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Abstract. The combination of inventory management and vehicle routing decisions yields 
a difficult combinatorial optimization problem called the Inventory-Routing Problem (IRP). 
This problem arises when both types of decisions must be taken jointly, which is the case 
in vendor-managed inventory systems. The IRP has received significant attention in 
recent years. Several heuristic and exact algorithms are available for its static and 
deterministic versions. In the dynamic version of the IRP, customer demands are 
gradually revealed over time and planning must be made at the beginning of each of 
several periods. In this context, one can sometimes take advantage of stochastic 
information on demand through the use of forecasts, for example. We propose different 
policies to handle the dynamic and stochastic version of the IRP. We perform an extensive 
computational analysis on randomly generated instances in order to compare several 
solution policies. Amongst other conclusions we show that it is possible to take advantage 
of stochastic information to generate better solutions albeit at the expense of more 
computing time. We also show that the use of a longer rolling horizon step does not help 
improve solutions. Inventory holding costs have a positive correlation with solution cost. 
Our experiments also demonstrate that higher safety stocks lower the solution costs since 
customers are covered against demand variations and require fewer visits. Finally, we 
show that ensuring consistent solutions over time increases the cost of the solutions much 
more under a dynamic environment than in a static setting.  

Keywords. Dynamic demand, stochastic demand, inventory-routing, rolling horizon 
algorithm, heuristic. 
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1 Introduction

In order to derive a competitive advantage, suppliers can sometimes reduce the
overall costs of their operations by combining their routing, inventory and de-
livery decisions instead of optimizing them separately. These decisions can be
centralized through the implementation of a vendor-managed inventory (VMI)
strategy, which combines the replenishment and the distribution processes, lead-
ing to an overall reduction of logistics costs [33].

From an operational perspective, the VMI strategy is based on the solution
of a difficult combinatorial optimization problem called the Inventory-Routing
Problem (IRP), which integrates inventory management and vehicle routing
decisions over several periods. The IRP has received increased attention in
recent years. Several heuristics [9, 5, 14] as well as exact algorithms [3, 45, 13]
have been proposed for the single vehicle version of the problem. The multi-
vehicle case (MIRP) has also been solved heuristically [15] and exactly [1, 13].
In addition, an extended version of the MIRP incorporating several consistency
features has been solved heuristically and exactly by Coelho et al. [15] and
Coelho and Laporte [13], respectively. However, the studies described in these
papers deal with a static and deterministic version of the problem in which all
information is available when decisions are made. Literature reviews on the IRP
can be found in Campbell et al. [12], Cordeau et al. [16] and Andersson et al.
[2].

Dynamic problems are frequently encountered in practice. They reflect real-
life situations in which one has to make decisions without full knowledge of
future events. Examples of such problems arise in the context of the Dynamic
Vehicle Routing Problem in which customer demands are gradually revealed
over time [8, 46, 40]. In Dynamic and Stochastic Inventory-Routing Problems
(DSIRP), customer demand is known in a probabilistic sense, thus yielding a
dynamic and stochastic problem. In the IRP literature, dynamic problems have
been studied by Kleywegt et al. [30, 31] who applied dynamic programming, and
by Hvattum and Løkketangen [25] and Hvattum et al. [26] who used scenario
trees and a progressive hedging algorithm. Recently, Bertazzi et al. [10] have
formulated the stochastic IRP as a dynamic program and have solved it by
means of a hybrid rolling horizon algorithm. This algorithm estimates unknown
demands on the basis of their past average, and then solves a deterministic
instance.

