carried out in the last decade. In the next paragraph we survey the

literature on exact methods, while in the one that follows we focus on heuristics.

A constraint programming algorithm to solve efficiently small instances (up to 30

vertices) of the TSP was presented by Caseau and Laburthe [1997]. The authors have

proposed a propagation technique to prohibit subtours, a simple binary branching scheme

and a bounding procedure weaker (but faster) than the Assignment Problem. Pesant

et al. [1998] have developed a constraint programming algorithm to solve the Traveling

Salesman Problem with Time Windows (TSPTW). By maintaining a lower bound and

an upper bound at each node, the search tree is explored by a branch-and-bound. Their

algorithm obtained better results than heuristics on some difficult instances and provided

new best solutions (at that time) for some others. Pesant et al. [1999] have extended

their previous CP model for the case in which multiple time windows for each vertex are

present. Focacci et al. [2002] have proposed a hybrid algorithm for the TSPTW, based on

the model of Pesant et al. [1998], where they have included an effective global constraint

based on cost propagation. Computational results from a set of symmetric and asymmetric

instances show the effectiveness of the inclusion of cuts in particular and of this hybrid

method in general. Constraint programming was also used in vehicle routing to solve the

subproblem of a column generation approach. Rousseau et al. [2004] have solved with

constraint programming and new redundant constraints the resource constrained shortest

path problem which appears as a subproblem in the TSPTW and VRPTW. The use of

constraint programming in column generation was originally proposed by Junker et al.

[1999] for solving a crew assignment problem.

A large neighborhood search (LNS) for the VRP and the VRP with time windows

was developed by Shaw [1998]. In his algorithm, constraint programming is used to

optimize the re-insertion of the set of clients removed at each move of the LNS. This

5

Checking the Feasibility of Dial-a-Ride Instances using Constraint Programming

CIRRELT-2010-16



method was competitive and it was able to find, at that time, new best solutions for some

instances. A hybrid method to solve the Vehicle Routing Problem with Time Windows

is presented by Rousseau et al. [2002]. Their method is based on the work of Pesant and

Gendreau [1996] that describes how a constraint framework can be used to explore large

neighborhoods efficiently using a branch-and-bound procedure. The hybrid algorithm of

Rousseau et al. [2002] uses three operators, which define three different neighborhoods.

During neighborhood exploration through branch-and-bound, propagation and pruning

are used to reduce the search space. The resulting method has produced good results on all

Solomon’s benchmark problems [Solomon, 1987]. De Backer et al. [2000] have developed

local search and metaheuristics algorithms for the Vehicle Routing Problem which make

use of constraint programming. The idea is to use constraint programming as an efficient

way to tell whether a solution is valid or not and to determine the values of constrained

variables. The search of solutions is handled by the local search algorithm. Their method

relies on a representation, called active, that holds the constrained variables and where

constraint propagation takes place. These techniques were embedded in the commercial

package ILOG Dispatcher, which is widely used to solve the VRPTW and its variants.

Computational results over a set of benchmark instances for the VRP have shown that

the method is effective.

3 Problem definition and a constraint programming

model

The DARP can be defined as follows. Let G = (V, A) be a complete and directed graph

with vertex set V = {0} ∪R, where vertex 0 represents the depot, and R (|R| = 2n) rep-

resents the customer vertices. The set R is partitioned into sets R+ (pickup vertices) and

R− (delivery vertices). Each arc (i, j) ∈ A has a non-negative travel time Tij satisfying

the triangle inequality. With each vertex i ∈ V are associated a time window [Ei, Li],

a service duration Di and a load qi (with D0 = 0 and q0 = 0). Let H = {1, . . . , n} be

the set of requests and let L be the maximum ride time for any request. Request i has
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pickup vertex i+ ∈ R+ and delivery vertex i− ∈ R− and its load is qi+ = −qi− . Let

K = {1, . . . , m} be a set of available vehicles, each of capacity Q. A route is a circuit over

some vertices, starting and finishing at the depot. The DARP consists of constructing m

vehicle routes (possibly empty) such that:

(i) for every request i the pickup vertex and the delivery vertex are visited by the same

route and the pickup vertex is visited before the delivery vertex;

(ii) the load of the vehicles never exceeds their capacity at any time;

(iii) the ride time of each user is at most L;

(iv) the service at vertex i begins in the interval [Ei, Li].

We give now a standard formulation of the DARP as a constraint satisfaction problem

based on successor variables. Some definitions and results presented in the remainder of

this article will be based on this formulation. We first extend the graph G. Vertex 0,

corresponding to the depot, is replaced by the depot set V = V +∪V − with |V +| = |V −| =
m. The new graph G has |V | + |R| = 2m + 2n vertices. Vehicle i ∈ K = {1, . . . , m} is

represented by vertices start(i) ∈ V + (starting depot) and end(i) ∈ V − (ending depot).

Under this transformation, the route of vehicle i is represented by the circuit (start(i)) :

Si : (end(i)) where Si is a sequence, possibly empty, of client vertices.

We list the variables for the constraint programming formulation. For each vertex

i ∈ V ∪R,

(i) s[i] ∈ V ∪R identifies the direct successor of vertex i;

(ii) `[i] ∈ [0, Q] states the vehicle load just after performing the pickup or delivery at

vertex i;

(iii) v[i] ∈ K indicates the vehicle serving vertex i;

(iv) t[i] ∈ [Ei, Li] represents the time at which vertex i is served.

The constraints for the DARP are the following.
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Basic constraints:

(i) For each vehicle j ∈ K, s[end(j)] = start(j);

(ii) for each vehicle j ∈ K, v[end(j)]=v[start(j)]=j;

(iii) allDifferent(s);

(iv) for each request i ∈ H, v[i+]=v[i−];

(v) for each vertex i, v[i]=v[s[i]];

Precedence and time windows constraints:

(vi) for each request i ∈ H, t[i+] ≤ t[i−] - Ti+,i− - Di+ ;

(vii) for each vertex j ∈ V + ∪R, t[j] ≤ t[s[j]]-Tj,s[j] −Dj;

Capacity constraints:

(viii) for each vehicle i, `[start(i)]= 0;

(ix) for each client vertex j ∈ R, `[s[j]]=`[j]+qs[j] and `[j] ≤ Q;

Ride time constraints:

(x) for each request i ∈ H, t[i−]−(t[i+] +Di+) ≤ L.

