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Abstract. We assess the applicability of the progressive hedging algorithm (PHA) for 
solving Hydro-Québec’s (HQ) midterm hydro generation scheduling problem (MGSP). 
This optimization problem is formulated as a large-scale multistage stochastic linear 
program (MSLP) for which decisions are distributed over an extended planning horizon 
with weekly time steps. A discretized load duration curve is used to represent short-term 
load variations at each time period. Natural inflow variability is represented by a finite 
scenario tree. Other input parameters are assumed to be deterministic. Power output of 
variable-head hydro plants is represented using concave and piecewise linear functions, 
which depend on water release and upstream and downstream reservoir levels. Reservoir 
dynamics, energy balance and transmission network constraints are also included in the 
model. The proposed model is tested on HQ power system using realistic data. 
Computational results show that the penalty parameter must be chosen carefully to 
minimize the algorithm’s running time without sacrifying solution quality. In general, the 
PHA converges rapidly to a poor solution when the penalty parameter is too large. 
Conversely, a large number of iterations is required to satisfy non-anticipativity constraints 
when penalization is too weak. For this problem, updating the penalty parameter at each 
iteration is necessary to obtain a high quality solution in reasonable time. 
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1. Introduction

Hydro-Québec’s (HQ) is the main electric utility in Québec, Canada. The company op-
erates, mostly, hydroelectric power plants with large storage capacity to meet Québec’s do-
mestic load. In this study, we consider the midterm generation scheduling problem (MGSP)
which is solved on a weekly basis by HQ’s system managers. The aim of this problem is to
find optimal water release targets and reservoir state trajectories over the coming years to
maximize efficiency. Reservoir level must be managed carefully to ensure that HQ’s system
has enough available power and stored energy to meet the domestic load efficiently at all
time.

In Québec, interannual and seasonal variability of reservoir inflows is large as shown in
Fig. 1. Seasonal cycles for load and reservoir inflows have a large amplitude and are out of
phase by a few months. The peak load period occurs during mid-winter (January-February)
when the reservoir inflows reaches its lowest intensity. Reservoirs are replenished a few
months later during the spring flood (May-July) as the snow melts and the electrical load is
much lower. At the multi-annual time scale, water must be stored during wet years in order
to meet the load during dry years.

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

WEEKS SINCE FEBRUARY 1ST

T
O

T
A

L
 IN

F
L

O
W

 (
\%

 O
F

 M
A

X
)

Figure 1: Seasonal cycle of total reservoir inflows for 42 years of historical record.

The current decision support system (DSS) used by Hydro-Québec managers is based
on a deterministic optimization model returning a detailed production plan for the coming
78–104 weeks (periods). The model takes into account reservoir dynamics, head variations,
turbine efficiency curves and transmission network constraints. However, potential sources
of uncertainty on input parameters (e.g. inflows, load, failures, ...) are neglected in the de-
terministic model. In practice, managers run their deterministic model using different inflow
scenarios (e.g. wet, dry, average). Robust solutions are obtained by adding experience-based
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restrictions (bounds) on reservoir release and storage at specific time periods.

The company is currently studying alternative approaches to incorporate reservoir in-
flows uncertainty explicitly within a new stochastic optimization model. Doing so would
hopefully increase the quality of solutions returned by the DSS and simplify the manager’s
task by reducing the necessity of relying on experience-based restrictions. Uncertainty mod-
eling in multistage problems increases dramatically the size of the optimization problem to
be solved. Sophisticated solution methods must be employed to solve efficiently this problem
with reasonable computing resources ( < 1 hour on a PC).

Reservoir management problems under inflow uncertainty were studied extensively over
the past decades. Comprehensive literature reviews can be found in [1], [2], [3] and [4]. The
most common approach for solving efficiently this class of problem relies on the dynamic
programming (DP) principle [5] and consists in applying time decomposition on the original
problem. Instead of solving directly the (large) multistage stochastic program, the approach
consists in solving a sequence of (small) subproblems. Each subproblem is associated to a
specific time period of the planning horizon and a possible state of the dynamic system. DP-
based methods were applied repeatedly for reservoir management problems in the literature
[6] and [7]. Discrete stochastic DP (SDP) was applied in reservoir management problem [8].
Unfortunately, this exact method is limited to systems with two reservoirs or less due to the
so-called curses of dimensionality. Due to this phenomenon, the computational complex-
ity of the SDP algorithm grows exponentially with the dimension of state and control vectors.