Solving a dynamic problem consists of proposing a solution policy as opposed
to computing a static output [8]. A possible policy is to optimize a static instance
whenever new information becomes available. The drawback of such a method
is that it is often very time consuming to solve a large number of instances.
A more common policy is to apply the static algorithm only once and then
reoptimize the problem through a heuristic whenever new information is made
available. A third policy, which can be combined with either of the first two, is
to take advantage of the probabilistic knowledge of future information and make
use of forecasts. In this paper we use forecasts in combination with the first
policy. For more information on the solution of dynamic problems, see Psaraftis
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[41], Ghiani et al. [21] and Berbeglia et al. [8].
The deterministic algorithms developed by Coelho et al. [14] allow the so-

lution of DSIRPs within a rolling horizon framework, where one uses demand
forecasts as an approximation of the future unknown demand. As noted by Özer
[37], the use of past information can become an important aspect of the inven-
tory management process provided it is properly used. Demand forecasts are
typically needed for practical inventory control systems, the most common ap-
proach being the extrapolation of historical data based on the statistical analysis
of time series [6].

Our aim is to describe and compare several solution policies for the DSIRP in
which the objective is to minimize the total inventory, distribution and shortage
costs. There are key differences between our approach and previous ones, in
particular that of Bertazzi et al. [10]. One of these lies in the fact that we develop
and compare several policies to solve the same problem, instead of only one. In
particular, we are able to evaluate the performance of our method on inventory
policies that are more general than the (hard constraint) assumption made in
that study. Moreover, we propose a method that can make use of historical
data in order to take into account future unknown demands, thus being able to
efficiently solve instances in which the demand presents a trend or seasonalities,
which was not previously the case. We also consider a dynamic environment
in which some information arrives over time and is used in a rolling horizon
framework. In addition, as in Coelho et al. [14], we allow the use of lateral
transshipments between customers as a means to avoid stockouts when demand
is high. Finally, we evaluate the impact of imposing some consistency features
to the solutions of dynamic and stochastic instances of the IRP, thus extending
the scope of the study of Coelho et al. [15]. In addition to proposing an efficient
and flexible solution methodology for the DSIRP, one of our main scientific
contributions is to evaluate the value of demand forecasts and transshipments.

The remainder of the paper is organized as follows. In Section 2 we formally
define the DSIRP and we describe in Section 3 the strategies we have developed
to solve it. Implementation details are provided in Section 4. This is followed
by the results of extensive computational experiments in Section 5, and by
conclusions in Section 6.

2 Problem description

We now formally introduce the DSIRP. The problem is defined on a graph G =
(V,A), where V = {0, ..., n} is the vertex set and A = {(i, j) : i, j ∈ V, i 6= j} is
the arc set. Vertex 0 is a depot at which the supplier is located and the vertices
of V ′ = V \{0} represent customers. The problem is defined over an horizon of
length p and at each time period t ∈ T = {1, ..., p} the demand dti of customer i
is a random variable Dt

i . In practice, the demand is not known by the decision
maker who has to estimate it on the basis of historical data. We assume the
decision maker can use any kind of forecast and input this information into
the algorithmic framework we provide. The decision maker realizes the actual
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values of dti at the end of each period t. A unit inventory holding cost hi is
incurred by customer i and by the supplier at each period, and customer i has
an inventory holding capacity Ci. We assume the supplier has enough inventory
to meet all the demand during the planning horizon. If the demand of customer
i is higher than its inventory level, it is then lost and a unit shortage penalty pi
is incurred. At the beginning of the planning horizon the decision maker knows
the inventory level I00 and I0i of the supplier and customer i, respectively.

As is common in the IRP literature, we assume that a single vehicle of
capacity Q is available [9, 3, 5, 9, 10, 14]. The vehicle is able to perform one
route per time period, from the supplier to a subset of customers. A routing
cost cij is associated with arc (i, j) ∈ A. We also consider that the supplier uses
an order-up-to inventory policy. This policy has been widely used in IRPs and
related problems [9, 3, 5, 1, 14] and ensures that whenever a customer is visited,
the quantity delivered is that needed to fill its inventory capacity. To ensure
the feasibility of such a policy, given that there is only one capacitated vehicle
available, we assume direct deliveries can take place from the supplier to any
customer, by subcontracting to a carrier, to allow for planned deliveries to meet
the OU requirements. In addition, after the demand if realized, if a customer
faces a shortage it can arrange a lateral emergency transshipment from another
customer if this is feasible. Both types of outsourced deliveries (direct deliveries
and lateral emergency transshipments) are only made by direct shipping and
the unit cost associated with direct deliveries or transshipments from i to j is
βcij , where β > 0. As is standard in vehicle routing, travel costs are distance-
dependent and are unrelated to the vehicle load. However, direct delivery and
transshipment costs are distance- and volume-dependent because this is often
how outsourced carriers define the terms of their contracts.