During the search to obtain a feasible solution to a DARP instance using the constraint

programming model, the successor variables s are given values one at a time. The fixed

successor variables create partial routes that the constraint programming algorithm will

try to extend into complete routes to obtain a feasible solution. If at some point during

this process, a constraint propagation algorithm realizes that no solution can exist from

that node of the tree, backtracking occurs. In the next section, we formalize the concept

of partial route, partial solution and what it means to extend a partial solution into a

complete solution. In later sections we develop filtering algorithms for two relaxations

in order to help the constraint programming engine to backtrack from infeasible subtrees

earlier and therefore speed up the search.
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4 Partial routes, partial solutions and extensions

A partial route of a graph G = (V,E) is a sequence of vertices of V that do not repeat.

Consider the DARP constraint programming formulation given in section 3. A partial

solution of a DARP instance I consists of a set of partial routes P of G such that each

vertex i ∈ D ∪ R appears exactly in one partial route p ∈ P . A solution S of the DARP

instance I is said to extend a partial solution P if every partial route p ∈ P is contained

as a subsequence in one of the vehicle routes of the solution S. Given an instance of

the DARP and a partial solution P , we are interested in determining whether or not

there exists a solution for the DARP that extends the partial solution P . We call this

problem the partial route extension problem. Observe that this problem generalizes the

feasibility problem of the DARP, since the latter can be seen as a special case in which

each partial route is made up of just one vertex. Determining whether or not a DARP

instance is feasible is NP-complete [Savelsbergh, 1985] and therefore, the partial route

extension problem is also NP-complete. Consider now any relaxation r of the DARP.

Given a partial solution P , the partial route extension problem of the relaxation r consists

of determining whether or not there exists a solution of the relaxation r that extends the

partial solution P .

Before we study the partial route extension problem for the different relaxations, we

give some notation and definitions regarding partial routes. Consider the partial route

p = (p0, . . . , pu). We define α(p) = max {∑j
i=0 q(pi) : 0 ≤ j ≤ u}, δ(p) =

∑u
i=0 q(pi) and

γ(p) = max {−∑j
i=0 q(pi) : 0 ≤ j ≤ u}. Thus, α(p) accounts for how much more load will

the vehicle attain along the path p with respect to the load it had at the beginning. The

value δ(p) accounts for the difference between the vehicle load after and before the partial

route p. Finally, γ(p) accounts for how much less load the vehicle will attain along the

path p in respect with the load it started with. See Figure 1 for an illustration. Observe

that −δ(p) ≤ γ(p) and that α(p) ≥ δ(p) for any partial route p. Given partial routes p1

and p2, the partial route p that consists of the concatenation of the partial routes p1 and

p2 (in this order) is written p = (p1, p2).

A route r = (v0, . . . , vk) of a DARP instance is a sequence of vertices such that (1)
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α(p) = 3

δ(p) = 1

V ehicle load

V isits

γ(p) = 1

Figure 1: An example of a partial route which has a sequence of three pickups, followed

by four deliveries and finishing with two pickups.

v0 = start(i) and vk = end(i) for some i ∈ K; (2) for each i ∈ H, i+ ∈ {v0, . . . , vk} if and

only if i− ∈ {v0, . . . , vk} and (3) vi 6= vj for all 1 ≤ i, j ≤ k with i 6= j. A route is said to

be empty if k = 1. We say that a vertex i belongs to the route r = (v0, . . . , vk) and we

write it, i ∈ r, if i = vj for some 0 ≤ j ≤ k. We say that a request i ∈ H belongs to the

route if i+ ∈ r and i− ∈ r. Similarly, a vertex x belongs to a partial route p = (v1, . . . , vu),

written x ∈ p, if x = vi for some 1 ≤ i ≤ u. A vertex x belongs to a set of partial routes

P = {p1, . . . , pk}, written x ∈ P , if x ∈ pi for some 1 ≤ i ≤ k.

Given a partial solution S for a DARP instance I, we say that S is elementary feasible

if S can be extended into a complete DARP solution that satisfies the constraints from (i)

to (vi), i.e., the basic constraints. A solution satisfying the basic constraints consists of m

routes such that (i) each vertex is visited exactly once and (ii) the pickup vertex and the

delivery vertex of the same request are visited in the same route. In the development of

the filtering algorithms, we assume that the partial solution that is taken as the input is

elementary feasible. This is because the constraint programming engine we used (ILOG

Solver) will efficiently verify whether a partial solution S is elementary feasible at each

branch when given the CSP model of Section 3. Let π = {p1, . . . , pl} be a non-empty set

of partial routes. Berbeglia et al. [2009] define h(π) as

h(π) = min{α(x)|x = (pσl(1), . . . , pσl(l)) with σl ∈ Sl},

where Sl is the symmetric group on {1, . . . , l} (i.e., the set of permutations of l elements).

In words, h(π) consists of the minimum value of α that can be obtained from a partial
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route which is the concatenation of all the partial routes in the set π. An O(l2) algorithm

to compute h(π) is given in Berbeglia et al. [2009]. The algorithm will be used in the next

section, to create a filtering procedure for a relaxation of the DARP.

5 Filtering algorithms

In this section we develop an inconsistency checking algorithm and a filtering algorithm

for two relaxations of the DARP called the Pickup and Delivery Problem with Fixed Partial

Routes and the Basic DARP with ride time constraint. We now define the two relaxations

by stating the constraints which are considered by each of them.

The Pickup and Delivery Problem with Fixed Partial Routes (PDP-FPR) relaxation

takes into account the basic constraints, the precedence constraints and the capacity

constraints. Specifically, this relaxation has the constraints (i) to (ix) of the constraint

programming model presented in Section 3. It is also assumed that the time windows are

unbounded, i.e., the domain of the variables t is [0,∞]. Therefore, a feasible solution of the

PDP-FPR consists of m vehicle routes such that the pickup and delivery vertices of each

request are both in the same route, the pickup vertex precedes the corresponding delivery

vertex, and the capacity of each vehicle is never exceeded. In Section 5.1.2 we present a

consistency checking algorithm for this relaxation based on dynamic programming.

