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1 Introduction

Vehicle Routing Problem (VRP) formulations are used to model an extremely broad
range of issues in many application fields, transportation, supply chain management,
production planning, and telecommunications, to name but a few (Golden et al., 2002;
Crainic, 2008; Hoff et al., 2010). The mathematical structure of most VRP formulations
is generally simple but only deceivingly so, most problems of interest being NP-Hard
and yielding integer programming (IP) combinatorial formulations presenting significant
methodological challenges. Not surprisingly, starting with the initial introduction of
the VRP by Dantzig and Ramser (1959), routing problems make up an extensively and
continuously studied field, as illustrated by numerous conferences, survey articles (e.g.,
Christofides et al., 1979; Bodin et al., 1983; Fisher, 1995; Desrosiers et al., 1995; Powell
et al., 1995; Gendreau et al., 2002; Laporte and Semet, 2002; Bräysy et al., 2004; Bräysy
and Gendreau, 2005a,b; Cordeau et al., 2005, 2007; Bräysy et al., 2008a,b; Francis et al.,
2008; Laporte, 2009), and books (Toth and Vigo, 2002; Golden et al., 2008).

Surveying the literature one notices, however, that not all problem classes have re-
ceived an equal nor adequate degree of attention. This is the case for the problems with
multiple depots and periods, the recent contributions to the periodic variant not altering
the statement. A second general observation is that most methodological developments
target a particular problem variant, the capacitated VRP or the VRP with time win-
dows, for example, very few contributions aiming to address a broader set of problems,
the Unified Tabu Search (Cordeau et al., 1997, 2001) being a notable exception. This
also applies to the classes of problems targeted in this paper.

Our objective is to contribute toward addressing these two challenges. We propose an
algorithmic framework that successfully addresses three VRP variants: the multi-depot
VRP, MDVRP, the periodic VRP, PVRP, and the multi-depot periodic VRP, MDPVRP,
with heterogeneous capacitated vehicles and constrained route duration. The literature
on these problems is relatively scarce despite their relevance to many applications, e.g.,
raw material supply (Alegre et al., 2007), refuse collection (Beltrami and Bodin, 1974;
Russell and Igo, 1979; Teixeira et al., 2004), food collection or distribution (Carter et al.,
1996; Golden and Wasil, 1987; Parthanadee and Logendran, 2006), and maintenance
operations (Blakeley et al., 2003; Hadjiconstantinou and Baldacci, 1998).

We propose a meta-heuristic that combines the exploration breadth of population-
based evolutionary search, the aggressive-improvement capabilities of neighborhood-based
meta-heuristics, and advanced population-diversity management schemes. The method,
that we name Hybrid Genetic Search with Adaptive Diversity Control (HGSADC ), per-
forms impressively, in terms of both solution quality and computational efficiency. It
particular, HGSADC either identifies the best known solutions, including the optimal
ones, or identifies new best solutions for all currently available benchmark instances for
the three problem classes
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To sum up, the main contributions of this article are: 1) A new meta-heuristic that
is highly effective for three classes of important vehicle routing problem classes, the MD-
VRP, the PVRP, and the MDPVRP. It equals or outperforms the current best methods
proposed for each particular class and requires a limited computational effort. 2) New
population-diversity management mechanisms to allow a broader access to reproduction,
while preserving the memory of what characterizes good solutions represented by the
elite individuals of the population. In this respect, we revisit the traditional survival-
of-the-fittest paradigm to enhance the evaluation of individuals by making it rely on
both fitness and diversity (distance-to-the-others) measures. Our empirical studies show
this mechanism not only efficiently avoids premature population convergence, but also
outperforms traditional diversity management methods relative to the general behavior
of the solution method. 3) An efficient offspring education scheme that integrates key
features from efficient neighborhood search procedures, e.g., memories and granular tabu
search concepts.

The paper is organized as follows. Section 2 states the notation and formal definition
of the three classes of VRPs we address, while the relevant literature is surveyed in
Section 3. The proposed meta-heuristic is detailed in Section 4, its performances are
analyzed in Section 5, and we conclude in Section 6.

2 Problem Statement

We present the problem description for the MDVRP, PVRP, and MDPVRP problem
classes, together with the notation we use in this paper, and the problem transformation,
MDPVRP to a generalized PVRP, which supports the following developments.

The basic Capacitated Vehicle Routing Problem (CVRP) can be defined as follows.
Let G = (V ,A) be a complete graph, vertex v0 ∈ V representing the depot where vehicles
and the product to be distributed are kept, each other vertex in V\{v0} standing for
one of the n customers to be served from the depot. Each customer i, i = 1, . . . , |V| is
characterized by a non-negative demand qi and a service duration di. Arcs aij ∈ A, i, j ∈
V represent the possibility to travel from vertex i to vertex j at a duration cost of cij. A
fleet of m identical vehicles with capacity Q is located at the depot, the total duration
of the route performed by each vehicle, computed as the total travel and service time
required to serve the customers on the route, being limited at D. The goal is to design
a set of m vehicle routes servicing all customers, such that vehicle and route constraints
are respected, and the total route duration is minimized.

Several depots, d, are available to service customers in the Multi-Depot VRP, m rep-
resenting the number of vehicles available at each depot. A time dimension is introduced
in the Periodic VRP as route planning is to be performed over a horizon of t periods.

2
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Each customer i is characterized by a service frequency fi, representing the number of
visits to be performed during the t periods, and a list Li of possible visit-period com-
binations, called patterns. The PVRP aims to select a pattern for each customer and
construct the associated routes to minimize the total cost over all periods. Finally, the
Multi-Depot Periodic VRP extends the two previous problem settings, the selection of
a depot and visit pattern for each customer being required to construct optimal routes.
It is important to note that a linking constraint is implicitly defined, services in differ-
ent periods to the same customer being required to originate at the same depot. The
MDPVRP reduces to a PVRP when d = 1 and to a MDVRP when t = 1.

Cordeau et al. (1997) proposed a formulation of a generalized PVRP with vehicle and
period-dependent routing costs. The authors showed that this formulation includes the
MDVRP as a special case, by associating a different period to each depot, such that each
customer i has a frequency fi = 1 and may be served any period. We follow this lead and
show that a MDPVRP with t days and d depots can be transformed into a generalized
PVRP, by associating a period in the new problem to each (period, depot) pair in the
MDPVRP.

Let P be a MDPVRP instance, with periods {0, . . . , t−1}, depots {0, . . . , d−1} and m
vehicles per depot. Let i be a customer with frequency fi and pattern list Li containing p
patterns Li = {{p11, . . . , p1fi}, . . . , {pp1, . . . , ppfi}}. We now define the problem P ′ which
has t′ = t×d periods and m vehicles available at each period. For each customer i in the
new problem, f ′i = fi and the pattern list L′i contains d× p patterns defined by Equation
1.

L′i =
⋃

a ∈ {0, . . . , d− 1}
b ∈ {1, . . . , p}

{pb1 + a× t, . . . , pbfi + a× t} (1)

where the first t periods are associated with depot 0, the next are associated with depot
1, and so on. Travel costs (durations) are adjusted to take into account that vehicles
operating in period l in the new general PVRP originate from depot l/d.

We rely on this transformation in the development of the proposed methodology and
work on (depot, pattern) couples. We thus transform a problem with several attributes
into a problem with less attributes, which thus becomes somewhat easier to address. Of
course, the method must be computationally efficient to deal with the increased number
of periods and the corresponding increase in problem dimension. As the computational
results displayed in Section 5 show, we achieve both these goals.

3
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3 Literature Review

This section provides a brief literature review of contributions for the PVRP, the MDVRP,
and the MDPVRP. The purpose of this review is twofold. First, to present the most
recently proposed meta-heuristic algorithms, particularly population-based ones, for the
considered problems. Second, to distinguish the leading solution approaches for the three
problem settings.

