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Abstract. Inventory-routing problems (IRPs) arise in vendor-managed inventory systems. 

They require jointly solving a vehicle routing problem and an inventory management 

problem. Whereas the solutions they yield tend to benefit the vendor and customers, 

solving IRPs solely based on cost considerations may lead to inconveniences to both 

parties. These are related to the fleet size and vehicle load, to the frequency of the 

deliveries, and to the quantities delivered. In order to alleviate these problems, we 

introduce the concept of consistency in IRP solutions, thus increasing quality of service. 

We formulate the multi-vehicle IRP, with and without consistency requirements, as mixed 

integer linear programs, and we propose a matheuristic for their solution. This heuristic 

applies an adaptive large neighborhood search scheme in which some subproblems are 

solved exactly. The proposed algorithm generates solutions offering a good compromise 

between cost and quality. We analyze the effect of different inventory policies, routing 

decisions and delivery sizes.  
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1 Introduction

In vendor-managed inventory (VMI) systems, the replenishment and distribu-
tion making process is centralized at the supplier’s level. The application of this
policy leads to an overall reduction of logistics costs [20] and is often described
as a win-win situation. By deciding when and how much to deliver to their
customers, suppliers can reduce their overall distribution costs by smoothing
their delivery schedules and by efficiently combining in the same period visits to
customers that are geographically close to one another. Customers also benefit
by saving on ordering costs.

Optimizing a VMI system requires the solution of a difficult combinatorial
optimization problem called the Inventory-Routing Problem (IRP). The IRP
combines inventory management and routing decisions over several periods into
the same problem. Typically, the supplier is free to decide the size of the delivery
to each customer, being constrained only by the inventory holding capacity at
each site and by the capacities of its vehicles. This general delivery policy is
called maximum level (ML). Several heuristics [4, 10, 12] and an exact algorithm
[3] have been proposed for the single vehicle case of this problem. A large number
of variants of the IRP have arisen since this problem was first introduced by
Bell et al. [9]. Literature reviews can be found in [2] and [13].

Whereas VMI policies are clearly beneficial from a system’s perspective,
they may sometimes result in inconveniences both to the supplier and to the
customers. This is the case, for example, when very small deliveries take place
on consecutive days, followed by a very large delivery, after which the customer
is not visited for a long period. Another example, this time undesirable for the
supplier, is that it could be optimal to dispatch a mix of almost full and almost
empty vehicles, which does not yield a proper load balancing and may irritate
some drivers.

Companies need not only provide cost effective solutions to their customers,
but also high quality service. This can be partly achieved by incorporating
quality of service features in IRP solutions, which should yield a competitive
advantage. To this end, we introduce the concept of consistency in the IRP
in order to reflect some common quality of service standards. This can be
achieved, for example, through the application of workforce management policies
[6, 18, 26]. Thus, one would expect that regularly assigning the same driver to
customers will help create a bond that can benefit both parties. Drivers will
gain an increased familiarity with the region and the customer sites assigned
to them, and will thus develop a more personal rapport with the customers.
Another example of consistency is the spacing of deliveries to customers. To
ensure smoother operations, visits should ideally be spread out evenly over the
planning horizon. This type of requirement is often modeled as constraints in
the context of the periodic Vehicle Routing Problem (VRP) [11, 16] but it has
not yet been imposed in the IRP. Finally, the quantities delivered to customers
can also be controlled in order to avoid large variations over time, which are
negatively perceived by customers [8]. In this paper, we consider six different
consistency features in IRP solutions:
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1. Quantity consistency: any delivery performed to a customer must lie
within certain customer-dependent intervals, to avoid large variations.
From the customers’ point of view, delivery size is important. If deliv-
eries are too small, then customers will have to receive frequent visits,
which is inconvenient and time-consuming. Deliveries that are too large
may create congestion in the warehouse.

2. Vehicle filling rate: a vehicle can only be used if its filling rate lies within
a certain interval.

3. Order-up-to (OU) policy: this is a common IRP constraint (see e.g [3, 4,
5, 10, 12]) which can be viewed as a consistency feature. It states that
whenever a visit is performed to a customer, the delivery should fill the
customer’s inventory capacity.

4. Driver consistency: this requirement means that each customer is assigned
to one driver.

5. Driver partial consistency: one shortcoming of the previous feature is that
it may cause a vehicle to serve very few customers and thus its effect may
be very costly. We relax this rule by allowing some deliveries not to be
subject to it.

6. Visit spacing: we impose a minimum and a maximum interval between
two consecutive visits to the same customer.

Some of these features (e.g. 1 and 6) should depend on the stability of the
demand. If the demand is highly variable, customers would expect deliveries to
be variable as well, because consistency would then make little sense. However,
it is known [7, 22] that the application of VMI requires some demand stability,
which legitimates the consistency features we propose. Note that the concept
of driver consistency has already been applied by Groër et al. [18] to a version
of the VRP in which customers receive visits on prespecified days. The authors
have proposed a model ensuring that the same customer is always served by the
same driver as a means of improving quality of service, but the application of
this constraint to the IRP is new and more complicated because the visit days
are endogenous and because of the inventory management issues involved.