The Basic DARP with ride time constraint relaxation has the constraints (i) to (v) and

constraint (x) of the constraint programming model. This relaxation takes into account

only the basic constraints and the maximum ride time constraint. A feasible solution

therefore consists of m vehicles routes such that the pickup and delivery vertices of each

request are both in the same route and the maximum ride time is never exceeded. A

partial filtering algorithm for this constraint is given in Section 5.2.

5.1 Pickup and Delivery Problem with Fixed Partial Routes

The problem of determining the feasibility of Pickup and Delivery Problem with Fixed

Partial Routes is strongly NP-complete [Berbeglia et al., 2009]. In this section, we present
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an exact consistency checking algorithm for the PDP-FPR based on dynamic program-

ming. We begin by giving some definitions about partial solutions.

Let I be an instance of the DARP and S be a partial solution of I. A set of partial

routes C ⊆ S is said to be complete if (1) for each request i ∈ H, either i+ ∈ C and

i− ∈ C, or i+ /∈ C and i− /∈ C (2) for each vehicle j ∈ K, either start(j) ∈ C and

end(j) ∈ C, or start(j) /∈ C and end(j) /∈ C. A set of partial routes M ⊆ S is said to be

minimally complete if M is complete and there is no complete set M ′ that is non-empty

and which is a proper subset of M . See Figure 2 for an example.

2− 3−

end(1) start(2)start(1) end(2)

3+

1+

1−

2+

Figure 2: A partial solution of a 2 vehicles and 3 requests instance of the DARP, exhibiting

the three minimally complete sets.

Consider now the set of partial routes S of a partial solution. The set S can be

partitioned in a unique way into a family of minimally complete partial sets. We call this

family F(S). Observe also that in any solution satisfying the PDP-FPR relaxation that

extends the partial solution S, the vertices that are contained in a minimally complete

set C ∈ F(S) must be served by the same vehicle.

Let F(S) be the partition of a partial solution S. If the partial solution S is elementary

feasible, then the depot vertices of different vehicles must be in different sets of the

partition. Otherwise, it would mean that there must be a route that visits two depots

associated with different vehicles, which is impossible. Then, the family partition can be

written as F(S) = {C1, . . . , Cm, E1, . . . , Eρ} with ρ ≥ 0. The set Ci is the minimally

complete set of partial routes which has the depot vertices associated to the vehicle i.
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Each set Ci, with 1 ≤ i ≤ m, is called a depot associated minimally complete set. The sets

Ei with 1 ≤ i ≤ ρ, which do not have any depot vertices, are called depot independent

minimally complete sets.

Observe that the precedence constraints between the pickup and the delivery of each

request induce precedence constraints between the partial routes in S. Consider a depot

independent minimally complete set A ⊆ S. We define the relation R̂(A) as follows. A

pair (a, b) ∈ A2 belongs to R̂(A) if there is a request i such that i+ ∈ a and i− ∈ b. Now

we define the relation <p over A as the transitive closure of the relation R̂(A). Observe

that the relation <p over A is a partial order (i.e., it is antisymmetric and transitive) if

and only if R̂(A) is acyclic. Note that a cycle in the relation R̂(A) certifies that there

is no way to schedule the partial routes along a single route in such a way that the

precedence constraint is respected. Thus, any instance that has a depot independent

minimally complete set A such that R̂(A) has a cycle is infeasible and can be discarded

efficiently. For clarity of exposition we assume from now on that the relations R̂(A) for

any depot independent minimally complete set are acyclic.

Consider now a minimally complete set B ⊆ S associated to a depot. Let s ∈ B be

the partial route associated with the starting depot and t be the partial route associated

with the ending depot. We define

R̂(B) = {(s, x) ∈ B2|x ∈ B \ {s}} ∪ {(y, t) ∈ B2|y ∈ B \ {t}} ∪ {(a, b) ∈ B2|∃i ∈
H such that i+ ∈ a and i− ∈ b}.
In words, an ordered pair (x, y) belongs to R̂(B) when x is the partial route associated

with the starting depot or y is the partial route associated with the starting depot, or

when x has a pickup vertex i+ whose associated delivery vertex i− is at y. The relation

<p over B is defined as the transitive closure of the relation R̂(B). As in the case of depot

independent minimally complete sets, the relation <p over B is a partial order if and only

if R̂(B) is acyclic. It holds also that a cycle in R̂(B) means that the associated instance

is infeasible, and we therefore assume from now on that the relations R̂(B) for any depot

independent minimally complete set are acyclic.
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5.1.1 A dynamic programming algorithm

Given a DARP instance I and a partial solution S, the algorithm we present first de-

composes the problem into a set of subproblems, each associated to a minimally complete

set of S (see definition in Section 5.1). A dynamic programming algorithm is used to

solve a decision problem associated with each of the subproblems. Using the results of

each subproblem, we are then able to determine whether or not S can be extended into

a PDP-FPR solution.

Consider a DARP instance I, an elementary feasible partial solution S and a depot

independent minimally complete set A = {a1, . . . , ak} ⊆ S. If the set the relation <p over

A is a partial order, we define V (A) to be all the orders (or permutations) of the elements

in A, σ ∈ Sk, such that they extend the partial order <p. Formally,

V (A) = {σ ∈ Sk such that if ai <p aj then σ(i) < σ(j) for all i, j ∈ {1, . . . , k}}.

We define height(S) as the minimum capacity that a vehicle must have in order to serve

all partial routes in A, respecting the precedence constraints. Formally,

height(A) = min { max {
i−1∑
j=1

δ(aσ(j)) + α(aσ(i))|i = 1, . . . , k}|σ ∈ V (A)}.

Similarly, given a depot associated minimally complete set B = {b1, . . . , bk}, we define

V (B) = {σ ∈ Sk such that if bi <p bj then σ(i) < σ(j) for all i, j ∈ {1, . . . , k}},

where the partial order <p over B is the one defined at the beginning of Section 5.1. The

height of B is defined in the same way as for the depot independent minimally complete

sets, i.e.,

height(B) = min { max {
i−1∑
j=1

δ(bσ(j)) + α(bσ(i))|i = 1, . . . , k}|σ ∈ V (B)}.