Population and neighborhood-based meta-heuristics have been proposed for the PVRP.
With respect to the former, Drummond et al. (2001) proposed an island-based parallel
evolutionary method, which evolves individuals representing schedules (patterns), the
fitness of each individual being obtained by constructing routes for each period with
the Clarke and Wright (1964) savings heuristic. Alegre et al. (2007) proposed a scatter
search procedure designed especially for PVRPs with a large numbers of periods. As in
Drummond et al. (2001), the core of the method is dedicated to the improvement of visit
schedules, while a neighborhood-based improvement procedure is used to design routes
for each period. Contrasting with the two previous methods, Matos and Oliveira (2004)
proposed an ant colony optimization (ACO) approach that first optimizes routes, then
schedules. The PVRP is first transformed into a a large VRP containing each customer as
many times as given by its frequency and addressed by an ACO method. The problem of
distributiing the resulting routes among periods is then solved as a graph coloring prob-
lem, with occasional changes in customer patterns to progress toward a feasible PVRP
solution. In a final step, an ACO method is used to optimize the plan for each period
separately.

Until recently, however, the most successful contributions to this problem were based
on the serial exploration of neighborhoods. The local search approach of Chao et al.
(1995) was the first to use deteriorating moves to escape from poor local optima. It also
to temporarily allowed relaxation of vehicle-capacity limits to enhance the exploration
of the solution space. The tabu search proposed by Cordeau et al. (1997) introduced an
innovative guidance scheme, which collects statistics on customer assignments to periods
and vehicle routes in order to penalize recurring assignments within the solutions obtained
and, thus, gradually diversify the search. For a long period of time, this method stood
as the state of the art solution approach for both the PVRP and the MDVRP, as well
as, in its Unified Tabu Search version (Cordeau et al., 2001), for a number of other VRP
variants. It has only been outperformed recently by the Variable Neighborhood Search of
Hemmelmayr et al. (2009), which is built upon various well-known VRP neighborhoods,
e.g., the string relocate, the swap, and the 3-opt. Finally, one should notice the VNS
algorithm with multilevel refinement strategy of Pirkwieser and Raidl (2010), particularly
tailored for large-size instances.

We are aware of only two evolutionary approaches for the MDVRP, both taking ad-
vantage of geometric aspects within the problem. Thus, Thangiah and Salhi (2001)
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represented solutions as circles in the 2D space of depot and customers, which is closely
related to the idea of customer clustering into routes, whereas Ombuki-Berman and
Hanshar (2009) introduced a mutation operator that specifically targeted the depot as-
signment to “borderline” customers, i.e., customers that are close to several depots. In
this case also, however, neighborhood-based methods, such as the record-to-record local
search of Chao et al. (1993), the tabu search algorithms of Cordeau et al. (1997) and
Renaud et al. (1996), and the simulated annealing method of Lim and Zhu (2006),proved
to be more efficient. To date, the most successful approach for the MDVRP remains the
adaptive large neighborhood search (ALNS) method of Pisinger and Ropke (2007), which
implements the ruin-and-recreate paradigm with an adaptive selection of its destruction
and reparation operators.

In the case of the MDPVRP, most proposed algorithms do not consider all attributes
simultaneously, but rather apply a successive-optimization approach. Thus, the method
developed by Hadjiconstantinou and Baldacci (1998) starts by first assigning all cus-
tomers to a particular depot. Given these a priori assignments, customer visits are then
successively inserted among available periods to obtain feasible visit combinations. The
depot-period VRP subproblems obtained are then separately solved using a tabu search
algorithm. Finally, a phase that attempts to improve the solution by modifying the pe-
riod or depot assignments through customer interchanges is applied. The overall solution
strategy then repeats this sequence of heuristics for a fixed number of iterations. Other
such approaches were proposed by Kang et al. (2005) and Yang and Chu (2000), where
schedules for each depot and period are first determined, followed by the design of the
corresponding routes.

We are aware of only two methods that aim to address problems similar to the
MDPVRP as a whole. Parthanadee and Logendran (2006) implemented a tabu search
method for a complex variant of the MDPVRP with backorders. The authors also study
the impact of interdependent operations between depots, where the depot assignment of
a customer may vary according to the periods considered. Significant gains are reported
on small test instances when such operations are applied. Crainic et al. (2009b,a) intro-
duced the Integrative Cooperative Search (ICS) framework, which relies on the problem
decomposition by attributes, concurrent resolution of subproblems, integration of the
elite partial solutions yielded by the subproblems, and adaptive search-guidance mecha-
nisms. The authors used the MDPVRP with time windows to illustrate the methodology
with very promising results, but no results are available for the problems addressed in
this paper. Moreover, ICS targets complex problem settings and we provide a simpler
way to treat the MDPVRP.

A number of exact methods were also proposed for one or another of the problems
we address. Noteworthy are the recent contributions of Baldacci and Mingozzi (2009)
and Baldacci et al. (2010) addressing the MDVRP and the PVRP. Exact methods are
limited in the size of instances they may handle, but these particular approaches have
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proven quite successful in solving to optimality several instances that are used as a test
bed for the algorithm we propose.

This brief review supports the general statement made previously that no satisfac-
tory method has yet been proposed for the three problem settings. Furthermore, the
contributions to the MDPVRP literature are very scarce, those addressing all the prob-
lem characteristics simultaneously being scarcer still. Most solution methods proposed
address the periodic and multi-depot VRP settings, with neighborhood-based methods
yielding, until now, the best results on standard benchmark instances. However, evolu-
tionary methods have proven recently to be efficient on the standard VRP (Prins, 2004;
Mester and Braysy, 2007; Nagata and Bräysy, 2009) and on a number of other VRP vari-
ants, as underlined in a review on evolutionary methods for the VRPTW (Bräysy et al.,
2004). Noteworthy is the contribution of Prins (2004) for the VRP, which introduced
an important methodological element, namely the solution representation for the VRP
as a TSP tour without delimiters along with a polynomial time algorithm to partition
the sequence of customers into separate routes. This approach was later applied by (La-
comme et al., 2005; Chu et al., 2006) to the periodic capacitated arc routing problem,
which shares a number of common characteristics with the PVRP. We adopt this solution
representation for the population-based method we propose to efficiently address the pe-
riodic and multi-depot problems, as well as the MDPVRP as a whole. This methodology
is described in the next section.

4 The Hybrid Genetic Search with Adaptive Diver-

sity Control Meta-heuristic

The hybrid meta-heuristic we propose is based on the Genetic Algorithm (GA) paradigm
introduced by Holland (1975), but includes a number of advanced features, particularly in
terms of generation of new individuals, offspring education, and population management,
which contribute to its originality and high performance level.

The method evolves a population of individuals, representing feasible and unfeasible
solutions, through successive application of a number of operators to select two parent so-
lutions, combine them, yielding a new individual, and enhance this offspring. We identify
the latter operator as offspring education. It includes a series of solution transformations
proved to be efficient in neighborhood-based meta-heuristics for routing problems, as well
as a feasibility repair procedure.

Feasible and unfeasible solutions are kept in two separate subpopulations, managed to
both evolve toward high-quality solutions and maintain a high level of diversity among
individuals. This is performed not only when selecting the surviving individuals for
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the next “generation”, which is rather standard GA methodology, but also through an
evaluation mechanism of individuals combining traditional fitness and a representation
of the particular contribution an individual makes to the diversity of the gene pool. This
fitness-diversity evaluation mechanism is shown to play an important role in the overall
performance of the proposed methodology.

