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Abstract. The multi-activity multi-task shift scheduling problem consists in assigning 

interruptible activities and uninterruptible tasks to a set of employees in order to satisfy a 

demand function. In this paper, we consider the personalized variant of the problem where 

the employees have different qualifications, preferences, and availabilities. We present an 

exact branch-and-price algorithm to solve this problem. The pricing subproblems in 

column generation are formulated with context-free grammars that are able to model 

complex rules in the construction of feasible shifts for an employee. We present results for 

a large set of instances inspired by real cases and show that this approach is sufficiently 

flexible to handle different classes of problems. 
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1 Introduction

Shift scheduling consists in assigning a sequence of activities and tasks to a set of employ-
ees for each time period in a planning horizon. A shift consists of a continuous sequence
of activities/tasks, which may include breaks and a lunch-break. The content of a shift is
generally constrained by rules arising from regulation agreements and ergonomic consid-
erations. In this paper, we consider the shift scheduling problem with multiple activities
and multiple tasks where all the employees are different, i.e., they can perform only a
subset of the activities and tasks and have different periods of availability.
Activities represent daily operations in a company, such as assisting customers. There is
a demand that should be met, and the overcovering and undercovering of this demand
reflect the quality of service provided by the company. An activity can be interrupted
and can be assigned to several employees at the same time.
Tasks represent small but essential operations, such as unloading cargo or preparing a
stall, and there is a large penalty for uncovering them. Tasks have a fixed length and
there are usually hard constraints on their completion time and on the sequence in which
they should be executed. They must be executed without interruption by a fixed number
of employees.
To the best of our knowledge, few papers in the literature have addressed this prob-
lem. However, the personnel scheduling problem is a well-known problem of operations
research and has been widely studied. The surveys of Ernst et al. [9, 8] give many
references, but few of them consider simultaneous activity and task assignment.
Demassey et al. [7] studied the multi-activity case for a 24-hour planning horizon with up
to 10 activities. They used a set covering formulation and applied a column generation
approach where the pricing subproblem is solved with constraint programming. The
results show that this method can solve instances with only up to three activities.
Lequy et al. [11] presented two integer programming (IP) models and a column gener-
ation approach based on multi-commodity flow formulations for the multi-activity shift
scheduling problem where shifts and breaks are assigned a priori to the employees. These
models lead to very large IPs, and the authors proposed rolling-horizon heuristics based
on column generation for the larger instances. More recently, Lequy et al. [12, 13] ex-
tended their approach to the multi-task case and considered the possibility that a task
could be performed by more than one employee with synchronization. Two-stage heuris-
tics are proposed: first the tasks and then the activities are assigned to the employees.
The present work is an extension of Côté et al. [2, 4, 3]. They proposed a grammar-
based model for the personalized multi-activity shift scheduling problem and a branch-
and-price approach with column generation to solve this problem exactly. The results
showed that this approach can handle instances of up to 100 employees and 15 activities
for a planning horizon of 7 days when shifts are preassigned to employees. We have
extended this approach to include tasks with precedence constraints, and we present an
extensive study of the branching strategy. Furthermore, we present results for instances
where no shifts are preassigned.
This paper is organized as follows. In Section 2 we present our mathematical model
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for the personalized multi-activity multi-task shift scheduling problem. In Section 3 we
introduce grammar theory and show how it is used to construct feasible shifts for each
employee. Section 4 deals with the general framework of the proposed grammar-based
branch-and-price algorithm. Finally, in Section 5 we present computational results for a
set of instances inspired by real cases.

2 The Shift Scheduling Problem

In the personalized multi-activity multi-task shift scheduling problem (SSP), we must
assign to each employee e ∈ E a feasible shift s ∈ Ωe to cover at a minimum cost the
demand for activities and tasks over a planning horizon I. We assume that each employee
has different characteristics and thus can perform only a subset of the activities A and
tasks T . Different employees have different availabilities over the planning horizon. The
set of feasible shifts for each employee is determined by these characteristics and also by
rules arising from work agreement regulations or ergonomic considerations. We will use
the term job to refer to either an activity or a task.
With each shift s ∈ Ωe we associate a cost ces ≥ 0. This can include different components,
such as the cost for an employee to perform a job and the cost of transition from one job to
another. Furthermore, we allow undercovering for activities and tasks and overcovering
only for activities, since tasks cannot be repeated. Let cuia and coia be the costs for
undercovering and overcovering, respectively, an activity a ∈ A at period i ∈ I and let
cut be the cost for undercovering a task t ∈ T .
We assume that the demand bia for activity a ∈ A is known at period i ∈ I.

