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Abstract. In this article we introduce a dynamic public bike-sharing balancing problem 

(DPBSBP) arising from the daily operations of a public bike-sharing (PBS) system. In a 

PBS system, especially during peak hours, some stations have more demand than others. 

If no action is taken by the service provider they rapidly fill or empty, thus preventing other 

users from collecting or delivering bikes. The service provider must route vehicles to 

transport bikes from full stations to stations with shortages to balance the network. We 

formally define the problem and present a mathematical formulation. This formulation, 

however, cannot handle medium or large instances. We therefore present an alternative 

modeling approach that takes advantage of two decomposition schemes, Dantzig-Wolfe 

decomposition and Benders decomposition, to derive lower bounds and feasible solutions 

in short computing times. 
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1. Introduction

In recent years, public bike-sharing (PBS) systems have been gaining increasing popularity in

transportation plans as a strategy to multiply travel choices, promote the use of active modes

of transport, decrease the dependence on the automobile, and especially reduce greenhouse gas

emissions. PBS systems are currently spreading across the globe: in 2009, Shaheen et al. (2010)

estimated that about 100 bikesharing programs were implemented in 125 cities, for a total of more

than 140,000 bikes. In 2010, 45 new operations were planned in 22 countries. There is also increasing

interest in the research community in understanding how PBS systems are used and what factors

affect travel behavior.

In Montreal, the BIXI system was launched in the summer of 2009 and rapidly gained popular

support. In 2011, more than 5,000 bikes were available to users across 405 stations and more than

4 million trips were performed. The increasing service area combined with the high number of

users makes it difficult to meet the demand. Also, as are many other areas, the Montreal region is

quite monocentric, so the daily commutes are mainly unidirectional. This results in increased travel

demand toward the CBD (central business district) during the AM peak period and vice versa

in the PM peak. For the PBS system, this means that in the morning there is high demand for

bikes in peripheral areas and especially high demand for delivery points in the CBD. Particularly

in the peak periods, the number of outgoing and incoming bikes at certain stations is unbalanced,

creating the need for intervention by the operator. Sometimes the topography enhances this effect,

with hilltop stations being mostly starting points while stations below hills are mostly destinations.

At certain times of the day a subset of stations in the network will have extremely high demand,

and action becomes necessary. These stations will be primarily pickup points or primarily delivery

points. In the former case, if no action is taken by the service provider, the station will rapidly

empty, thus preventing other users from collecting bikes. In the latter case, the station will rapidly

fill, thus preventing other users from delivering bikes. When the network is not able to meet the

demand with a reasonable standard of quality, we will say that it is unbalanced. Balancing the

network refers to the actions taken by the service provider with the objective of ensuring a certain

quality of service.

Given a set of stations, a limited fleet of vehicles, and time-dependent demands for bikes, the

problem is to schedule vehicle routes to visit some of the stations to perform pickup and delivery

so as to minimize the number of users who cannot be served, i.e., the number of users who try to

collect bikes from empty stations or to deliver bikes to full stations.

Research into PBS systems is relatively recent. Wang et al. (2010) review PBS systems by

analyzing the operation of several different systems. From an OR perspective, the literature has

focused mainly on the strategic planning of the network design. dell’Olio et al. (2011) present
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a complete methodology for the design of such a network based on demand estimates. Their

methodology considers the locations of the stations and the fares. Lin and Yang (2011) address the

strategic problem of finding optimal stations using mathematical programming techniques. They

formulate the problem as a nonlinear mixed-integer problem and solve it with a commercial solver.

Vogel and Mattfeld (2011) present a methodology for strategic and operational planning using data

mining. Customer demand is forecast using data mining techniques, and the station locations are

set accordingly. A similar methodology is applied to schedule vehicle routes to balance the network.

Regarding operational planning, besides the methodology proposed by (Vogel and Mattfeld

2011), we can mention the recent works of Raviv et al. (2011) and Chemla et al. (2011). In Ra-

viv et al. (2011), the authors propose several mathematical formulations for the static balancing

problem. In the static case, customer demand is assumed to be negligible (for example, during the

night). The objective is to schedule vehicle routes to visit the stations in the minimum possible

time so as to accomplish a certain target (typically a desired number of bikes present at each

station) by the end of the time period. In Chemla et al. (2011) the authors also address the static

problem and propose an exact algorithm based on column generation. A column in the proposed

formulation represents a feasible vehicle route along with a sequence of pickup/delivery actions. A

suitable pricing algorithm is proposed based on dynamic programming.

The problem studied in this paper is also closely related to other well-studied vehicle-routing

problems. The one-commodity pickup and delivery problem (1-PDP) deals with the problem of

moving a single commodity through a number of customer locations. A fleet of vehicles visits each

customer location at most once and transports a given number of units of the commodity from

the pickup nodes to the delivery nodes. Applications of this problem include money transportation

between different branches of a bank or grocery distribution between supermarkets and suppliers.

Algorithms include branch-and-cut methods (Hernández-Pérez and Salazar-González 2003, 2007),

approximation algorithms (Anily and Bramel 1999), and heuristics (Hernández-Pérez et al. 2009,

Zhao et al. 2009). The main difference between the 1-PDP and the problem addressed in this paper

is that in the latter the number of bikes to transport from one station to another is a decision

variable. The swapping problem (SP) is the problem of moving multiple commodities between

nodes. With each node we associate a pair of indices (ai, bi) representing the types of commodity

for which the customer is a supplier and a demand point, respectively. A single vehicle must visit

the customer locations at minimum traveling cost so as to fulfill each node’s demand. The SP was

first introduced by Anily and Hassin (1992), who also introduced polynomial-time approximation

algorithms for the problem. Bordenave et al. (2009, 2010) investigated different variations of the

SP and proposed heuristics and exact methods based on branch-and-cut techniques. Erdogan et al.
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(2010) developed a branch-and-cut algorithm for which they adapted several valid inequalities from

the 1-PDP.

In this paper we consider a dynamic balancing problem, which comes from balancing the PBS

network during peak hours. In contrast to the static case, demand cannot be neglected. The problem

is first formulated using an arc-flow formulation on a suitable space-time network. Dantzig-Wolfe

decomposition (Dantzig and Wolfe 1960) is then applied and two different formulations are derived.

One is solved using column generation, and the other is used as a primal heuristic to find good

solutions quickly. The main contributions of this paper are the following:

1. We introduce a dynamic public bike-sharing balancing problem (DPBSBP) arising from the

daily operations of a PBS system during peak hours.

2. We provide mathematical formulations for the DPBSBP.

3. We develop a scalable methodology that provides lower and upper bounds in short computing

times.

The remainder of this paper is as follows: In Section 2 we formally define the DPBSBP and

present a mathematical formulation based on vehicle and commodity flows. In Section 3 we present

a new methodology to solve the DPBSBP that relies on two decomposition schemes, namely Danzig-

Wolfe decomposition (Dantzig and Wolfe 1960) and Benders decomposition (Benders 1962). In

Section 4 we present computational results. Finally, Section 5 provides concluding remarks.

2. Problem definition and mathematical formulation

Let K be the set of vehicles. With each vehicle k ∈K we associate a capacity, Qk, an initial load at

the beginning of the time horizon, Q0
k, and an initial position given by the point uk. Let V be the

set of stations in the network. With each station v ∈ V we associate a capacity, Cv, and an initial

number of bikes at the beginning of the time horizon, C0
v . The time horizon is discretized into a set

of periods T . This is done to explicitly take into account the possibility of visiting the same station

at different times. For the sake of clarity, we assume that the periods are indexed from 1 to |T |. We

consider a set of states, denoted S, composed of: 1) the initial positions of the vehicles at time 0,

{(uk,0) : k ∈K}, 2) nodes for the stations at the different time periods, {(v, t), v ∈ V, t∈ T }, and 3)

a dummy node denoted φ to represent the end of a route in the planned schedule. We denote by v(s)

and t(s) the node and period corresponding to state s 6= φ. We denote by SV the subset of states

composed of the pairs (v, t), v ∈ V, t ∈ T . For a given state s ∈ SV we set pred(s) = (v(s), t(s)− 1)

if t(s)≥ 2 and succ(s) = (v(s), t(s)+ 1) if t(s)≤ |T |− 1. Also, with each state s ∈ SV we associate

a demand fs for bikes (fs ≥ 0 if s is a pickup point, and fs < 0 if s is a delivery point). Let us

consider a graph G = (S,A), where the arc set A is defined as follows. Suppose that the travel

times are scaled to have the same units as the time discretization (for instance, if a time period
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represents a window of 5 min, a trip of 10 min starting at period t will end at period t+2). The

arc set A is composed of three types of arcs. First, it contains all feasible direct trips between a

pair of states, i.e., all arcs (s, s′) ∈ S × S such that t(s′)− t(s) ≥ d(v(s), v(s′)) > t(s′)− t(s)− 1,

where d(·, ·) is the distance between two nodes. Second, it contains all arcs (s, succ(s)) for s ∈ SV

such that t(s) ≤ |T | − 1. These arcs represent the action of waiting at station v(s) for a period

of time. Finally, it contains all arcs (s,φ) representing the end of the vehicle routes. Note that

we can consider the distance function d(·, ·) to be time-dependent, which gives extra flexibility to

the modeling approach. However, we assume that the travel times do not depend on the actions

performed by a vehicle in a given station. This is a limitation of the model that can be partially

solved if the travel times take into account the average service time at stations.

