Midterm Hydro Generation Scheduling Under Uncertainty Using the Progressive Hedging Algorithm

Pierre-Luc Carpentier
Michel Gendreau
Fabian Bastin

July 2012

CIRRELT-2012-35
Midterm Hydro Generation Scheduling Under Uncertainty Using the Progressive Hedging Algorithm

Pierre-Luc Carpentier¹,²,*, Michel Gendreau¹,², Fabian Bastin¹,³

¹ Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)
² Department of Mathematics and Industrial Engineering, École Polytechnique de Montréal, P.O. Box 6079, Station Centre-ville, Montréal, Canada H3C 3A7
³ Department of Computer Science and Operations Research, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Canada H3C 3J7

Abstract. We assess the applicability of the progressive hedging algorithm (PHA) for solving Hydro-Québec’s (HQ) midterm hydro generation scheduling problem (MGSP). This optimization problem is formulated as a large-scale multistage stochastic linear program (MSLP) for which decisions are distributed over an extended planning horizon with weekly time steps. A discretized load duration curve is used to represent short-term load variations at each time period. Natural inflow variability is represented by a finite scenario tree. Other input parameters are assumed to be deterministic. Power output of variable-head hydro plants is represented using concave and piecewise linear functions, which depend on water release and upstream and downstream reservoir levels. Reservoir dynamics, energy balance and transmission network constraints are also included in the model. The proposed model is tested on HQ power system using realistic data. Computational results show that the penalty parameter must be chosen carefully to minimize the algorithm’s running time without sacrificing solution quality. In general, the PHA converges rapidly to a poor solution when the penalty parameter is too large. Conversely, a large number of iterations is required to satisfy non-anticipativity constraints when penalization is too weak. For this problem, updating the penalty parameter at each iteration is necessary to obtain a high quality solution in reasonable time.

Keywords: Midterm hydro scheduling, multistage stochastic linear program, progressive hedging algorithm, scenario decomposition, multireservoir system operation, hydropower.

Acknowledgements. The authors would like to express their gratitude to Hydro-Québec, the Natural Sciences and Engineering Research Council of Canada (NSERC) and Fonds de recherche du Québec – Nature et technologies (FRQNT) for their financial support.

Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du CIRRELT et n’engagent pas sa responsabilité.

* Corresponding author: Pierre-Luc.Carpentier@cirrelt.ca

Dépôt légal – Bibliothèque et Archives nationales du Québec
Bibliothèque et Archives Canada, 2012

© Copyright Carpentier, Gendreau, Bastin and CIRRELT, 2012
1. Introduction

Hydro-Québec’s (HQ) is the main electric utility in Québec, Canada. The company operates, mostly, hydroelectric power plants with large storage capacity to meet Québec’s domestic load. In this study, we consider the midterm generation scheduling problem (MGSP) which is solved on a weekly basis by HQ’s system managers. The aim of this problem is to find optimal water release targets and reservoir state trajectories over the coming years to maximize efficiency. Reservoir level must be managed carefully to ensure that HQ’s system has enough available power and stored energy to meet the domestic load efficiently at all time.

In Québec, interannual and seasonal variability of reservoir inflows is large as shown in Fig. 1. Seasonal cycles for load and reservoir inflows have a large amplitude and are out of phase by a few months. The peak load period occurs during mid-winter (January-February) when the reservoir inflows reaches its lowest intensity. Reservoirs are replenished a few months later during the spring flood (May-July) as the snow melts and the electrical load is much lower. At the multi-annual time scale, water must be stored during wet years in order to meet the load during dry years.

![Figure 1: Seasonal cycle of total reservoir inflows for 42 years of historical record.](image-url)

The current decision support system (DSS) used by Hydro-Québec managers is based on a deterministic optimization model returning a detailed production plan for the coming 78–104 weeks (periods). The model takes into account reservoir dynamics, head variations, turbine efficiency curves and transmission network constraints. However, potential sources of uncertainty on input parameters (e.g. inflows, load, failures, ...) are neglected in the deterministic model. In practice, managers run their deterministic model using different inflow scenarios (e.g. wet, dry, average). Robust solutions are obtained by adding experience-based
restrictions (bounds) on reservoir release and storage at specific time periods.