We model and solve the basic multi-vehicle version of the problem (MIRP)
considered in [3], [4] and [10] to which we incorporate the consistency features
just described. Although the MIRP has previously been studied, the variety of
assumptions has left a gap in the literature in the sense that one cannot find
benchmarks to a common version of the problem. For instance, to cite some
recent contributions to the MIRP literature and their different assumptions,
Abdelmaguid and Dessouky [1] allow backorders and use a non-linear trans-
portation cost function which depends on the quantity delivered, Dauzère-Pérès
et al. [14] have studied the stochastic version of the problem, and Yugang et al.
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[27] did not include supplier inventory costs. Here we define and solve bench-
mark instances of the MIRP derived from those of [3, 4] for the single vehicle
case, with and without consistency requirements.

The main scientific contribution of this paper is to add consistency require-
ments to the basic MIRP and to develop a matheuristic for this version of the
MIRP, called the consistent MIRP. The remainder of the paper is organized
as follows. In Section 2 we formally describe the basic MIRP and we present
a mixed-integer linear programming formulation for it and for the consistent
MIRP. Section 3 describes our algorithm which combines adaptive large neigh-
borhood search and the exact solution of mixed integer linear programs. This
algorithm can solve the basic MIRP and the consistent MIRP defined by any
combination of the six features just introduced. This is followed by the results of
extensive computational experiments in Section 4, and by conclusions in Section
5.

2 Formal problem description and mathemati-
cal models

We now formally introduce the basic MIRP. The problem is defined on a graph
G = (V,A), where V = {0, ..., n} is the vertex set and A = {(i, j) : i, j ∈ V, i 6=
j} is the arc set. Vertex 0 is a depot at which the supplier is located and the
vertices of V ′ = V \{0} represent customers. The problem is defined over a
planning horizon of length p and, at each time period t ∈ T = {1, ..., p}, the
quantity of product made available at the supplier is equal to rt. A unit inven-
tory holding cost hi is incurred by customer i and by the supplier at each period,
and customer i has an inventory holding capacity Ci. We assume the supplier
has enough inventory to meet all the demand during the planning horizon and
that inventories are not allowed to be negative. The variables It0 and Iti are de-
fined as the inventory levels at the end of period t, respectively at the supplier
and at customer i. At the beginning of the planning horizon the decision maker
knows the current inventory level of the supplier and of all customers (I00 and
I0i for i ∈ V ′), and has full knowledge of the demand dti of each customer i for
each time period t.

A set K = {1, ...,K} of vehicles are available. We denote by Qk the capacity
of vehicle k. Each vehicle is able to perform one route per time period, from
the supplier to a subset of customers. A routing cost cij is associated with arc
(i, j) ∈ A.

The objective of the problem is to minimize the total routing and inventory
holding cost while meeting the demand for each customer. The replenishment
plan is subject to the following constraints:

• at the end of period t, the inventory at a customer location cannot exceed
its maximum capacity;

• inventories are not allowed to be negative;

Consistency in Multi-Vehicle Inventory-Routing

CIRRELT-2011-66 3



• the supplier’s vehicles can each perform at most one route per time period;

• each route starts and ends at the depot;

• the vehicle capacities cannot be exceeded.

The solution to the problem specifies which customers to serve at each time
period, which vehicle to use on each route, how much to deliver to each visited
customer, and how to sequence customers on the vehicle routes. Throughout
the paper, we assume that the quantity rt becoming available at the supplier
in period t can be used for deliveries to customers in the same period, and that
the quantities qkti received by customer i in period t can be used to meet the
demand in that period.

The model works with the following binary variables: xktij is equal to 1 if
and only if vertex j immediately follows vertex i on the route of vehicle k in
period t, and ykti is equal to 1 if and only if customer i is visited by vehicle k in
period t. We denote by qkti the quantity of product delivered from the supplier
to customer i using vehicle k in time period t. The model also uses continuous
variables wkti to enforce the VRP subtour elimination constraints [15, 19]. They
represent the sum of the deliveries made by vehicle k in period t after visiting
customer i.

2.1 Mixed integer linear program for the basic MIRP

The mathematical model for the basic MIRP is as follows:

(MIRP) minimize
∑
t∈T

h0I
t
0 +

∑
i∈V′

∑
t∈T

hiI
t
i +

∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

cijx
kt
ij (1)

subject to

It0 = It−10 + rt −
∑
i∈V′

∑
k∈K

qkti t ∈ T (2)

It0 ≥ 0 t ∈ T (3)

Iti = It−1i +
∑
k∈K

qkti − dti i ∈ V ′, t ∈ T (4)

Iti ≥ 0 i ∈ V ′, t ∈ T (5)

Iti ≤ Ci i ∈ V ′, t ∈ T (6)∑
k∈K

qkti ≤ Ci − It−1i i ∈ V ′, t ∈ T (7)

∑
k∈K

qkti ≤ Ci
∑
j∈V

∑
k∈K

xktij i ∈ V ′, t ∈ T (8)
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∑
i∈V′

qkti ≤ Qk t ∈ T , k ∈ K (9)

qkti ≤ ykti Ci i ∈ V ′, t ∈ T , k ∈ K (10)∑
j∈V

xktij =
∑
j∈V

xktji = ykti i ∈ V ′, t ∈ T , k ∈ K (11)

∑
j∈V′

xkt0j ≤ 1 k ∈ K t ∈ T (12)

∑
k∈K

ykti ≤ 1 i ∈ V ′, t ∈ T (13)

wkti − wktj +Qkx
kt
ij ≤ Qk − qktj i ∈ V ′, j ∈ V ′, t ∈ T , k ∈ K (14)

qkti ≤ wkti ≤ Qk i ∈ V ′, t ∈ T , k ∈ K (15)

qkti ≥ 0 i ∈ V ′, j ∈ V, t ∈ T , k ∈ K (16)

xktij , y
kt
i ∈ {0, 1} i, j ∈ V, i 6= j, t ∈ T , k ∈ K. (17)