In Fig. 1 we illustrate a network with two vehicles and three stations, and the space-time network

resulting after a time discretization into five periods of one unit each. As can be seen in this small

example, the number of edges in the space-time network is much higher than the number in the

original graph. Also, note that the space-time network allows only arcs that go forward in time.

This property will be exploited later to derive a polynomial-time algorithm for the pricing problem

in the branch-and-price solver. Finally, note that although the distance from node u0
2 to node 1 in

the original network is 3/2, it is rounded up to 2 in the space-time network.

u0
1
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2

1

2
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1

1

2

3
2

1

1

1

1

2

(u0
1, 0)

(u0
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(3, 2)
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(3, 3)

(1, 4)

(2, 4)

(3, 4)

(1, 5)

(2, 5)

(3, 5)

φ

Figure 1 Original network vs. space-time network

2.1. Arc-flow formulation

Let us consider the space-time network previously defined. For each state s ∈ SV let y+
s , y

−
s ≥ 0

be two continuous variables representing a shortage and excess of bikes at state s, respectively

(together, these two quantities represent the unmet demand). Also, let zs ≥ 0 be a continuous

variable representing the number of bikes left at state s. For each arc a ∈A and vehicle k ∈K let

wk
a be a binary variable equal to 1 iff vehicle k traverses arc a in its route, and let xk

a ≥ 0 be a

continuous variable equal to the load of vehicle k along arc a. These loads are integer but they can

be relaxed to be continuous because they can be retrieved by solving a minimum-cost flow problem

on the space-time network for fixed integer values of the vehicle-flow variables w. For state s ∈ S
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we denote by δ+(s) the set of arcs ending at s and by δ−(s) the set of arcs starting at s. A valid

formulation of the problem is as follows:

min
∑

s∈SV

(
y+
s + y−

s

)
(1)

s. t.
∑

k∈K

∑

a∈δ+(s)

xk
a −
∑

k∈K

∑

a∈δ−(s)

xk
a − zs + y+

s − y−

s = fs −C0
v(s) s∈ SV , t(s) = 1 (2)

∑

k∈K

∑

a∈δ+(s)

xk
a −
∑

k∈K

∑

a∈δ−(s)

xk
a + zpred(s) − zs + y+

s − y−

s = fs s ∈ SV , t(s)≥ 2 (3)

∑

k∈K

∑

a∈δ+(s)

wk
a ≤ 1 s∈ SV (4)

y+
s , y

−

s ≥ 0 s∈ SV (5)

0≤ zs ≤Cv(s) s∈ SV (6)

xk
a ≤Qkw

k
a k ∈K, a∈A (7)

∑

a∈δ−(s)

wk
a −

∑

a∈δ+(s)

wk
a = 0 k ∈K, s ∈ SV (8)

∑

a∈δ−(uk,0)

wk
a = 1 k ∈K (9)

∑

a∈δ−(uk,0)

xk
a =Q0

k k ∈K (10)

x≥ 0 (11)

w binary. (12)

The objective function represents the total unmet demand, i.e., the number of users who tried

to collect bikes from empty stations or to deliver bikes to full stations. Constraints (2)–(3) are the

flow conservation constraints at each station for every time period. The role of the variables y+, y−

is to compensate for the imbalance of the network. In a perfectly balanced network these quantities

will always be zero. Constraints (4) ensure that each node is visited at most once in a time period.

Constraints (5) are the non-negativity constraints for the variables y+, y−. Constraints (6) are

the non-negativity constraints for the variables z and the capacity constraints of the stations in

every time period. Constraints (7) link the use of each arc to the maximum allowable load on the

vehicle traversing that arc. Constraints (8) are the vehicle-flow conservation constraints; they force

vehicles to leave the stations previously visited. Constraints (9) ensure that every vehicle is used

exactly once. Note that this includes the option of not using a vehicle k by introducing the arc

((uk,0);φ). Constraints (10) ensure that vehicles leave their starting positions with their current
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loads. Constraints (11) are the non-negativity constraints for the vehicle loads on arcs. Finally,

constraints (12) ensure that the vehicle-flow variables w are binary.

Note that a feasible solution of the above formulation may not be entirely feasible for our

balancing problem. Indeed, although the penalties tend to minimize the use of the variables y, these

variables may take unrealistic values, creating or destroying bikes, if this pays off in the future.

Formally, let (x, y, z,w) be a solution of the above integer program. Let s ∈ SV be a station at a given

time period (for the sake of brevity we assume that t(s)≥ 2), and let q(s) =
∑

a∈δ+(s)

∑
k∈K

xk
a +

zpred(s) − f(s). The three situations below are considered pathological :

1. 0< q(s)<Cv(s) +
∑

a∈δ+(s)

∑
k∈K

wk
aQk and y+

s + y−

s > 0.

2. q(s)≤ 0 and y+
s >−q(s).

3. q(s)≥Cv(s) +
∑

a∈δ+(s)

∑
k∈K

wk
aQk and y−

s > q(s)−Cv(s) −
∑

a∈δ+(s)

∑
k∈K

wk
aQk.

In case (1), q(s) represents the number of bikes that are available at node s at the end of the

period. These bikes should be available for the future, either at the same station via variable zs or

transported on a vehicle via variables xk
a, a∈ δ−(s), k ∈K. However, if y+

s > 0 then bikes have been

created and inserted into the system, and if y−

s > 0 then bikes have been destroyed and removed

from the system. In case (2), there is a shortage of −q(s) bikes at station s at the end of the

time period, but if y+
s > −q(s) then bikes are created and inserted into the system. In case (3),

there is a shortage of q(s)− Cv(s) −
∑

a∈δ+(s)

∑
k∈K

wk
aQk docking points at the station. If y−

s >

q(s)−Cv(s) −
∑

a∈δ+(s)

∑
k∈K

wk
aQk then bikes are destroyed. Fortunately, these three pathological

cases can be removed from the solution to give another solution with at most the same cost and

with no pathological situations, as stated in the following proposition:

Proposition 1. Let (x, y, z,w) be a solution of program (1)–(12), and let s ∈ SV be such that

a pathological situation occurs. It is possible to build another solution (x′, y′, z′,w′) of problem

(1)–(12) with at most the same cost where this situation does not occur.

Proof See the Appendix.

Remark 1. The proof of this proposition uses the special structure of the cost function (it

depends only on the y variables and the coefficients are all equal). For different cost structures

the proposition may no longer be valid, and so additional variables and/or constraints might be

necessary to ensure feasibility. We leave the study of this property under different cost structures

for future research.

3. Column generation coupled with Benders decomposition (CG+BD)

In this section we introduce a heuristic procedure based on the solution of two different decomposi-

tions of the problem that are performed sequentially. First, we apply Dantzig-Wolfe decomposition

Balancing a Dynamic Public Bike-Sharing System
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to the arc-flow formulation and solve the linear relaxation of the resulting problem using column

generation. The Dantzig-Wolfe reformulation of the problem contains many fewer constraints than

the original arc-flow formulation, and a polynomial-time pricing algorithm allows us to quickly

obtain a lower bound for the problem. Second, we apply Benders decomposition to another for-

mulation of the problem and use the information provided by the first solution. We use the basic

columns of that solution as integer variables and find the continuous variables by solving a series

of minimum-cost flow problems in a Benders decomposition framework; this provides a feasible

solution of the problem and therefore an upper bound.