The company is currently studying alternative approaches to incorporate reservoir inflows uncertainty explicitly within a new stochastic optimization model. Doing so would hopefully increase the quality of solutions returned by the DSS and simplify the manager’s task by reducing the necessity of relying on experience-based restrictions. Uncertainty modeling in multistage problems increases dramatically the size of the optimization problem to be solved. Sophisticated solution methods must be employed to solve efficiently this problem with reasonable computing resources (\(< 1\) hour on a PC).

Reservoir management problems under inflow uncertainty were studied extensively over the past decades. Comprehensive literature reviews can be found in [1], [2], [3] and [4]. The most common approach for solving efficiently this class of problem relies on the dynamic programming (DP) principle [5] and consists in applying time decomposition on the original problem. Instead of solving directly the (large) multistage stochastic program, the approach consists in solving a sequence of (small) subproblems. Each subproblem is associated to a specific time period of the planning horizon and a possible state of the dynamic system. DP-based methods were applied repeatedly for reservoir management problems in the literature [6] and [7]. Discrete stochastic DP (SDP) was applied in reservoir management problem [8]. Unfortunately, this exact method is limited to systems with two reservoirs or less due to the so-called \textit{curses of dimensionality}. Due to this phenomenon, the computational complexity of the SDP algorithm grows exponentially with the dimension of state and control vectors.

Different approximate DP (ADP) methods were developed to mitigate dimensionality problems in DP [9]. One possible approach to reduce the size of state and control spaces is to aggregate many reservoirs into a larger hypothetical reservoir and apply SDP over the resulting system. This type of approach was applied for large reservoir systems [10] and [11]. The neuro-DP (NDP) algorithm [12] is a promising ADP approach to extend the applicability of discrete SDP. The state space dimensionality problem is mitigated by reducing the number states for which subproblems are solved. Approximate values of the Bellman function for unsampled states are obtained by interpolation using an artificial neural network. Castelletti \textit{et al.} [13] applied the NDP algorithm on a three-reservoir system. Their results suggest this method is applicable for systems with more than three reservoirs. However, it is unlikely that this method could be applicable for large hydroelectric power systems (20 reservoirs or more). The stochastic dual DP (SDDP) algorithm [14] is another type of ADP method which was used extensively for management of large multireservoir systems [15], [16], [17], [18] and [19]. With this method, the \textit{curses of dimensionality} associated with state and control spaces is avoided since the method is based on continuous spaces. The nested Benders decomposition algorithm is another approach which was applied for large reservoir systems [20] and [21].

If reservoir inflows variability is modeled using a scenario tree, the progressive hedging algorithm (PHA) proposed by Rockafellar and Wets [22] is a promising alternative to
DP-based methods. With this approach, each subproblem is associated with a particular scenario in the tree. Santos et al. [23] Gonçalves et al. [24] applied the PHA for a midterm planning problem of the Brazilian system over a 6–7 period planning horizon. Their results show that the PHA is competitive with the nested Benders decomposition method for this problem.

This paper proposes a new stochastic optimization model to solve HQ’s scheduling problem over a 78-104 periods (weeks) horizon. Aggregated historical series are used to construct a reservoir inflows scenario tree. Other potential sources of uncertainty (e.g. load, failures, run-of-the-river generation, wind power, ...) are neglected in the model. Head and efficiency variations of hydroelectric plants are taken into account using concave and piecewise linear functions. The PHA is used to solve the resulting multistage stochastic linear program (MSLP).

The remainder of the paper is organized as follow. The mathematical formulation for the MGSP is presented in Section 2. Section 3 presents the PHA used to solve this problem. Section 4 describes a case study based on Hydro-Québec’s power system. Numerical results are presented in Section 5. Comments and conclusions are drawn in Section 6.

2. Midterm generation scheduling problem

2.1. Problem description

We consider a power system composed of hydro plants \(i \in I \) connected to reservoirs \(j \in J \). The electrical load \(d^i_{zc}(\text{MW}) \) to be satisfied at all time periods \(t \in \mathcal{T} = \{1,2,...,T\} \) is distributed in each zone \(z \in Z \) of a transmission network \(G = (Z,L) \). Transmission links \(\ell \in L \) allow energy transfer between neighboring zones in the network. Short-term (hourly, daily) load variations within any given time period \(t \in \mathcal{T} \) are represented using a discretized load duration curve. Each load level \(c \in C \) has an associated duration \(\Delta t_c \) (h). Fig. 2 shows an example of load duration curve with three load levels.