2.1 Mathematical Formulation

Our model for the personalized multi-activity multi-task SSP, model (D), is an extension
of that of Côté et al. [3], who used a classical set-covering formulation introduced by
Dantzig [6] for the shift scheduling problem:

f(D) = min
∑
e∈E

∑
s∈Ωe

cesx
e
s +

∑
i∈I

∑
a∈A

(cuiauia + coiaoia) +
∑
t∈T

cut ut (1)

∑
e∈E

∑
s∈Ωe

δeiasx
e
s + uia − oia = bia ∀i ∈ I, a ∈ A (2)∑

i∈I

∑
e∈E

∑
s∈Ωe

βeitsx
e
s + ut = 1 ∀t ∈ T (3)∑

s∈Ωe

xes = 1 ∀e ∈ E (4)

xes ∈ {0, 1} ∀e ∈ E, s ∈ Ωe (5)

uia ≥ 0, oia ≥ 0 ∀i ∈ I, ∀a ∈ A (6)

ut ≥ 0 ∀t ∈ T, (7)
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where

• δeias = 1 if activity a ∈ A is assigned at period i ∈ I in shift s ∈ Ωe for employee
e ∈ E, and δeias = 0 otherwise;

• βeits = 1 if task t ∈ T starts at period i ∈ I in shift s ∈ Ωe for employee e ∈ E,
and βeits = 0 otherwise;

• xes = 1 if employee e ∈ E is assigned to shift s ∈ Ωe, and xes = 0 otherwise;

• uia and oia represent the undercovering and overcovering at period i ∈ I of activity
a ∈ A; and

• ut is the variable associated with the undercovering of task t ∈ T .

The objective (1) is composed of the cost of assigning a shift to the employee, the
cost for undercovering and overcovering activities, and the cost for undercovering tasks.
Constraints (2) and (3) represent the satisfaction of the demand for activities and tasks
in the planning horizon. Constraint (4) ensures that only one shift is assigned to each
employee.

2.2 Precedence Constraints

If there are precedence constraints, i.e., constraints on the sequence of tasks, further
constraints must be added to model (D). For a task t ∈ T , we denote by lt its fixed
length and by P (t) the set of tasks that should be performed before t. In a shift we
know the start and end times of a task, so one way to formulate these constraints is to
assume that task t ∈ T cannot be assigned at period i ∈ I if the tasks in P (t) have not
been assigned and finished:

∑
e∈E

∑
s∈Ωe

βeitsx
e
s −

∑
i′+lt′≤i

∑
e∈E

∑
s∈Ωe

βei′t′sx
e
s ≤ 0, ∀i ∈ I, ∀t ∈ T, ∀t′ ∈ P (t) 6= ∅. (8)

Lequy et al. [12] propose another formulation for the precedence constraints that reduces
the total number of constraints:

−Mut −
∑
i∈I

∑
e∈E

∑
s∈Ωe

iβeitsx
e
s +Mut′ +

∑
i∈I

∑
e∈E

∑
s∈Ωe

(i+ lt′)β
e
it′sx

e
s ≤ 0, ∀t ∈ T, t′ ∈ P (t),

(9)

where M is a sufficiently large integer.
In general, constraints (8) are more explicit, so they yield to better bounds than do
constraints (9). However, the latter lead to a model with fewer constraints that can be
solved more efficiently. We consider both formulations in our computational study.
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3 Modeling Shifts with Grammars

To solve the above model directly, we need to know all the feasible shifts for each
employee. Côté et al. [2, 4, 3] used a formal language based on a context-free grammar
to represent these shifts.

3.1 Context-Free Grammar

A context-free grammar G is defined by the tuple (Σ, N, P, S) where

• Σ is an alphabet that contains letters (a, b, c, ...), also called terminal symbols;

• N is a set of nonterminal symbols (A,B,C, ...);

• P is a set of productions of the form X → α, where X ∈ N and α is a sequence of
terminal and/or nonterminal symbols;

• S is the starting nonterminal.

A sequence of letters from the alphabet Σ, called a word, is recognized by the grammar
G if it can be generated by the successive application of productions from P , starting
from the starting nonterminal S. The set of words recognized by a grammar is called a
language. A context-free grammar is in Chomsky normal form when all productions are
of the form X → α where X ∈ N and α ∈ (N × N) ∪ Σ. However, for clarity, we will
not present the grammars in Chomsky normal form. This is not restrictive since any
grammar can be converted to this form (see [10]).
For instance, a word can represent a sequence of activities, tasks, and breaks, which
corresponds to a shift. Hence, the words recognized by the grammar are feasible shifts
for an employee. The length of the word corresponds to the planning horizon considered.

Example 1 [3]: The following grammar G defines all feasible shifts for one employee
and one activity. A shift has a length equal to the planning horizon and contains one
break that cannot be placed at the beginning or end of the shift. Work and break periods
are represented by w and b respectively:

G = (Σ = (j, b), N = (S, X, J, B), P, S) where P is

S → XJ, X → JB, J → JJ | j, B → b

The shifts jbj, jjjjjbj, and jbjj, among others, are recognized by G.

3.2 Directed Acyclic Graph

All the derivations that a grammar associates with a word of a given length n can be
represented by the directed acyclic graph (DAG) Γ. This DAG has an and-or structure
with two types of nodes:
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Figure 1: DAG Γ for grammar from Example 1 on word of length 4

• the or-nodes O represent the nonterminal symbols from N ; and

• the and-nodes A represent the productions from P .

We denote by Oπil the or-node associated with the nonterminal or letter π that generates
a subsequence of length l from position i. Hence, if π ∈ Σ, the or-node is a leaf and
l = 1, and the root is represented by OS1n. Likewise, AΠ,k

il is the and-node associated
with the production Π that generates a subsequence of length l from position i, with k
representing the index of the subsequence. A DAG is built by a procedure suggested
by Quimper and Walsh [15] that is inspired by an algorithm from Cooke, Younger, and
Kasami (see [10]). Figure 1 shows the DAG for the grammar in Example 1 for a word
of length 4.
To derive words from the DAG Γ, we start at the root OS1n. An or-node Oπil is visited

by selecting exactly one child, which is an and-node, and an and-node AΠ,t
il is visited by

selecting all its children. Γ is traversed in this way until the only unvisited nodes are
leaves. The word formed by the remaining unvisited leaves defines a word recognized
by the grammar. Likewise, starting from the leaves associated with a word w, we can
traverse Γ backwards to check if this word belongs to the grammar.