3.1. Column generation

In this section we introduce a new formulation obtained by applying Dantzig-Wolfe decomposition

(Dantzig and Wolfe 1960) to the original arc-flow formulation, and we use an efficient pricing

procedure to dynamically generate columns with a negative reduced cost. In the new formulation,

the columns represent (route, load) patterns, i.e., the arcs traversed by a vehicle along with the

load in the vehicle at every arc in the route. The new formulation drastically reduces the number

of constraints, leading to a more compact formulation (in terms of this number) than the arc-

flow formulation introduced earlier. We present a polynomial-time algorithm to solve the pricing

problem derived from this decomposition scheme. Our scheme produces lower bounds quickly and

allows us to handle instances that are too large for the MIP solver used to solve formulation

(1)–(12).

3.1.1. Pattern-based formulation The arc-flow formulation introduced in the

previous section is decomposed as follows. Let us consider the polytope {(w,x) :

(w,x) satisfy constraints (7)–(12)}. It is possible to decompose this polytope into |K| subsets,

one for each vehicle. Let Xk = {l = (wk, xk) : (wk, xk) satisfy constraints (7)–(12)} be the set of

patterns associated with vehicle k, and let X = ∪k∈KXk be the set of all patterns. For each l ∈ X

and a∈A let wl
a be a binary constant equal to 1 iff the route associated with pattern l uses arc a,

and let xl
a be the commodity-flow on arc a when it is traversed by the route on pattern l. Let θl

be the variable associated with pattern l. The Dantzig-Wolfe reformulation of the problem is

min
∑

s∈SV

(
y+
s + y−

s

)
(13)

s. t.
∑

l∈X

∑

a∈δ+(s)

xl
aθl −

∑

l∈X

∑

a∈δ−(s)

xl
aθl − zs + y+

s − y−

s = fs −C0
v(s) s∈ SV , t(s) = 1 (14)

∑

l∈X

∑

a∈δ+(s)

xl
aθl −

∑

l∈X

∑

a∈δ−(s)

xl
aθl + zpred(s) − zs + y+

s − y−

s = fs s∈ SV , t(s)≥ 2 (15)
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∑

l∈X

∑

a∈δ+(s)

wl
aθl ≤ 1 s∈ SV (16)

∑

l∈Xk

θl = 1 k ∈K (17)

0≤ zs ≤Cv(s) s∈ SV (18)

y+, y− ≥ 0 (19)

θ≥ 0 (20)
∑

l∈X

wl
aθl ∈ {0,1} a∈A. (21)

The meaning of each set of constraints is clear or can be derived from the previous formulation.

Note that constraints (21) are required only to impose the integrality of the routing part; they can

be discarded for the computation of the root-node relaxation. As a consequence, the problem has a

linear number of constraints, rather than the cubic number (|K|× |A|) of the arc-flow formulation.

The problem contains an exponential number of variables θ, and even small instances cannot be

directly solved by a general-purpose optimization solver. However, the variables θ can be dynam-

ically generated and added to the problem in a column-generation fashion. We now describe the

pricing algorithm used to find columns with a negative reduced cost.

3.1.2. Pricing subproblem The pricing subproblem can be decomposed into |K| integer

problems, one for each vehicle k, as follows:

−γk+min
w,x

< cw,w >+< cx, x > (22)

s. t.

xk
a ≤Qkw

k
a a∈A (23)

∑

a∈δ−(s)

wk
a −

∑

a∈δ+(s)

wk
a = 0 s∈ SV (24)

∑

a∈δ−(uk ,0)

wk
a = 1 (25)

∑

a∈δ−(uk ,0)

xk
a =Q0

k (26)

x≥ 0 (27)

w binary (28)

where γk is the dual variable of constraint (17) and cw, cx are the reduced costs of the variables

w,x, respectively, whose expressions we will give later. Constraints (24)–(25) define a shortest-

Balancing a Dynamic Public Bike-Sharing System
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path problem structure. If a point w is feasible w.r.t. these two constraints, an extreme (optimal)

solution for the commodity flow variables x is given by

xk
a =





Q0
kw

k
a if a∈ δ−(uk,0)

0 if a /∈ δ−(uk,0) and cxa > 0

Qkw
k
a if a /∈ δ−(uk,0) and cxa ≤ 0.

(29)

In other words, the subproblem can be rewritten as the following shortest path problem:

−γk+min< ĉw,w > (30)

s. t.
∑

a∈δ−(s)

wk
a −

∑

a∈δ+(s)

wk
a = 0 s ∈ SV (31)

∑

a∈δ−(uk,0)

wk
a = 1 (32)

w binary (33)

with

ĉwa =





cwa +Q0
kc

x
a if a∈ δ−(uk,0)

cwa if a /∈ δ−(uk,0) and cxa > 0

cwa +Qkcxa if a /∈ δ−(uk,0) and cxa ≤ 0.

(34)

This last problem can be solved efficiently by any label-correcting algorithm, since the space-time

network does not allow cycles.

Now, let us consider a column l ∈Xk, with its routing part rl represented by a sequence of arcs

in the space-time network, i.e., rl = (a1
l , . . . , a

n
l ). The sequence of internal stations visited on the

route is denoted (s1l , . . . , s
n−1
l ). The load part is denoted ρl and represents the number of bikes

being transported on each arc of the route, i.e., ρl = (ρ1l =Q0
k, . . . , ρ

n
l ). Let α,β, and γ represent

the dual variables associated with constraints (14)–(17) (indeed, we use the same dual variable α

for Eqs. (14) and (15)). Then, if we define αs0
l
=αsn

l
= βs0

l
= βsn

l
= 0, the reduced cost of route l is

given by

cl =−

(
n−1∑

j=1

α
s
j
l
(ρjl − ρj+1

l )−
n∑

j=1

β
s
j
l
+ γk

)
(35)

=−

(
n∑

j=1

ρjl (αs
j
l

−α
s
j−1
l

)−
n∑

j=1

β
s
j
l

+ γk

)
. (36)

Now, the commodity part of the pattern is always extreme in the solution of the pricing, i.e.,

ρjl ∈ {0,Qk} for j > 1. Let us define ∆j
l = α

s
j
l
−α

s
j−1
l

for j = 2, . . . , n. By constraint (26), ρ1l =Q0
k.

For j = 2, . . . , n, if ∆j

l > 0 then ρjl = Qk, otherwise ρjl = 0. Then the reduced costs cwa, cxa for a

given arc a= (u, v) are as follows:

cxa = αu −αv (37)
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cwa =−(βu+βv)/2. (38)

Given this, it is possible to build the modified reduced costs ĉw using expression (34) and to use

the shortest path problem (30)–(33) as a pricing algorithm to find columns with a negative reduced

cost.

Formulation (13)–(21) reduces the number of constraints in the problem by pushing many of

them into the subproblem. However, our computational experience has shown that the extreme

patterns produced by the subproblem solutions are unlikely to produce good feasible solutions

because of the extremity of the load vector.

3.2. Benders decomposition

In this section we present a heuristic method based on Benders decomposition (Benders 1962). We

introduce a new formulation of the problem with two types of variables: route variables, each of

which represents the full route of a vehicle, and commodity variables that represent the loads of the

vehicles along their routes. To use this formulation efficiently, we do not perform column generation

on the set of route variables. We instead consider a fixed subset of route variables coming from the

basic patterns produced by the solution of the linear relaxation of problem (13)–(21). With this

fixed and usually small set of routes, we solve the new formulation using Benders decomposition.

3.2.1. Hybrid route-flow formulation Let us consider the original arc-flow formulation

and the polytope {w : w satisfies constraints (8)–(9), (12)} containing the feasible solutions of the

routing part of the problem. As before, this polytope can be decomposed into |K| sets, one per

vehicle, which we call X ′
k. Let X ′ = ∪k∈KX

′
k be the set of all possible routes. For route l ∈ X ′ we

define wl
a to be a binary constant equal to 1 iff route l uses arc a. We retain the arc-flow variables

xk
a to represent the flow of vehicles on the arcs. The formulation associated with this decomposition

is as follows:

min
∑

s∈S

(
y+
s + y−

s

)
(39)

s. t.
∑

k∈K

∑

a∈δ+(s)

xk
a −
∑

k∈K

∑

a∈δ−(s)

xk
a − zs + y+

s − y−

s = fs −C0
v(s) s∈ SV , t(s) = 1 (40)

∑

k∈K

∑

a∈δ+(s)

xk
a −
∑

k∈K

∑

a∈δ−(s)

xk
a + zpred(s) − zs + y+

s − y−

s = fs s ∈ SV , t(s)≥ 2 (41)

∑

l∈X ′

∑

a∈δ+(s)

wl
aθl ≤ 1 s∈ SV (42)

∑

l∈Xk

θl = 1 k ∈K (43)
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xk
a ≤Qk

∑

l∈X ′
k

wl
aθl k ∈K, a∈A (44)

∑

a∈δ−(uk,0)

xk
a =Q0

k k ∈K (45)

0≤ zs ≤Cv(s) s∈ SV (46)

y+, y− ≥ 0 (47)

x≥ 0 (48)

θl ∈ {0,1} l ∈X . (49)

This formulation contains many more constraints than the previous one. However, if a good set of

routes B ⊂X ′ is given in advance, a reduced problem can be solved to find good arc loads that are

not necessarily extreme. This provides a much better upper bound than the previous formulation

does when restricted to a subset of columns.