The general structure of the proposed Hybrid Genetic Search with Adaptive Diversity
Control (HGSADC ) meta-heuristic therefore is

• Initialization (Section 4.6);

• Repeat

– Selection of parent solutions and generation of offspring (Section 4.4);

– Offspring education; If unfeasible, repair with probability Prep (Section 4.5);

– Adjustment of parameters enforcing penalties for violating feasibility condi-
tions (if necessary) (Section 4.6);

– Diversification if best solution not improved for Itdiv consecutive iterations
(Section 4.6);

– Culling of any sub-population that reaches its maximum number of individuals
(Section 4.6);

• Until stopping conditions are satisfied, i.e., either ItNI iterations without improve-
ment of the best feasible solution, or the time limit Tmax is reached.

We initiate the description with the definition of the search space (Section 4.1) and the
representation of the individuals (Section 4.2). We then proceed with detailed discus-
sions of the individual evaluation procedure (Section 4.3), the selection, crossover, and
education operators, and the population management mechanism.

4.1 Search space

It is well-known in meta-heuristic literature that allowing a controlled exploration of
unfeasible solutions may enhance the performance of the search, which may more easily
transition between structurally different feasible solutions.

A number of constraint relaxations have been proposed in the VRP literature. Thus,
for example, Prins (2004) and Lacomme et al. (2005) relax the fleet-size constraints in
their GA-based methods, while Gendreau et al. (1994) and Cordeau et al. (1997) relax
vehicle capacity and maximum travel time limits in their tabu search algorithms. We
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favor the second approach even though our solution representation is closer to that of
the first authors. Indeed, a solution with too high a number of vehicles may require
sophisticated and computationally costly route-reduction methods. Moreover, it is much
easier in the second case to introduce dynamically self-adjusting penalties that gradually
guide the search into and out of the unfeasible-solution zone, while still allowing the use
of most local search moves used in the VRP literature to modify and enhance routes. We
therefore define the search space as the set of feasible and unfeasible solutions, the latter
being obtained by relaxing the limits on vehicle capacities and maximum route travel
time.

Two penalty parameters are defined, σQ for vehicle load excess and σC for route
travel time excess. Given a route r with load q(r) and travel time t(r), Equation 2
defines its penalized cost φ(r). The total cost of a solution is then computed as the sum
of the penalized costs of all routes and is used in the computation of the fitness of the
individuals relative to the current population.

φ(r) = t(r) + σC ×max(0, t(r)−D) + σQ ×max(0, q(r)−Q) (2)

The penalty parameters σQ and σC are dynamically adjusted during the execution
of the algorithm, to favor the generation of “naturally” feasible individuals, that is,
individuals that are feasible following education without requiring to call on the repair
procedure. Let ξREF be the given desired proportion of naturally feasible individuals, and
ξQ and ξC the proportion in the last 100 generated individuals of naturally feasible solu-
tions with respect to vehicle capacity and route duration, respectively. The adjustment
is then performed every 100 iterations (the rules are identical for the duration-constraints
parameter ξC):

• if ξQ ≤ ξREF − 0.05, then σQ = σQ ∗ 1.2;

• if ξQ ≥ ξREF + 0.05, then σQ = σQ ∗ 0.85.

We do not consider the initial penalty parameter values as particularly critical, be-
cause the dynamic adjustment drives them towards suitable values, as long as the initial
penalties are of an order of magnitude comparable to the objective function. We therefore
set the initial values for these parameters to σC = 1 and σQ = c̄/q̄, where c̄ represents
the average distance between two customers and q̄ is the average demand.

8
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4.2 Solution representation

An individual I in HGSADC is defined by three “chromosomes” related to its customer
schedule, depot allocation, and corresponding routes. The pattern chromosome, PI , thus
registers for each customer i the list of days of visit λI [i], which must correspond to one
of its pre-defined patterns. The depot chromosome, DI , contains the depot allocation
dI [i] of each customer i. Finally, the route chromosome, RI , contains t× d sequences of
customers without trip delimiters, the sequence sI [k, l] corresponding to the customers
served from depot k during period l. The route chromosome corresponds to a giant
TSP tour representation as introduced by Prins (2004) and illustrated in Figure 1 for
an instance with two periods and two depots. The corresponding solution is encoded as
four sequences of visits without delimiters, one for each couple (period, depot). The Split
algorithm is then used on each sequence to find the optimal segmentation into routes and
compute the fitness of the individual.

Figure 1: Giant TSP representation of the routes of a MDPVRP solution

The Split algorithm described in Prins (2004) reduces the problem of finding the route
delimiters to a shortest path problem on a particular graph and operates in O(n2), where
n is the number of customers in the sequence. Chu et al. (2006) extended it to account
for fleet-size limitations. We further generalize the algorithm to work with penalized
unfeasible solutions.

Let Si be the customer in position i of the visiting sequence. Define an auxiliary
graph H = (V ,A), where V contains n + 1 nodes indexed from 0 to n. For each pair
i < j, an arc (i, j) represents the trip ri+1,j starting from the depot, visiting customers
Si+1 to Sj and coming back to the depot. Its associated travel time and load are given
by Equations (3) and (4). The arc (i, j) is included in A only if the total load of the
corresponding trip does not exceed a value Qmax, which we set at Qmax = 2Q to avoid
solutions that are too far from feasibility and reduce the number of arcs. The associated
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arc cost is noted φ(ri+1,j).

q(ri+1,j) =
∑

l=i+1,j

qSl
(3)

t(ri+1,j) = c0,Si+1
+

∑
l=i+1,j−1

(dSl
+ cSl,Sl+1

) + dSj
+ cSj ,0 (4)

An optimal segmentation of the giant tour consists in identifying a minimum-cost
path from 0 to n in H containing less than m edges, where m is the number of vehicles
available per period. This minimum-cost path can be computed in m iterations of the
Bellman-Ford algorithm (see Cormen et al., 2001, for an implementation), each iteration
executing in O(n2). When the demand or the distance between customers is “large”, it
is possible to impose a bound b on the number of valid trips ending at a given customer
i. Thus the complexity of an iteration becomes O(n× b), and the Split algorithm works
in O(m× n× b).

Figure 2: Illustration of a Split graph and shortest-path solution

Figure 2 illustrates the Split algorithm on a sequence of 5 customer visits S1 to S5.
The first graph presents the problem data: cost of each arc and the customer demands
(in bold). In this example, the vehicle capacity is set to Q = 6, thus Qmax = 12, the
maximum route duration to D = 150, each customer i has an identical service time
di = 10, and the penalty parameters are σQ = 10 and σC = 1. The corresponding graph
H displays on each arc the associated route cost including penalties. Thus, for example,
the route servicing customers S3, S4, and S5 has a cost of 165 + 20 + 15, the penalties of
20 and 15 corresponding to its load excess (two units) and extra duration, respectively.
The optimal solution of the minimum-cost path problem, with a cost of 260, is made up
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of the three following routes: route 1 visits S1, route 2 visits S2, S3, and S4}, and route
3 visits S5. Notice that in the actual implementation of the algorithm, there is no need
to explicitly build the graph H (Chu et al., 2006).

4.3 Evaluation of individuals

A major difficulty in population-based algorithms is to avoid premature convergence of
the population. The danger of premature convergence is more acute in hybrid methods,
where the double impact of education and natural selection heavily favors individuals
with good characteristics. Several methods have been proposed to address this issue,
e.g., eliminating identical solutions, the so-called clones (Prins, 2004), or imposing inter-
individual distance constraints when inserting individuals into the population (Sörensen
and Sevaux, 2006; Lozano et al., 2008).

We include some of these ideas into our population-management mechanism (Section
4.6). We also propose, however, a mechanism that addresses the population-diversity
issue continuously, during parent and survivor selection and, thus, right at the level of
the admittance to the offspring-creation process. Indeed, our very evaluation function
accounts not only for the fitness of an individual, but also for its contribution to the
population diversity, aiming to equilibrate the drive for the best individual (elitism), and
the possible loss of information usually associated to this drive. It is thus an adaptive
mechanism to control the diversity of the population while still aiming for an elitist
behavior of the meta-heuristic.