3.3 Enriched Grammar

The productions of a grammar can be enriched in order to include more constraints
in the derivation of a word and thus the construction of the associated DAG. These
constraints appear in the SSP when some jobs must be done within a time window
and/or there are restrictions on their minimum and maximum durations. The notation

A
[tws, twe]
[lmin, lmax]

c−→ BC indicates that the subsequence generated from A should be spanned
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within the positions [tws, twe], has a length between lmin and lmax, and, if it is used,
has a cost of c.

Example 2: The grammar G below defines the feasible shifts for one employee and a
set of activities A. A shift has between 3 and 8 hours of activities, including breaks,
and, if the employee works more than 6 hours, a lunch-break. The minimum duration
of an activity is 1 hour. The planning horizon is divided into periods of 15 minutes:

S → RPR | RFR Ja → a | aJa, for a ∈ A
P[13,24] → JbJ L→ llll

F[30,38] → PLP R→ r|rR
J

[twsa,twea]
[4,∞] → Ja, for a ∈ A

where [twsa, twea] represents the time window associated with activity a ∈ A.

3.4 Productions of Tasks in Grammar

A task t ∈ T is fully defined by its length lt and its associated time window [twst, twet].
With the enriched grammar, we can define a task as the span of an activity with a fixed
length and a time window. Therefore, the productions associated with the span of a
task t ∈ T can be defined as

J
[twst,twet]
[lt,lt]

→ Jt,

Jt → t | tJt.

Example 3: We consider a shift of four hours divided into periods of one hour with the
start time of the shift fixed a priori. An employee can perform an activity a or a task t
at each period. The length of task t is three hours. The associated grammar is defined
by the following productions:

S[4,4] → Ja | JaJna | JtJnt Ja → a | aJa,
Jnt → JaJ

n
a | Ja J ′t → t | tJ ′t

Jan → JtJ
n
t | Jt

Jt [3,3] → J ′t

The corresponding DAG is given in Figure 2.
However, for the column generation approach, we need to identify in the grammar the
beginning of a task so that the precedence constraints can be applied. With the previous
productions involved in the span of a task, the corresponding terminals in the DAG
represent one period of this task. To determine the starting period of a task t ∈ T , we
use a different label in the DAG for the first period of the span, i.e., st. The productions
are then rewritten as follows:

J
[twst,twet]
[lt,lt]

→ stJt | st,
Jt → t | tJt.

A Branch-and-Price Algorithm for the Multi-Activity Multi-Task Shift Scheduling Problem
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Figure 2: DAG Γ for grammar from Example 4

4 Grammar-Based Branch-and-Price Algorithm

We now present the grammar-based branch-and-price (B&P) algorithm to solve the
multi-activity multi-task SSP. Enumerating all possible shifts for each employee and
solving the model (D) directly leads to a problem with a large number of variables that
is, in practice, too hard to solve. Therefore, at each iteration of the B&P we solve the
linear relaxations of a sequence of restrictions of model (D), called the restricted master
problems (RMPs), via a column generation approach.

4.1 Restricted Master Problem

The RMP is defined by allowing only a subset of the feasible shifts Ω̃e ⊂ Ωe for each
employee e ∈ E, as follows:
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f(RMP ) = min
∑
e∈E

∑
s∈Ω̃e

cesx
e
s +

∑
i∈I

∑
a∈A

(cuiauia + coiaoia) +
∑
t∈T

cut ut (10)

∑
e∈E

∑
s∈Ω̃e

δeiasx
e
s + uia − oia = bia ∀i ∈ I, a ∈ A (11)

∑
i∈I

∑
e∈E

∑
s∈Ω̃e

βeitsx
e
s + ut = 1 ∀t ∈ T (12)

∑
s∈Ω̃e

xes = 1 ∀e ∈ E (13)

xes ∈ {0, 1} ∀e ∈ E, s ∈ Ω̃e (14)

uia ≥ 0, oia ≥ 0 ∀i ∈ I, ∀a ∈ A (15)

ut ≥ 0 ∀t ∈ T. (16)

If there are precedence constraints, we also require constraints (8) or (9):

∑
e∈E

∑
s∈Ω̃e

βeitsx
e
s −

∑
i′+lt′≤i

∑
e∈E

∑
s∈Ω̃e

βei′t′sx
e
s ≤ 0, ∀i ∈ I, ∀t ∈ T, ∀t′ ∈ P (t) 6= 0 (17)

or

−Mut −
∑
i∈I

∑
e∈E

∑
s∈Ω̃e

iβeitsx
e
s +Mut′ +

∑
i∈I

∑
e∈E

∑
s∈Ω̃e

(i+ lt′)β
e
it′sx

e
s ≤ 0, ∀t ∈ T, t′ ∈ P (t).