Different approximate DP (ADP) methods were developed to mitigate dimensionality
problems in DP [9]. One possible approach to reduce the size of state and control spaces
is to aggregate many reservoirs into a larger hypothetical reservoir and apply SDP over the
resulting system. This type of approach was applied for large reservoir systems [10] and [11].
The neuro-DP (NDP) algorithm [12] is a promising ADP approach to extend the applica-
bility of discrete SDP. The state space dimensionality problem is mitigated by reducing the
number states for which subproblems are solved. Approximate values of the Bellman func-
tion for unsampled states are obtained by interpolation using an artificial neural network.
Castelletti et al. [13] applied the NDP algorithm on a three-reservoir system. Their results
suggest this method is applicable for systems with more than three reservoirs. However, it
is unlikely that this method could be applicable for large hydroelectric power systems (20
reservoirs or more). The stochastic dual DP (SDDP) algorithm [14] is another type of ADP
method which was used extensively for management of large multireservoir systems [15],
[16], [17], [18] and [19]. With this method, the curses of dimensionality associated with
state and control spaces is avoided since the method is based on continuous spaces. The
nested Benders decomposition algorithm is another approach which was applied for large
reservoir systems [20] and [21].

If reservoir inflows variability is modeled using a scenario tree, the progressive hedg-
ing algorithm (PHA) proposed by Rockafellar and Wets [22] is a promising alternative to
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DP-based methods. With this approach, each subproblem is associated with a particular
scenario in the tree. Santos et al. [23] Gonçalves et al. [24] applied the PHA for a midterm
planning problem of the Brazilian system over a 6–7 period planning horizon. Their results
show that the PHA is competitive with the nested Benders decomposition method for this
problem.

This paper proposes a new stochastic optimization model to solve HQ’s scheduling prob-
lem over a 78-104 periods (weeks) horizon. Aggregated historical series are used to construct
a reservoir inflows scenario tree. Other potential sources of uncertainty (e.g. load, failures,
run-of-the-river generation, wind power, ...) are neglected in the model. Head and efficiency
variations of hydroelectric plants are taken into account using concave and piecewise lin-
ear functions. The PHA is used to solve the resulting multistage stochastic linear program
(MSLP).

The remainder of the paper is organized as follow. The mathematical formulation for
the MGSP is presented in Section 2. Section 3 presents the PHA used to solve this problem.
Section 4 describes a case study based on Hydro-Québec’s power system. Numerical results
are presented in Section 5. Comments and conclusions are drawn in Section 6.

2. Midterm generation scheduling problem

2.1. Problem description

We consider a power system composed of hydro plants i ∈ I connected to reservoirs
j ∈ J . The electrical load dtzc (MW) to be satisfied at all time periods t ∈ T = {1, 2, ..., T}
is distributed in each zone z ∈ Z of a transmission network G = (Z,L). Transmission links
ℓ ∈ L allow energy transfer between neighboring zones in the network. Short-term (hourly,
daily) load variations within any given time period t ∈ T are represented using a discretized
load duration curve. Each load level c ∈ C has an associated duration ∆tc (h). Fig. 2 shows
an example of load duration curve with three load levels.