Figure 2: Example of a discretized load duration curve.
The objective function to be maximized is

\[
\mathbb{E} \left[\sum_{j \in J} R_j(v_j^T) - M \sum_{t \in T} \sum_{c \in C} \sum_{z \in Z} \left(\sigma_{zc}^t + \delta_{zc}^t \right) \right] \bigg| I_1
\]

(1)

where \(\mathbb{E} [\cdot] \) is the conditional expectation operator and \(I_1 \) (hm\(^3\)) is the inflow vector at the beginning of the first period. We assume that the realization of \(I_1 \) is revealed to the decision maker at the beginning of the first period. The reward \(R_j \) ($) for reservoirs \(j \in J \) are concave and piecewise linear functions of the storage \(v_j^T \) (hm\(^3\)) at the end of period \(t = T \). The constant \(M > 0 \) is used to penalize surplus \(\sigma_{zc}^t \) and shortages \(\delta_{zc}^t \) which are the slack variables in the energy budget equality constraints

\[
\sum_{i \in I(z)} P_{ic}^t + \sum_{\ell \in L_+(z)} (1 - \epsilon_\ell) X_{ic}^t - \sum_{\ell \in L_-(z)} X_{ic}^t - \sigma_{zc}^t + \delta_{zc}^t = d_{zc}^t
\]

(2)

for each load level \(c \), time period \(t \) and zone \(z \). Decision variables \(P_{ic}^t \) (MW) and \(X_{ic}^t \) (MW) represents the power output of hydro plant \(i \) and power flow on transmission link \(\ell \) respectively. The set \(I(z) \) contains hydro plants connected to zone \(z \). Sets \(L_+(z) \subseteq L \) and \(L_-(z) \subseteq L \) contain transmission links entering and going out of zone \(z \) respectively. Parameter \(\epsilon_\ell \) represents the loss coefficient of links \(\ell \).

Hydroelectricity generation constraints

\[
P_{ic}^t \leq \phi_i^t(q_{ic}^t, v_{j(i)}^t, v_{\nu(i)}^t), \quad \forall i, c, t
\]

(3)

ensure that hydro plants power output \(P_{ic}^t \) (MW) is upper bounded by a generation function \(\phi_i^t \) (MW) which depends the turbined outflow \(q_{ic}^t \) (m\(^3\) s\(^{-1}\)) and average storage \(v_{j(i)}^t \) and \(v_{\nu(i)}^t \) during period \(t \) in the upstream reservoir \(j(i) \) and downstream reservoir \(\nu(i) \). Generation functions are concave and piecewise linear. Constraints

\[
q_{ic}^t \leq \alpha_{0i} + \alpha_{1i} v_{j(i)}^t + \alpha_{2i} v_{\nu(i)}^t, \quad \forall i, c, t
\]

(4)

represents the variations of maximal turbined outflow as a function of reservoir storage. \(\alpha_{0i}, \alpha_{1i} \) and \(\alpha_{2i} \) are known constants.

Reservoir storage evolves from a known initial condition \(v_j^0 \) according to discrete-time continuity equation

\[
v_j^t = v_j^{t-1} - Q_j^{j,\text{out}} + Q_j^{j,\text{in}} + I_j^t, \quad \forall j, t.
\]

(5)

where \(v_j^t \) (hm\(^3\)) represents storage of reservoir \(j \) at the end of period \(t \). The controlled outflow volume for reservoir \(j \) outlet is defined by

\[
Q_j^{j,\text{out}} := \sum_{c \in C} \sum_{i \in I(j)} (D_{ic}^j + q_{ic}^j) \beta \Delta t_c \quad \text{(hm}\(^3\))
\]

where \(\beta \) is the control parameter.
where \(I(j) \) is the set of hydro plants connected to reservoir \(j \), \(D_{ic}^t \) (m\(^3\) s\(^{-1}\)) is the spillage, \(q_{ic}^t \) (m\(^3\) s\(^{-1}\)) is the turbined outflow and \(\beta = 0.0036 \) is a constant for unit conversion. The controlled inflow for reservoir \(j \) is defined by

\[
Q_{j,\text{in}}^t := \sum_{u \in \mathcal{U}(j)} Q_{u,\text{out}}^t
\]

where the set \(\mathcal{U}(j) \) contains reservoirs located upstream of reservoir \(j \). Natural inflow \(I_j^t \) (m\(^3\) s\(^{-1}\)) are the only random parameters for this problem.