Consider now a depot independent minimally complete set C. How can we tell whether

or not it is possible put together in a feasible route the partial routes of C and those

of the depot associated minimally complete set B? The fact that height(B) ≤ Q and
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height(C) ≤ Q, does not necessarily mean that this is possible. For example, consider a

DARP instance of five requests with unitary loads and with vehicle capacities of 3. Let

B = {(start(1), 1+, 2+), (1−, 2−, end(1))} and A = {(3+, 4+, 5+), (3−, 4−, 5−)}. Observe

that height(B) = 2 and height(A) = 3. However, it is impossible to put the partial routes

of A together with the partial routes of B in such a way that the route obtained is feasible

with respect to the capacity and the precedence constraints.

Consider a depot associated minimally complete set B = {b1, . . . , bk}. To be able

to determine whether or not a depot independent minimally complete set A can be put

together with a depot associated minimally complete set B into the same route we define

the minimum insertion point of B as

κ(B) = min {{
i∑

j=1

δ(bσ(j))|i = 1, . . . , k − 1, σ ∈ V (B)} ∪ {∞}}.

Observe that if |B| = 1, then κ(B) = ∞. The minimum insertion point of a depot

associated minimally complete set B can be explained as follows. Suppose we want to

serve with a single vehicle all the requests which are in the set B as well as a new request

r extending the partial routes of B. The minimum insertion point of B represents the

minimum load possible that the vehicle can have just before performing the pickup of the

request r.

Using the definition of κ and of height we can prove the following.

Theorem 1. Let I be a single vehicle instance of the DARP and let S be a partial solution.

Let F(S) = {B, E1, . . . , Ek} (k > 0) be the partition of S into minimally complete sets

such that B denotes the only depot associated minimally complete set. The partial solution

S can be extended into a feasible PDP-FPR solution for the instance I if and only if κ(B)+

max {height(Ej)|j = 1, . . . , k} ≤ Q.

Proof. Proof We denote the partial routes of B by B = {b1, . . . , bl} and the partial routes

of Ej by Ej = {e1
j , . . . , e

kj

j }. Now consider a permutation σ∗ ∈ V (B) and an integer

1 ≤ i∗ ≤ l − 1 such that κ(B) =
∑i∗

j=1 δ(bσ∗(j)). Also consider a permutation σ†j ∈ V (Ej)

and the integer 1 ≤ i† ≤ kj such that height(Ej) = α(aσ†j (i†)) +
∑i†−1

j=0 δ(aσ†j (j)).
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Suppose first that S can be extended into a feasible PDP-FPR solution. Consider any

route for I feasible for the PDP-FPR. In any such route, the maximum load that the

vehicle will attain cannot be smaller that the maximum load of the route that we now

describe. First order the partial routes of B according to the permutation σ∗ ∈ V (B).

The load of the vehicle will reach the value κ(B) at the end of the partial route σ∗(i∗).

Observe that the load at this point is the lowest possible to insert other partial routes

among any feasible route composed of the partial routes of B (feasible with respect to the

PDP-FPR). Between the partial routes σ∗(i∗) and σ∗(i∗ + 1) we now insert one by one

each of the minimally complete sets Ej for each j = 1 . . . , k. When adding the partial

routes of a particular minimally complete set, say E`, the order in which the partial

routes E` are inserted is given by the permutation σ†j associated to E`. Now observe

that the maximum load attained by the vehicle is κ(B)+max{height(Ej)|j = 1, . . . , k}.
Thus, if the instance I can be extended into a feasible PDP-FPR solution, we have that

κ(B)+max{height(Ej)|j = 1, . . . , k} ≤ Q. Now suppose that κ(B)+max{height(Ej)|j =

1, . . . , k} ≤ Q. Since the vehicle route we have constructed in the previous paragraph

respects the precedence constraints and the maximum load is at most Q, then the partial

solution S of the instance I can be extended into a PDP-FPR solution.

5.1.2 Computing the height and the minimum insertion point

We present first a dynamic programming algorithm to compute the height of a min-

imally complete set. Consider a minimally complete set A = {a1, . . . , ak}. We recall

that height(A) =min{ max {∑i−1
j=0 δ(aσ(j)) + α(aσ(i))|i = 1, . . . , k}|σ ∈ V (A)}. Before

describing the algorithm we give some definitions. A non-empty subset K ⊆ A is said to

be completed by precedence if for every partial route k ∈ K, all predecessors of k are also

in K. The family of subsets of A that are completed by precedence is denoted as C(A).

Given a set of partial routes X, we define fin(X) = {x ∈ X|@y ∈ X such that x <p y}.
In words, a partial route x belongs to fin(X) if x is not the predecessor of some other

partial route in X. Finally, we define δ(X) =
∑

x∈X δ(x), i.e., the sum of values of δ of

the partial routes in X.

The dynamic algorithm is based on the following equations which define the height of
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any subset A of S which is completed by precedence.

height(∅) = 0 (1)

height(A) = min{max{height(A \ {i}), δ(A \ {i}) + α(i)} i ∈ fin(A)} (2)

The recursive equation (2) allows us to compute the height of the minimally complete

set efficiently using dynamic programming. To do so, we need a procedure to enumerate

all the subsets A of S which are completed by precedence in an order such that A \ {i} is

enumerated before A. To this end we have used the enumerative procedure presented by

Schrage and Baker [1978]. In this procedure (see Algorithm 1), given a subset completed

by precedence A ⊆ S, the next subset A′ which is completed by precedence is returned.

Therefore, to compute height(S), the number of recursive calls is equal to the total number

of subsets of S completed by precedence, which is always less than or equal to 2|S| − 1.

The maximum number of recursive calls is 2|S|−2 + 1 and this limit is reached in the case

the partial order is defined as follows. There is a vertex v that precedes all the others,

there is a vertex w preceded by all the others, and no other precedence relation is present.

However, the number of subsets completed by precedence is considerably less in practice.