Figure 2: Example of a discretized load duration curve.
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The objective function to be maximized is

E

[

∑

j∈J

Rj(v
j
T )−M

∑

t∈T

∑

c∈C

∑

z∈Z

(σt
zc + δtzc) I1

]

(1)

where E [· ·] is the conditional expectation operator and I1 (hm3) is the inflow vector at
the first period. We assume that the realization of I1 is revealed to the decision maker at
the beginning of the first period. The reward Rj ($) for reservoirs j ∈ J are concave and
piecewise linear functions of the storage vjT (hm3) at the end of period t = T . The constant
M > 0 is used to penalize surplus σt

zc and shortages δtzc which are the slack variables in the
energy budget equality constraints

∑

i∈I(z)

P t
ic +

∑

ℓ∈L+(z)

(1− ǫℓ)X
t
ℓc −

∑

ℓ∈L
−
(z)

X t
ℓc − σt

zc + δtzc = dtzc (2)

for each load level c, time period t and zone z. Decision variables P t
ic (MW) and X t

ℓc (MW)
represents the power output of hydro plant i and power flow on transmission link ℓ re-
spectively. The set I(z) contains hydro plants connected to zone z. Sets L+(z) ⊆ L and
L−(z) ⊆ L contain transmission links entering and going out of zone z respectively. Param-
eter ǫℓ represents the loss coefficient of links ℓ.

Hydroelectricity generation constraints

P t
ic ≤ φt

i(q
t
ic, v

t
j(i), v

t
ν(i)), ∀i, c, t (3)

ensure that hydro plants power output P t
ic (MW) is upper bounded by a generation function

φt
i (MW) which depends the turbined outflow qtic (m

3 s−1) and average storage vtj(i) and vtν(i)
during period t in the upstream reservoir j(i) and downstream reservoir ν(i). Generation
functions are concave and piecewise linear. Constraints

qtic ≤ αi
0 + αi

1v
t
j(i) + αi

2v
t
ν(i), ∀i, c, t (4)

represents the variations of maximal turbined outflow as a function of reservoir storage. αi
0,

αi
1 and αi

2 are known constants.

Reservoir storage evolves from a known initial condition vj0 according to discrete-time
continuity equation

vjt = vjt−1 −Qj,out
t +Qj,in

t + Ijt , ∀j, t. (5)

where vjt (hm3) represents storage of reservoir j at the end of period t. The controlled
outflow volume for reservoir j outlet is defined by

Qj,out
t :=

∑

c∈C

∑

i∈I(j)

(Dt
ic + qtic)β∆tc (hm3)
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where I(j) is the set of hydro plants connected to reservoir j, Dt
ic (m

3 s−1) is the spillage,
qtic (m

3 s−1) is the turbined outflow and β = 0.0036 is a constant for unit conversion. The
controlled inflow for reservoir j is defined by

Qj,in
t :=

∑

u∈U(j)

Qu,out
t

where the set U(j) contains reservoirs located upstream of reservoir j. Natural inflow Ijt
(m3 s−1) are the only random parameters for this problem.

The following bounds

0 ≤ P t
ic ≤ Pmax

it , ∀i, c, t (6)

qmin
it ≤ qtic ≤ qmax

it , ∀i, c, t (7)

Dmin
it ≤ Dt

ic ≤ Dmax
it , ∀i, c, t (8)

vmin
jt ≤ vjt ≤ vmax

jt , ∀j, t (9)

0 ≤ X t
ℓc ≤ Xmax

ℓt , ∀ℓ, t (10)

0 ≤ σt
zc, δ

t
zc, ∀z, c, t (11)

are imposed on decision variables to represent physical limits, operational constraint or
experience-based restrictions.

2.2. Inflow scenario tree

We assume that reservoir inflows vectors It = (Ijt ) (hm3) at time periods t ∈ T =
{1, 2, ..., T} are discretely distributed and that their joint distribution has a finite number
of possible outcomes. The stochastic process {It : t ∈ T } is modeled by a finite scenario
tree. Tree nodes n ∈ N represent every possible state of the stochastic process at all time
periods. Each possible scenario (realization) ω ∈ Ω of the stochastic process corresponds to
a path from the root 0 ∈ N to a leaf f(ω) ∈ N in the tree. An inflow vector In is defined at
each tree node. A simple example of a scenario tree with N = {0, 1, 2, 3, 4, 5, 6} is presented
in Fig. 3. In this example, scenario ω = 1 corresponds to the path 0-1-3.