We define the diversity contribution ∆(I) of an individual I as the average distance
to its nclose closest neighbors, computed according to Equation (5). Several distances
measures were tested in the experiments leading to this final algorithm. A normalized
Hamming distance δH(I1, I2), based on the differences between the service schedules and
depot assignments of two customers I1 and I2 appeared the most adequate for the multi-
depot, period routing problems we address. This distance is computed according to
Equation (6), where 1(cond) is a valuation function that returns 1 if the condition cond
is true, 0, otherwise.

∆(I) =
1

nclose

∑
J∈Nclose

δH(I, J) (5)

δH(I1, I2) =
1

2n

n∑
i=1

(1(λI1 [i] 6= λI2 [i]) + 1(dI1 [i] 6= dI2 [i]) (6)

Individuals are sorted by fitness and diversity contribution. Let fit(I) ∈ [0, 1] and
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dc(I) ∈ [0, 1] be the normalized ranks of individual I relative to the current population
according to each criterion, respectively, where the best individual has rank 0 and the
worst has rank 1. The Biased Fitness function BF (I) given by Equation (7) establishes
a trade-off between fitness and diversity, and it is used to evaluate the quality of an
individual during parent (Section 4.4) and survivor (Section 4.6) selections. It depends
upon the actual number of individuals in the population nbIndiv, and a parameter nbElit
that corresponds to the desired number of elite solutions for which survival is guaranteed
from one generation to the next.

BF (I) = fit(I) +

(
1− nbElit

nbIndiv − 1

)
× dc(I) (7)

4.4 Selection and Crossover

We propose a new periodic crossover with insertions (PIX) for the MDPVRP. This op-
erator produces a single child C, which inherits characteristics from its two parents P1

and P2. Each parent is selected by a binary tournament. The binary tournament selec-
tion consists in picking from the union of the two subpopulations two individuals with
uniform probability, and keeping the one with the best Biased Fitness. Both feasible and
unfeasible individuals can be selected to undergo crossover in order to lead the research
close to the borders of feasibility, where we expect to find optimal solutions.

The crossover operator was designed to transmit good sequences of visits, while en-
abling pattern, depot and route recombinations. Another very important property of
the operator is its versatility, as it allows both a wide exploration of the search space,
by combining genetic material from the parents in nearly equal proportions, and small
refinements of a “good” solution, by copying almost the totality of a parent, along with
small parts of the other one. The whole process takes place in four steps.

Step 1. Determine period and depot inheritance. The first task of the crossover is to
determine for each couple (depot, period) whether the genetic material of P1, P2 or both
is transmitted. Choosing randomly for each depot and period among the three previous
cases would not be suitable for the last property stated previously, because when the
number of couples becomes large, the amount of information taken from each parent
may tend to be balanced because of the law of large numbers. To keep the possibility to
focus on one of the parents, we proceed as follows. Two random numbers are first picked
between 0 and td according to a uniform distribution; let n1 and n2 be the smallest and
the largest of these numbers, respectively. n1 couples (depot, period) are then selected
at random to form the set ΛP1 and n2− n1 of the remaining couples are again randomly
picked to form the set ΛP2; the remaining td− n2 couples make up the set Λmix.
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Step 2. Copy data from the first parent. For each depot k and period l, if (k, l) ∈ ΛP1

all visits are copied from sP1 [k, l] into sC [k, l]. If (k, l) ∈ Λmix, two cutting points αkl and
βkl are generated in sP1 [k, l], and the corresponding substring is copied into sC [k, l].

Step 3. Copy data from the second parent. For each depot k and period l selected in
random order, if (k, l) ∈ ΛP1, no visit is copied from sP2 [k, l]. If (k, l) ∈ ΛP2, all the
visits of sP2 [k, l] are successively considered, starting from the beginning. A customer
visit i ∈ sP2 [k, l] is copied at the end of sC [k, l] if the depot choice dC [i] is undefined
or equal to k, and if there exists at least one visit pattern of customer i containing the
sub-list λC [i] ∪ l. Finally if (k, l) ∈ Λmix, we do the same as when (k, l) ∈ ΛP2, but all
the visits of sP2 [k, l] are considered circularly from βkl.

Step 4. Fill the remaining services. For each customer whose frequency is not satisfied,
additional visits are placed in a random fashion as many times as needed in C via a least
cost insertion in the sequence, such that the resulting visit list corresponds to an existing
pattern, and the same depot is used for all the visits to a given customer.

Figure 3: The PIX crossover after Step 3

An illustration of the crossover operator PIX is given in Figure 3. In this exemple
ΛP1 = {(1, 1)}, hence (depot 1, period 1) of P1 is copied totally. ΛP2 = {(1, 2)}, and
for other combinations of periods and depots, C inherits a partial sequence of P1, with
additional visits (Λmix = {(2, 1); (2, 2)}).

4.5 Education

The offspring resulting from the crossover operation undergoes the Split procedure to
extract its routes. An Education operator is then applied with probability Pm to improve
the quality of the new individual. Education goes beyond the classical GA concepts
of random mutation and enhancement through hill-climbing techniques, as it includes
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several local-search procedures based on well-known neighborhoods for the VRP. A Repair
phase completes the Education operator when the educated offspring is unfeasible.

Two sets of local-search procedures are defined. The nine route improvement (RI)
procedures are dedicated to optimize each VRP subproblem separately, whereas the
pattern improvement (PI) procedure relies on a quick and simple move to improve the
period assignment of the customers by changing their patterns and depots. These local
searches are called in the RI, PI, RI sequence.

Route Improvement. Define the neighborhood of a vertex, customer or depot, u as
the h× n closest vertexes to u, where h ∈ [0, 1] is a granularity threshold restricting the
search to nearby vertexes (Toth and Vigo, 2003). Let v be a neighbor of u, x and y the
successors of u and v in their respective routes T (u) and T (v), respectively. The notation
(u1, u2) identifies the route from u1 to u2. The Route Improvement phase is performed by
browsing in a random order each vertex u and each of its neighbors v. For each couple,
we evaluate the following moves:

• (M1) If u is a customer visit, remove u and place it after v.

• (M2) If u and x are customer visits, remove them, then place u and x after v.

• (M3) If u and x are customer visits, remove them, then place x and u after v.

• (M4) If u and v are customer visits, swap u and v.

• (M5) If u, x, and v are customer visits, swap u and x with v.

• (M6) If u, x, v, and y are customer visits, swap u and x with v and y.

• (M7) If T (u) = T (v), replace (u, x) and (v, y) by (u, v) and (x, y).

• (M8) If T (u) 6= T (v), replace (u, x) and (v, y) by (u, v) and (x, y).

• (M9) If T (u) 6= T (v), replace (u, x) and (v, y) by (u, y) and (x, v).

Moves M1 to M6 are applied indifferently on the same or on different routes. M7
is an intra-route move, while the last two are inter-route swaps. The first three moves
correspond to insertions, the moves M4 to M6 are swaps, while moves M7 to M9 are
known under the names of 2-opt and 2-opt*. It is important to browse the nodes in
random order as always visiting a given node before another could lead to bias. As soon
as an improvement is found the move is performed. The Route-Improvement phase stops
when all possible moves have been successively tried without success.

Pattern Improvement. Let ψ(i, k, l) be the minimum insertion cost of customer i in a
route from depot k in period l. Let k∗ and p∗ be the depot and pattern, respectively, of
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customer i in the current solution. The Pattern-Improvement procedure iterates on each
customer i in a random order and computes Ψ(i, k, p) =

∑
l∈p ψ(i, k, l) for each depot k

and pattern p ∈ Li. If Ψ(i, k, p) < Ψ(i, k∗, p∗), then all visits to customer i are removed,
and a new visit is inserted in the best location in each sequence corresponding to depot
k and period l ∈ p. The procedure stops when all customers have been successively
considered without success.