Regarding temporal issues, we consider that the decision maker first decides
which customers to replenish in each period as well as the associated vehicle
route and the direct shipments, if any. After demand is revealed, lateral trans-
shipments may be arranged if any customer faces a shortage.

The variables and constraints of the model are as follows. Let Iti be the
inventory level at customer i at the end of period t, qti the quantity delivered to
customer i in period t using the supplier’s vehicle, wtij the quantity carried by
the outsourced carrier from customer i to customer j in period t, and lti the lost
demand at customer i in period t due to insufficient inventory. The inventory
level at the end of period t at customer i is then

Iti = It−1i + qti +
∑
j∈V

wtji −
∑
j∈V′

wtij − dti + lti i ∈ V ′ t ∈ T ′. (1)

The objective is to minimize the total inventory, shortage, routing an trans-
shipment costs over the planning horizon, that is

minimize
∑
t∈T

∑
i∈V

hiI
t
i +

∑
t∈T

∑
i∈V′

pil
t
i + βcij

∑
t∈T

∑
i,j∈V′

wtij + crt , (2)

where crt represents the cost of the route performed in period t ∈ T , which can
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be obtained by solving a Traveling Salesman Problem over all the customers
visited in period t.

3 Solution policies

The problem can be solved under a proactive policy or under a reactive policy,
depending on whether demand forecasts are made or not. For each of these two
policies emergency lateral transshipments can be allowed or not. This yields a
total of four policies, which are all implemented in a rolling horizon fashion.

3.1 Reactive policies

Under reactive policies, which are sometimes called “wait and see”, one observes
the state of the system in order to make the next decision regarding routing and
delivery. Formally, a reactive policy is defined as an (s, S) replenishment system
under which whenever the inventory reaches the reorder point s, it triggers a
replenishment order to bring the inventory position up to level S. The reorder
point s should consider the delivery lead time and the stockout risk resulting
from the stochasticity of the demand.

3.1.1 Routing only

Under this policy, deliveries are performed by the supplier’s vehicle and no emer-
gency lateral transshipment takes place when a customer runs out of inventory.
Routing decisions are based solely on a customer-dependent threshold si and
on its inventory level. If the inventory level at customer i is below si when the
actual demand is realized at the end of period t, then customer i is selected
to be served in period t + 1. The threshold can be updated after each period.
The replenishment level Si usually depends on ordering and holding costs and
is set to bring the inventory level up to a target value. This inventory policy
has been widely studied and used in other IRP studies [9, 10, 5, 15, 14]. As
noted by [10] and [15], the OU policy is also relevant from a practical point of
view and simplifies the decision making process while ensuring the stability and
consistency of the replenishments. As in these studies, we also assume that the
target level meets the customer inventory capacity. As mentioned, in order to
ensure that this rule is always met and to avoid infeasibilities due to insufficient
vehicle capacity, direct deliveries are allowed to take place from the depot. This
ensures that all customers i whose inventory level is below the threshold si will
have their inventories filled to their capacity in the next period.

3.1.2 Routing and transshipment

This policy allows lateral transshipments between customers as an emergency
measure against stockouts. The decision regarding whether or not to visit cus-
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tomer i is dependent on the threshold si as before. The invenotry policy applied
still follows an OU policy in which direct deliveries are allowed to take place
from the supplier. After these decisions have been made, demand is revealed. If
a customer runs out of inventory when its demand is realized, lateral transship-
ments can take place whenever they are possible and economically interesting.
Lateral transshipments are allowed only as an emergency measure, i.e. they can-
not be used to move inventory to a location having a lower holding cost. This
policy is in line with the description of emergency transshipments provided by
[36] and [38].