In our computational results, the maximum number of subsets completed by precedence

was 54. Observe that the dynamic programming algorithm to compute the height, defined

by equations 1 and 2, works for depot independent as well as depot associated minimally

complete sets.

In a similar way, given a depot associated minimally complete set B we can calculate

the minimum insertion point κ(B). Assume that s ∈ B is the partial route associated

with the starting depot and t ∈ B is the partial route associated with the ending depot.

We assume that |B| > 1, otherwise κ(B) = ∞. κ(B) can be calculated recursively using

the following equations.

κ(A = {s}) = δ(s)

κ(A) = min{min{κ(A \ {i}), δ(A \ {i}) + δ(i)}|i ∈ fin(A)} (with A ∈ C(B)and t /∈ A)

κ(B) = κ(B \ {t})
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Algorithm 1 Enumerative procedure [Schrage and Baker, 1978]

Input: (i) A set of partial routes S = {1, . . . , k} such that whenever i precedes j (i.e., i <p j)

then i < j. (ii) A current subset A ⊆ S completed by precedence. The subset A is represented

by a vector v such that i ∈ A ⇔ v[i] = 1.

Output: The next subset of A, A′ ⊆ S such that A′ is completed by precedence.

Find the smallest partial route index j such that v[j] 6= 1. (If v[j] = 1 for all j = 1, . . . , k

then all subsets completed by precedence were already enumerated.)

Set v[j] = 1

for i = j − 1 to 1 do

if v[i] = 1 and i ∈ fin(A) then

v[i] = 0

end if

end for

return v

5.1.3 Inconsistency checking algorithm for the PDP-FPR

Now that we have procedures to compute height(A) and κ(B) for any minimally

complete set A and any depot associated minimally complete set B, we are able to decide

whether or not a partial solution S can be extended into a feasible PDP-FPR solution.

This procedure is described in Algorithm 2.

This filtering algorithm is applied every time the successor of a vertex is fixed. Suppose

the successor variable of vertex x becomes fixed to vertex y. How different is the new

partial solution S ′ with respect to the partial solution S that we had just before this

assignment? It is clear that the total number of partial routes in S ′ is one less than the

total number of partial routes in S. If the partial routes associated to vertices x and y

belonged to the same minimally complete set, then the number of minimally complete sets

in S remain the same. If the partial routes belonged to different minimally complete sets,

these two sets would be joined and then there would be in S ′ one fewer minimally complete

set. Observe that it is not necessary to compute the height of each minimally complete

set and the minimum insertion point of each depot associated minimally complete set. It

is indeed sufficient to compute these values only for the modified minimally complete set,
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Algorithm 2 Inconsistency checking algorithm for the PDP-FPR
Partition the partial solution S into the family of minimally complete sets. F(S) =

{C1, . . . , Cm, E1, . . . Ej}. The sets {C1, . . . , Cm} are depot associated complete sets while

the others sets in the family are depot independent complete sets.

if R̂(X) has a cycle for some X ∈ {C1, . . . , Cm, E1, . . . Ej} then

fail

end if

Compute height† =max{height(C1), . . . , height(Cm), height(E1), . . . , height(Ej)}.
if height† > Q then

fail

end if

if j > 0 then

Compute height∗ =max{height(E1), . . . , height(Ej)}.
Compute κ∗ =min{κ(C1), . . . , κ(Cm)}.
if κ∗ + height∗ > Q then

fail

else

return true

end if

end if
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since all the others remain the same and we can use their values of the previous partial

solution S. This fact allows the filtering to be performed much faster. An upper bound

on the complexity of the algorithm is O(2|S|) where S is the cardinality of the largest

minimally complete set. The size of S is bounded by n, but it is generally much less in

practice (in our computational tests, the largest size of S was 14). It would be possible to

remove values from the variable domains instead of only producing a fail. However, this

will increase the computational complexity and the overall efficiency of CP algorithm will

not be improved.

5.2 Partial filtering algorithm for the ride time constraint

The ride time constraint in the DARP states that for every request, the difference

between the time at which the service at its associated delivery vertex begins and the

time at which the service at its associated pickup vertex ends cannot be greater than a

given value. In our constraint programming model of the DARP, routes are constructed by

assignments of the successor variables s, without any particular order. As a consequence,

it is generally the case that the domains of the variables t (i.e., the time at which each

pickup or delivery vertex is served) are not reduced until the final stages of the route

construction. Unfortunately this means that inconsistencies for the ride time constraint

are only detected late in the search tree, even if a partial route originated at the beginning

of the search tree was already infeasible. To overcome this difficulty we propose a filtering

algorithm for the ride time constraint.

We now consider the Basic DARP with ride time constraint relaxation of the DARP

which, as it was stated, only has constraints (i) to (v) (basic constraints) and constraint

(x) (ride time constraint).

The partial route extension problem for the Basic DARP with ride time constraint was

proved to be NP-complete in Berbeglia et al. [2009] as it is equivalent to the Uncapacitated

Pickup and Delivery Problem with Fixed Partial Routes and Ride Times. We now present

a partial filtering algorithm for this relaxation which runs in O((n + m)2) time. For

the sake of clarity, we assume in this section that the service times are equal to zero.

The modification of the filtering algorithms for the cases of non-zero service times is
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straightforward.

At each node of the search tree, the ride time filtering algorithm keeps track of the

following information:

- Begin[i]: specifies the starting vertex of the partial route of vertex i.

- Ends[i]: specifies the ending vertex of the partial route of vertex i.

- TravelT ime[i]: the time elapsed between the service at vertex i is finished and the

time at which the end vertex of the partial route of i begins to be served.

- TravelT imeBack[i]: the time elapsed between the beginning of service at the first

vertex of the partial route of i and the beginning of service at vertex i.

- RequestBind[i]: a binary variable that states if the pickup and delivery vertices of

request i belong to the same partial route.