3.2.2. Benders master problem Let α,β, γ, and λ be the dual variables associated with

constraints (40)–(41), (44), (45), and (47), respectively. Let B ⊆ X ′ be the set of routes for the

patterns with strictly positive values in the solution of the linear relaxation of problem (13)–(21),

and let Bk be the set of routes associated with vehicle k. Let J be the set of extreme points of the

dual polyhedron, and let j denote the jth extreme point. The Benders reformulation of problem

(39)–(49) when restricted to the routes in B is

min z (50)

s. t.

z ≥
∑

s∈SV

(
f̃sα

j
s +Cv(s)λ

j
s

)
+
∑

k∈K

∑

a∈A

∑

l∈Bk

Qkw
l
aβ

kj
a θl +

∑

k∈K

Q0
kγ

j

k j ∈J (51)

∑

l∈B

∑

a∈δ+(s)

wl
aθl ≤ 1 s ∈ SV (52)

∑

l∈Bk

θl =1 k ∈K (53)

θl ∈ {0,1} l ∈B (54)

where f̃s is equal to fs −C0
v(s) if t(s) = 1 and to fs if t(s)≥ 2. This problem contains a (typically)

large number of constraints (51), one per extreme dual point, and is computationally intractable.

To overcome this issue, we solve a restricted master problem subject to a small number of these

constraints, those associated with a subset of extreme points J . A subproblem is then solved to find

violated cuts associated with the relaxed constraints (51); this is explained in the next subsection.
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3.2.3. Benders subproblem Let θ be an optimal solution of the master problem associated

with a subset of extreme dual points J . The following primal subproblem must be solved to find

another dual point to include in J on the next iteration:

min
∑

s∈SV

(y+
s + y−

s ) (55)

s. t.
∑

k∈K

∑

a∈δ+(s)

xk
a −
∑

k∈K

∑

a∈δ−(s)

xk
a − zs + y+

s − y−

s = fs −C0
v(s) s ∈ SV , t(s) = 1 (56)

∑

k∈K

∑

a∈δ+(s)

xk
a −
∑

k∈K

∑

a∈δ−(s)

xk
a + zpred(s) − zs + y+

s − y−

s = fs s ∈ SV , t(s)≥ 2 (57)

xk
a ≤Qk

∑

l∈Bk

wl
aθl k ∈K, a ∈A (58)

∑

a∈δ−(uk,0)

xk
a =Q0

k k ∈K (59)

0≤ zs ≤Cv(s) s∈ SV (60)

y+, y− ≥ 0 (61)

x≥ 0. (62)

This problem corresponds to a minimum-cost flow problem on the space-time network and can

easily be solved using either the network simplex algorithm or another specialized method. For

vehicle k, define A∗
k =A\ (δ−(u0

k,0)∪ δ+(φ)). We also use the convention that αsucc(s) = 0 if t(s) =

|T |. The associated dual problem is the following:

max
∑

s∈S

(f̃sαs +Cv(s)λs)+
∑

k∈K

∑

a∈A

∑

l∈Bk

Qkw
l
aθlβ

k
a +

∑

k∈K

Q0
kγk (63)

s. t.

αtail(a) +βk
a + γk ≤ 0 k ∈K, a ∈ δ−(uk,0) (64)

−αhead(a) +βk
a ≤ 0 k ∈K, a ∈ δ+(φ) (65)

αtail(a) −αhead(a) +βk
a ≤ 0 k ∈K, a∈A∗

k (66)

αsucc(s) −αs +λs ≤ 0 s ∈ SV (67)

− 1≤αs ≤ 1 s ∈ SV (68)

β,λ≤ 0 (69)

γ unrestricted. (70)

Although both problems involve a cubic number of variables and constraints, we can still rely

on specialized algorithms for the former. Indeed, for a feasible route vector θ, many variables and
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constraints can be dropped from problem (55)–(62). Specifically, the arc-flow variables xk
a and

their related constraints (58) can be dropped from the problem whenever the right-hand side of

constraint (58) is equal to zero. Solving this reduced problem is much faster than solving the original

problem. However, we lose the dual information related to the constraints that were dropped. To

recover an optimal dual solution (α,β, γ,λ) we use duality theory, following a similar construction

to that used by Contreras et al. (2011) for the uncapacitated hub-location problem. Let us consider

the complementary slackness conditions from both the primal and dual subproblems:

xk
a(αtail(a) +βk

a + γk) = 0 k ∈K, a ∈ δ−(uk,0) (71)

xk
a(−αhead(a) +βk

a) = 0 k ∈K, a ∈ δ+(φ) (72)

xk
a(αtail(a) −αhead(a) +βk

a) = 0 k ∈K, a∈A∗

k (73)

zs(αsucc(s) −αs +λs) = 0 s ∈ SV (74)

y−

s (1+αs) = 0 s ∈ SV (75)

y+
s (1−αs) = 0 s ∈ SV (76)

βk
a(x

k
a −Qk

∑

l∈Bk

wl
aθl) = 0 k ∈K, a ∈A (77)

λs(Cv(s) − zs) = 0 s∈ SV . (78)

We use these conditions to derive an optimal dual solution from the optimal solution of the

primal subproblem. We derive a partial dual solution by solving a reduced feasibility problem and

extend it to a complete dual solution by simple inspection. We provide the details of this procedure

in the Appendix.

4. Computational experience

In this section we report our computational experience with several families of instances and several

different settings. To the best of our knowledge, no other method in the literature addresses the

dynamic public bike-sharing balancing problem. Hence, we generated several random instances to

test the performance of our methodology. We use an Intel Xeon E5462, 3.0-GHz processor with

16GB of RAM. To solve the linear and integer linear programs we use CPLEX 12.3.

4.1. Instance generator

We generated a set of 120 instances with the following characteristics.We consider different numbers

of stations, namely 25, 50, and 100, distributed in a plane with the x and y coordinates in the

interval [0,60]. The idea is to test the performance of our algorithm as the instance size increases.

We consider a time horizon of 2 h, discretized with two different granularities. We consider 24

periods of 5 min each and 60 periods of 2 min each. The idea is to test the sensitivity of our
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algorithm to the granularity of the time discretization. The stations are either randomly distributed

or clustered. In the former case, the points are randomly distributed in the plane and the stations

are alternately pickup points or delivery points. In the latter case, the plane is subdivided into

9 clusters and 4 of these are randomly chosen to contain nodes. Inside a cluster all the stations

are of the same type, either pickup or delivery. We consider a fixed fleet size of 5 vehicles for

all instances. For each combination we generated 10 instances, for a total of 120 instances. The

stations are considered either pickup or delivery points. In the former case, the demand fs of a

state s= (v(s), t(s)) is computed as follows. First, the real time t̂(s) is considered (in minutes). If

the length period is denoted l and r(s) is a random integer between 1 and 5 for a node s∈ S, the

demand at point s is

fs = ⌈r(s)× l× t̂(s)× (t̂(s)− 60)× 10−3⌉. (79)

If v(s) is a delivery point, the demand is computed using the above formula but with opposite sign.

4.2. Algorithm settings

For the column generation algorithm, we perform a cleaning of the column pool every 50 iterations.

We delete from the column pool all columns that have been nonbasic for 30 or more iterations.

Other than that, we implemented a textbook version of the algorithm, i.e., stabilization methods

and variable fixing procedures were not implemented; we leave these issues to future research.

For the Benders decomposition heuristic, we performed three preliminary tests to decide which

columns to include in the set B. First, we included all routes associated with the patterns generated

so far. Second, we also included, among all the routes generated, those in which at least one

associated pattern had zero reduced cost. Finally, we included all routes associated with basic

patterns with strictly positive values. The third setting usually performed the best in terms of the

balance between CPU time and solution quality. Also, we do not run the Benders algorithm to

optimality. Instead, because the goal is to obtain a good feasible solution, we run it for 30 iterations.