3.2 Proactive policies

A proactive policy not only observes the state of the system but also attempts
to anticipate its future state by forecasting the demand and by using this infor-
mation in the planning process.

3.2.1 Routing only

This policy makes use of forecasts as a means of taking into account future de-
mand but does not allow lateral transshipments. Once forecasts are obtained,
the problem can be solved as a deterministic IRP. Direct deliveries from the sup-
plier to the customers are allowed to ensure the feasibility of the OU policy. Un-
der this policy, we first compute an f -period forecast for each of the customers,
on the basis of their historical demands. A prediction interval that makes use
of probabilistic information is computed for each customer. Forecasts are then
used as a proxy for the unknown demands and initial inventory levels are set
equal to the last known inventory level of each customer. The problem can
then be solved heuristically as a deterministic IRP. The algorithm provides an
f -period plan, of which only the first-period solution is implemented. Demands
are then realized, new forecasts are computed and the process is reiterated.

3.2.2 Routing and transshipment

As an extension of the previous policy, in this case lateral transshipments are
allowed to take place after the demand is realized.

4 Algorithms

In this section we describe the four algorithms resulting from the solution policies
described in Section 3.
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4.1 Reactive policies

We first describe the two algorithms proposed to implement the reactive policies,
with or without the use of lateral transshipments.

4.1.1 Routing only

The first decision made under this policy regards the level of the inventory at
which the reorder point si of customer i is set. It is equal to an estimate of
the expected demand during the lead time L, plus a safety stock dependent on
demand variability, lead time and target service level. We denote the estimate of
the expected demand µi of customer i per period by µ̂i and that of its standard
deviation σi by σ̂i. These values as well as the resulting threshold can be
updated at every period. Following classical inventory management practices
[20], and assuming independent and normally distributed demands, si can be
computed as

si = Lµ̂i + zα

√
σ̂i

2L, (3)

where α is the probability of a stockout and zα is the α-order quantile of the
demand distribution. The quantity 1 − α is usually referred to as the service
level.

The selection of customers to serve with the supplier’s vehicles and through
direct deliveries, as well as the quantities delivered by each option yields an
NP-hard problem. However, since these decisions should be taken only once for
every period, and given the size of the instances considered in this study, we
have decided to solve this problem exactly by means of a mixed-integer linear
program (MILP). The problem is defined as follows.

If the inventory level of customer i is below its threshold si, the total quantity
that must be delivered is then the one needed to fill its capacity (i.e. an OU policy
applies); otherwise no delivery is made. This quantity defines the parameter d′i.
We then solve the following MILP, called Routing-Direct (RD), in order to
decide which customers are visited by the supplier’s vehicle, which ones are
visited through direct deliveries (and combinations of these two options), and
the quantities delivered by each mode. When the routing cost matrix cij is
symmetric, as is the case in our computational experiments, we work with an
undirected formulation in order to reduce the number of variables. Thus, the
routing variables xij(i < j) are equal to the number of times edge (i, j) is
traversed. We also introduce binary variables yi, equal to one if and only if
vertex i (the supplier or a customer) is visited by the supplier’s vehicle. We
denote by qi the quantity delivered by the supplier’s vehicle and by wi the
quantity delivered through direct deliveries to customer i. The problem can
then be formulated as follows:

(RD) minimize
∑
i∈V

∑
j∈V,i<j

cijxij + β
∑
i∈V

wic0i, (4)
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subject to

qi + wi = d′i i ∈ V ′ (5)∑
i∈V′

qi ≤ Q (6)

qi ≤ Qyi i ∈ V ′ (7)∑
j∈V,i<j

xij +
∑

j∈V,j<i
xji = 2yi i ∈ V (8)