In this model, the objective function is the sum of inventory costs at the
supplier and customer locations, and of routing costs. Constraints (2) define the
inventory at the supplier carried at the end of period t. Constraints (3) forbid
stockouts at the supplier. Constraints (4) and (5) are similar to (2) and (3) but
apply to the customers. Constraints (6) define the maximum inventory level
at customer locations, while constraints (7) and (8) ensure that the quantity
delivered to customer i at period t will not exceed the customer’s inventory
capacity if the customer is served, and will be zero otherwise. Constraints
(9) mean that vehicle capacities are never exceeded. Constraints (10)−(15)
impose linking and routing conditions. In particular, constraints (14) ensure
the consistency of the load of each vehicle along its route and prevent subtours.
Finally, constraints (16) and (17) enforce the non-negativity and integrality
requirements.

2.2 Modeling the features of the consistent MIRP

We now formally describe the features of six versions of the consistent MIRP
and we show how they can be modeled separately or jointly.

2.2.1 Quantity consistency

A way to ensure that all deliveries to a given customer will be consistent over
time is to force the delivery amounts to lie within an interval [gl, gu] around
a target value equal to the average demand of the customer over the planning
horizon:

ykti gl
∑
t∈T

dti/p ≤ qkti ≤ ykti gu
∑
t∈T

dti/p i ∈ V ′, k ∈ K, t ∈ T . (18)
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2.2.2 Vehicle filling rate

To balance the load between vehicles and to avoid dispatching vehicles with
very low loads, we impose a vehicle filling rate constraint which specifies that a
vehicle can only be used if the total quantity it delivers fills at least a fraction γ
of its capacity. This is achieved by adding the following constraint to the basic
model: ∑

i∈V′

qkti ≥ γ
∑
i∈V′

xkt0iQk k ∈ K, t ∈ T . (19)

2.2.3 Order-up-to policy

Under an OU inventory policy, the decisions of when and how much to deliver
to a customer are linked: whenever a customer is visited, the quantity delivered
must fill the customer’s inventory capacity. The OU policy is imposed through
the constraints

qkti ≥ Ci
∑
j∈V

xktij − It−1i i ∈ V ′, k ∈ K, t ∈ T . (20)

2.2.4 Driver consistency

Driver consistency is modeled with an extra binary variable zki equal to 1 if and
only if vehicle k visits customer i. Then, two sets of constraints are added to
the basic model: ∑

k∈K

zki = 1 i ∈ V ′ (21)

ykti ≤ zki i ∈ V ′, k ∈ K, t ∈ T (22)

zki ∈ {0, 1} i ∈ V ′, k ∈ K. (23)

Constraints (21) ensure that exactly one vehicle is assigned to each customer
over the planning horizon. Constraints (22) allow deliveries only from the vehicle
assigned to the customer.

2.2.5 Driver partial consistency

It may sometimes be preferable to apply a partially consistent policy by which
a large number of deliveries follow the driver consistency rule, but in some cases
the rule may be relaxed. We have modeled this policy by adding to the objective
function a penalty term proportional to the number of extra vehicles assigned
to each customer, beyond their regular vehicle. We have introduced a binary
variable ski indicating whether an extra vehicle k is assigned to customer i, and
we impose the following sets of constraints to the basic model:∑

k∈K

zki = 1 i ∈ V ′ (24)

Consistency in Multi-Vehicle Inventory-Routing
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ykti ≤ zki + ski i ∈ V ′, k ∈ K, t ∈ T (25)

ski , z
k
i ∈ {0, 1} i ∈ V ′, k ∈ K. (26)

Constraints (24) assign a first vehicle to each customer, while constraints
(25) allow additional vehicles to be assigned to the same customer. We then
add a penalty term

α
∑
i∈V′

∑
k∈K

ski (27)

to the objective function (1). By adjusting the parameter α, one can control
how restrictive the driver partial consistency policy will be.

2.2.6 Visit spacing

One may also want to enforce a minimum and maximum time interval between
two consecutive visits to the same customer, since it may be undesirable to visit
the same customer on several successive days or to leave a customer unvisited for
a long period. Adding the following constraints to the basic model will ensure
that at least one visit will take place every (Mi + 1) periods, and no more than
one visit will take place in any (mi + 1) successive periods. In practice, both
Mi and mi should depend on the capacity and on the demand of customer i:

∑
k∈K

t+mi∑
l=t

ykli ≤ 1 i ∈ V ′, t ∈ {1, ..., p−mi} (28)

∑
k∈K

t+Mi∑
l=t

ykli ≥ 1 i ∈ V ′, t ∈ {1, ..., p−Mi}. (29)

3 A matheuristic for the consistent MIRP

The MIRP is NP-hard since it generalizes the capacitated VRP. As a result,
the models described in Section 2 can only be used for the exact solution of
relatively small instances. For this reason, we have opted to solve the problem
heuristically. The heuristic we have developed can solve the basic MIRP and
any combination of the six versions of the consistent MIRP just defined. It
applies an Adaptive Large Neighborhood Search (ALNS) scheme in which some
subproblems are solved exactly as MILPs. It can therefore be described as a
matheuristic [21], i.e. as a hybridization of a heuristic and of a mathematical
programming algorithm.