However, each time that we find a better solution, we perform 10 more iterations. Finally, by

manipulating the coefficients of the objective function g in program (80)–(92) (see in the Appendix)

we construct 2 dual solutions at each iteration. In the first case, the weights of the dual variables

are set according to the coefficient of these variables in the original dual problem (63)–(70). In

the second case, the coefficient in function g is set to -1 if the corresponding original coefficient is

positive, and to 1 otherwise.

4.3. Computational results

To test the efficiency of our methodology, we designed and performed four different experiments.

In the first experiment, we compare the solution of problem (1)–(12) and the solution obtained

by combining column generation with Benders decomposition (CG+BD). For the former, we use
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the CPLEX MIP solver with the default settings for a maximum of 30 min. In Table 1 we report

the average results for the lower bounds (columns labeled LB) and upper bounds (columns labeled

UB) obtained by the two methods (the label AFF indicates the arc-flow formulation and CG+BD

indicates column generation with Benders decomposition). For CG+BD, we also report the CPU

times (columns labeled CPU, in seconds). These are decomposed into the average CPU time spent

on column generation (column labeled CPUCG, in seconds) and the average time spent on the

Benders decomposition heuristic (column labeled CPUBD, in seconds). The clustered and random

instances are aggregated. Except for the smallest instances (25 stations and 24 periods of 5 min

each), our method produces better lower and upper bounds than those achieved by the arc-flow

model solved by a state-of-the-art commercial solver. Moreover, the solution is rapid (on average

around 5 min for the largest instances considered). In many instances the arc-flow solver could

not even solve the root-node relaxation. This demonstrates the robustness of our method, which

scales well for these large instances. For the smallest set of instances considered (25 stations and

24 periods of 5 min each), the arc-flow formulation usually produces better bounds because of

the application of flow-cover inequalities (that increase the value of the lower bound) and the

heuristic performed by the solver at the root relaxation. In future research, the impact of flow-cover

inequalities in CG+BD should be assessed.

|V| |T |
AFF CG+BD

LB UB LB UB CPUCG CPUBD CPU
25 24 857.1 1177.2 753.8 1231.25 0.5 14.4 14.9
25 60 732.2 2145.5 858.3 1350.4 4.5 52.5 57.0
50 24 2204.1 4030.1 2351.5 3170.0 1.9 23.6 25.5
50 60 0.0 6567.1 2144.5 3192.6 24.1 120.1 144.2

100 24 0.0 12701.7 5486.3 6800.8 7.3 72.0 79.3
100 60 0.0 13187.1 5425.2 7171.2 100.2 206.5 306.7

Table 1 Comparison of arc-flow formulation and CG+BD

In the second experiment, we compare the CG+BD results for random and clustered instances. In

Table 2 we report the average lower bounds (columns labeled LB), average upper bounds (columns

labeled UB), and average gaps (columns labeled gap). The gap is computed as (zUB − zLB)/zUB ×

100). The results show that the clustered instances are more rigid, in the sense that they usually

accept worse solutions than the random instances do, but the lower bounds are stronger. We believe

that this behavior is a consequence of the fact that for random instances the solutions have less

structure. In the clustered case a vehicle must visit a zone with pickup nodes and then travel

to a region with delivery nodes and vice versa. In the random case there is no clear pattern for

the vehicle routes because the pickup and delivery nodes are mixed. Of course, real instances are
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likely to be clustered, because travel patterns are usually unidirectional, i.e., the service zone at

peak hours can be divided into subzones, each of which is primarily a pickup region or primarily

a delivery region.

|V| |T |
Clustered Random

LB UB gap LB UB gap
25 24 982.8 1341.3 28.5 524.9 1121.2 53.6
25 60 1032.5 1447.8 29.4 684.1 1252.9 46.1
50 24 2887.3 3349.3 14.1 1815.8 2990.7 39.7
50 60 2674.9 3274.0 18.4 1614.0 3111.2 48.1

100 24 6457.2 7058.7 8.6 4515.5 6542.9 31.0
100 60 6571.7 7545.4 13.0 4278.7 6797.0 37.0
Table 2 Comparison of clustered and random instances

In the third experiment, we assess the sensitivity of our method to the granularity of the time

discretization. In Table 3 we report the average lower bound (columns labeled LB), average upper

bound (columns labeled UB), average gap (columns labeled gap, computed as before), and average

CPU time (columns labeled CPU ) of CG+BD for the two different granularities. It can be seen

that the finer granularity has a negative impact on the CPU time and, for large instances, on the

gap. We will not attempt to establish the optimal granularity of the time discretization; this should

be considered in future research.

|V|
24 Periods 60 Periods

LB UB gap CPU LB UB gap CPU
25 753.8 1231.3 41.1 14.9 858.3 1350.4 37.8 57.0
50 2351.5 3170.0 26.9 25.5 2144.5 3192.6 33.2 144.2

100 5486.3 6800.8 19.8 79.3 5425.2 7171.2 25.0 306.7
Table 3 Algorithm sensitivity to time discretization

In the final experiment we evaluate the performance of a natural extension of our method. After

solving the root-node relaxation of problem (13)–(21) and applying the Benders decomposition

heuristic, we perform branch-and-price. We use OOBB (object-oriented branch-and-bound) as the

branch-and-bound framework in the branch-and-price algorithm; it is a C++ library developed at

CIRRELT. We branch on the vehicle-flow variables wa =
∑

l∈Ωw
l
aθl, where w

l
a is a binary constant

equal to 1 iff route l traverses arc a. Specifically, we branch on the arc-flow variable with the

most fractional value. This branching rule allows us to solve the pricing problem at the internal

nodes of the branching tree as a shortest path problem. At all nodes of the tree whose depth is

a multiple of 5 we perform the Benders decomposition heuristic. Moreover, in the internal nodes

the number of iterations of the Benders decomposition algorithm is reduced from 30 to 10. We
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chose these settings after performing a series of preliminary tests to find a compromise between

the improvement provided by the heuristic versus the time spent in it. In Table 4 we report the

average lower bounds (columns labeled LB), the average upper bounds (columns labeled UB),

and the average number of nodes inspected after 10 min (column labeled N). Only a small gain is

obtained by branching, especially for large instances; the bounds were not substantially improved

during the branch-and-price. Future research should focus on the development of a more efficient

algorithm capable of producing tighter gaps (better lower and upper bounds). The ultimate goal

is to derive an exact solver capable of proving optimality for small and medium instances.

|V| |T |
Root 10 min

LB UB LB UB N
25 24 753.8 1231.3 768.2 1198.1 434
25 60 858.3 1350.4 864.8 1321.1 120
50 24 2351.5 3170.0 2370.5 3120.0 228
50 60 2144.5 3192.6 2152.9 3179.7 34
100 24 5486.3 6800.8 5501.5 6747.4 136
100 60 5425.2 7171.2 5430.7 7156.8 13

Table 4 Impact of branch-and-price

5. Concluding remarks

We have introduced a dynamic public bike-sharing balancing problem. It arises in a PBS provider’s

daily operation of a fleet of trucks to transport bikes from full stations to stations with shortages.

We formally defined the problem and proposed three mathematical formulations. To the best of

our knowledge, this is the first time that this problem has been addressed from an OR perspective,

and also the first time that a solution method has been developed for medium and large instances.

Our methodology uses decomposition techniques to move the difficult variables and constraints into

the subproblems, which can be solved efficiently. It also uses two different kinds of decomposition,

Dantzig-Wolfe and Benders decomposition. To the best of our knowledge, this is the first time that

these two approaches have been combined in a nested way for the solution of pickup-and-delivery

problems. Our computational experience demonstrates that our methodology is effective for rapidly

generating lower and upper bounds. However, the large gaps indicate that this is a challenging

problem. Future research should focus on the development of algorithms capable of producing

better lower and/or upper bounds. Future research could also investigate network-design decisions

(the optimal location of the stations) or include stochasticity in the projected demand.
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Appendix. Proofs of propositions

In this Appendix we prove the propositions in the text.

Proof of Proposition 1 Without loss of generality, assume that s is the latest node in time for which a

pathological situation occurs (ties are broken arbitrarily). In other words, no pathological situations occur

for nodes s′ ∈ SV such that t(s′) > t(s). Let (x′, y′, z′,w′) be a copy of (x, y, z,w). Let us consider each

pathological case separately.

1. Suppose first that y−

s > 0. We set y′−

s = 0. This creates an imbalance in the system of y−

s units.