(18)

At each iteration of the column generation method, we solve the current RMP and then
for each employee we try to identify columns with negative reduced costs by solving a
pricing subproblem. If no such columns are found, we have obtained the optimal solution
of the linear relaxation of (D) by generating only a (typically small) subset of the feasible
shifts.

4.2 Pricing Subproblem

To generate new columns for the RMP we use the DAG to represent the shifts that each
employee can perform. For each employee e ∈ E, a grammar Ge is formulated according
to the employee’s skills and availability and the work regulations. The associated DAGe

is then created, and it is used to solve the pricing subproblem for employee e.
To compute the reduced cost of a column, we need the dual variables of the current
RMP . Let

• λia, i ∈ I, a ∈ A be the dual variables associated with constraints (11);

A Branch-and-Price Algorithm for the Multi-Activity Multi-Task Shift Scheduling Problem

8 CIRRELT-2012-17



• θt, t ∈ T be the dual variables associated with constraints (12);

• σe, e ∈ E be the dual variables associated with constraints (13).

We assume that the cost ces of the shift s ∈ Ω̃e for employee e ∈ E can be decomposed

as ces =
∑
i∈I

(∑
a∈A

δeiasc
e
ia +

∑
t∈T

βeitsc
e
it

)
where ceiw, w ∈ A ∪ T , is the cost for employee e

to perform w at period i. The reduced cost of the shift s is then

c̃es =
∑
i∈I

(∑
a∈A

(ceia − λia)δeias +
∑
t∈T

(ceit − λt − rit)βeits

)
− σe ∀e ∈ E, s ∈ Ωe, (19)

where, for i ∈ I, t ∈ T , rit is the term generated by the precedence constraints.
If there are no precedence constraints, then rit=0, for i ∈ I, t ∈ T . Otherwise,

• rit =
∑

t′∈P (t)

ξitt′ −
∑

i′≥i+lt

∑
t′∈P ∗(t)

ξi′t′t if the precedence constraints are represented

by (17), where ξitt′ , i ∈ I, t ∈ T , t′ ∈ P (t), are the associated dual variables;

• rit = −
∑

t′∈P (t)

iγtt′ +
∑

t′∈P ∗(t)

(i+ lt)γt′t if the precedence constraints are represented

by (18), where γtt′ , t ∈ T , t′ ∈ P (t), are the associated dual variables;

with P ∗(t) = {t′ ∈ T / t ∈ P (t′)}.
To solve the pricing subproblem for employee e, we associate a cost kiw with each leaf
of the DAG corresponding to an activity or task w ∈ A ∪ T performed at period i ∈ I.
If w = a ∈ A, kia = ceia − λia, and if w = t ∈ T , kit = (ceit − λt − Ξit)/lt. The other
nodes of the graph have their costs initialized to zero. The subproblem is then solved
by a dynamic programming algorithm proposed by Quimper and Rousseau [14] to find
a minimum parse tree in a grammar-based DAG.
Starting from the leaves, we traverse the DAG and assign to the visited and-nodes the
sum of the costs of their children and to the or-nodes the minimum of the costs of
their children. Hence, every child of the root node of the DAG that has a negative cost
represents a column with a negative reduced cost that can be added to the RMP . If
no such child exists for any employee, the solution of the current RMP is the optimal
solution of the linear relaxation, because no column with a negative reduced cost can be
generated.
Note that the definition of the cost ces can be extended because a cost can be assigned to
some productions of the grammar as defined in Section 3.3. These costs could represent,
for instance, the transition cost for an employee to switch from one activity or task to
another. In the dynamic programming algorithm, the corresponding and-nodes would
be initialized with these transition costs, which would be added to the total cost of the
node.

A Branch-and-Price Algorithm for the Multi-Activity Multi-Task Shift Scheduling Problem

CIRRELT-2012-17 9



4.3 Branching Strategy

Since solving the RMP at each node of the B&P gives a fractional solution, we must
branch to derive an optimal integer solution. Our branching strategy is based on that
proposed by Côté et al. [3], which was adapted from the strategy presented by Barnhart
et al. [1] for solving integer multi-commodity flow problems.
At each node of the B&P, we choose from the fractional solution an employee e′ ∈ E
with at least two assigned shifts that have associated variables with fractional values. If
no such employee exists, then the solution is integer and the exploration of this node is
complete. Otherwise, we select the two shifts se

′
(1) and se

′
(2) for which the correspond-

ing variables have the largest fractional values. We compare these two shifts and find the
first divergent position i′, that is, the first period where they differ in terms of the job.
Let j(1) ∈ A∪ T and j(2) ∈ A∪ T be the assigned jobs at period i′ in shifts se

′
1 and se

′
2 ,

respectively. Let Je
′
i′ ⊂ A∪T be the subsets of activities and tasks that can be performed

by employee e′ at period i′. We create a partition of Je
′
i′ into two subsets Je

′
i′ (1) and

Je
′
i′ (2) such that j(l) ∈ Je

′
i′ (l), for l ∈ {1, 2}. In practice the remaining activities and

tasks in Je
′
i′ − {j(1), j(2)} are equally distributed between the two partitions. Finally,

we generate two nodes where each ensures that the employee e′ does not perform a job
in Je

′
i′ (l) at period i′, for l ∈ {1, 2}.