The Pattern-Improvement procedure is significantly faster when the optimal position
and insertion cost of each customer is stored for each route. The proportion of routes
changed by a move, and the resulting loss of information, is generally small compared
to the total number of routes for all depots and periods of the problem. It is also worth
noting that, sometimes, the current pattern and depot choices are kept, but a better
insertion of the customers is found. The resulting move is then, in fact, a combination of
intra-day M1 insertions. This may prove particularly interesting for the exceptional case
when the move was not attempted in RI because of proximity conditions. The Pattern-
Improvement phase thus fulfills the double role of changing the patterns, and attempting
moves between distant vertexes.

A feasible individual yielded by the RI, PI, RI sequence is, of course, inserted into the
feasible subpopulation. An unfeasible one is either subjected to the Repair procedure with
probability Prep, or inserted into the unfeasible subpopulation. If Repair is successful,
the resulting individual is added to the feasible subpopulation.

Repair consists in temporarily multiplying the penalty parameters by 10 and re-
starting the RI, PI, RI sequence. When the resulting individual is still unfeasible, penalty
parameters are multiplied by 100 and the sequence is started again. This significant
increase in the value of the penalties aims to redirect the search toward feasible solutions.
The individual is discarded in case of failure. Computational experiments showed that
Repair is crucial to attain good solutions on many tightly constrained instances, e.g.,
when total vehicle capacity is close to the total demand or the route-duration limit is too
tight for the number of available vehicles.

4.6 Population management

The population management mechanism complements the selection-crossover-education
operators in identifying the characteristics of good solutions and providing the means for
a thorough and efficient search. We propose thus a mechanism with the dual purpose
of preserving the accumulated memory of successive selections for the most promising
solution characteristics and the diversity of the individuals in the population.

The mechanism manages both the feasible and the unfeasible subpopulations and
is made up of three components: the initialization of the populations, a diversification
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scheme applied when the search does not seem to advance at a purposeful pace, and the
procedure to select the individuals that will survive to the next “generation” when a
particular subpopulation reaches its maximum size.

Each subpopulation contains between µ and µ+λ individuals. To initialize them, 4µ
individuals are created by randomly choosing a pattern for each customer and producing
for each period the associated service sequence in random order. Each one of these
initial individuals undergoes education, and half of those are repaired (if needed). The
resulting solutions are stocked in the appropriate subpopulation. If either one of the two
subpopulations reaches the maximum size µ+λ, λ individuals are discarded as explained
later, in the survivor-selection part. At the end of the Initialization phase, one of the
two subpopulations can be incomplete, having less than µ individuals.

During the search, diversification is called whenever Itdiv iterations are performed
without improving the best solution. Diversification is performed by retaining only the
best µ/3 individuals of each subpopulation, and completing with 4µ new individuals as
in the Initialization phase. This process introduces a significant amount of new genetic
material, which helps to pursue the search further, even when the population has lost
most of its diversity.

The proposed meta-heuristic proceeds by keeping the parents following crossover and
having the offspring start to reproduce immediately after education. The populations
therefore grow continuously. As the maximum size of µ + λ individuals in one subpop-
ulation is reached, it is reduced by discarding λ individuals. The remaining µ survivors
provide the next generation. The selection of the survivors aims to preserve the popu-
lation diversity in terms of visit patterns, profit from new individuals, and protect an
elite. We thus aim to eliminate “clones” and solutions that are bad both in fitness and
contribution to diversity, as measured by their Biased Fitness function value.

Let a clone be an individual I2 with the same attributes as another individual I1, i.e.,
δH(I1, I2) = 0, or the same fitness. The selection of the survivors is then performed as the
successive elimination of, first, the clones, and, then, bad solutions, until λ individuals
are discarded:

• Let X be the set of all individuals, different from the current best solution, having
a “clone”;

• If X 6= ∅, remove I ∈ X with maximum Biased Fitness;

• Otherwise, remove I in the subpopulation with maximum Biased Fitness;

• Update the distance measures and X, and repeat.

We can now state an important elitism property. proposition Using the Biased
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Fitness function, if an individual I 6∈ X is part of the nbElit best individuals of the
subpopulation in terms of fitness, then I will not be removed from the population by the
previous survivor-selection procedure.

Proof. Let I be the individual with the worst fitness, thus fit(I) = 1 and BF (I) =
fit(I)+(1− nbElit

nbIndiv−1)×dc(I) ≥ 1. Let J be an individual among the best nbElit solutions

in terms of fitness, thus BF (J) ≤ nbElit−1
nbIndiv−1 + 1− nbElit

nbIndiv−1 < 1. Individual J will not be
removed as I has a worst biased fitness.

Figure 4: Illustration of the survivor selection property

Figure 4 represents the fitness and diversity measures of a subpopulation taken from
our experimentations after the survivor-selection procedure was run. As stated by the
previous proposition, this removal policy calls for nbElit individuals to be considered an
elite. The figure also displays the removal zone, where individuals with with BF ≥ 1 can
be eliminated according to the Biased Fitness criteria. The procedure favors individuals
with excellent fitness and bad diversity over solutions with bad fitness and excellent
diversity, as the former are difficult to find. This proved to be a success factor in the
experiments leading to the final algorithm.

5 Computational Experiments

Previous work on the PVRP and the MDVRP has led to the development of a large
collection of test problems that have been used extensively to provide comparisons be-
tween algorithms. Cordeau et al. (1997) describes two sets of instances. The first gathers
several problems proposed in previous article, while the second was generated by the
authors. The size of these instances range from 50 to 417 customers. Some instances
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in the PVRP set are particularly large, involving up to 900 visits to customers over the
different periods. Detailed information on these instances is provided in Subsection 5.2.

No benchmark was available for the MDPVRP. We therefore built a set of 10 MD-
PVRP instances by merging the PVRP and the MDVRP instances of the second set
provided by Cordeau et al. (1997). Each of the 10 MDVRP instances was combined with
the PVRP instance with the same number of customers. The number of periods and the
patterns were taken from the PVRP instance, the depots from the MDVRP one, and the
number of vehicles was fixed to the smallest number such that a feasible solution may be
found by HGSADC (and probably by most any other algorithm). The full data sets can
be obtained from the authors.

The proposed meta-heuristic was coded in C++, and run on a 2.4 Ghz AMD Opteron
250 CPU workstation. To allow for easier comparisons with previous work, all CPU times
reported in this section were converted into their equivalent Pentium IV 3.0 Ghz run times
using Dongarra (2009) factors. Before providing detailed computational results, we first
explain how we calibrated the algorithm.

5.1 Calibration of the HGSADC algorithm

Similarly to most meta-heuristics, evolutionary ones in particular, HGSADC relies on
a set of correlated parameters and configuration choices for its key operators. able 1
provides a summary of the HGSADC parameters, together with the range of values we
estimate as appropriate due to either the parameter definition (e.g., probabilities and
proportions), conceptual requirements (a local distance measure is assumed to implicate
not more than 25% of the population), or values found in the literature (e.g., subpop-
ulations sizes). Calibration aims to identify values for these parameters to ensure good
performance of the algorithm over a varied set of instances. It is thus often performed
by running the algorithm with a number of parameter-value combinations on a limited,
hopefully representative, set of instances.

A different approach is offered by the principle of meta-calibration, which aims to
optimize the set of parameters of a given algorithm by means of meta-heuristics. Early
studies on meta-calibration can be found in Mercer and Sampson (1978). More recently,
Smit and Eiben (2009) provide a comparison of parameter-tuning methods, and em-
phasize the efficiency of calibrating genetic algorithms by means of a meta-evolutionary
algorithm.