The following bounds

\[
0 \leq P_{it}^t \leq P_{it}^{\text{max}}, \quad \forall i, c, t
\]

\[
q_{it}^{\text{min}} \leq q_{ic}^t \leq q_{it}^{\text{max}}, \quad \forall i, c, t
\]

\[
D_{it}^{\text{min}} \leq D_{ic}^t \leq D_{it}^{\text{max}}, \quad \forall i, c, t
\]

\[
v_{jt}^{\text{min}} \leq v_t^j \leq v_{jt}^{\text{max}}, \quad \forall j, t
\]

\[
0 \leq X_{it}^l \leq X_{it}^{\text{max}}, \quad \forall l, t
\]

\[
0 \leq \sigma_{zc}^t, \delta_{zc}^t, \quad \forall z, c, t
\]

are imposed on decision variables to represent physical limits, operational constraint or experience-based restrictions.

2.2. Inflow scenario tree

We assume that reservoir inflows vectors \(I_t = (I_j^t) \) (hm\(^3\)) at time periods \(t \in \mathcal{T} = \{1, 2, ..., T\} \) are discretely distributed and that their joint distribution has a finite number of possible outcomes. The stochastic process \(\{I_t : t \in \mathcal{T}\} \) is modeled by a finite scenario tree. Tree nodes \(n \in \mathcal{N} \) represent every possible state of the stochastic process at all time periods. Each possible scenario (realization) \(\omega \in \Omega \) of the stochastic process corresponds to a path from the root \(0 \in \mathcal{N} \) to a leaf \(f(\omega) \in \mathcal{N} \) in the tree. An inflow vector \(I_n \) is defined at each tree node. A simple example of a scenario tree with \(\mathcal{N} = \{0, 1, 2, 3, 4, 5, 6\} \) is presented in Fig. 3. In this example, scenario \(\omega = 1 \) corresponds to the path 0-1-3.

2.3. Mathematical formulation

The problem (1)–(11) can be written

\[
(P) \quad \max \left\{ \sum_{n \in \mathcal{N}} p_n F_{t(n)}(\hat{x}_n) : \hat{x}_n \in \hat{X}_{t(n)}, \forall n \right\}
\]

where node-wise control vectors

\[
\hat{x}_n := (v_t^j, q_{ic}^t, P_{ic}^t, D_{ic}^t, X_{ic}^t, \sigma_{z_c}^t, \delta_{z_c}^t)
\]
defined at each tree node n contain all the decision variables required to operate the power system during one time period, p_n and $t(n)$ is the probability and time period associated with node n (respectively), F_t are piecewise linear functions representing each term in the objective (1), \bar{X}_t is a polyhedral set defined by physical constraints (2)–(11) at period t.

To apply the scenario decomposition method on \mathcal{P}, we apply the following variable change. Node-wise control vectors \bar{x}_n at nodes $n \in \mathcal{N}$ are replaced by scenario-wise control vectors $x_{t\omega}$ at the corresponding time period t and scenario ω in the tree. The resulting (equivalent) mathematical program is

$$(\mathcal{M}) \max \left\{ \sum_{\omega \in \Omega} p_\omega \sum_{t \in \mathcal{T}} F_t(x_{t\omega}) : x_{t\omega} \in X_{t\omega} \cap \mathcal{F}_{n(\omega,t)}, \forall t, \omega \right\}$$

where $n(\omega,t)$ is the node corresponding to time period t and scenario ω. Each set $X_{t\omega}$ is defined by physical constraints (1)–(11) associated with inflow scenario ω at time period t. The sets \mathcal{F}_n associated with tree nodes $n \in \mathcal{N}$ is defined by non-anticipativity constraints

$$x_{t\omega} - \bar{x}_n = 0.$$

(12)

These constraints ensure that control vectors $x_{t\omega}$ are scenario invariant at every tree node. Vectors $\lambda_{n\omega}$ contains the dual variables associated with non-anticipativity constraints.