∑
i∈S

∑
j∈S,i<j

xij ≤
∑
i∈S

yi − ym S ⊆ V ′, for some m ∈ S (9)

qi, wi ≥ 0 i ∈ V ′ (10)

xi0 ∈ {0, 1, 2} i ∈ V ′ (11)

xij ∈ {0, 1} i, j ∈ V ′ (12)

yi ∈ {0, 1} i ∈ V. (13)

The objective function (4) defines the minimization of routing and direct de-
livery costs. Constraints (5) state that the total delivered quantity d′i is equal to
the quantity qi delivered by the supplier’s vehicle, plus the quantity wi supplied
by means of a direct delivery. Constraints (6) ensure that the vehicle capacity
is not exceeded, while constraints (7) guarantee that only customers assigned
a visit can have quantities delivered by the supplier vehicle. Constraints (8)
and (9) are degree constraints and subtour elimination constraints, respectively.
Constraints (10)−(13) enforce the integrality and non-negativity conditions on
the variables.

The RD model can be simplified by preprocessing all customers with zero d′i
and removing the corresponding variables.

4.1.2 Routing and transshipment

The implementation of this policy is like the previous one except that after
the solution has been computed, demands are revealed and lateral transship-
ments are allowed to take place. These are computed by means of the following
min-cost network flow problem. This model, called Transshipment Origins-
Destinations (TOD), optimizes the quantities as well as origins and destinations
of the lateral transshipments. Note that in this model the parameter I0i rep-
resents the initial inventory of customer i at the beginning of each time slice
of the rolling horizon, unlike the initial inventory of the instance being solved
as it was defined in Section 2. It is solved once per period, after demands are
realized. The problem is defined as follows:

(TOD) minimize β
∑
i∈V′

∑
j∈V′

cijwij +
∑
i∈V′

pili +
∑
i∈V′

Iihi (14)
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subject to

Ii = I0i +
∑
j∈V′

wji −
∑
j∈V′

wij + li i ∈ V ′ (15)

0 ≤ Ii ≤ Ci i ∈ V ′ (16)

0 ≤ li ≤ −min{0, I0i } i ∈ V ′ (17)

0 ≤ wij ≤ min{max{0, I0i },−min{0, I0j }} i, j ∈ V ′. (18)

The objective function (14) minimizes the total lateral transshipment, lost
demand and inventory costs. Constraints (15) ensure flow conservation by stat-
ing that the final inventory of customer i is the sum of its initial inventory,
plus all quantities transshiped to i, minus all quantities transshiped from i to
other customers, plus the lost demand. Constraints (16) set bounds on the final
inventory. Constraints (17) define bounds on the lost demand of customer i:
if its initial inventory is non-negative, then no demand can be lost, and both
bounds are zero; otherwise, a minimum of zero and a maximum of I0i units can
be lost. Likewise, constraints (18) impose bounds on the flows of transshipment
arcs. There are four possible combinations of inventory levels for i and j, all of
which can be handled by these constraints:

1. I0i ≥ 0 and I0j ≥ 0: the inner min{0, I0j } is zero, setting the right-hand side
of the constraint to zero. No transshipment should occur only to relocate
inventory, since j does not need an emergency transshipment;

2. I0i ≥ 0 and I0j < 0: the inner min{0, I0j } is I0j since this quantity is nega-

tive; the outer min{I0i , I0j } is then the minimum between the availability

I0i and the requirement −I0j . This is then the upper bound on the arc of
the emergency transshipment from i to j;

3. I0i < 0 and I0j ≥ 0: both inner functions return zero; the upper bound is
then also zero, since j does not need an emergency transshipment and i
does not have a surplus;

4. I0i < 0 and I0j < 0: the max function returns zero and the inner min

function returns −I0j ; the outer function then becomes min{0, I0j } which
returns zero as the upper bound flow on the arc flow, since i does not have
enough inventory to supply to j.