This rule can be easily handled when solving the RMP and the pricing subproblems.
Indeed, it suffices to assign a large value to the cost ce

′
i′w where w is a forbidden job in

Je
′
i′ (l) for l ∈ {1, 2}. This ensures that the corresponding reduced cost is positive and

the corresponding shifts are never selected by the dynamic programming algorithm.
In Côté et al. [3], branching is performed by selecting the first employee e′ with a
fractional value. We have improved this approach by choosing se

′
(1) such that its corre-

sponding variable has the largest fractional value (closest to 1). This tends to improve
the convergence of the algorithm toward an integer solution. We call this strategy S1.
In the multi-task case, we can enhance this strategy by preventing some tasks from
starting at certain periods. The goal is to first find a pattern for the position of the
tasks and then place the activities. We define a two-step branching strategy where

• in the first step, we try to branch on the starting time of a task; and

• in the second step, if branching on the tasks is not possible, we apply the branching
strategy to the activities as in S1.

In the fractional solution of the RMP, we identify two shifts where the same task t ∈ T
is assigned but it starts at different periods, i(1) and i(2). Without loss of generality,
consider i(1) < i(2). We then create two nodes where in the first we do not allow task
t to start before i(2), and in the second we do not allow task t to start after i(2). This
branching ensures that these two shifts do not appear in the same solution. Moreover,
by reducing the time window where a task can be performed, we try to position the
tasks before assigning the activities. We call this strategy S2.
This last branching strategy tries to reduce the time window associated with the tasks.
Because the placement of the tasks can have a significant impact on the objective, this
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strategy can reduce the quality of the solution. Hence, we propose a third branching
strategy, S3, that is a hybrid of S1 and S2. It applies the first branching strategy, S1, but
gives priority to shifts containing a task. Specifically, we try to find a shift se

′
(1), e′ ∈ E,

such that its corresponding variable has the largest fractional value and it contains at
least one task. If no such shift exists, then we apply S1. Otherwise, we select the shift
se
′
(2) 6= se

′
(1) with the second highest fractional value and we use the same separation

as in S1.

5 Preprocessing of Precedence Constraints

Precedence constraints have a significant impact on the difficulty of the problem. In
some cases, a quick analysis of these constraints allows us to reduce the time window
associated with a task and to eliminate some of them. For a task t ∈ T , let st and
et be the start and end time of the time window associated with t. A simple two-step
preprocessing can be implemented:

• In step 1, we try to reduce the time window of the tasks, i.e., for t ∈ T and
t′ ∈ P (t), st = max{st′ + lt′ , st}. This is because t′ must be performed before t
and so t cannot start in [st′ , st′ + lt′ ].

• In step 2, we check whether some precedence constraints are always satisfied. That
is, for t ∈ T and t′ ∈ P (t), if et′ < st then P (t) = P (t)− t′, since the two intervals
are disjoint.

We repeat the preprocessing until no time window is reduced. The reduction of the time
windows associated with the tasks decreases the number of nodes involved in the DAG
and therefore the time required to solve the pricing subproblem. The preprocessing can
also reduce the number of constraints in the model.

6 Computational Experiments

We now present the results obtained with the grammar-based B&P algorithm for the
multi-activity multi-task SSP. We consider the cases with and without pre-assignment
of shifts to employees. Furthermore, we compare the different formulations of the prece-
dence constraints and the different branching strategies.
The experiments were performed sequentially on a two-processor quad-core Intel Xeon
2.4 GHz. The restricted master problem was solved by CPLEX 12 with the dual method.
The B&P algorithm was implemented in C++ using the OOBB framework from Crainic
et al. [5]. The algorithm stops when the optimality gap is less than 1% or when the
processing time for an instance reaches two hours.
Four different strategies are tested in this section. First, we consider the two formulations
of the precedence constraints described in Section 2.2. C1 is the case where constraints
(8) are used and C2 is the case where constraints (9) are used. Secondly, we test the three
different branching strategies of Section 4.3, i.e., S1, where branching is performed only
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on the activities, S2, where the branching is performed on the tasks and the activities,
and S3, the hybrid strategy.
For all the instances, to obtain an initial bound for the B&P algorithm, we use a diving
strategy to try to construct an initial integer solution from the restricted master problem
of the root node. This strategy repeatedly fixes to one the variable with fractional value
closest to one until a feasible solution is found. We consider only the columns added by
the column generation at the root, and the maximum processing time is thirty minutes.
In some cases, this initial solution has an optimality gap lower than 1% and it is then
not necessary to run the B&P.

6.1 The Instances

We consider that an employee can perform a shift of four hours or a shift of eight hours
with a break of one hour for lunch. The hours of work are from 6 a.m. to 7 p.m. When
the shifts are preassigned, we know a priori the length and the start time of the shifts
assigned to an employee, and we have to decide which activities and tasks he/she will
perform. When the shifts are not preassigned, an employee can perform a shift of four
or eight hours within the time window.
The instances are generated as follows. We start by generating a feasible schedule for
each employee. From this schedule, we derive the associated demand profile, and we
randomly add or remove demand in each time period to generate undercovering and
overcovering. We also derive a set of precedence constraints satisfied by this schedule.
The time windows for each task are then generated such that they are centered on the
start time of the corresponding task in the generated schedule. We thus ensure that
the precedence constraints are feasible. We consider that an employee has the necessary
skills to perform half of the set of activities and tasks.
Furthermore, the minimum length of an activity is thirty minutes and its maximum
length is four hours. We minimize the number of transitions in a shift via a penalty ctr.
We denote by Ae and T e, respectively, the subset of activities and tasks that can be
performed by employee e ∈ E and by [wmint, wmaxt] the time window associated with
a task t ∈ T .