We adopted this approach and performed the calibration of the HGSADC algorithm
with a meta-evolutionary method, namely, the Evolutionary Strategy with Covariance
Matrix Adaptation (CMA-ES) of Hansen and Ostermeier (2001). The source code is
available at (http://www.lri.fr/h̃ansen/cmaes inmatlab.html). Retrieving the fitness of
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a given set of parameters implicates to launch automatically HGSADC on a restricted
set of training instances and measure its efficiency. The calibration was thus performed
independently for each problem class, with the dual objective of measuring the depen-
dency of the best parameter set upon the problem class, and identifyuing an eventual
set of parameters suitable for all problem classes considered. The calibration results for
each class, along with the final choice of parameter values for HGSADC, are presented
in Table 2.

Except for the generation size λ, the optimum set of parameters appears independent
of the problem type. We therefore averaged these results to get the final parameter
valuess of Table 2, with the exception of the probability to educate a new individual (the
education rate Pm). Calibrated education rates are generally very high, with an average
value of 0.8. Additional tests indicated similarly good performance as long as Pm ≥ 0.7.
Hence we selected the value Pm = 1, which corresponds to a systematic education of all
individuals, and reduces the number of parameters in use. The only parameter that is
problem dependent is λ, which is set to 40 for the PVRP, 70 for MDVRP, and 100 for
the MDPVRP.

5.2 Results on PVRP and MDVRP instances

For comparison with other algorithms on Cordeau et al. (1997) instances, we report
the results of HGSADC with ItNI = 10000, Itdiv = 4000, and Tmax = 10min. The
benchmark contains some very large problems with more than 450 visits to customers,
for which the population size was reduced by two, and the computation time limit was
increased.

Results on PVRP benchmarks are presented in Table 3. The first four columns display
the instance identifier and the numbers of customers, vehicles, and periods, respectively.
The results of of HGSADC are shown in Columns 8 and 9 as the average results and CPU
times on 10 runs. We compare the performance of HGSADC to that of state-of-the-art
methods for the PVRP: the tabu search of Cordeau et al. (1997) (CGL in Column 5), the
scatter search of Alegre et al. (2007) (ALP, Column 6), and the average results of 19 runs
of the variable neighborhood search of Hemmelmayr et al. (2009) (HDH, Column 7). We
indicate in boldface the best average result among the four algorithms for each instance,
as well as, in the last two columns, the previous best-known solution (BKS), and the best
solution obtained by HGSADC during all our experiments. Optimality has been proved
for 14 instances by Baldacci et al. (2010). (Due to numerical approximations, optimality
was proved within a 0.02% precision and, hence, it is sometimes possible to find a slightly
better solution.) These solutions are marked with *. Several upper bounds have been
improved, and the corresponding new state-of-the-art solutions are underlined.

The last two lines provide average measures over the 42 instances: the average per-
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Table 1: Parameters of HGSADC

Population and distance measures parameters
µ Population size [5,200]
λ Number of offspring in a generation [1,200]
el Proportion of elite individuals, such that nbElit = el × µ [0,1]
nc Proportion of close individuals considered for distance evaluation, [0,0.25]

such that nclose = nc× µ
Genetic operators parameters

Pm Education rate [0,1]
Prep Repair rate [0,1]
h Granularity threshold in RI [0,1]

Adaptive penalty parameters
ξREF Reference proportion of feasible individuals [0,1]

Table 2: Calibration Results

Parameter PVRP Set MDVRP Set MDPVRP Set Final parameter values
µ 18 24 30 25
λ 33 87 146 40 / 70 / 100
el 0.38 0.45 0.36 0.4
nc 0.24 0.18 0.15 0.2
Pm 0.86 0.86 0.70 1.0
Prep 0.57 0.61 0.33 0.5
h 0.53 0.36 0.35 0.4

ξREF 0.10 0.30 0.20 0.2
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centage of error relative to the previous BKS, and the average computation time of each
method. Because CGL was tested on a rather old computer, it was hard to make the
conversion of the run time using Dongarra (2009) factors. However, Hemmelmayr et al.
(2009) ran the CGL code on a Pentium IV 3.2 Ghz and provided updated computation
times.

HGSADC produces high quality solutions, with an average overall deviation of +0.20%
relative to the previous BKS compared to more than +1.40% for the other approaches.
The method we propose yields the best average results on every instance, but one (p06).
It should be noted that, in the case of problem p06, every customer has a frequency of
one and can be served on any period. The problem may therefore be addressed as a
CVRP. This induces symmetry, which results in many different representations in terms
of periods for the same solution. These may then proliferate in the population and can
thus explain why the algorithm is less efficient for this particular instance. The average
computation time is reasonably short (5.56 min), and is suitable for many operational
decisions. Although higher than for the other methods, the run times remain comparable
(i.e., in a similar range of values).

It is noteworthy that the average standard deviation per instance obtained by HGSADC
is 0.15%, meaning that the algorithm is very reliable. It also performs at a high level
in terms of solution quality. All the previous best-known solutions were found, and new
reference results were obtained for 20 instances out of 42. The proposed algorithm almost
always retrieves the optimal values for the 14 solutions for which the optimal values are
known. An average deviation of only 0.09% to the optimum may be observed for these
instances.

To observe the behavior of HGSADC when the number of iterations increases, we
provide additional results with three termination criteria allowing more computation
time: (ItNI , Tmax) = (2.104, 30min), and (ItNI , Tmax) = (5.104, 1h). Table 4 compares
the average results of HGSADC to those obtained by Hemmelmayr et al. (2009) using
various numbers of iterations. No running times were reported by Hemmelmayr et al.
(2009) for these experiments, but it seems reasonable to expect them to grow linearly
with the number of iterations.

The figures of Table 4 indicate that the proposed algorithm scales well when the
available computation time is increased. It should also be pointed out that even long
runs of 109 iterations of the HDH algorithm (100 times the number of iterations in the
standard HDH method and probably around 300 minutes of computing time) produce
inferior average results compared to those obtained by HGSADC in a few minutes.

Results on MDVRP benchmarks of both sets of Cordeau et al. (1997) are displayed
in Table 5, where Columns 2 to 4 indicate the numbers of customers, vehicles, and
depots, respectively. The results of HGSADC are compared to those of the state-of-the-
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Table 3: Results on Cordeau et al. (1997) PVRP instances