This must be corrected either in z′
s or in

∑
k∈K

∑
a∈δ−(s) x

′k

a. This is possible because 0 < q(s) < Cv(s) +
∑

k∈K

∑
a∈δ+(s) x

′k

a. This adjustment creates an imbalance in the arriving nodes. To compensate for this at

a node s′ such that t(s′)> t(s) either the new bikes must leave the node using outgoing arcs, if possible, or

we increase the value of variable y′−

s′ . In total, at most y−

s units of flow must be added in the future, and

so
∑

s∈SV
y′+

s + y′−

s ≤
∑

s∈SV
y+s + y−

s . Suppose now that y+s > 0. Instead of inserting bikes into the system,

we must remove bikes from it. When removing bikes from the outgoing arcs of node s (which is again pos-

sible because 0< q(s)<Cv(s) +
∑

k∈K

∑
a∈δ+(s) x

′k

a), we create imbalances, let us say in a node s′ such that

t(′s) > t(s). This again must be corrected either by removing flow from the outgoing arcs of this node (if

possible) or by increasing the value of y′+
s . Again, we will obtain

∑
s∈SV

y′+
s + y′−

s ≤
∑

s∈SV
y+s + y−

s .

2. In this case, we set y′+
s = −q(s). To correct the ingoing and outgoing flows at this node, we have

to remove y+s + q(s) units of flow from the outgoing arcs at node s, making the outgoing flow zero. This

adjustment will have an impact on future nodes, namely s′ such that t(s′) > t(s). To compensate for the

missing flow, we must either decrease the outgoing flow, if possible, or increase the value of variable y′+
s′ .

Again, the impact of these actions in the future is at most y+s +q(s) units, so we will obtain
∑

s∈SV
y′+

s +y′−

s ≤
∑

s∈SV
y+s + y−

s .

3. The reasoning for this case is analogous to that applied in the previous cases. For the sake of brevity

we omit it.

�

Appendix. Obtaining a dual solution from the complementary slackness

conditions

Let (x, y+, y−, z) be an optimal solution for the primal subproblem (55)–(62). The feasibility problem used

to derive the remaining dual variables in Section 3.2.3 is as follows:

min g(α,β, γ, λ) (80)

s. t.

αtail(a)+ βk
a + γk =0 k ∈K, a∈ δ−(uk,0), xk

a > 0 (81)

−αhead(a)+ βk
a = 0 k ∈K, a∈ δ+(φ), xk

a > 0 (82)

αtail(a)−αhead(a)+ βk
a = 0 k ∈K, a∈A∗

k, x
k
a > 0 (83)

αsucc(s) −αs +λs =0 s∈SV , zs > 0 (84)
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αs =−1 s∈SV , y−
s > 0 (85)

αs = 1 s∈ SV , y+s > 0 (86)

βk
a =0 k ∈K, a∈A, xk

a <Qk

∑

l∈Bk

wl
aθl (87)

λs = 0 s∈SV , zs <Cv(s) (88)

αsucc(s) −αs +λs ≤ 0 s∈SV (89)

− 1≤ αs ≤ 1 s∈SV (90)

β,λ≤ 0 (91)

γ unrestricted. (92)

Note that this feasibility problem can be restricted to contain only those variables appearing in some

constraint. In particular, it is possible to discard a priori all variables βk
a such that Qk

∑
l∈Bk

wl
aθl = 0, which

includes all the arcs not used in any route. The function g can be zero, but it can also give weights to the

dual variables to obtain strong Benders cuts. Once this problem is solved, the partial dual solution must be

completed to find the values of the remaining β variables. We apply the following procedure. For each arc

a ∈ A and vehicle k ∈ K such that Qk

∑
l∈Bk

wl
aθl = 0, we fix the corresponding variable βk

a to the largest

possible value (i.e., closest to zero) that satisfies the corresponding constraint in (64)–(66). In particular,

if the corresponding constraint is already satisfied then we set βk
a = 0. Note also that the overall Benders

method can be accelerated by adding several cuts at each iteration instead of just one. In this case, this is not

expensive since it involves adjusting at each time the coefficients in the objective function g(α,β, γ, λ) and

re-solving problem (80)–(92). We have found that solving this problem twice provides a reasonable balance

between the extra time needed and the faster convergence of the overall algorithm in terms of the number

of iterations.

Appendix. Disaggregated results

In this Appendix we report the results of our algorithm for all the instances. In Tables 5–7 we report the

disaggregated results of our methodology. In these tables, we report the lower bounds (columns labeled LB),

upper bounds (columns labeled UB), and CPU time (columns labeled CPU , in seconds). We also report

the CPU times for the column generation procedure (columns labeled CPUCG, in seconds) and the Benders

decomposition heuristic (columns labeled CPUBD, in seconds). In Tables 8–10 we report (columns labeled

#N ) the number of nodes inspected during the branch-and-bound when running the branch-and-price for 10

min. The name of each instance indicates the number of stations, the number of periods, and if the instances

are clustered or randomly distributed. For example, cmr-10x5x24-1r indicates an instance with 10 stations,

5 vehicles, 24 time periods, and random distribution of the stations.
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Instance LB UB CPUCG CPUBD CPU
cmr-25x5x24-1c 1030.6 1264 0.3 15.2 15.5
cmr-25x5x24-1r 583.1 919 0.4 13.7 14.1
cmr-25x5x24-2c 1102.3 1390 0.4 14.5 14.9
cmr-25x5x24-2r 369.8 996 0.7 54.8 55.5
cmr-25x5x24-3c 554.2 1027 0.9 17.1 17.9
cmr-25x5x24-3r 831.3 1298 0.4 4.5 4.9
cmr-25x5x24-4c 1364.0 1541 0.1 3.8 3.9
cmr-25x5x24-4r 827.2 1261 0.3 7.3 7.6
cmr-25x5x24-5c 683.7 1139 0.6 20.1 20.7
cmr-25x5x24-5r 193.5 1018 0.4 3.1 3.5
cmr-25x5x24-6c 1018.1 1411 0.5 11.5 12.0
cmr-25x5x24-6r 538.3 1206 0.5 5.6 6.2
cmr-25x5x24-7c 543.9 994 1.0 13.3 14.4
cmr-25x5x24-7r 583.9 1094 0.7 5.4 6.2
cmr-25x5x24-8c 1432.6 1701 0.4 8.2 8.6
cmr-25x5x24-8r 425.8 1091 0.4 20.9 21.3
cmr-25x5x24-9c 780.7 1305 0.8 36.6 37.4
cmr-25x5x24-9r 385.8 972 0.3 8.3 8.6
cmr-25x5x24-10c 1317.4 1641 0.3 9.5 9.8
cmr-25x5x24-10r 510.2 1357 0.5 14.3 14.8
cmr-25x5x60-1c 1334.3 1770 5.3 22.1 27.3
cmr-25x5x60-1r 746.1 1303 2.5 24.5 27.0
cmr-25x5x60-2c 1390.0 1621 1.7 28.5 30.1
cmr-25x5x60-2r 623.9 1259 3.2 13.1 16.3
cmr-25x5x60-3c 593.6 1067 9.8 145.9 155.7
cmr-25x5x60-3r 457.8 1061 7.0 177.4 184.4
cmr-25x5x60-4c 1045.3 1419 4.2 59.4 63.6
cmr-25x5x60-4r 552.4 978 4.5 46.3 50.7
cmr-25x5x60-5c 1149.9 1540 4.9 94.3 99.3
cmr-25x5x60-5r 273.2 1132 6.7 47.6 54.3
cmr-25x5x60-6c 906.3 1502 7.5 42.9 50.4
cmr-25x5x60-6r 681.9 1165 3.7 50.7 54.4
cmr-25x5x60-7c 1027.9 1569 4.1 59.7 63.8
cmr-25x5x60-7r 882.5 1462 2.7 35.0 37.6
cmr-25x5x60-8c 692.4 1110 7.2 91.1 98.3
cmr-25x5x60-8r 697.2 1396 4.6 13.1 17.7
cmr-25x5x60-9c 1186.6 1628 3.0 34.2 37.2
cmr-25x5x60-9r 988.1 1485 2.2 29.4 31.6
cmr-25x5x60-10c 999.2 1252 2.6 15.3 17.8
cmr-25x5x60-10r 938.2 1288 3.1 19.4 22.6