3. Solution method

3.1. Scenario decomposition

The constraint matrix of \mathcal{M} is sparse and exhibits a special structure which can be exploited efficiently using a scenario decomposition method. As shown in Fig. 4, physical constraints (2)–(11) corresponds to small separate blocks containing nonzero coefficients in the constraints matrix. Each of these blocks is associated to a particular scenario $\omega \in \Omega$ in the tree. Non-anticipativity constraints (12) corresponds to a large block with nonzero coefficients. Remaining matrix coefficients are equal to zero. Physical constraints are relatively
easy to deal with since they correspond to a set of independent blocks in the constraint matrix. Conversely, non-anticipativity constraints are more difficult since they couple scenario blocks to one another.

In order to solve \mathcal{M} using the PHA, we apply Lagrangean relaxation on non-anticipativity constraints and penalize quadratically any violation of it. The resulting augmented Lagrangian is

$$A_\rho(x, \hat{x}, \lambda) = \sum_{\omega \in \Omega} p_\omega \sum_{t \in T} F_t(x_{t\omega}) - \sum_{\omega \in \Omega} \sum_{n \in \mathcal{N}(\omega)} \left(\lambda_{n\omega}(x_{t(n)\omega} - \hat{x}_n) + \frac{\rho}{2} \|x_{t(n)\omega} - \hat{x}_n\|_2^2 \right)$$

where $\rho > 0$ is the penalty parameter, $x = (x_{t\omega})$ is the scenario-wise solution, $\hat{x} = (\hat{x}_n)$ is the node-wise solution, $\lambda = (\lambda_{n\omega})$ is the dual vector associated with non-anticipativity constraints and $\mathcal{N}(\omega)$ contains nodes visited by scenario ω. All vectors are column-vectors and the operator $(\cdot)^T$ represents the transpose.

3.2. Progressive hedging algorithm

The PHA is initialized with an estimation of \hat{x}^0 and λ^0. At each iteration $k = 0, 1, 2, \ldots$ of the algorithm, two steps are performed:

Step 1. Find a new scenario-wise solution $x^{k+1} = (x_{t\omega}^{k+1})$ by maximizing $A_{\rho_k}(x, \hat{x}^k, \lambda^k)$ for $x \in X_{t\omega}$ using the current \hat{x}^k and λ^k. This large optimization problem can be decomposed
into much smaller scenario subproblems

$$
(S^k_\omega) \max_{x \in X(\omega)} \sum_{t \in T} F_t(x_{t \omega}) - \sum_{n \in N(\omega)} \left((\lambda_{m_n}^k)^T (x_{t(n)\omega} - \hat{x}_{n}^k) + \frac{\rho}{2} \|x_{t(n)\omega} - \hat{x}_{n}^k\|^2 \right)
$$

where $X(\omega)$ is defined by physical constraints (2)–(11) associated with scenario ω. Each subproblem S^k_ω corresponds to a deterministic version of M to which linear and quadratic penalty terms are added. Subproblems can be solved sequentially or in parallel.

Step 2. Update node-wise control vectors by averaging scenario-wise control vectors using

$$
\hat{x}_{n}^{k+1} \leftarrow \sum_{\omega \in \Omega(n)} p_\omega x_{t(n)\omega}^{k+1} / p_n, \quad \forall n
$$

where $\Omega(n) \subseteq \Omega$ contains all scenarios visiting node n. Update dual vectors

$$
\lambda_{m_n}^{k+1} \leftarrow \lambda_{m_n}^k + \rho \left(x_{t(n)\omega}^{k+1} - \hat{x}_{n}^{k+1} \right), \quad \forall n, \omega.
$$

Verify if the two following stopping conditions

$$
\zeta_k := \frac{1}{T} \sum_{\omega \in \Omega} \sum_{t \in T} \|x_{t \omega}^{k+1} - \hat{x}_{n(t,\omega)}^{k+1}\|_2^2 < \tilde{\varepsilon}_0 \quad (13)
$$

$$
\xi_k := \frac{|A_p(x^{k+1}, \hat{x}^{k+1}, \lambda^{k+1}) - A_p(x^k, \hat{x}^k, \lambda^k)|}{A_p(x^k, \hat{x}^k, \lambda^k)} < \tilde{\varepsilon}_1 \quad (14)
$$

are satisfied for some stopping criteria $\tilde{\varepsilon}_0, \tilde{\varepsilon}_1 > 0$. Parameters ζ_k and ξ_k measure violation of non-anticipativity constraints and the relative improvement of the augmented Lagrangian at the current iteration k. If the solution does not satisfy conditions (13) and (14), return to step 1.