3.1 Adaptive Large Neighborhood Search

Our ALNS heuristic follows the general framework proposed by [24] and works
as follows. At each iteration, a number of customers are removed from their
current route by a destroy operator and are eventually reinserted back elsewhere
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by a repair operator. The choice of an operator is governed by a roulette-wheel
mechanism. Each operator i is assigned a weight ωi whose value depends on
its past performance, as well as a score. Given h operators with weights ωi,

operator j will be selected with probability ωj/
h∑
i=1

ωi. Initially, all weights are

equal to one and all scores are equal to zero. At each iteration, the score of the
selected operator is increased by σ1 if it finds a new best solution, by σ2 if it
finds a solution better than the incumbent, and by σ3 if the solution is not better
but is still accepted. Obviously σ1 ≥ σ2 ≥ σ3 ≥ 0. The search is divided into
segments of ϕ iterations each, after which the weights and scores are updated as
follows. Let πi and oij be, respectively, the score of operator i and the number
of times it has been used in the last segment j, normalized by a factor νi ≥ 1
reflecting the computational effort it requires (see [12, 24]). The normalization
factor νi multiplies oij , and therefore decreases the weight of operator i, so that
the more time consuming operators are applied less frequently. The values used
for the normalization factors are all equal to one in our implementation, except
for two cases where different values are used. These are provided in Sections
3.1.1 and 3.1.2. The updated weights are then

ωi :=

{
ωi if oij = 0

(1− η)ωi + ηπi/νioij if oij 6= 0,
(30)

where η ∈ [0, 1] is called the reaction factor, controling how quickly the weight
adjustment reacts to changes in the movement performance (see Section 3.3).
All scores are reset to zero.

As in [24] we use the same acceptance criterion as in simulated annealing:
given a solution s, a neighbor solution s′ is accepted if z(s′) < z(s), and with
probability e−(z(s

′)−z(s))/τ otherwise, where z(s) is the solution cost and τ > 0 is
the current temperature. The temperature is initialized at τstart and is decreased
by a cooling rate factor φ at each iteration, where 0 < φ < 1.

Our computational tests have shown that the initial solution does not have
a significant impact on the overall solution cost or on the running time. We
therefore initialize the search with a randomly generated solution.

3.1.1 Destroy operators

1. Randomly remove ρ: This operator randomly selects one period and
one vehicle and removes one randomly selected customer from it. It is
repeated ρ times. The operator is useful for refining the solution, since it
does not change it much when ρ is small (which happens frequently), but
still yields a major transformation when ρ is large.

2. Remove worst ρ: This operator removes the customer that will save the
most when removed, considering the total routing and inventory cost. It
is applied ρ times. Its normalization factor is 20.
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3. Shaw removal: Following the ideas developed in [23] and [25], this oper-
ator removes customers that are relatively close to each other. Specifically,
it randomly selects one vehicle, one period and one customer served in this
period, it computes the distance distmin to the closest customer also being
served by the same route, and it removes all customers within 2distmin
units from the selected route.

4. Avoid consecutive visits: This operator is based on our observation
that good solutions often do not contain visits to the same customer on
two consecutive periods. Then, the operator verifies whether any customer
is visited on two consecutive periods and removes the latest visit.

5. Empty one period: This operator selects one random period and emp-
ties all routes performed during that period.

6. Empty one vehicle: This operator selects one random vehicle and emp-
ties all routes performed by this vehicle.

3.1.2 Repair operators

1. Randomly insert ρ: This operator randomly inserts ρ customers into
the current solution. Specifically, it selects one random customer, one
random vehicle and one random period, and inserts the customer into the
route of that vehicle in that period if it is not already routed in the same
period. This operator is applied ρ times.

2. Insert best ρ: This operator is analogous to the previous one. It is
applied ρ times by computing the cheapest insertion with respect to the
total cost. The normalization factor used for this operator is 20.

3. Shaw insertions: This operator is similar to the Shaw removal operator
in the sense that it selects similar customers to be inserted together. It
selects one vehicle, one period and one customer not served in that period
by any vehicle. The operator then computes distmin and all customers
within a 2distmin distance are inserted in the same route, always following
the cheapest insertion rule.

4. Swap ρ customers: This operator selects two customers from two differ-
ent routes and swaps their assignments, following the cheapest insertion
rule. It is also applied ρ times.

3.2 Exact subproblem solutions

Our matheuristic embeds the exact solution of two subproblems. The first one,
called Delivery Quantities (DQ) optimizes the delivery quantities associated
with a given set of vehicle routes. It is solved every time a new routing solution
is computed by the ALNS mechanism. It uses a binary parameter x̄ktij equal
to one if and only if customer j follows customer i in the route of vehicle k in

Consistency in Multi-Vehicle Inventory-Routing

CIRRELT-2011-66 9



period t. As shown in [12], DQ can be formulated as the following network flow
problem.

(DQ) minimize
∑
t∈T

h0I
t
0 +

∑
i∈V′

∑
t∈T

hiI
t
i (31)

subject to

It0 = It−10 + rt −
∑
i∈V′

∑
k∈K

qk,ti t ∈ T (32)

Iti = It−1i +
∑
k∈K

qk,ti − d
t
i i ∈ V ′, t ∈ T (33)

It0 ≥ 0 t ∈ T (34)

Iti ≥ 0 i ∈ V ′, t ∈ T (35)

Iti ≤ Ci i ∈ V ′, t ∈ T (36)∑
k∈K

qkti ≤ Ci − It−1i i ∈ V ′, t ∈ T (37)

∑
k∈K

qkti ≤ Ci
∑
j∈V

∑
k∈K

x̄ktij i ∈ V ′, t ∈ T (38)

∑
i∈V′

qkti ≤ Qk t ∈ T , k ∈ K. (39)

Constraints (32) and (33) define the flow conservation. Lower and upper
bounds on the flows are defined by (34)−(38). Vehicle capacity constraints (39)
still define an upper bound on the quantity delivered by the vehicle, even though
the customers to be visited are now fixed.