Before presenting the ride time forward and backward filtering algorithms, we define

some notation similar to that of Pesant et al. [1998]. We denote by vIndex the vertex

at which s[vIndex] became fixed and vNext its value. We call Pfirst the partial route

that finishes at vertex vIndex. Finally, we note by Plast the partial route that starts at

vertex vNext. We have added a new CP variable array into the model, called Prevs,

that represents the possible predecessors of each vertex. Thus, j ∈ Prevs[i] if and only if

i ∈ s[j] for every i, j ∈ V . Given a partial route that a vertex j just after serving vertex

i, we define the MinIdleTime(i, j) as the minimum idle time between the end of service

at vertex i and the beginning of service at vertex j. Formally, it is defined as follows:

MinIdleT ime(i, j) = max {0,min(t[j])−max(t[i])− Ti,j}

5.2.1 Ride time forward filtering

We denote by End the last vertex of the partial route of vNext (i.e., the partial path

Plast). Now consider any pickup vertex P belonging to Pfirst such that its associated

delivery vertex D is neither in Pfirst nor in Plast. Let j be a vertex belonging to the

domain of s[End]. First note that if j belongs to the partial path Pfirst or Plast, then
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there is no feasible solution having the arc (End, j). If j is the first vertex of the partial

path of r−, whenever the total time taken from r+ to r− using the arc (End, j) is greater

than the ride time of the request r we can eliminate j from the domain of s[End]. Since

the triangular inequality holds, using any other arc of the type (End, x) with x ∈ s[End]

the ride time of the request r will be longer and therefore we can produce a fail. Finally,

if j 6= Begin[r−], we can eliminate j from s[End] whenever the total ride time of r will

exceed its limit. The pseudo-code of the filtering algorithm is presented in Algorithm 3.

P

D

j

vNextvIndex End

End’
Begin

Figure 3: Notation for the ride time forward filtering algorithm

5.2.2 Ride time backward filtering

The ride time backward filtering scheme resembles the ride time forward filtering.

Here we denote by Begin the starting vertex of the partial route of vIndex. Consider

any delivery vertex D belonging to Plast such that its pickup vertex, P , does not belong

to Plast or to Pfirst. Let also j be a vertex belonging to Prevs[Begin]. We first observe

that if j ∈ Pfirst or j ∈ Plast, then there is no feasible solution with the arc (j, Begin).

Otherwise, we can produce a fail or remove j from Prevs[Begin] applying a reasoning

similar to the one used at the forward filtering algorithm. The pseudo-code of the filtering

algorithm is presented in Algorithm 4.

6 Variable selection and value selection heuristics

We describe the variable selection and value selection heuristics used. A variable

selection heuristic gives the order in which variables are fixed during the search process.

A value selection heuristic gives the order in which the values of a variables are tried.

22

Checking the Feasibility of Dial-a-Ride Instances using Constraint Programming

CIRRELT-2010-16



Algorithm 3 Ride time forward filtering algorithm
Awakening condition: variable s[vIndex] becomes fixed to vNext.

for each request r such that r+ ∈ Pfirst and RequestBind[r] = False do

for each vertex j ∈ s[End] do

if j ∈ Pfirst or j ∈ Plast then

removeValue(s[End], j)

else

if j =Begin[r−] then

if (TravelTime[r+] + TEnd,j + MinIdleTime(End, j) + TravelTimeBack[r−] >

RideTime(r)) then fail();

else

if (TravelTime[r+] + TEnd,j + MinIdleTime(End, j) + TravelTime(j) +

TEnds[j],Begin[r−] + MinIdleTime(Ends[j],Begin[r−]) + TravelTimeBack[r−] >

RideTime(r)) then

removeValue(s[End], j);

end if

end if

end if

end for

end for

vNextvIndex

Begin’

Begin

End

j

D

P

Figure 4: Notation for the ride time backward filtering algorithm
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Algorithm 4 Ride time backward filtering algorithm
Awakening condition: variable s[vIndex] becomes fixed to vNext.

Begin ← Begin[vIndex];

for each request r such that r− ∈ Plast and RequestBind[r] = False do

for each vertex j ∈ Prevs[Begin] do

if j ∈ Pfirst or j ∈ Plast then

removeValue(Prevs[Begin], j)

else

if j =Ends[r+] then

if (TravelTime[r+] + Tj,Begin + MinIdleTime(j, Begin) + TravelTimeBack[r−] >

RideTime(r)) then

fail();

end if

else

if (TravelTime[r+] + TEnds[r+],j + MinIdleTime(Ends[(r+)], Begin[j])

+ TravelTimeBack[j] + MinIdleTime(j,Begin) + TravelTimeBack[r−] >

RideTime(r)) then

removeValue(Prevs[Begin], j);

end if

end if

end if

end for

end for
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As a variable selection heuristic, we have applied a randomized version of the sparse

heuristic, proposed by Pesant et al. [1998]. The heuristic can be described as follows.

Step 1: Consider the set H of successor variables s which are not fixed yet and let s̃ be

the size be the smallest domain among the variables in H.

Step 2: Consider the subset S = {S1, . . . , Sk} of H that has all the variables of H with

domain size of s̃.

Step 3: For each value v that belongs to the domain of some variable Si ∈ S, compute

v#, the number of times v appears in the domain of some variable in S.

Step 4: Choose randomly a variable Si from those that maximize
∑

v∈domain(Si)
v#.

We now describe the value selection heuristic we have chosen. The heuristic basically

favors first any delivery vertex of a request such that its pickup vertex is already in the

partial route, then any pickup vertex, and then any delivery or depot vertex. Let v be

the successor variable to which we have to select a value from its domain set Domain(v).

The algorithm can be described as follows.

Step 1: Let H− be the set of deliveries whose pickup vertex is in the partial route of v.

If H−∩Domain(v)6= ∅ then select randomly a value from H−∩Domain(v).

Step 2: Let H+ be the set of pickups in Domain(v). If H+ 6= ∅ select randomly an

element from H+.

Step 3: Select randomly an element from Domain(v).