2.3. Mathematical formulation

The problem (1)–(11) can be written

(P) max

{

∑

n∈N

pnFt(n)(x̂n) : x̂n ∈ X̂t(n), ∀n

}

where node-wise control vectors

x̂n := (vjt , q
t
ic, P

t
ic, D

t
ic, X

t
ℓc, σ

t
zc, δ

t
zc)
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Figure 3: Example of node-wise (left) and scenario-wise (right) representations of a scenario tree.

defined at each tree node n contain all the decision variables required to operate the power
system during one time period, pn and t(n) is the probability and time period associated
with node n (respectively), Ft are piecewise linear functions representing each term in the
objective (1), X̂t is a polyhedral set defined by physical constraints (2)–(11) at period t.

To apply the scenario decomposition method on P , we apply the following variable
change. Node-wise control vectors x̂n at nodes n ∈ N are replaced by scenario-wise control
vectors xtω at the corresponding time period t and scenario ω in the tree. The resulting
(equivalent) mathematical program is

(M) max

{

∑

ω∈Ω

pω
∑

t∈T

Ft(xtω) : xtω ∈ Xtω ∩ Fn(ω,t), ∀t, ω

}

where n(ω, t) is the node corresponding to time period t and scenario ω. Each set Xtω is
defined by physical constraints (1)–(11) associated with inflow scenario ω at time period t.
The sets Fn associated with tree nodes n ∈ N is defined by non-anticipativity constraints

xtω − x̂n = 0. (12)

These constraints ensure that control vectors xtω are scenario invariant at every tree node.
Vectors λnω contains the dual variables associated with non-anticipativity constraints.

3. Solution method

3.1. Scenario decomposition

The constraint matrix of M is sparse and exhibits a special structure which can be
exploited efficiently using a scenario decomposition method. As shown in Fig. 4, physical
constraints (2)–(11) corresponds to small separate blocks containing nonzero coefficients in
the constraints matrix. Each of these blocks is associated to a particular scenario ω ∈ Ω in
the tree. Non-anticipativity constraints (12) corresponds to a large block with nonzero coef-
ficients. Remaining matrix coefficients are equal to zero. Physical constraints are relatively
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easy to deal with since they correspond to a set of independent blocks in the constraint ma-
trix. Conversely, non-anticipativity constraints are more difficult since they couple scenario
blocks to one another.

Figure 4: Structure of the constraints matrix.

In order to solveM using the PHA, we apply Lagrangean relaxation on non-anticipativity
constraints and penalize quadratically any violation of it. The resulting augmented La-
grangian is

Aρ(x, x̂, λ) =
∑

ω∈Ω

pω
∑

t∈T

Ft(xtω)−

∑

ω∈Ω

∑

n∈N (ω)

(

λT
nω(xt(n)ω − x̂n) +

ρ

2
‖xt(n)ω − x̂n‖

2
2

)

where ρ > 0 is the penalty parameter, x = (xtω) is the scenario-wise solution, x̂ = (x̂n)
is the node-wise solution, λ = (λnω) is the dual vector associated with non-anticipativity
constraints and N (ω) contains nodes visited by scenario ω. All vectors are column-vectors
and the operator (·)T represents the transpose.

3.2. Progressive hedging algorithm

The PHA is initialized with an estimation of x̂0 and λ0. At each iteration k = 0, 1, 2, ...
of the algorithm, two steps are performed:

Step 1. Find a new scenario-wise solution xk+1 = (xk+1
tω ) by maximizing Aρk(x, x̂

k, λk)
for x ∈ Xtω using the current x̂k and λk. This large optimization problem can be decomposed
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into much smaller scenario subproblems

(Sk
ω) max

x∈X(ω)
pω

∑

t∈T

Ft(xtω)−

∑

n∈N (ω)

(

(λk
nω)

T (xt(n)ω − x̂k
n) +

ρ

2
‖xt(n)ω − x̂k

n‖
2
2

)

where X(ω) is defined by physical constraints (2)–(11) associated with scenario ω. Each
subproblem Sk

ω corresponds to a deterministic version ofM to which linear and quadratic
penalty terms are added. Subproblems can be solved sequentially or in parallel.