The purpose of the second subproblem, called Solution Improvement (SI),
is to approximate the cost of a new solution resulting from vertex removals and
reinsertions. This problem is no longer a network flow problem. It is solved
every θ iterations or whenever a new best solution has been identified. Using an
idea proposed by [4], we simplify and approximate the routing costs resulting
from vertex removals and reinsertions as follows. Let akti represent the routing
cost reduction if customer i is removed from the route of vehicle k at period t,
which obviously visits customer i; let bkti represent the routing cost if customer i
is inserted in the route of vehicle k at period t, which obviously does not already
visit customer i; finally, let rkti be a binary parameter equal to 1 if and only if
customer i is visited in the current route of vehicle k at period t. Also define
the following binary variables: let ukti be equal to 1 if and only if customer i is
removed from the existing route of vehicle k at period t, and let vkti be equal to
1 if and only if customer i is inserted in the route of vehicle k at period t. This
subproblem is then to

(SI) minimize
∑
t∈T

h0I
t
0 +

∑
i∈V′

∑
t∈T

hiI
t
i −

∑
i∈V′

∑
k∈K

∑
t∈T

akti u
kt
i +

∑
i∈V′

∑
k∈K

∑
t∈T

bkti v
kt
i

(40)
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subject to (2)−(6) and

qkti ≤ Ci − It−1i i ∈ V ′, k ∈ K, t ∈ T (41)

qkti ≤ (rkti − ukti + vkti )Ci i ∈ V ′, k ∈ K, t ∈ T (42)

vkti ≤ 1− rkti i ∈ V ′, k ∈ K, t ∈ T (43)

ukti ≤ rkti i ∈ V ′, k ∈ K, t ∈ T (44)∑
i∈V′

ukti +
∑
i∈V′

vkti ≤ β k ∈ K, t ∈ T (45)

∑
i∈V′

qkti ≤ Qk k ∈ K, t ∈ T (46)

qkti ≥ 0 i ∈ V ′, t ∈ T , k ∈ K (47)

ukti , v
kt
i ∈ {0, 1} i ∈ V ′, t ∈ T , k ∈ K. (48)

The objective function (40) minimizes the total inventory, removal and in-
sertion cost. Constraints (41)−(42) are similar to (7)−(8) and enforce the ML
policy. Constraints (43) ensure that if a customer is already present in a route,
it cannot be reinserted in the same route. Likewise, constraints (44) guaran-
tee that only those customers belonging to a route can be removed from it.
Constraints (46) ensure that vehicle capacities are respected. If the incumbent
solution is changed by more than one customer, then this model only provides
an approximation of the actual routing costs. For this reason, we have decided
to limit the number of insertions and removals that could take place in the solu-
tion of SI, and we have added constraints (45) to limit the number of insertions
and removals per route to a small value β.

3.2.1 Quantity consistency

Guaranteeing a minimum and a maximum delivery quantity to each customer
is controlled by adding the following constraints to SI, which ensures that the
quantities delivered lie within their specified intervals:

qkti ≥ (rkti − ukti + vkti )gl
∑
t∈T

dti/p i ∈ V ′, k ∈ K, t ∈ T (49)

qkti ≤ (rkti − ukti + vkti )gu
∑
t∈T

dti/p i ∈ V ′, k ∈ K, t ∈ T . (50)
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3.2.2 Vehicle filling rate

To ensure a minimum vehicle filling rate in SI, the following constraints are
added. They use new binary variables ykt equal to 1 if and only if vehicle k is
used in period t:

ykt ≥ zkti i ∈ V ′, k ∈ K, t ∈ T (51)∑
i∈V′

qkti ≥ γyktQk k ∈ K, t ∈ T (52)

ykt ∈ {0, 1} k ∈ K, t ∈ T . (53)

3.2.3 Order-up-to policy

The OU policy is handled through the following constraints:

qkti ≥ (rkti − ukti + vkti )Ci − It−1i i ∈ V ′, k ∈ K, t ∈ T . (54)

These constraints ensure that if a delivery to a customer is performed, the
quantity delivered should be at least equal to the difference between its current
inventory and its inventory holding capacity. Together with constraints (41)
and (42) they ensure that the quantity delivered will exactly fill the customer’s
inventory capacity.

3.2.4 Driver consistency

The driver consistency requirement is modeled in SI by means of an extra binary
variable zki equal to 1 if and only if vehicle k visits customer i, as it was defined
in Section 2.2.4. Then, three sets of constraints are added to the SI model:∑

k∈K

zki = 1 i ∈ V ′, k ∈ K (55)

rkti − ukti + vkti ≤ zki i ∈ V ′, k ∈ K, t ∈ T (56)

zki ∈ {0, 1} i ∈ V ′, k ∈ K. (57)

Constraints (55) ensure that exactly one vehicle is assigned to each customer,
while constraints (56) only allow deliveries from the vehicle assigned to that
customer.