Table 5 Results for instances containing 25 stations
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Instance LB UB CPUCG CPUBD CPU
cmr-50x5x24-1c 2203.2 2908 2.4 18.7 21.1
cmr-50x5x24-1r 1361.5 2688 1.8 43.9 45.7
cmr-50x5x24-2c 3448.5 3744 1.0 14.9 15.9
cmr-50x5x24-2r 2427.8 3660 1.6 17.9 19.5
cmr-50x5x24-3c 2971.2 3273 1.7 18.1 19.8
cmr-50x5x24-3r 1154.6 2641 1.9 32.9 34.8
cmr-50x5x24-4c 2319.4 2961 2.4 16.9 19.3
cmr-50x5x24-4r 2004.1 3021 2.0 48.1 50.1
cmr-50x5x24-5c 2731.1 3416 2.4 24.4 26.8
cmr-50x5x24-5r 1594.3 2957 2.6 33.7 36.3
cmr-50x5x24-6c 2929.7 3410 4.1 24.4 28.5
cmr-50x5x24-6r 1683.9 2620 1.8 30.8 32.6
cmr-50x5x24-7c 3089.9 3452 1.4 9.9 11.4
cmr-50x5x24-7r 2043.3 3116 1.6 25.1 26.7
cmr-50x5x24-8c 2848.8 3436 1.7 12.9 14.5
cmr-50x5x24-8r 2007.9 3257 1.1 23.8 24.9
cmr-50x5x24-9c 2871.6 3300 2.0 20.6 22.6
cmr-50x5x24-9r 1861.3 2926 1.7 18.0 19.7
cmr-50x5x24-10c 3459.1 3593 1.1 15.7 16.8
cmr-50x5x24-10r 2019.7 3021 1.7 21.4 23.1
cmr-50x5x60-1c 3209.2 3517 12.1 48.7 60.7
cmr-50x5x60-1r 1687.5 3269 13.1 52.9 65.9
cmr-50x5x60-2c 2831.5 3635 45.2 115.5 160.6
cmr-50x5x60-2r 2029.5 3337 12.7 92.8 105.5
cmr-50x5x60-3c 2750.8 3303 18.7 92.7 111.3
cmr-50x5x60-3r 1276.0 2884 11.3 127.6 138.9
cmr-50x5x60-4c 2691.6 3178 30.4 108.5 138.9
cmr-50x5x60-4r 1339.7 3357 23.1 99.2 122.3
cmr-50x5x60-5c 2419.6 3280 48.4 374.6 423.0
cmr-50x5x60-5r 1143.0 3237 30.2 94.5 124.7
cmr-50x5x60-6c 3170.3 3648 20.6 66.4 87.0
cmr-50x5x60-6r 2024.4 3077 15.4 115.8 131.2
cmr-50x5x60-7c 2182.4 2743 28.1 77.1 105.2
cmr-50x5x60-7r 1692.7 3118 14.2 115.0 129.2
cmr-50x5x60-8c 2311.3 3028 27.0 31.4 58.4
cmr-50x5x60-8r 1324.0 2719 18.2 143.9 162.0
cmr-50x5x60-9c 2536.6 3007 39.8 53.9 93.7
cmr-50x5x60-9r 1863.8 2975 11.3 156.9 168.2
cmr-50x5x60-10c 2646.0 3401 46.9 68.1 114.9
cmr-50x5x60-10r 1759.1 3139 15.9 366.9 382.8

Table 6 Results for instances containing 50 stations
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Instance LB UB CPUCG CPUBD CPU
cmr-100x5x24-1c 6437.5 7084 16.3 44.8 61.1
cmr-100x5x24-1r 4812.2 6797 11.3 83.2 94.4
cmr-100x5x24-2c 6215.8 6566 6.5 22.9 29.4
cmr-100x5x24-2r 4104.7 6441 7.4 59.2 66.6
cmr-100x5x24-3c 6070.1 6930 5.9 20.1 26.0
cmr-100x5x24-3r 3965.2 6190 7.8 67.3 75.2
cmr-100x5x24-4c 7581.0 7894 4.7 21.3 26.0
cmr-100x5x24-4r 5085.3 6811 4.4 35.0 39.4
cmr-100x5x24-5c 6725.7 6931 3.1 17.5 20.6
cmr-100x5x24-5r 4951.4 7075 2.9 28.8 31.7
cmr-100x5x24-6c 6828.6 7660 7.3 33.0 40.2
cmr-100x5x24-6r 4573.0 6342 5.4 41.5 46.9
cmr-100x5x24-7c 5749.3 6322 7.8 55.4 63.2
cmr-100x5x24-7r 4496.8 6331 8.5 45.9 54.4
cmr-100x5x24-8c 6324.2 6886 5.5 22.7 28.2
cmr-100x5x24-8r 4095.1 6764 5.6 305.0 310.7
cmr-100x5x24-9c 5281.1 6477 14.7 203.7 218.4
cmr-100x5x24-9r 4518.6 6364 5.6 239.0 244.6
cmr-100x5x24-10c 7358.6 7837 11.0 29.3 40.3
cmr-100x5x24-10r 4552.5 6314 3.7 64.6 68.3
cmr-100x5x60-1c 5938.7 7051 115.7 114.2 229.8
cmr-100x5x60-1r 3641.3 6379 66.4 179.1 245.4
cmr-100x5x60-2c 6673.0 7932 210.6 66.5 277.1
cmr-100x5x60-2r 4336.3 6296 19.2 65.3 84.5
cmr-100x5x60-3c 6132.0 7729 273.0 603.6 876.6
cmr-100x5x60-3r 3701.0 6918 86.6 328.7 415.3
cmr-100x5x60-4c 5126.7 6219 125.7 57.7 183.3
cmr-100x5x60-4r 5788.2 7557 25.0 452.7 477.7
cmr-100x5x60-5c 6792.8 7511 219.9 109.3 329.2
cmr-100x5x60-5r 3846.0 7156 97.6 294.9 392.5
cmr-100x5x60-6c 7301.9 8106 129.5 228.1 357.6
cmr-100x5x60-6r 4151.6 6251 35.2 128.5 163.7
cmr-100x5x60-7c 7435.7 7875 48.0 302.1 350.1
cmr-100x5x60-7r 4502.8 6404 21.9 129.8 151.7
cmr-100x5x60-8c 6777.4 7883 179.4 296.7 476.2
cmr-100x5x60-8r 4219.7 6823 37.8 277.4 315.2
cmr-100x5x60-9c 7036.5 7704 71.5 158.8 230.3
cmr-100x5x60-9r 4597.7 7215 63.7 93.8 157.6
cmr-100x5x60-10c 6502.2 7444 130.1 141.6 271.7
cmr-100x5x60-10r 4002.2 6971 46.7 101.9 148.7

Table 7 Results for instances containing 100 stations
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Instance LB UB CPUCG CPUBD CPU #N
cmr-25x5x24-1c 1038.4 1244 469.8 130.7 600.5 792
cmr-25x5x24-1r 602.9 898 473.5 129.5 603.1 470
cmr-25x5x24-2c 1108.6 1368 495.6 105.9 601.5 513
cmr-25x5x24-2r 381.2 962 478.1 123.1 601.2 314
cmr-25x5x24-3c 560.5 988 476.5 125.6 602.1 278
cmr-25x5x24-3r 847.0 1266 531.7 70.3 602.0 440
cmr-25x5x24-4c 1369.3 1514 505.3 95.8 601.1 1009
cmr-25x5x24-4r 845.7 1236 534.4 67.9 602.3 316
cmr-25x5x24-5c 694.4 1065 463.8 136.9 600.7 332
cmr-25x5x24-5r 213.3 963 564.9 36.8 601.7 298
cmr-25x5x24-6c 1030.9 1378 508.5 91.7 600.1 422
cmr-25x5x24-6r 553.8 1141 511.1 90.9 602.0 321
cmr-25x5x24-7c 555.8 977 524.5 77.9 602.5 192
cmr-25x5x24-7r 596.4 1094 536.0 66.8 602.8 314
cmr-25x5x24-8c 1445.0 1678 454.3 145.9 600.2 1020
cmr-25x5x24-8r 448.3 1080 495.8 105.3 601.1 286
cmr-25x5x24-9c 787.2 1247 482.2 121.2 603.4 299
cmr-25x5x24-9r 408.7 972 528.0 73.6 601.6 272
cmr-25x5x24-10c 1329.6 1611 526.4 75.2 601.6 568
cmr-25x5x24-10r 546.4 1279 510.7 94.8 605.5 232
cmr-25x5x60-1c 1340.6 1729 499.3 104.2 603.4 126
cmr-25x5x60-1r 759.2 1260 510.8 106.3 617.1 84
cmr-25x5x60-2c 1390.0 1621 522.8 80.5 603.3 190
cmr-25x5x60-2r 633.2 1195 531.0 71.0 602.0 152
cmr-25x5x60-3c 597.1 1057 442.8 168.4 611.1 76
cmr-25x5x60-3r 465.2 1010 329.2 291.7 620.9 33
cmr-25x5x60-4c 1049.4 1397 433.6 170.1 603.7 168
cmr-25x5x60-4r 556.0 978 533.2 80.0 613.2 80
cmr-25x5x60-5c 1156.1 1517 365.9 237.2 603.1 160
cmr-25x5x60-5r 283.7 1113 533.0 70.7 603.6 60
cmr-25x5x60-6c 916.6 1460 431.9 174.4 606.3 92
cmr-25x5x60-6r 688.4 1165 490.3 114.1 604.4 127
cmr-25x5x60-7c 1034.6 1544 475.1 125.3 600.4 92
cmr-25x5x60-7r 889.9 1426 474.7 131.4 606.1 122
cmr-25x5x60-8c 696.1 1045 447.1 159.5 606.6 108
cmr-25x5x60-8r 704.0 1363 548.2 60.4 608.6 85
cmr-25x5x60-9c 1196.3 1578 447.2 157.0 604.2 152
cmr-25x5x60-9r 996.8 1482 495.1 109.2 604.4 108
cmr-25x5x60-10c 1001.6 1236 484.5 117.6 602.1 215
cmr-25x5x60-10r 942.2 1246 517.2 84.1 601.3 172