Average BKS
Inst n m p CGL ALP HDH HGSADC T(min) prev BKS HGSADC

(1 run) — (10 runs) (10 runs) — (all exp.)
p01 50 3 2 524.61 531.02 524.61 524.61 0.22 524.61* 524.61*
p02 50 3 5 1330.09 1324.74 1332.01 1322.87 0.44 1322.87 1322.87
p03 50 1 5 524.61 537.37 528.97 524.61 0.18 524.61* 524.61*
p04 75 6 5 837.94 845.97 847.48 836.59 1.05 835.26* 835.26*
p05 75 1 10 2061.36 2043.74 2059.74 2033.72 2.27 2027.99 2024.96
p06 75 1 10 840.30 840.10 884.69 842.48 0.89 835.26* 835.26*
p07 100 4 2 829.37 829.65 829.92 827.02 0.88 826.14 826.14
p08 100 5 5 2054.90 2052.51 2058.36 2022.85 2.54 2034.15 2022.47
p09 100 1 8 829.45 829.65 834.92 826.94 1.01 826.14 826.14
p10 100 4 5 1629.96 1621.21 1629.76 1605.22 1.80 1593.45 1593.43
p11 126 4 5 817.56 782.17 791.18 775.84 4.60 779.06 770.89
p12 163 3 5 1239.58 1230.95 1258.46 1195.29 5.34 1195.88 1186.47
p13 417 9 7 3602.76 — 3835.90 3599.86 40.00 3511.62 3492.89
p14 20 2 4 954.81 954.81 954.81 954.81 0.08 954.81* 954.81*
p15 38 2 4 1862.63 1862.63 1862.63 1862.63 0.17 1862.63* 1862.63*
p16 56 2 4 2875.24 2875.24 2875.24 2875.24 0.32 2875.24* 2875.24*
p17 40 4 4 1597.75 1597.75 1601.75 1597.75 0.27 1597.75* 1597.75*
p18 76 4 4 3159.22 3157.00 3147.91 3131.09 0.89 3136.69 3131.09
p19 112 4 4 4902.64 4846.49 4851.41 4834.50 2.26 4834.34 4834.34
p20 184 4 4 8367.40 8412.02 8367.40 8367.40 4.01 8367.40 8367.40
p21 60 6 4 2184.04 2173.58 2180.33 2170.61 0.90 2170.61* 2170.61*
p22 114 6 4 4307.19 4330.59 4218.46 4194.23 4.27 4193.95 4193.95
p23 168 6 4 6620.50 6813.45 6644.93 6434.10 4.29 6420.71* 6420.71*
p24 51 3 6 3704.11 3702.02 3704.60 3687.46 0.32 3687.46* 3687.46*
p25 51 3 6 3781.38 3781.38 3781.38 3777.15 0.59 3777.15* 3777.15*
p26 51 3 6 3795.32 3795.33 3795.32 3795.32 0.33 3795.32* 3795.32*
p27 102 6 6 23017.45 22561.33 22153.31 21885.70 3.52 21912.85 21833.87
p28 102 6 6 22569.40 22562.44 22418.52 22272.60 4.67 22246.69* 22242.51
p29 102 6 6 24012.92 23752.15 22864.23 22564.05 3.86 22543.75* 22543.75*
p30 153 9 6 77179.33 76793.99 75579.23 74534.38 9.99 74464.26 73875.19
p31 153 9 6 79382.35 77944.79 77459.14 76686.65 10.00 76322.04 76001.57
p32 153 9 6 80908.95 81055.52 79487.97 78168.82 10.00 78072.88 77598.00
pr01 48 2 4 2234.23 — 2209.11 2209.02 0.29 2209.02 2209.02
pr02 96 4 4 3836.49 — 3787.51 3768.86 2.49 3774.09 3767.50
pr03 144 6 4 5277.62 — 5243.09 5174.80 7.32 5175.15 5153.54
pr04 192 8 4 6072.67 — 6011.39 5936.16 10.00 5914.93 5877.37
pr05 240 10 4 6769.80 — 6778.00 6651.76 20.00 6618.95 6581.86
pr06 288 12 4 8462.37 — 8461.45 8284.94 20.00 8258.08 8207.21
pr07 72 3 6 5000.90 — 5007.01 4996.14 1.49 4996.14 4996.14
pr08 144 6 6 7183.39 — 7119.61 7035.52 10.00 6989.81 6970.68
pr09 216 9 6 10507.34 — 10259.09 10162.22 20.00 10075.40 10038.43
pr10 288 12 6 13629.25 — 13342.41 13091.00 20.00 12924.66 12897.01
Avg Gap to BKS +1.82% +1.40% +1.45% +0.20%

Avg Time 4.28 min 3.64 min 3.34 min 5.56 min
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art methods for this problem: the tabu search of Cordeau et al. (1997) (CGL, Column 5)
and the Adaptive Large Neighborhood Search of Pisinger and Ropke (2007) (PR, Column
6). The table format is identical to the one of Table 3.

The main conclusions are similar to those stated above for the PVRP. HGSADC is by
far the most effective method overall, but it requires somewhat longer computing times
than the two others to achieve its superior results. An average error gap of −0.01%
is obtained, meaning that the new method is on average better than the previous best
known solutions of each instance. Only 2.15 min are required, on average, to find the final
solution, but then, an equal amount of time is spent to reach the time-limit termination
criterion, thus resulting in an average total run time of 4.24 min. Computation times
can therefore be drastically reduced by reducing the values of the termination criteria.

The solutions obtained by HGSADC are usually very close to the best-known so-
lutions. For 23 instances out of 33, all 10 runs converged to the best-known solution.
The average standard deviation per instance is again small, 0.05%, which highlights the
reliability of the method for this problem class as well.

Baldacci and Mingozzi (2009) recently solved several of these instances to optimality,
but without taking into account the limited fleet constraint. Hence, these solutions can
be seen as lower bounds to the optimal values. For five instances (p1, p2, p6, p7 and
p12), these values coincide with the best available upper bound for the problem with
the constraint on the number of vehicles, which indicates that the considered solutions
are optimal for the MDVRP with limited fleet. HGSADC always reached the optimum
solution for four out of these five instances.

5.3 Results on MDPVRP instances

We tested HGSADC on the new set of MDPVRP instances. As these problems are harder
to solve, the maximum running time was increased to 30 minutes (ItNI remains set to
104). Table 6 reports the average and best results on 10 runs for each instance. To assess
the performance of the algorithm, these results are compared to the best solutions ever
found during all our experiments.

The average error gap compared to the BKS is +0.42%, which is reasonable given
the increased problem difficulty. Clearly, HGSADC results vary in accordance with the
problem difficulty. The average gap to the BKS ranges from 0.00% to 1.50% (for the larger
problem pr10). On small instances like pr01 and pr02, the algorithm seems to always
converge toward the same solution, while problems pr08 to pr10, with a larger number
of depots and periods, seem particularly difficult to address. The average standard
deviation per instance is 0.26%, which is higher than on previous problem classes, and
may illustrate the increased irregularity of the search space.
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Table 4: Behaviour of PVRP methods on Cordeau et al. (1997) instances, when the run
time increases

CGL HDH HDH HDH HGSADC HGSADC HGSADC
15.103 it 107 it 108 it 109 it (104,10min) (2.104,30min) (5.104,1h)

T 3.96 min 3.09 min — — 5.56 min 13.74 min 28.21 min
% +1.82% +1.45% +0.76% +0.39% +0.20% +0.12% +0.07%

Table 5: Results on Cordeau et al. (1997) MDVRP instances

Average BKS
Inst n m d CGL PR HGSADC T(min) prev BKS HGSADC

(1 run) (5-10 runs) (10 runs) — (all exp.)
p01 50 4 4 576.87 576.87 576.87 0.23 576.87* 576.87*
p02 50 2 4 473.87 473.53 473.53 0.21 473.53* 473.53*
p03 75 3 2 645.15 641.19 641.19 0.43 641.19 641.19
p04 100 8 2 1006.66 1006.09 1001.23 1.94 1001.04 1001.04
p05 100 5 2 753.34 752.34 750.03 1.06 750.03 750.03
p06 100 6 3 877.84 883.01 876.50 1.14 876.50* 876.50*
p07 100 4 4 891.95 889.36 884.43 1.55 881.97* 881.97*
p08 249 14 2 4482.44 4421.03 4397.42 10.00 4387.38 4372.78
p09 249 12 3 3920.85 3892.50 3868.59 9.50 3873.64 3858.66
p10 249 8 4 3714.65 3666.85 3636.08 9.82 3650.04 3631.11
p11 249 6 5 3580.84 3573.23 3548.25 7.14 3546.06 3546.06
p12 80 5 2 1318.95 1319.13 1318.95 0.52 1318.95* 1318.95*
p13 80 5 2 1318.95 1318.95 1318.95 0.57 1318.95 1318.95
p14 80 5 2 1360.12 1360.12 1360.12 0.55 1360.12 1360.12
p15 160 5 4 2534.13 2519.64 2505.42 1.92 2505.42 2505.42
p16 160 5 4 2572.23 2573.95 2572.23 1.97 2572.23 2572.23
p17 160 5 4 2720.23 2709.09 2709.09 2.14 2709.09 2709.09
p18 240 5 6 3710.49 3736.53 3702.85 4.52 3702.85 3702.85
p19 240 5 6 3827.06 3838.76 3827.06 4.20 3827.06 3827.06
p20 240 5 6 4058.07 4064.76 4058.07 4.37 4058.07 4058.07
p21 360 5 9 5535.99 5501.58 5476.41 10.00 5474.84 5474.84
p22 360 5 9 5716.01 5722.19 5702.16 10.00 5702.16 5702.16
p23 360 5 9 6139.73 6092.66 6078.75 10.00 6078.75 6078.75
pr01 48 2 4 861.32 861.32 861.32 0.17 861.32 861.32
pr02 96 4 4 1314.99 1308.17 1307.34 0.76 1307.34 1307.34
pr03 144 6 4 1815.62 1810.66 1803.80 1.91 1806.60 1803.80
pr04 192 8 4 2094.24 2073.16 2059.36 5.22 2060.93 2058.31
pr05 240 10 4 2408.10 2350.31 2340.29 9.56 2337.84 2331.20
pr06 288 12 4 2768.13 2695.74 2681.93 10.00 2685.35 2676.30
pr07 72 3 6 1092.12 1089.56 1089.56 0.34 1089.56 1089.56
pr08 144 6 6 1676.26 1675.74 1665.05 2.05 1664.85 1664.85
pr09 216 9 6 2176.79 2144.84 2134.17 6.10 2136.42 2133.20
pr10 288 12 6 3089.62 2905.43 2886.59 10.00 2889.49 2868.26
Avg Gap to BKS +0.96% +0.34% -0.01%