We depict in Figure 1 a simple example of this network flow problem. The
flow on the small dashed arcs equals the initial inventory level at customer i.
Note that this number represents the surplus available at vertex i. If I0i is
negative, it will enable customer i to have a lost demand. Then the flow over
the large dashed arcs lies in the interval [0,−min{0, I0i }] and represents the lost
demand of customer i. Note that if I0i is positive, the flow on this arc is set
to zero; if I0i is negative, it represents the lost demand and lies between zero
and −I0i , i.e. this is the case in which all the excess demand is lost. The costs
of these arcs are equal to pi. The solid arcs represent the inventory carried at
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customer i at the end of the period. The flows on these arcs are bounded by
[0, Ci] and their associated costs are hi. Finally, the dotted arcs in the middle
represent transshipments. They are defined between any pair of vertices (i, j),
in both directions, and their cost is βcij . The flows on these arcs lie in the
interval

[
0,min{max{0, I0i },−min{0, I0j }}

]
.

1"

2"

n"

sink"lost"
demand"

I1"

I2"

In"
0"

0"

0"

[0,"–"min"{0,"Ii"}]"0"" [0,"Ci]"

[0,"min{max{0,"Ii"},"–"min"{0,"Ij"}]"
"0""0"

Figure 1: Example of the network flow problem solved to decide of transship-
ment quantities, origins and destinations.

4.2 Proactive policies

We now describe the two algorithms used to implement the proactive policies.

4.2.1 Routing only

This policy makes use of forecasts on future demand to help make current de-
cisions. The first decision relates to the choice of a forecasting method. There
exist several methods for forecasting future demand based on time series anal-
ysis. For an overview, see [34]. In this paper we apply the exponential smooth-
ing technique which assigns exponentially smaller weights to past observations.
This is a simple yet powerful method capable of identifying changes in the mean,
trend or seasonalities in time series. It provides a point forecast, i.e. a single
value representing the expected future demand, or a prediction interval, i.e. a
point forecast and an estimated variance (see Hyndman et al. [28]).
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The second decision regards the length f of the forecasting and rolling hori-
zon. A compromise must be made between a short horizon which yields faster
computations but lower solution quality, and a longer horizon which considers
more information but requires more extensive computations. In Section 5.3.5
we examine the impact of f on the solution process.

Finally, the third decision is how to incorporate future demand forecasts in
an IRP heuristic. We have adapted the work of [14] which uses an adaptive
large neighborhood search (ALNS) matheuristic and provides very good results
on benchmark static instances. This heuristic is described in Section 4.3 and can
handle both the OU policy or the more general maximum level (ML) inventory
policy, which does not force the deliveries to fill the customer capacity. Once
forecasts are available, the dynamic problem reduces to a static one.

4.2.2 Routing and transshipments

This policy works much like the previous one, except that after vehicle routes are
created for all periods of the rolling horizon and the first of them is implemented,
demands are revealed and lateral transshipments are allowed as an emergency
measure against shortages. The way these transshipments are computed follows
the same min-cost network flow problem, as in Section 4.1.2.

4.3 ALNS matheuristic

The algorithm proposed by [14] is an implementation of the ALNS algorithm
originally proposed by [43] for the Vehicle Routing Problem and already suc-
cessfully applied to a number of other contexts [39, 7, 24, 32]. In this implemen-
tation, some subproblems are solved exactly as min-cost network flow problems.
It can therefore be described as a matheuristic [35], i.e. as a hybridization of
a heuristic and of a mathematical programming algorithm. This algorithm is
highly suitable for the problem at hand because of its generality and flexibility.
It provides a highly diversified search through the multiplicity of its operators
and through the use of a random mechanism for their selection. This implemen-
tation uses a subset of the operators used in [14] and runs for fewer iterations
in order to make it faster. Because of the dynamic nature of our problem, we
must indeed be able to run it several times for a single instance. The impact of
this implementation choice is analyzed in Section ??.