Physical constraints are satisfied at each iteration since they are treated directly in S^k_ω. However, non-anticipativity constraints are expected to be violated in early iterations since these constraints are treated indirectly by penalizing violations. Linear and quadratic penalty terms in S^k_ω will ensure that the violation of non-anticipativity constraints will decrease gradually through the iterative process in order to obtain a feasible (non-anticipative) solution. The PHA is an exact method for M since this problem is linear (and convex). A proof of convergence is presented in Rockafellar and Wets [22].
3.3. Penalty parameter update

The penalty parameter ρ weights quadratic penalties in S^k_ω and corresponds to step size in dual vectors update formulas. This parameter plays a key role by controlling the rate at which feasibility and the objective value are improved. In practice, ρ should be chosen carefully in order to make an optimal compromise between these two conflicting objectives. For large values of ρ, feasibility will improve rapidly, but refinement of the objective value might be slowed down. Conversely, a large number of iterations will be required to obtain a feasible solution if ρ is small.

Theoretical results presented in Rockafellar and Wets [22] are based on using a constant penalty parameter at each iteration. For practical applications, performance of the PHA might be enhanced by changing ρ_k at each iteration. In this study, the penalty parameter is initialized with some value ρ_0 and updated using

$$\rho_{k+1} \leftarrow \mu \rho_k$$ (15)

which is the classical update formula for general augmented Lagrangian methods [25]. The rate at which ρ_k increases $\mu \geq 1$ is a constant. Parameters ρ_0 and μ must be tuned in order to minimize the number of iterations to converge without sacrificing solution quality.

4. Numerical experiment

4.1. Power system

In this experiment, we consider a simplified version of HQ’s generation scheduling problem for a $T = 93$ weeks (periods) horizon, which begins on February 1st. Fig. 5 shows the simplified power system; it accounts for most of HQ power system storage and installed capacity. The simplified system contains 25 hydro plants and 21 reservoirs which accounts for most of HQ’s power system storage and generation capacities. The total storage and generation capacities of the simplified system are 182,018 hm3 (154 TWh) and 33.2 GW, respectively. The storage is 96,889 hm3 at the beginning of the planning horizon.

The simplified transmission network contains 5 zones and 6 links. Table 4.1 shows the characteristics of the power system in each zone. Approximately half of the total storage and installed capacity is located with the La-Grande zone ($z = 1$). About 43% of these quantities is located in the Churchill Falls ($z = 2$) and Côte-Nord zones ($z = 3$). The remaining storage and installed capacity is located in the Central zone ($z = 4$). We assume no maintenance is scheduled. Therefore, all generation units are available at all time period. Piecewise linear generation functions for each hydro plant i are described using three hyperplanes. Reward functions R_j are described using 7 pieces. Shortage and surpluses are penalized using $M = 10^{12}$.

Midterm Hydro Generation Scheduling Under Uncertainty Using the Progressive Hedging Algorithm
Figure 5: Simplified power system.

Table 1: Characteristics of each zone of the transmission network.

<table>
<thead>
<tr>
<th>z</th>
<th>Load (TWh)</th>
<th>Installed capacity (GW)</th>
<th>Maximal storage (hm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>16.9</td>
<td>98 184</td>
</tr>
<tr>
<td>2</td>
<td>8.5</td>
<td>5.6</td>
<td>31 768</td>
</tr>
<tr>
<td>3</td>
<td>34.3</td>
<td>9.1</td>
<td>44 879</td>
</tr>
<tr>
<td>4</td>
<td>54.8</td>
<td>1.6</td>
<td>7 187</td>
</tr>
<tr>
<td>5</td>
<td>185.0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
4.2. Electrical load

The total electrical load to be satisfied is 282.6 TWh. Short-term (hourly, daily) variations of load at each period are represented with three levels. Fig. 6 shows variations of load intensity over the entire horizon for each level. The load is very high during winter and decreases importantly during summer and fall. The energy load is distributed in zones 2, 3, 4 and 5 of the transmission network as follow. 65% of the total load is located in the Southwest zone \((z = 5)\). 19% of the total load located in the Central zone \((z = 4)\). The remaining load (16%) is located in the Churchill Falls and Côte-Nord zones.