6.2 Instances with Preassigned Shifts

For the instances with preassigned shifts, we know a priori the start and end times of the
shifts for each employee. We consider a planning horizon of 1 week, which is divided into
periods of 15 minutes (672 periods in total) with 5 activities and 50 tasks. The shifts
are assigned such that no employee works more than 40 hours. Two sets of instances
have been generated, one with 20 employees and another with 50 employees.
For employee e ∈ E, we consider a grammar for each assigned shift. These grammars
are represented by the following productions:

• S [16,16]
ctr−−→ JjJ

n
j | Jj , ∀j ∈ Ae ∪ Te;

• Ja [2,16] → J ′a, ∀ a ∈ Ae;
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• J ′a → a | aJ ′a, if a ∈ Ae;

• Jt [twst,twet]
[lt,lt]

→ stJ
′
t, ∀ t ∈ Te;

• J ′t → t | tJ ′t, ∀ t ∈ Te;

• Jnj → Jj′ , ∀j ∈ Ae ∪ Te, ∀j′ ∈ Ae ∪ Te − {j};

• Jnj
ctr−−→ Jj′J

n
j′ , ∀j ∈ Ae ∪ Te, ∀j′ ∈ Ae ∪ Te − {j}.

6.2.1 Solution at the Root

Tables 1 and 2 give the results obtained by solving the RMP at the root node using a
diving strategy. The results show that, for C1, the solution provided by the root node
is generally close to optimality. However, for C2, in one case no feasible solution was
found within the allowed processing time, and the final gaps are generally larger than
for C1.

C1 C2
Instance gap (%) time (s) gap (%) time (s)

PF 20 0 3.39 95.54 - 1800.00
PF 20 1 2.53 79.17 2.53 87.05
PF 20 2 35.96 102.68 23.52 90.58
PF 20 3 0.00 187.86 22.90 174.37
PF 20 4 3.85 132.28 3.96 81.77
PF 20 5 7.42 121.26 25.08 98.08
PF 20 6 3.10 102.09 7.49 113.84
PF 20 7 0.00 93.80 0.00 107.03
PF 20 8 2.43 95.09 15.66 98.51
PF 20 9 8.73 86.23 13.11 74.94

Average 6.74 109.61 12.69* 102.91*

Table 1: Solution at root with 20 employees and preassigned shifts
* Average values do not include instance PF 20 0

6.2.2 Branch and Price

The B&P is initialized with the bound obtained at the root. Tables 3 and 4 give the
optimality gaps obtained with the different strategies. When the average optimality gap
was already small at the root (< 5%), it has been only slightly improved, but when
the average optimality gap at the root was large (≥ 5%), the improvement is generally
significant.
The best results are obtained for formulation C1, and the three tested branching strate-
gies give similar results. Using formulation C1, five of the 20 instances are solved within
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C1 C2
Instance gap (%) time (s) gap (%) time (s)

PF 50 0 0.86 203.57 38.20 313.42
PF 50 1 13.73 244.54 17.84 345.62
PF 50 2 6.31 150.91 17.34 271.11
PF 50 3 0.08 172.90 27.20 238.51
PF 50 4 17.48 204.43 27.49 173.23
PF 50 5 6.00 157.10 0.85 193.42
PF 50 6 27.24 247.54 64.42 549.77
PF 50 7 3.10 173.84 13.13 214.22
PF 50 8 2.88 243.40 37.95 282.23
PF 50 9 9.63 321.62 35.94 295.28

Average 8.73 211.98 28.04 287.68

Table 2: Solution at root with 50 employees and preassigned shifts

Instance C1+S1 C1+S2 C1+S3 C2+S1 C2+S2 C2+S3

PF 20 0 3.18 3.18 3.18 7.18 7.18 7.18
PF 20 1 2.45 2.45 2.45 2.45 2.45 2.45
PF 20 2 4.25 4.25 4.25 4.41 4.41 4.41
PF 20 3 0.00 0.00 0.00 1.60 1.60 1.60
PF 20 4 3.85 3.85 3.85 3.87 3.87 3.87
PF 20 5 2.97 2.79 2.84 3.10 2.84 2.93
PF 20 6 3.10 3.10 3.10 3.11 3.11 3.11
PF 20 7 0.00 0.00 0.00 0.00 0.00 0.00
PF 20 8 2.25 2.34 2.25 2.57 2.52 2.61
PF 20 9 3.94 4.17 3.94 3.94 3.90 3.94

Average 2.60 2.62 2.59 3.22 3.18 3.21

Table 3: Optimality gap (%) with 20 employees and preassigned shifts
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Instance C1+S1 C1+S2 C1+S3 C2+S1 C2+S2 C2+S3

PF 50 0 0.70 0.70 0.70 2.31 2.31 2.31
PF 50 1 10.01 10.01 9.97 10.24 10.24 10.24
PF 50 2 1.57 1.57 1.57 1.66 1.58 1.58
PF 50 3 0.12 0.12 0.12 0.94 0.94 0.94
PF 50 4 2.43 2.42 2.43 4.57 4.57 4.57
PF 50 5 0.98 0.98 0.98 0.85 0.85 0.85
PF 50 6 7.64 7.64 7.64 8.71 8.71 8.71
PF 50 7 3.01 3.01 3.01 4.38 4.38 4.38
PF 50 8 2.75 2.75 2.75 2.75 2.75 2.75
PF 50 9 5.11 5.11 5.11 5.96 6.08 5.68

Average 3.43 3.43 3.43 4.24 4.24 4.20

Table 4: Optimality gap (%) with 50 employees and preassigned shifts

the time limit (2 hours) with an optimality gap lower than 1%. The remaining instances,
except three, are solved with an optimality gap lower than 5%.