More sophisticated methods for choosing the value based on the solution of the As-

signment Problem over the unbounded vertices were implemented. Although they have

produced good results, they were worse overall than the much simpler method stated

above.
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7 Reduction of the search space

We have reduced the search space by adding to the CSP model redundant constraints

and by fixing some variables to break symmetries. We have used the technique proposed

by Cordeau [2006] to identify pairs of requests that cannot be assigned to the same vehi-

cle. Such pairs of requests are called incompatible. Two requests i and j are incompatible

if none of the following six partial routes are feasible: (i+, j+, j−, i−), (i+, j+, i−, j−),

(j+, i+, i−, j−), (j+, i+, j−, i−), (i+, i−, j+, j−), and (j+, j−, i+, i−). For every pair of re-

quests, these six partial routes are analyzed to see if at least one of them respects the ride

time constraint, the time window constraints and the capacity constraint. We can then

construct the following undirected graph G′ = (V ′, E ′) called the incompatibility graph.

The vertex set V ′ consists of the requests R and the edge {i, j} belongs to E ′ if and only

if i and j are incompatible requests. It is worth noting that for checking the feasibility

of each partial route, constraint propagation was applied to tighten the time windows of

each vertex. As stated in Cordeau [2006], given a clique in G′, it is clear that all the

requests associated to the clique must be served with a different vehicle. It is therefore

possible to find a maximum clique and then fix the vehicle that will serve each of the

requests that belong to the clique. This gives us a way to break some symmetries of the

problem. Observe that the size of any clique gives a lower bound on the number of vehi-

cles required. A better lower bound on the number of vehicles required can be obtained

by computing the chromatic number of the graph G′. This is because, given that it is

impossible to color the graph G′ with less than χ(G′) = k colors, it means we would need

at least k vehicles to serve all requests such as no two incompatible requests are served

by the same vehicle. Once we compute the chromatic number of G′, it is not possible

to do the variable fixing in the same way as it was done after computing a clique. To

see this, let c be a coloring of G′ with χ(G′) colors. It could happen that there exists a

feasible solution of the DARP instance in which two requests which were given different

colors are served by the same vehicle but no solution exists if both requests are served by

different vehicles. It is nevertheless possible to fix variables to force any solution to have

at least χ(G′) non-empty vehicle routes. If the instance has less than χ(G′) vehicles, we
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can prove it is infeasible. Since the chromatic number of a graph can be arbitrarily large

with respect to the size of the maximum clique [Mycielski, 1955], computing it can be

useful to prove the infeasibility of some instances.

8 Computational results

We have conducted extensive computational tests to determine the efficiency of the

filtering algorithms developed and the CP approach in general. We have implemented

the CSP model for the DARP in C++ by using the ILOG Solver 6.0. We have also

implemented the filtering algorithms proposed for each of the two relaxations presented.

The program was run on a 2.5 GHz Dual Core AMD Opteron computer.

The instances were based on the set instances a and b used in Ropke et al. [2007]. In

the instance set a, vertices are located in a 20 × 20 square, the distances are Euclidean

and they are measured in minutes, the time horizon is 12 hours, time windows have 15

minutes of length and Q = 3. In the instance set b, is similar, except that the vehicle

capacity (Q) is 6. We have only used the instances with at least 40 requests. The instance

labels are of the form ‘am-n’ or ‘bm-n’. The letter a and b state whether the instance

is from the set a or b, the number m corresponds to the number of vehicles, while the

number n state the number of requests. More details of the instances can be found in

Cordeau [2006].

The computational results are presented in Sections 8.1 and 8.2. First, in Section 8.1

we present experimental results to assess the utility of the space reduction techniques and

the filtering algorithms. Finally, in section 8.2, we compare the time taken to obtain a

feasible solution with the CP algorithm and with the tabu search algorithm developed by

Cordeau and Laporte [2003] under different situations.

In the case where neither a solution is found or infeasibility is not proved after 5

seconds, we restart the algorithm. The restart is repeated until 3 minutes of com-

puting time are reached. The restart time sequence strategy (in seconds) begins with

s = 5, 5, 10, 5, 5, 10, 20..., which is the sequence proved to be optimal for Las Vegas al-

gorithms by Luby et al. [1993] when there is no knowledge about their running time
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distribution, using a unit time of five seconds. We have run the CP algorithm 10 times

on each instance and we give the average time taken to find a feasible solution. The label

“inf. (t)” means that the CP algorithm has proved in t seconds that the instance is not

feasible.

8.1 Impact of the space reduction and filtering algorithms

This first set of experiments were performed to assess the impact of the filtering

algorithms and the space reduction techniques on the the time taken to obtain a feasible

solution. In Table 1 we show for each tested instance of the set a and b the time taken

in seconds to find a feasible solution when no space reduction and filtering algorithms

are applied, when only space reduction is applied, and when space reduction and filtering

algorithms are used. The maximum ride time was set to 30 minutes.

On average, the time taken to find a feasible solution using the space reduction tech-

niques was reduced by about 25 percent when compared to the execution of the CP

algorithm alone. In addition, when the space reduction and the filtering algorithms were

applied, the time taken to find a feasible solution was reduced on average by about 80

percent compared to the execution of the CP alone. It worth observing that there are

four instances which could not be solved with the CP approach alone, but solutions were

found when the filtering and space reduction methods were applied.
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Instance Basic Space reduction Space reduction and filtering

a4-40 1.3 0.3 0.5

a4-48 2.5 2.5 0.5

a5-40 2.2 0.5 0.3

a5-50 3.5 0.9 0.5

a5-60 9.8 9.2 1.0

a6-48 14.4 7.3 0.6

a6-60 46.1 9.5 5.6

a6-72 35.8 15.9 5.0

a7-56 14.8 - 1.8

a7-70 - - 41.5

a7-84 72.9 44.1 3.4

a8-64 83.2 24.7 6.2

a8-80 171.2 25.1 8.5

a8-96 - - 38.7

b4-40 0.4 0.4 0.3

b4-48 2.7 0.9 0.4

b5-40 1.7 1.1 0.4

b5-50 30.1 1.0 0.8

b5-60 37.2 10.2 3.1

b6-60 4.7 2.3 1.5

b6-72 24.3 9.3 2.4

b7-56 10.6 29.2 1.5

b7-70 47.5 154.6 18.4

b7-84 - 21.3 6.3

b8-64 140.4 74.6 1.9

b8-80 101.5 150.6 19.2

b8-96 - - 34.8

Table 1: Comparison of the time needed in seconds to obtain a feasible solution with and

without the space reduction and filtering algorithms
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8.2 Comparison with a tabu search algorithm

We have conducted some experiments to compare the time taken to find a feasible

solution for our constraint programming algorithm and a tabu search algorithm developed

by Cordeau and Laporte [2003]. We note that exact methods based on integer linear

programming models, such as branch-and-cut, generally take much longer to find a feasible

solution than our CP algorithm. Solving the linear relaxation already takes a few minutes

on instances with more than 50 requests. The results are shown in Table 2. Since the

tabu procedure is randomized, we present the average result obtained from running each

instance 10 times.