Table 8 Results for instances containing 25 stations after 10 min
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Instance LB UB CPUCG CPUBD CPU #N
cmr-50x5x24-1c 2204.1 2868 492.5 108.1 600.6 208
cmr-50x5x24-1r 1386.4 2556 483.0 123.5 606.4 117
cmr-50x5x24-2c 3474.7 3723 485.1 116.5 601.6 460
cmr-50x5x24-2r 2468.5 3594 499.5 100.7 600.3 124
cmr-50x5x24-3c 2972.3 3251 500.1 104.4 604.5 327
cmr-50x5x24-3r 1190.9 2542 480.4 120.9 601.2 115
cmr-50x5x24-4c 2322.1 2884 509.3 100.2 609.4 148
cmr-50x5x24-4r 2034.9 3003 452.7 147.3 600.0 190
cmr-50x5x24-5c 2752.4 3370 452.6 152.4 605.0 194
cmr-50x5x24-5r 1636.9 2900 490.6 116.1 606.7 107
cmr-50x5x24-6c 2938.4 3384 475.9 126.5 602.4 172
cmr-50x5x24-6r 1710.3 2586 447.8 154.4 602.2 194
cmr-50x5x24-7c 3094.8 3424 457.6 145.2 602.8 455
cmr-50x5x24-7r 2067.6 3068 446.3 158.2 604.5 230
cmr-50x5x24-8c 2855.5 3424 511.3 92.2 603.5 192
cmr-50x5x24-8r 2025.8 3171 462.1 139.1 601.1 189
cmr-50x5x24-9c 2875.1 3217 420.0 181.2 601.2 285
cmr-50x5x24-9r 1888.9 2897 488.1 114.9 603.0 196
cmr-50x5x24-10c 3465.1 3584 463.8 138.3 602.1 469
cmr-50x5x24-10r 2044.9 2954 491.6 117.4 608.9 194
cmr-50x5x60-1c 3213.1 3517 438.6 168.4 607.0 112
cmr-50x5x60-1r 1696.2 3234 549.7 112.3 662.0 27
cmr-50x5x60-2c 2833.1 3629 410.9 198.8 609.7 24
cmr-50x5x60-2r 2039.3 3337 435.2 167.4 602.6 35
cmr-50x5x60-3c 2753.8 3303 427.7 180.2 607.9 39
cmr-50x5x60-3r 1293.8 2819 327.7 272.7 600.4 32
cmr-50x5x60-4c 2693.4 3195 404.2 224.6 628.8 31
cmr-50x5x60-4r 1357.2 3357 468.9 160.4 629.4 22
cmr-50x5x60-5c 2423.4 3280 205.4 403.9 609.3 9
cmr-50x5x60-5r 1157.0 3215 483.1 196.6 679.7 14
cmr-50x5x60-6c 3177.5 3609 391.6 209.3 600.9 51
cmr-50x5x60-6r 2041.3 3077 354.8 246.0 600.7 32
cmr-50x5x60-7c 2185.5 2695 436.4 166.6 603.0 43
cmr-50x5x60-7r 1709.0 3118 413.7 191.6 605.3 28
cmr-50x5x60-8c 2314.3 3028 566.4 84.1 650.5 36
cmr-50x5x60-8r 1333.2 2719 381.3 229.9 611.2 26
cmr-50x5x60-9c 2540.4 2997 437.0 181.6 618.6 41
cmr-50x5x60-9r 1875.3 2975 417.1 186.2 603.3 33
cmr-50x5x60-10c 2651.2 3369 423.7 176.5 600.2 20
cmr-50x5x60-10r 1769.3 3120 177.2 425.0 602.2 20

Table 9 Results for instances containing 50 stations after 10 min
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Instance LB UB CPUCG CPUBD CPU #N
cmr-100x5x24-1c 6437.5 7056 431.2 170.3 601.5 149
cmr-100x5x24-1r 4840.4 6765 485.4 127.9 613.3 39
cmr-100x5x24-2c 6215.8 6540 397.0 204.2 601.2 216
cmr-100x5x24-2r 4140.7 6453 469.9 130.4 600.2 49
cmr-100x5x24-3c 6072.6 6827 402.3 202.4 604.7 108
cmr-100x5x24-3r 3988.1 6089 451.9 154.2 606.1 39
cmr-100x5x24-4c 7586.0 7870 421.3 181.4 602.7 345
cmr-100x5x24-4r 5131.6 6786 435.6 166.2 601.8 173
cmr-100x5x24-5c 6725.7 6913 461.1 139.3 600.4 376
cmr-100x5x24-5r 4989.8 6982 440.0 160.7 600.6 136
cmr-100x5x24-6c 6840.3 7609 450.3 160.2 610.6 98
cmr-100x5x24-6r 4578.1 6229 453.5 150.5 604.0 142
cmr-100x5x24-7c 5749.3 6255 447.1 156.1 603.2 115
cmr-100x5x24-7r 4516.0 6256 320.3 282.3 602.6 68
cmr-100x5x24-8c 6329.3 6894 462.1 144.3 606.4 140
cmr-100x5x24-8r 4127.2 6760 242.2 365.7 608.0 80
cmr-100x5x24-9c 5289.8 6433 363.1 237.0 600.1 42
cmr-100x5x24-9r 4535.7 6285 275.6 333.0 608.6 60
cmr-100x5x24-10c 7358.6 7790 409.9 191.4 601.3 176
cmr-100x5x24-10r 4576.5 6156 429.2 173.4 602.6 165
cmr-100x5x60-1c 5942.2 7051 441.6 167.2 608.9 10
cmr-100x5x60-1r 3652.2 6379 413.7 253.9 667.6 12
cmr-100x5x60-2c 6673.0 7932 709.1 83.2 792.3 5
cmr-100x5x60-2r 4354.5 6247 388.3 212.9 601.2 33
cmr-100x5x60-3c 6132.0 7729 273.1 603.8 876.9 1
cmr-100x5x60-3r 3725.4 6918 290.7 360.1 650.8 5
cmr-100x5x60-4c 5126.7 6186 492.2 118.2 610.4 13
cmr-100x5x60-4r 5793.3 7557 99.2 502.1 601.3 9
cmr-100x5x60-5c 6794.2 7487 485.8 155.6 641.4 10
cmr-100x5x60-5r 3846.0 7156 286.0 328.5 614.5 6
cmr-100x5x60-6c 7303.0 8096 351.8 303.4 655.2 10
cmr-100x5x60-6r 4163.6 6194 369.6 233.0 602.5 36
cmr-100x5x60-7c 7438.4 7875 189.7 421.6 611.2 18
cmr-100x5x60-7r 4518.4 6404 355.6 250.6 606.2 39
cmr-100x5x60-8c 6777.7 7883 287.2 341.8 629.0 6
cmr-100x5x60-8r 4225.3 6789 263.9 363.7 627.6 10
cmr-100x5x60-9c 7036.5 7644 124.0 476.7 600.6 6
cmr-100x5x60-9r 4607.6 7215 498.9 150.4 649.3 11
cmr-100x5x60-10c 6502.7 7444 507.1 182.0 689.1 9
cmr-100x5x60-10r 4002.2 6950 403.1 224.9 627.9 19
Table 10 Results for instances containing 100 stations after 10 min
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