3.2.5 Driver partial consistency

The driver partial consistency is also modeled in SI with a binary variable ski
and a penalty in the objective function, as above. The variable ski will be equal
to one if and only if an extra vehicle k is assigned to customer i. The required
constraints are ∑

k∈K

zki = 1 i ∈ V ′, k ∈ K, t ∈ T (58)

Consistency in Multi-Vehicle Inventory-Routing
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rkti − ukti + vkti ≤ zki + ski i ∈ V ′, k ∈ K, t ∈ T (59)

ski , z
k
i ∈ {0, 1} i ∈ V ′, k ∈ K. (60)

The penalty to the objective function is added in the same fashion as in Section
2.2.5.

3.2.6 Visit spacing

The imposition of minimum and maximum intervals between visits is modeled
by adding the following sets of constraints to the SI model:

∑
k∈K

t+mi∑
l=t

(rkri − ukli + vkri ) ≤ 1 i ∈ V ′, t ∈ {1, ..., p−mi} (61)

∑
k∈K

t+Mi∑
l=t

(rkri − ukli + vkri ) ≥ 1 i ∈ V ′, t ∈ {1, ..., p−Mi}. (62)

3.3 Parameter settings

We now describe the parameters that govern our algorithm. We have tested
different combinations for the parameters during a tuning phase. We have
evaluated how the algorithm performed with different numbers of iterations. To
this end, we have run it it 5,000, 10,000, 15,000, 20,000, 25,000, 30,000, 40,000
and 50,000 iterations on a small subset of instances. We then computed the
average solution gap that each number of iterations provided with respect to
the best solution found. Since the drop of the average gap is steep when the
algorithm reaches 50,000 iterations and only equal to 0.12% we have decided to
run the algorithm for 50,000 iterations without a time limit. Figure 1 depicts
the performance just described.

The starting temperature τstart is set to 30,000 and the cooling rate φ is
0.999701, which yields roughly 50,000 iterations. The stopping criterion is sat-
isfied when the temperature reaches 0.01 or when 50,000 iterations have been
performed. We have decided not to stop the algorithm after a pre-determined
running time because we wanted to evaluate the impact of the different policies
themselves, not an algorithmic performance. The segment length ϕ was set to
200 iterations and the reaction factor η was set to 0.8, that is, new weights will
reflect 80% of the performance of the last segment and 20% of the last weight
value. Scores are updated with σ1 = 10, σ2 = 5 and σ3 = 2. A trade-off must
be made between the CPU consumption and the quality of each operator of the
ALNS, as well as how often SI is solved. We have evaluated this trade-off and
decided to solve this subproblem with β = 10 every θ = 40 ALNS iterations,
which proved to be a good compromise between computing time and solution
quality.
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Figure 1: Average solution gap over different number of iterations.

3.4 Special rules

The algorithm can handle all six consistency features without modifications.
However, its performance can be improved if some adjustments are made to
better handle some features.

The first adjustment consists in applying the avoid consecutive visits opera-
tor only to the basic MIRP, since it could conflict with some of the consistency
features proposed, thus decreasing the effectiveness of the algorithm. For ex-
ample, it may pay to visit some customers on two consecutive periods if this
helps achieve a better vehicle filling rate. Similarly, a later visit to a customer
can be anticipated if this reduces routing costs (due to geographical proximity)
or if this improves driver consistency. After some tests and considerations, we
realized that whenever this operator is applied, it directs the search towards
good neighborhoods, leading to better solutions. The idea is that a good solu-
tion should not visit the same customer on consecutive days, considering that
it usually has sufficient inventory to meet its demand and that the number of
vehicles and their capacity are limited, and their use is expensive. We have
evaluated the impact of the avoid consecutive visits operator during the search,
by running the algorithm on a subset of instances, both with and without this
operator. The results of this experiment are depicted in Figure 2. It is clear
from Figure 2 that the operator has a positive impact on the search process.
The average percentage gap with respect to the best solution value found in
this experiment is always smaller when the operator is applied. This operator is
a direct result of the visit spacing consistency feature. We have tried different
ideas from other consistency features, but none proved to be as effective for the
general case.
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Figure 2: Impact of the avoid consecutive visits operator.

The second modification relates to implementation details of the different
consistency features proposed. For some variants of the main problem, we have
made slight modifications to the ALNS operators and to the associated network
flow model in order to take into account the specifics of the variant under con-
sideration. In order to enforce the driver consistency rule, we have modified
the ALNS operators to allow insertions of customers only in vehicles that had
already visited them earlier in the current solution. For the driver partial consis-
tency rule, the only modification needed was related to the computation of the
solution cost, in order to take into account the number of vehicles assigned to
each customer. For the visit spacing case, the only modifications were made to
the insertion operators of the ALNS, as was the case for the driver consistency
feature. The OU policy was modeled directly into the remaining network flow
problem as in [12], as were the minimum and maximum delivered quantity in
the quantity consistency requirements. For the vehicle filling rate case, we have
opted to solve SI after each ALNS iteration to help regain feasibility since in
this case many ALNS operations yield infeasible solutions.

The third adjustment concerns the SI subproblem. Since it provides an
approximation of the true routing costs, it is possible that after applying it to a
solution, the output has a higher solution cost than the input. For this reason,
we only accept the SI solution if it is better than the solution to which it was
applied. In our experiments we have observed that on average 69% of the calls
to SI led to improvements.
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3.5 Summary of the algorithm

Algorithm 1 provides the pseudocode of our matheuristic.