6.3 Instances Without Preassigned Shifts

For the instances without preassigned shifts, we do not know a priori when the shifts
of each employee start and end. An employee can work between 6 a.m. and 7 p.m.
and perform a shift of 4 or 8 hours with a break of 30 minutes. Since these instances
are more difficult, we consider a planning horizon of 1 day divided into periods of 15
minutes (96 periods in total) with 5 activities and 5 tasks. Two sets of instances have
been generated, one with 20 employees and one with 50 employees. Tables 7 and 8 give
the results. For each employee e ∈ E, we build a grammar corresponding to the possible
shifts of the workday. To represent the periods when the employee is not working, we
create an artificial activity r. The grammar is described by the following productions:

• S [52,52] → RPR | RFR | PR | RP | FR | RF ;

• P [16,16]
ctr−−→ JjJ

n
j | Jj , ∀j ∈ Ae ∪ Te;

• F [34,34] → PLP ;

• Ja [2,16] → J ′a, ∀ a ∈ Ae;

• J ′a → a | aJ ′a, ∀a ∈ Ae;

• Jt [twst,twet]
[lt,lt]

→ stJ
′
t, ∀ t ∈ Te;

• J ′t → t | tJ ′t, ∀ t ∈ Te;

• Jnj → Jj′ , ∀j ∈ Ae ∪ Te, ∀j′ ∈ Ae ∪ Te − {j};
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• Jnj
ctr−−→ Jj′J

n
j′ , ∀j ∈ Ae ∪ Te, ∀j′ ∈ Ae ∪ Te − {j};

• R → r|rR;

• L [2,2] → r|rR.

6.3.1 Solution at the Root

Tables 5 and 6 give the optimality gaps obtained by solving the RMP for the root node
using a diving strategy. In contrast to the previous instances, we can see an important
optimality gap for each formulation. This shows that these instances are harder: it is
more difficult to derive a good feasible solution.

C1 C2
Instance gap (%) time (s) gap (%) time (s)

PV 20 0 73.32 41.82 52.71 40.38
PV 20 1 0.00 34.98 0.00 27.64
PV 20 2 23.92 76.25 43.94 47.50
PV 20 3 27.05 59.64 27.23 72.01
PV 20 4 52.09 45.77 35.11 29.03
PV 20 5 24.26 64.88 42.64 62.12
PV 20 6 21.50 40.36 28.75 31.47
PV 20 7 55.55 44.28 61.98 86.47
PV 20 8 54.92 38.08 48.12 48.16
PV 20 9 0.03 19.61 34.83 28.43

Average 33.26 46.57 37.53 47.32

Table 5: Solution at root with 20 employees and without preassigned shifts

C1 C2
Instance gap (%) time (s) gap (%) time (s)

PV 50 0 67.88 168.68 72.51 38.93
PV 50 1 64.79 143.84 66.20 139.56
PV 50 2 69.71 208.12 70.50 315.94
PV 50 3 68.82 127.62 77.23 178.71
PV 50 4 67.03 223.51 72.36 228.00
PV 50 5 54.92 173.53 69.57 233.83
PV 50 6 69.00 279.66 77.17 236.65
PV 50 7 68.87 149.30 79.64 142.08
PV 50 8 69.00 182.54 77.22 143.63
PV 50 9 64.34 149.36 66.05 256.86

Average 66.44 180.62 72.84 191.50

Table 6: Solution at root with 50 employees and without preassigned shifts
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6.3.2 Branch and Price

Tables 7 and 8 give the optimality gaps obtained with the B&P approach on the instances
without preassigned shifts. All the instances with 20 employees, except for PV 20 7
and PV 20 8, are solved with an optimality gap lower than 1% in less than 8 minutes.
With 50 employees, 6 of the 10 instances are solved exactly in less than 2 hours. The
best average gap for all the strategies is less than 4%. On average, the best solutions
are obtained with C2+S3 for the set of 20 employees and with C1+S1 for the set of
50 employees. However, for the instances with 50 employees, C1+S3 provides better
solutions than C1+S1 except in one case, PV 50 9, which significantly increased the
average gap. We also note that formulation C1 shows a better behavior on the largest
instances than formulation C2, which seems to have more difficulty in converging toward
a good feasible solution.