Step 2. Update node-wise control vectors by averaging scenario-wise control vectors
using

x̂k+1
n ←

∑

ω∈Ω(n)

pωx
k+1
t(n)ω/pn, ∀n

where Ω(n) ⊆ Ω contains all scenarios visiting node n. Update dual vectors

λk+1
nω ← λk

nω + ρ
(

xk+1
t(n)ω − x̂k+1

n

)

, ∀n, ω.

Verify if the two following stopping conditions

ζk :=
1

T

∑

ω∈Ω

pω
∑

t∈T

‖xk+1
tω − x̂k+1

n(t,ω)‖
2
2 < ǫ̃0 (13)

ξk :=

∣

∣Aρ(x
k+1, x̂k+1, λk+1)−Aρ(x

k, x̂k, λk)
∣

∣

Aρ(xk, x̂k, λk)
< ǫ̃1 (14)

are satisfied for some stopping criteria ǫ̃0, ǫ̃1 > 0. Parameters ζk and ξk measure violation of
non-anticipativity constraints and the relative improvement of the augmented Lagrangian
at the current iteration k. If the solution does not satisfy conditions (13) and (14), return
to step 1.

Physical constraints are satisfied at each iteration since they are treated directly in
Sk
ω. However, non-anticipativity constraints are expected to be violated in early iterations

since these constraints are treated indirectly by penalizing violations. Linear and quadratic
penalty terms in Sk

ω will ensure that the violation of non-anticipativity constraints will de-
crease gradually through the iterative process in order to obtain a feasible (non-anticipative)
solution. The PHA is an exact method forM since this problem is linear (and convex). A
proof of convergence is presented in Rockafellar and Wets [22].
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3.3. Penalty parameter update

The penalty parameter ρ weights quadratic penalties in Sk
ω and corresponds to step size

in dual vectors update formulas. This parameter plays a key role by controlling the rate
at which feasibility and the objective value are improved. In practice, ρ should be chosen
carefully in order to make an optimal compromise between these two conflicting objectives.
For large values of ρ, feasibility will improve rapidly, but refinement of the objective value
might be slowed down. Conversely, a large number of iterations will be required to obtain a
feasible solution if ρ is small.

Theoritical results presented in Rockafellar and Wets [22] are based on using a constant
penalty parameter at each iteration. For practical applications, performance of the PHA
might be enhanced by changing ρk at each iteration. In this study, the penalty parameter
is initialized with some value ρ0 and updated using

ρk+1 ← µρk (15)

which is the classical update formula for general augmented Lagrangian methods [25]. The
rate at which ρk increases µ ≥ 1 is a constant. Parameters ρ0 and µ must be tuned in order
to minize the number of iterations to converge without sacrifying solution quality.

4. Numerical experiment

4.1. Power system

In this experiment, we consider a simplified version of HQ’s generation scheduling prob-
lem for a T = 93 weeks (periods) horizon, which begins on February 1st. Fig. 5 shows
the simplified power system; it accounts for most of HQ power system storage and installed
capacity. The simplified system contains 25 hydro plants and 21 reservoirs which accounts
for most of HQ’s power system storage and generation capacities. The total storage and
generation capacities of the simplified system are 182 018 hm3 (154 TWh) and 33.2 GW,
respectively. The storage is 96 889 hm3 at the beginning of the planning horizon.

The simplified transmission network contains 5 zones and 6 links. Table 4.1 shows the
characteristics of the power system in each zone. Approximately half of the total storage
and installed capacity is located with the La-Grande zone (z = 1). About 43% of theses
quantities is located in the Churchill Falls (z = 2) and Côte-Nord zones (z = 3). The
remaining storage and installed capacity is located in the Central zone (z = 4). We assume
no maintenance is scheduled. Therefore, all generation units are available at all time pe-
riod. Piecewise linear generation functions for each hydro plant i are described using three
hyperplanes. Reward functions Rj are described using 7 pieces. Shortage and surpluses are
penalized using M = 1012.
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Figure 5: Simplified power system.