Algorithm 1 Matheuristic pseudocode

1: Initialize weights of removal and insertion operators to 1 and scores to 0.
2: sbest ← s← initial solution.
3: τ ← τstart.
4: while τ > 0.01 and iterations < 50,000 do
5: s′ ← s.
6: Select a destroy and a repair operator using the roulette-wheel and apply

it to s′.
7: Fix routing decisions, solve DQ to determine the delivery quantities.
8: if f(s′) < f(s) then
9: s← s′;

10: if f(s) < f(sbest) then
11: Solve the SI model associated with s;
12: sbest ← s;
13: increase the score of the operators by σ1;
14: else
15: increase the score of the operators by σ2;
16: end if
17: else
18: if s′ is accepted by the simulated annealing criterion then
19: s← s′;
20: increase the score of the operators by σ3.
21: end if
22: end if
23: if the iteration count is a multiple of ϕ then
24: update the weights of all operators and reset their scores.
25: end if
26: if the iteration count is a multiple of θ then
27: solve the SI model associated with s.
28: end if
29: end while
30: return sbest;

4 Computational experiments

The algorithm just described was coded in C++. We have used the scaling push-
relabel algorithm for the minimum-cost flow problem developed by Goldberg [17]
to solve DQ and IBM Concert Technology and CPLEX 12.2 as the solver for
SI. All computations were executed on a grid of Dual Core AMD Opteron(tm)
Processor 275 machines running at 2.20 GHz, each with 12 GB of RAM installed,
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running a Linux operating system.
To evaluate the performance of the algorithm, we have adapted to the multi-

vehicle case the 160 small single vehicle IRP instances of Archetti et al. [3, 4].
These were used in [4, 10, 12] to evaluate single vehicle algorithms for the IRP
and are made up of instances with up to three time periods and 50 customers,
and six time periods and 30 customers. These instances are described as small-
n-low or small-n-high, where the last field refers to a low or high inventory
holding cost. There are five instances for each combination and we report aver-
age statistics over these. The second set is more recent and contains 60 larger
instances proposed in [4], with up to six time periods and 200 customers. They
are described as large-n-low or large-n-high. There are 10 instances for each
combination and we again report average values. We have adapted these in-
stances to account for multiple vehicles by dividing the original vehicle capacity
by the number of vehicles considered. We have tested our algorithm on the
smaller set with two and three vehicles, and on the larger set with two to five
vehicles. In total, we have solved 160 × 2 + 60 × 4 = 560 instances for the
basic MIRP. In the case of the consistent MIRP, we have solved instances with
three vehicles. Since we have defined six versions of this problem, this means
that an additional 6 × (160 + 60) = 1,320 instances were solved.

Given that there are no reported solutions for the basic MIRP, we have
compared our heuristic against a truncated execution of CPLEX, both with a
time limit of 3,600s. Our solutions are consistently and significantly better than
those generated by CPLEX. On average the application of our heuristic reduces
the gap with respect to the best known lower bound by 30%.

We provide in Tables 1 and 2 the average solution values yielded by our
heuristic over the five small basic MIRP instances with two and three vehicles
for p = 3 and p = 6, respectively. Table 3 contains average solution values over
the 10 large basic MIRP instances with two to five vehicles, and p = 6.

We also report in Tables 4 to 9 the solution values of the consistent MIRP
for each of the six features described in Section 2.2. The last line provides the
average percentage increase of each consistent MIRP solution value with respect
to the basic MIRP solution values (column K = 3 in Tables 1−3). Specifically,
Tables 4 to 6 report statistics for each set of the low inventory cost instances,
starting with three periods and five customers, and going up to six periods and
200 customers, when compared to the solution obtained by our heuristics for
the general problem. Tables 7 to 9 provide statistics for the high inventory
cost instances. The parameters we have used to run the tests for each type of
consistency are the following:

• Quantity consistency: each delivery performed to any customer must lie
within one and three times the average demand of the customer, that is
gl = 1.0 and gu = 3.0.

• Vehicle filling rate: each dispatched vehicle must be at least 50% filled,
i.e. γ = 0.5.

• Driver partial consistency: we have tested several different values for the
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Table 1: Average solution values for the
small basic MIRP instances, p = 3

Instance
Number of vehicles
K = 2 K = 3

small-5-low 1572.27 1963.11
small-10-low 2349.42 2850.57
small-15-low 2536.31 2911.20
small-20-low 3084.59 3563.21
small-25-low 3373.87 3865.72
small-30-low 3603.26 3985.43
small-35-low 3811.30 4292.73
small-40-low 4104.21 4451.24
small-45-low 4324.40 4681.85
small-50-low 4841.90 5391.42
small-5-high 2494.64 2879.29

small-10-high 4774.99 5276.68
small-15-high 5768.59 6143.17
small-20-high 7644.25 8130.39
small-25-high 9395.88 9849.23
small-30-high 11230.10 11590.26
small-35-high 11765.62 12251.50
small-40-high 12938.10 13374.34
small-45-high 14325.60 14692.62
small-50-high 15895.42 16488.44

Table 2: Average solution values for the
small basic MIRP instances, p = 6

Instance
Number of vehicles
K = 2 K = 3

small-5-low 3926.47 4990.03
small-10-low 5793.91 7177.62
small-15-low 6433.08 7607.57
small-20-low 7875.37 9320.24
small-25-low 8605.21 10234.46
small-30-low 9054.79 10290.92
small-5-high 6147.72 7206.68

small-10-high 9803.98 11053.62
small-15-high 12601.52 13814.68
small-20-high 15934.08 17285.32
small-25-high 18194.68 19573.78
small-30-high 21706.46 22916.90

Table 3: Average solution values for the large basic MIRP instances, p = 6

Instance
Number of vehicles

K = 2 K = 3 K = 4 K = 5
large-50-low 13049.91 14249.57 18450.18 21260.23

large-100-low 25546.13 23591.50 34722.01 37561.98
large-200-low 46524.72 48225.70 63351.94 73145.96
large-50-high 32585.83 33926.45 37972.05 39836.93

large-100-high 60773.11 64562.34 72772.20 75192.23
large-200-high 121982.72 132976.90 141319.30 144866.10
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penalty parameter, as reported later; for these tables, we provide results
with α = 10.