In the first two columns, we show the time (in seconds) taken to obtain a feasible

solution with both methods on the instances in the original form which is 30 minutes of

ride time for the set a and a ride time of 45 minutes for the set b. In the third and forth

columns, we have modified the maximum ride time (RT) of the instances to 30 minutes,

while in the fifth and sixth columns the ride time was set to 22 minutes, which is the

minimum time needed to take each request from the pickup point to its delivery point.

Finally, in the last two columns, we have modified the instances by reducing the number

of available vehicles to 75 percent of the original fleet size.

Observe that in the tests with the non-modified instances, i.e., the first two columns

of results, the tabu search procedure generally finds a feasible solution faster than the CP

algorithm. When the maximum ride time is set to 30 minutes, the tabu still performs

better, but the difference between them has been reduced. When the maximum ride

time is modified to 22 minutes, we can observe that the time taken for both methods is

similar. Observe that in general, feasible solutions are found faster when the maximum

ride time is reduced. A very plausible reason for this, is that the constraint programming

algorithm detects, using the ride time constraint, that certain partial solution cannot be

extended into a feasible solution. When the ride time constraint is tighter, the filtering is

done earlier and therefore the algorithm can escape an infeasible branch higher up in the

search tree. This behavior is not generally is present in heuristic algorithms like the tabu

search (see Table 2), since they usually find a feasible solution faster in less constrained

instances.
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Instance Original RT=30 RT=22 75 % of vehicles

TABU (sec) CP (sec) TABU (sec) CP (sec) TABU (sec) CP (sec) TABU (sec) CP (sec)

a4-40 0.8 0.5 0.8 0.5 0.5 0.3 1.7 0.3

a4-48 1.0 0.5 1.0 0.5 1.3 0.4 78.5 0.6

a5-40 0.3 0.3 0.3 0.3 0.3 0.3 1.3 0.3

a5-50 0.7 0.5 0.7 0.5 0.6 0.6 3.9 1.3

a5-60 1.4 1.0 1.4 1.0 1.5 0.9 - 24.5

a6-48 0.4 0.6 0.4 0.6 0.4 0.7 1.1 0.5

a6-60 1.0 5.6 1.0 5.6 - inf. (1.1) 11.6 6.2

a6-72 1.9 5.0 1.9 5.0 - inf. (1.7) 5.7 2.0

a7-56 0.5 1.8 0.5 1.8 - inf. (0.6) 0.9 1.5

a7-70 1.7 41.5 1.7 41.5 1.4 7.6 3.2 5.1

a7-84 2.7 3.4 2.7 3.4 3.0 4.1 7.5 3.5

a8-64 0.8 6.2 0.8 6.2 - inf. (1.9) 1.1 2.5

a8-80 1.5 8.5 1.5 8.5 1.8 6.0 3.0 3.6

a8-96 3.5 37.7 3.5 38.7 - inf. (3.7) 8.1 5.3

b4-40 0.6 0.4 0.4 0.3 0.4 0.3 - inf. (0.1)

b4-48 1.3 0.4 1.6 0.4 - inf. (0.1) - inf. (0.1)

b5-40 0.4 0.3 0.4 0.4 - inf. (0.1) - inf. (0.1)

b5-50 1.2 6.8 0.9 0.8 1.1 0.9 - inf. (0.1)

b5-60 1.5 109.5 1.8 3.1 1.6 1.2 - inf. (0.1)

b6-60 0.9 5.1 1.5 1.5 1.0 1.4 5.3 3.8

b6-72 2.1 27.3 2.3 2.4 2.4 2.4 9.7 25.6

b7-56 0.5 13.3 0.6 1.5 0.5 1.5 2.1 3.9

b7-70 1.4 5.6 1.6 18.4 1.3 2.7 12.6 78.7

b7-84 3.0 25.8 2.9 6.3 - inf. (0.1) - -

b8-64 0.7 12.7 0.8 1.9 0.8 1.9 1.8 4.8

b8-80 1.9 23.9 1.8 19.2 - inf. (0.5) 4.0 13.9

b8-96 4.1 149.1 3.9 34.8 3.9 56.1 8.2 -

Table 2: Comparison between a tabu search algorithm and the CP algorithm.

Finally, when the fleet of available vehicles is reduced to 75 percent, the time taken for

both methods is also similar on average. As exceptions, we can point out the last instance

which could not be solved in 3 minutes by the CP approach and the instance a5-60 that

was not solved by the tabu but solved by the CP algorithm in 24.5 seconds on average.

As a final remark, observe that among these computational tests, 14 out of the 15

instances for which neither the tabu nor the CP algorithm were able to find a feasible

solution, CP proved that they are actually infeasible. This is a key characteristic of the

CP algorithm which differentiates it from tabu search or any other incomplete method.

9 Conclusions

We have modeled the DARP as a constraint satisfaction problem and we have devel-

oped an exact constraint programming algorithm to determine whether or not an instance

is feasible. The algorithm consists of filtering algorithms which detect whenever a partial
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solution cannot be extended into a complete solution for some DARP relaxations and

solution space reduction techniques, embedded into a constraint programming engine.

The algorithm was tested over two sets of DARP instances found in the literature and

on some instances obtained by applying some modifications to these. Results have shown

that the algorithm was generally able to find a feasible solution within a few seconds, that

the proposed filtering algorithm are effective, and that the algorithm generally performs

better on more constrained instances. On these instances, the algorithm has a performance

comparable to that of tabu search, while being generally able to prove infeasibility rapidly.

This is an important feature in a real-time environment in which a decision whether to

accept or reject a request has to be done quickly.
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