Table 1: Characteristics of each zone of the transmission network.

z Load Installed capacity Maximal storage
(TWh) (GW) (hm3)

1 0.0 16.9 98 184
2 8.5 5.6 31 768
3 34.3 9.1 44 879
4 54.8 1.6 7 187
5 185.0 0 0
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4.2. Electrical load

The total electrical load to be satisfied is 282.6 TWh. Short-term (hourly, daily) vari-
ations of load at each period are represented with three levels. Fig. 6 shows variations of
load intensity over the entire horizon for each level. The load is very high during winter
and decreases importantly during summer and fall. The energy load is distributed in zones
2, 3, 4 and 5 of the transmission network as follow. 65% of the total load is located in the
Southwest zone (z = 5). 19% of the total load located in the Central zone (z = 4). The
remaining load (16%) is located in the Churchill Falls and Côte-Nord zones.
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Figure 6: Variations of load levels over the planning horizon.

4.3. Inflow scenario tree

Reservoir inflow variability is modeled using the scenario tree shown in Fig 7. The tree
represents 16 inflow scenarios and contains 1019 nodes. The planning horizon is partitioned
in four different sections. The first section correponds to the winter season during which
reservoir inflows is weak and identical for all scenarios. The second section corresponds to
the springflood season. Four different outcomes are possible during this section depending
on the springflood timing (early or late) and intensity (intense or weak). Summer and fall
inflow variability is represented in the third section of the horizon. Finally, variability of the
second year is represented in the fourth section.

Reservoir inflow series associated with each section is taken from the historical record.
We assume that the occurence probability of each scenario ω ∈ Ω is pω = 1/16. The
expected total inflow represented in the scenario tree is 3.66 ×105 hm3 and exceeds the
average historical inflow by 7.0%. The standard deviation of the total inflow represented in
the scenario tree is 2.46 hm3 ×104 hm3 and is smaller than the historical standard deviation
of 3.17 hm3 ×104 hm3.
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Figure 7: Scenario tree.

4.4. Experimental set-up

The optimization problem is solved using a constant penalty parameter ρ ∈ [10−5, 10−2]
and updating the penalty parameter using (15) with µ ∈ [1.05, 1.60] and ρ0 ∈ [10−7, 10−5].
The following stopping criteria ǫ̃0 = 10−2 and ǫ̃1 = 10−5 and used.

The PHA is implemented in C++ using version 12.4 of ILOG Concert technology library.
Quadratic subproblems are solved sequentially using CPLEX barrier solver in parallel mode.
Each quadratic subproblems has 33,244 decision variable and 37,275 linear constraints. All
the computational results described in this section are obtained using a personal computer
running on Ubuntu 12.04 64 bits with AMD Phenom II X6 2.8 GHz processor and 6 GB of
RAM.

5. Results

5.1. Constant penalty parameter

Tables 2 summarize results obtained using a constant penalty parameter. According to
our results, a compromise must be made between running time of the algorithm and the
quality of the solution. Using a large penalty parameter increases convergence rate, but
leads to a lower objective value. Using ρ = 10−2 converged rapidly after 65 iterations, but
lead to a poor solution. Reasonable solutions were obtained using ρ ∈ [10−3, 10−5].

Fig. 8 shows the algorithm’s progress at each iteration when a constant penalty param-
eter is used. Stopping condition (13) was met before (14) for all ρ values used. Violation of
non-anticipativity constraints is large initially (ζ1 ≈ 3 × 105), but decreases rapidly in the
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Table 2: Computational performance measures of the PHA using a constant penalty parameter.

ρ Iterations Time Objective
(min) (×109$)

10−2 65 97.0 5.476984
10−3 151 214.8 5.593470
10−4 157 241.9 5.600270
10−5 207 321.5 5.600546
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Figure 8: Convergence with a constant penalty parameter.
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first 10–12 iterations. Slower progress is observed afterwards.

5.2. Variable penalty parameter

Computational results obtained using a variable penalty parameter are reported in Table
3. The algorithm converged to a high quality solution after 21–84 iterations depending on
which ρ0 and µ were used. In general, using large values of ρ0 and µ reduces the number of
iterations, but decreases solution quality.