• Visit spacing: a customer may not be visited more than once in every
two periods and should be visited at least once in every three periods,
i.e. mi = 1 and Mi = 2. We did not need to consider customer-dependent
values since the instances were generated taking the capacity/demand
ratio into account.

The driver partial consistency feature deserves further comments. Obviously,
the choice of the value of the parameter α is highly related to the performance
of the consistency feature itself and to the cost of the solutions it yields. Thus,
we have also evaluated how the driver partial consistency case responded to
different values of the penalty parameter α. Specifically we have used α = 0.1,
1, 10 and 100. We then observed how many vehicle assignments were made in
the final solution, as well as the cost of the solution. As expected, the number of
extra vehicles increased in the instances with six time periods, compared with
the solutions obtained for the three-period intances. This is due to the fact
that many customers were served only once in the shorter horizon instances and
automatically respected the driver consistency rule. Also, the number of vehicle
assignments decreased to close to one per customer as the value of α increased.
Figure 3 depicts the average number of vehicle assignments and solution cost
per customer.
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Figure 3: Average number of vehicles and cost of the solution per customer for
the consistent MIRP with partial driver consistency.

We have shown that ensuring minimum and maximum intervals between
successive visits to the same customer usually does not change the solution
cost by more than 1.5%, but can be as high as 17% in some cases. Imposing
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restrictions on the quantities delivered increases the solution cost by at least
1% and by up to 27% in some sets of instances when one forces the delivered
quantity to meet customer-dependent intervals, or by as much as 20% when the
OU policy is enforced. Simplifying the decision process by applying the OU
inventory policy increases the solution cost by more than 9% on average. This
finding is consistent with the observation made in [3] for the IRP, in [12] for the
IRP with transshipment, and in [5] for the integrated production-distribution
problem. Imposing a high vehicle capacity utilization rate seems to be the most
expensive consistency feature we have tested, especially on instances with many
customers. Imposing consistency in the assignment of drivers to customers
does not change the solution cost if the planning horizon is short, since many
customers are served only once. Finally, allowing some of the deliveries to
deviate from the driver consistency rule appears to be a very good feature,
since most of the deliveries will still benefit from the driver consistency policy.
Adjusting the cost parameter associated with the penalty for assigning more
than one vehicle to the same customer can have a major impact both on the
consistency of the assignments and on the overall cost. In our tests, the driver
consistency and partial consistency policies do not increase solution cost by
much.

It is also noteworthy that inventory holding costs play a major role not
only in the values of the solutions obtained, but also on the performance of the
algorithm. From our experiments, the gaps of the different consistency features
were larger on the low inventory cost set for all but three cases. This is due to
the fact that when inventory costs are low, routing decisions are relatively more
important. Generating a good route is significantly harder than obtaining a
good inventory replenishment policy, thus the larger gaps when inventory costs
are less important.

As mentioned in Section 3.3 we have opted not to stop the algorithm after
some predetermined running time because we wanted to evaluate the relative im-
pact of each policy, and not show how the algorithm performed on any particular
one. Thus, even though some computational times are large, our experiments
enable us to derive insights on how much each policy would cost to the decision
maker, and once he makes his decision, a specific algorithm can be applied to
obtain a solution for that particular policy in less time. Specifically, the driver
consistency rule yields a high average running time, due to the constraint added
to the SI subproblem, with 140,000 seconds on average for the large instances.
One particular instance of the driver partial consistency rule ran for almost
30,000 seconds. Simpler models, such as the basic MIRP or the OU policy had
an average running time of 2,000 seconds for the small instances with three
periods and of 8,000 seconds for the small instances with six periods. On the
larger instances, both policies yielded an average of 14,000 seconds.
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5 Conclusions

We have incorporated six consistency features in the MIRP. One of these is the
well-known OU replenishment policy, and another is the concept of driver con-
sistency already introduced in the context of the multi-period VRP. We have
developed a matheuristic composed of an ALNS enhanced by the exact solution
of two types of MILPs. The first one is a network flow model used to com-
pute delivery quantities associated with a given set of routes. The second one
provides an approximation of the cost of a new solution obtained by applying
vertex removals and reinsertions to a given solution. The algorithm is suffi-
ciently flexible to handle the basic MIRP as well as any combination of the six
consistency features we have considered. However, the performance improves
when some adjustments are made for certain features. Extensive computational
tests on benchmark instances have shown that introducing some of these fea-
tures can increase the average solution cost significantly, by up to 40% when
imposing a high vehicle capacity utilization, or can cost as little as less than 1%
when controlling the interval between successive visits to the same customer.
Our study clearly illustrates the costs and benefits of incorporating consistency
features in the basic MIRP.
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