![Figure 6: Variations of load levels over the planning horizon.](image)

4.3. Inflow scenario tree

Reservoir inflow variability is modeled using the scenario tree shown in Fig 7. The tree represents 16 inflow scenarios and contains 1019 nodes. The planning horizon is partitioned in four different sections. The first section corresponds to the winter season during which reservoir inflows is weak and identical for all scenarios. The second section corresponds to the springflood season. Four different outcomes are possible during this section depending on the springflood timing (early or late) and intensity (intense or weak). Summer and fall inflow variability is represented in the third section of the horizon. Finally, variability of the second year is represented in the fourth section.

Reservoir inflow series associated with each section is taken from the historical record. We assume that the occurrence probability of each scenario \(\omega \in \Omega\) is \(p_\omega = 1/16\). The expected total inflow represented in the scenario tree is \(3.66 \times 10^5\) hm\(^3\) and exceeds the average historical inflow by 7.0%. The standard deviation of the total inflow represented in the scenario tree is \(2.46\) hm\(^3\) \(\times 10^4\) hm\(^3\) and is smaller than the historical standard deviation of \(3.17\) hm\(^3\) \(\times 10^4\) hm\(^3\).
4.4. Experimental set-up

The optimization problem is solved using a constant penalty parameter $\rho \in [10^{-5}, 10^{-2}]$ and updating the penalty parameter using (15) with $\mu \in [1.05, 1.60]$ and $\rho_0 \in [10^{-7}, 10^{-5}]$. The following stopping criteria $\tilde{\epsilon}_0 = 10^{-2}$ and $\tilde{\epsilon}_1 = 10^{-5}$ and used.

The PHA is implemented in C++ using version 12.4 of ILOG Concert technology library. Quadratic subproblems are solved sequentially using CPLEX barrier solver in parallel mode. Each quadratic subproblems has 33,244 decision variable and 37,275 linear constraints. All the computational results described in this section are obtained using a personal computer running on Ubuntu 12.04 64 bits with AMD Phenom II X6 2.8 GHz processor and 6 GB of RAM.

5. Results

5.1. Constant penalty parameter

Tables 2 summarize results obtained using a constant penalty parameter. According to our results, a compromise must be made between running time of the algorithm and the quality of the solution. Using a large penalty parameter increases convergence rate, but leads to a lower objective value. Using $\rho = 10^{-2}$ converged rapidly after 65 iterations, but lead to a poor solution. Reasonable solutions were obtained using $\rho \in [10^{-3}, 10^{-5}]$.

Fig. 8 shows the algorithm’s progress at each iteration when a constant penalty parameter is used. Stopping condition (13) was met before (14) for all ρ values used. Violation of non-anticipativity constraints is large initially ($\zeta_1 \approx 3 \times 10^5$), but decreases rapidly in the
Table 2: Computational performance measures of the PHA using a constant penalty parameter.

<table>
<thead>
<tr>
<th>ρ</th>
<th>Iterations</th>
<th>Time (min)</th>
<th>Objective ($\times 10^9$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-2}</td>
<td>65</td>
<td>97.0</td>
<td>5.476984</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>151</td>
<td>214.8</td>
<td>5.593470</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>157</td>
<td>241.9</td>
<td>5.600270</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>207</td>
<td>321.5</td>
<td>5.600546</td>
</tr>
</tbody>
</table>

Figure 8: Convergence with a constant penalty parameter.
first 10–12 iterations. Slower progress is observed afterwards.

5.2. Variable penalty parameter

Computational results obtained using a variable penalty parameter are reported in Table 3. The algorithm converged to a high quality solution after 21–84 iterations depending on which ρ_0 and μ were used. In general, using large values of ρ_0 and μ reduces the number of iterations, but decreases solution quality.

Table 3: Computational performance measures of the PHA using a variable penalty parameter.