Avg Time small 3.54 min 4.24 min
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Notice that keeping the best solution of 10 separate runs leads to significantly better
solutions, with an average error gap of +0.13%, but also requires more computational
resources. This approach corresponds to the well-known independent-search strategy
for parallel meta-heuristics (Crainic and Nourredine, 2005; Crainic and Toulouse, 2010).
More sophisticated strategies, based on cooperation, in particular, could certainly be
used to improve the exploration of the search space and reach better results.

5.4 Sensitivity analysis on diversity management methods

The adaptive population diversity control mechanism we propose is a cornerstone of
the proposed methodology. We therefore compared its performance to those of two
mechanisms proposed in the literature, mechanisms that proved their worth in their
respective contexts. Two new algorithms were thus derived from HGSADC to conform
exactly to each of these two rules, as well as a variant without any diversity control
(identified as HGS0 ).

The HGS1 variant involves a dispersal rule in the objective space as in Prins (2004).
Let F be the fitness function and ∆F a fitness spacing parameter. A new individual
I is then added to the population only if |F (I) − F (C)| ≥ ∆F for all individuals C
already in the population. An incremental population management scheme is used and
only individuals with a fitness below the median of the population can be discarded.

The second variant, named HGS2, relies on the population management framework
of Sörensen and Sevaux (2006). The insertion of a new individual in the population is
accepted only if a dispersal rule in the solution space is fulfilled. Let ∆D be a spacing
parameter, and δH be the distance measure presented in Section 4.3. In order to be
added to the population, an individual I must verify δH(I, C) ≥ ∆D for all C already in
the population. In our implementation, the value of ∆D changes during run time: strong
distance constraints are imposed at the beginning of the search to encourage exploration,
whereas as the method approaches the termination criteria, the value of ∆D decreases
progressively toward zero to encourage the exploitation of the good solutions. As in the
previous method, we use an incremental population management and only individuals
with a fitness below the median of the population can be discarded.

The three algorithms were tested on the benchmark instances presented before, and
Table 7 reports the average error gap to the best-known solutions obtained by each
algorithm for each group of instances, as well as the average run time of each method.
One observes that the results verify that applying the dispersal rule with respect to the
solution space (HGS2) is more effective than using the dispersal rule with respect to
the objective space(HGS1). This is an indication that the hybrid evolution strategy of
HGSADC performs as expected. One also observes that proceeding without diversity
management yields rather poor results compared to all other strategies. The best results
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Table 6: Results on new MDPVRP instances

Inst n m d t Average T(min) Best BKS
(10 runs) (all exp.)

pr01 48 1 4 4 2019.07 0.35 2019.07 2019.07
pr02 96 1 4 4 3547.45 1.49 3547.45 3547.45
pr03 144 2 4 4 4491.08 7.72 4480.87 4480.87
pr04 192 2 4 4 5151.73 22.10 5144.41 5134.17
pr05 240 3 4 4 5605.60 30.00 5581.10 5570.45
pr06 288 3 4 4 6570.28 30.00 6549.57 6524.92
pr07 72 1 6 6 4502.06 2.18 4502.02 4502.02
pr08 144 1 6 6 6029.58 7.96 6023.98 6023.98
pr09 216 2 6 6 8310.19 27.79 8271.66 8257.80
pr10 288 3 6 6 9972.35 30.00 9852.87 9818.42

Avg Gap to BKS +0.42% +0.13%
Avg Time 15.96 min 159.6 min

Table 7: Comparison of population-diversity management mechanisms

Benchmark HGS0 HGS1 HGS2 HGSADC
PVRP T 4.68 min 5.15 min 5.37 min 5.56 min

% +0.70% +0.62% +0.39% +0.20%
MDVRP T 3.37 min 3.55 min 4.49 min 4.24 min

% +0.80% +0.61% +0.10% -0.01%
MDPVRP T 13.16 min 14.00 min 15.94 min 15.96 min

% +2.95% +2.95% +2.37% +0.42%
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are definitely obtained with the adaptive diversity management method we propose,
which yields the best average error gap for an equivalent computational effort.

Figure 5: Population entropy and error gap to the BKS for the diversity management
strategies on instance p03

Figure 5 illustration the behavior of the four population-diversity management strate-
gies during one of the runs (150 seconds) for instance p03, as measured by the population
entropy and the error gap to the BKS. The population entropy is computed as the av-
erage distance from one individual to another. All algorithms close the error gap to less
than 2.50% in a few seconds. The methods that use diversity management are able, how-
ever, to efficiently continue searching and, thus, to reach better solutions. The proposed
HGSADC meta-heuristic is still regularly improving its best found solution as the time
limit approaches, despite being already very close to the best-known solution (the error
gap is 0.19% only). The no-diversity management strategy, HGS0, provides a perfect
example of premature convergence. In less than one minute, one observes no additional
improvement of the best solution, very low entropy, and quite likely very little evolution
in the population. HGSADC maintains a healthy diversity in the population, as illus-
trated by rather high level of entropy at 0.3. In comparison, the two alternate strategies,
HGS1 and HGS2, display lower entropy levels, around 0.1.

We conclude that the proposed diversity management mechanism is particularly effec-
tive for the problem classes considered in this paper. In the experiments we conducted,
it allowed to avoid premature convergence and to reach high quality solutions.

6 Conclusions and Research Perspectives

We proposed in this paper a new hybrid genetic search meta-heuristic to efficiently ad-
dress several classes of multi-depot and periodic vehicle routing problems, for which few
efficient algorithms are currently available. Given the great practical interest of the prob-
lem considered, the proposed methodology opens the way to significant progress in the
optimization of distribution networks.
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The papers introduces several methodological contributions, in particular, in the
crossover and education operators, the management of unfeasible solutions, the indi-
vidual evaluation procedure driven both by fitness and the contribution to population
diversity and, more generally, the adaptive population management mechanism that en-
hances diversity, allows a broader access to reproduction, and preserving the memory
of what characterizes good solutions represented by the elite individuals. The combina-
tion of these concepts provides the capability of the proposed Hybrid Genetic Search with
Adaptive Diversity Control meta-heuristic to reach high quality solutions on the literature
benchmarks. The method actually identifies either the best known solutions, including
the optimal ones, or new best solutions for all benchmark instances, thus outperforming
the current state-of-the-art meta-heuristics for each particular problem class.

Among the many avenues of research that remain open, we mention in particular
the interest to explore the impact of the adaptive diversity control mechanism for other
classes of problems, and to validate its good performance using theoretical models. We
also plan to generalize the methodology to problems with additional attributes, and thus
progress toward addressing rich VRP problem settings as well as real world applications.
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