Table 3: Computational performance measures of the PHA using a variable penalty parameter.

ρ0 µ Iterations Time Objective
(min) (×109$)

10−5 1.05 55 84.1 5.600317
10−5 1.10 36 55.1 5.600059
10−5 1.20 27 41.3 5.599254
10−5 1.30 22 33.6 5.598417
10−5 1.40 21 32.1 5.597551
10−6 1.05 84 130.5 5.600545
10−6 1.10 55 85.0 5.600528
10−6 1.20 38 57.9 5.600476
10−6 1.30 33 50.5 5.600421
10−6 1.40 28 42.6 5.600361
10−6 1.50 23 35.2 5.600298
10−6 1.60 22 34.9 5.600239
10−7 1.10 81 126.9 5.600547
10−7 1.20 50 80.3 5.600531
10−7 1.30 43 65.9 5.600502
10−7 1.40 34 52.7 5.600460
10−7 1.50 29 44.3 5.600419
10−7 1.60 27 42.7 5.600373

The rate of progress obtained using a variable penalty parameter is shown in Figs. 9–
11. Stopping condition (13) is met before (14) no matter which ρ0 and µ values are used.
Initially, ζ1 is between 3×105 and 6×105. The initial objective value varied between 5.56744
×109$ and 5.60168 ×109$ for ρ0 = 10−5 and ρ = 10−7, respectively. Feasibility improved
rapidly when large values of ρ0 were used, but converged to a lower objective value. The
value of µ influenced importantly the rate at which feasibility improved. The higher is µ,
the higher is the rate of improvement. In general, using µ > 1 was definitely beneficial.

6. Conclusions

In this study, a stochastic optimization model was proposed and evaluated for solving
Hydro-Québec’s the midterm hydro generation scheduling problem (MGSP) under inflow
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Figure 9: Convergence with a variable penalty parameter using ρ0 = 10−5.

10
0

10
1

10
2

10
−3

10
−1

10
1

10
3

10
5

ζ k

 

 

µ = 1.05
µ = 1.30
µ = 1.60

10
0

10
1

10
2

5.6

5.6005

5.601

5.6015

5.602

ITERATIONS

O
B

JE
C

T
IV

E
(×

 1
09  $

)

Figure 10: Convergence with a variable penalty parameter using ρ0 = 10−6.
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Figure 11: Convergence with a variable penalty parameter using ρ0 = 10−7.
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uncertainty. A scenario tree based was used to model reservoir inflows variability. We
applied the progressive hedging algorithm (PHA) to solve this problem. The proposed
model was tested by performing a numerical experiment based on a simplified version of
Hydro-Québec’s generation scheduling problem. Computational results have shown that the
number of iterations required to converge is quite sensitive the choice of penalty parameter.
Updating the penalty parameter was required to obtain a high quality solution in reasonable
running time.

Appendix A. Notations

Decision variables

Dt
ic spilled release of plant i at period t for level c (m3 s−1)
qtic turbined release of plant i at period t for level c (m3 s−1)
P t
ic hydro generation of plant i at period t for level c (MW)

vjt storage of reservoir j at the end of period t (hm3)
X t

ℓc transfer on link ℓ at period t for level c (MW)

Sets

I hydro plants
I(j) hydro plants connected to reservoir j
I(z) hydro plants in zone z

J reservoirs
L transmission links

L+(z) transmission links entering zone z
L−(z) transmission links outgoing zone z
T time periods

U(j) upstream reservoirs of reservoir j
N tree nodes

Functions

Rj Reward for reservoir j. ($)
j(i) upstream reservoir for plant i
ν(i) downstream reservoir for plant i

Indexes

j reservoir
t time period
u upstream reservoir
c load level
i hydro plant
ℓ transmission link
n tree node

Midterm Hydro Generation Scheduling Under Uncertainty Using the Progressive Hedging Algorithm
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Parameters

Ijt Inflow in reservoir j at period t (hm3)
dtzc Load in zone z, for level c at period t (MW)
T number of time periods
ǫℓ loss coefficient for link ℓ

∆tc Duration associated with load level c (hours)
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