<table>
<thead>
<tr>
<th>ρ_0</th>
<th>μ</th>
<th>Iterations</th>
<th>Time (min)</th>
<th>Objective ($\times 10^9$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-5}</td>
<td>1.05</td>
<td>55</td>
<td>84.1</td>
<td>5.600317</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>1.10</td>
<td>36</td>
<td>55.1</td>
<td>5.600059</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>1.20</td>
<td>27</td>
<td>41.3</td>
<td>5.599254</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>1.30</td>
<td>22</td>
<td>33.6</td>
<td>5.598417</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>1.40</td>
<td>21</td>
<td>32.1</td>
<td>5.597551</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>1.05</td>
<td>84</td>
<td>130.5</td>
<td>5.600545</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>1.10</td>
<td>55</td>
<td>85.0</td>
<td>5.600528</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>1.20</td>
<td>38</td>
<td>57.9</td>
<td>5.600476</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>1.30</td>
<td>33</td>
<td>50.5</td>
<td>5.600421</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>1.40</td>
<td>28</td>
<td>42.6</td>
<td>5.600361</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>1.50</td>
<td>23</td>
<td>35.2</td>
<td>5.600298</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>1.60</td>
<td>22</td>
<td>34.9</td>
<td>5.600239</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>1.10</td>
<td>81</td>
<td>126.9</td>
<td>5.600547</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>1.20</td>
<td>50</td>
<td>80.3</td>
<td>5.600531</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>1.30</td>
<td>43</td>
<td>65.9</td>
<td>5.600502</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>1.40</td>
<td>34</td>
<td>52.7</td>
<td>5.600460</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>1.50</td>
<td>29</td>
<td>44.3</td>
<td>5.600419</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>1.60</td>
<td>27</td>
<td>42.7</td>
<td>5.600373</td>
</tr>
</tbody>
</table>

The rate of progress obtained using a variable penalty parameter is shown in Figs. 9–11. Stopping condition (13) is met before (14) no matter which ρ_0 and μ values are used. Initially, ζ_1 is between 3×10^5 and 6×10^5. The initial objective value varied between 5.56744×10^9 and 5.60168×10^9 for $\rho_0 = 10^{-5}$ and $\rho = 10^{-7}$, respectively. Feasibility improved rapidly when large values of ρ_0 were used, but converged to a lower objective value. The value of μ influenced importantly the rate at which feasibility improved. The higher is μ, the higher is the rate of improvement. In general, using $\mu > 1$ was definitely beneficial.

6. Conclusions

In this study, a stochastic optimization model was proposed and evaluated for solving Hydro-Québec’s the midterm hydro generation scheduling problem (MGSP) under inflow...
Figure 9: Convergence with a variable penalty parameter using $\rho_0 = 10^{-5}$.

Figure 10: Convergence with a variable penalty parameter using $\rho_0 = 10^{-6}$.

Figure 11: Convergence with a variable penalty parameter using $\rho_0 = 10^{-7}$.
uncertainty. A scenario tree based was used to model reservoir inflows variability. We applied the progressive hedging algorithm (PHA) to solve this problem. The proposed model was tested by performing a numerical experiment based on a simplified version of Hydro-Québec’s generation scheduling problem. Computational results have shown that the number of iterations required to converge is quite sensitive the choice of penalty parameter. Updating the penalty parameter was required to obtain a high quality solution in reasonable running time.

Appendix A. Notations

Decision variables
- D_{tc}^i: spilled release of plant i at period t for level c ($\text{m}^3 \text{s}^{-1}$)
- q_{tc}^i: turbed release of plant i at period t for level c ($\text{m}^3 \text{s}^{-1}$)
- P_{tc}^i: hydro generation of plant i at period t for level c (MW)
- v_t^j: storage of reservoir j at the end of period t (hm^3)
- X_{tc}^ℓ: transfer on link ℓ at period t for level c (MW)

Sets
- I: hydro plants
- $I(j)$: hydro plants connected to reservoir j
- $I(z)$: hydro plants in zone z
- J: reservoirs
- L: transmission links
- $L_+(z)$: transmission links entering zone z
- $L_-(z)$: transmission links outgoing zone z
- T: time periods
- $U(j)$: upstream reservoirs of reservoir j
- N: tree nodes

Functions
- R_j: Reward for reservoir j. ($\$)
- $j(i)$: upstream reservoir for plant i
- $u(i)$: downstream reservoir for plant i

Indexes
- j: reservoir
- t: time period
- u: upstream reservoir
- c: load level
- i: hydro plant
- ℓ: transmission link
- n: tree node
Parameters

- I_j^t: Inflow in reservoir j at period t (hm3)
- d_{zc}^t: Load in zone z, for level c at period t (MW)
- T: number of time periods
- ϵ_ℓ: loss coefficient for link ℓ
- Δt_c: Duration associated with load level c (hours)

References