Instance C1+S1 C1+S2 C1+S3 C2+S1 C2+S2 C2+S3

PV 20 0 0.09 0.09 0.09 0.93 0.93 0.93
PV 20 1 0.00 0.00 0.00 0.00 0.00 0.00
PV 20 2 0.00 0.00 0.00 0.00 0.00 0.00
PV 20 3 0.08 16.03 0.08 0.08 0.08 0.08
PV 20 4 0.06 0.06 0.06 0.07 0.07 0.07
PV 20 5 0.06 0.00 0.26 0.06 0.06 0.06
PV 20 6 0.00 0.00 0.00 0.00 0.00 0.00
PV 20 7 8.31 8.47 8.39 39.73 10.44 10.68
PV 20 8 22.46 11.95 22.46 23.36 23.36 12.97
PV 20 9 0.03 0.03 0.03 0.03 0.03 0.03

Average 3.11 3.66 3.14 6.43 3.50 2.48

Table 7: Optimality gap (%) with 20 employees and without preassigned shifts

Instance C1+S1 C1+S2 C1+S3 C2+S1 C2+S2 C2+S3

PV 50 0 2.64 3.17 2.53 2.53 13.47 2.53
PV 50 1 6.43 6.32 6.32 6.32 6.32 6.32
PV 50 2 4.72 59.70 4.72 10.72 53.14 53.14
PV 50 3 0.00 0.00 0.00 65.07 65.07 65.07
PV 50 4 0.00 0.00 0.00 0.00 0.00 0.00
PV 50 5 0.00 54.81 0.00 54.40 54.40 54.40
PV 50 6 14.39 74.66 13.90 23.09 72.43 72.43
PV 50 7 0.00 74.36 0.00 0.00 75.58 75.58
PV 50 8 0.00 0.00 0.00 14.59 0.00 0.00
PV 50 9 0.00 0.00 10.09 5.07 63.22 63.22

Average 2.82 27.30 3.76 35.03 40.36 39.27

Table 8: Optimality gap (%) with 50 employees and without preassigned shifts
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6.4 Comparison of Different Strategies

From these results, we see that formulation C1 tends to provide the best solutions. In
particular, for the instances with 50 employees and without preassigned shifts, C2 failed
to find good integer solutions. C2 provides a model with fewer constraints for which the
linear relaxation is generally easier to solve, but the relatively important optimality gap
penalizes the solution process of the B&P algorithm.
The branching strategies S1, S2, and S3 gave similar results. If we focus on formulation
C1 which provides better results in general, strategy S1 seems to lead to the best gap on
average, in particular for the instances without preassigned shifts. Strategy S2 imposes
a decision for all employees, in contrast to S1 and S3, which consider one employee at
each branching step. The S2 branching decision is stronger because it tries to force
the placement of a task. It appears from our results that the solution quality is quite
sensitive to this placement: in some cases (see for instance PV 20 3 and PV 50 2) it
degrades the convergence toward a good solution. Hence, S1 and S3 appear to be more
stable strategies.
Our B&P algorithm finds integer solutions for the SSP and gives an approximate op-
timality gap. The convergence toward an integer solution is relatively fast, but the
symmetries of the problem lead to numerous equivalent solutions and make it difficult
to prove optimality. These symmetries arise because many employees, although they
have different skills, can perform the same job in the same period. Thus, the same shift
can be assigned to many employees.
The column generation allows us to solve large instances. The grammar formulation of
the feasible shifts for each employee can include many complex rules generally involved
in SSP, such as time windows for the tasks, employee skills, the placement of breaks,
and the length of an uninterrupted working period.

7 Conclusion

We have presented a set covering model for the shift scheduling problem with multiple
activities and multiple tasks, together with two formulations of the constraints on the
sequence of execution of the tasks. We have considered the personalized case, i.e., each
employee has different availability and skills. This model is solved via a branch and price
algorithm using a grammar-based column generation for the solution of the restricted
master problem. This restricted problem contains only a subset of the feasible shifts for
each employee.
We have shown that the grammar can be used efficiently to model feasible shifts with
complex constraints such as time windows for the tasks, employee skills, the placement
of breaks, and the length of an uninterrupted working period. The resulting grammar
can be used to find shifts with the most negative reduced costs and hence to select nodes
to add at each iteration of the column generation. Grammars are convenient because
they can be expressed via simple rules that are used to construct the associated decision
tree used in our algorithm.
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We have presented results for instances inspired by real cases with two formulations
of the precedence constraints and three branching strategies. We considered instances
where the shifts are preassigned, with a time horizon of one week, and where they are
not preassigned, with a time horizon of one day. In the former case, we know exactly
when the employee will work and we must assign the set of activities and tasks that
he/she will perform. In the latter case, we know only the availability of the employee
and we must decide the start and finish times. We considered that an employee can be
assigned to a shift of four hours or to a shift of eight hours with one hour for lunch.
The results showed that the B&P algorithm can find an integer solution for all the
instances within two hours with an optimality gap lower than 5% in the best case. These
problems contained up to 50 employees and the column generation allows us to solve
large instances without overflow. We also compared three different branching strategies
and two formulations for the precedence constraints.
Many different branching strategies could be implemented. Our tests showed that the
strategies presented in this paper gave good results. However, one could consider the
choice of the employee to branch on or the choice of the activities to forbid. Furthermore,
our B&P approach could be improved with the use of a heuristic to compute upper
bounds at each node. This heuristic should handle the precedence constraints and the
demand for tasks, because the objective value is sensitive to their placement. One
approach could be a local search on the columns added so far. Such a heuristic could
improve the convergence of our method and hence reduce the overall number of nodes
that must be explored.
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