In summary, the algorithm of [14] creates different vehicles routes at each
ALNS iteration by removing and reinserting customers into vehicle routes. This
is done by selecting one of several simple operators to explore different neigh-
borhoods of the incumbent solution. Such operators include random insertions
or removals, best insertions or removals, cluster insertions or removals, empty-
ing routes, swapping routes and moving customers assignments. After vehicle
routes have been created, the remaining problem is that of determining delivery
quantities and transshipment origins, destinations and quantities, while mini-
mizing the total inventory-distribution cost. This problem is solvable efficiently
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and exactly using a min-cost network flow algorithm and can easily handle both
the ML and OU policies. This approach was shown in Coelho et al. [14] to
generate IRP solutions with value lying within 0.50% of optimality.

Each operator i is assigned a weight ωi whose value depends on its past
performance and on its score. Given h operators with weights ωi, operator j

will be selected with probability ωj/
h∑
i=1

ωi. Initially, all weights are equal to

one and all scores are equal to zero. Operators are rewarded according to the
their past performance: they receive a high reward σ1 if they yield a new best
solution, a medium reward σ2 if their solution is better than the incumbent
one, or a low reward σ3 if the solution they provide is worse but still accepted.
Initially, all operators have the same probability of being selected. After ϕ
iterations, scores are computed taking into account the rewards accumulated as
follows. Let πi and oij be, respectively, the score of operator i and the number
of times it has been used in the last segment j. The updated weights are then

ωi :=

{
ωi if oij = 0

(1− η)ωi + ηπi/oij if oij 6= 0,
(19)

where η ∈ [0, 1] is called the reaction factor, controlling how quickly the weight
adjustment reacts to changes in the movement performance. All scores are reset
to zero.

New solutions are accepted or rejected according to a simulated annealing
criterion: given a solution s, a neighbor solution s′ is accepted if z(s′) < z(s),
and with probability e−(z(s

′)−z(s))/τ otherwise, where z(s) is the solution cost
and τ > 0 is the current temperature. The temperature is initialized at τstart
and is decreased by a cooling rate factor φ at each iteration, where 0 < φ < 1.

We have used the following destroy and repair operators. In what follows, all
insertions are performed following the cheapest insertion rule and ρ is an integer
randomly drawn from the interval [1, n] using a semi-triangular distribution with
a negative slope.

• Destroy operators

– Randomly remove ρ: This operator randomly selects one period
and removes one randomly selected customer from it. It is repeated
ρ times.

– Shaw removal: Following the ideas developed by [43] and [44], this
operator removes customers that are relatively close to each other.
Specifically, it randomly selects one period and one customer served
in this period, it computes the distance distmin to the closest cus-
tomer also being served by the same route, and it removes all cus-
tomers within 2distmin units from the selected route.

– Empty one period: This operator selects one random period and
removes all customers assigned to it.
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– Remove one customer: This operator randomly selects one cus-
tomer and removes all its assignments to any periods.

• Repair operators

– Randomly insert ρ: This operator randomly inserts ρ customers
into the current solution. Specifically, it selects one random customer
and one random period, and inserts it into the route in that period
if it is not already present. This operator is applied ρ times.

– Shaw insertions: This operator is similar to the Shaw removal
operator in the sense that it selects similar customers to be inserted
together. It selects one period and one customer not served in that
period. The operator then computes distmin and all customers within
a 2distmin distance are inserted in the same route.

– Swap ρ customers: This operator selects two customers from two
different periods and swaps their assignments. It is also applied ρ
times.

– Insert one customer several periods: This operator selects one
customer and randomly assigns it to several periods of the planning
horizon.

The operators just described generate the selection of visited customers as
well as their sequence in the vehicle route. The remaining problem is that
of determining delivery quantities and transshipment origins, destinations and
quantities, which can be solved very efficiently by means of a min-cost network
flow algorithm.

Given that the ALNS algorithm is invoked several times in a rolling horizon
fashion, it had to be tuned to be extremely streamlined and fast. This drove
us to the following settings for the operators and parameters after a tuning
phase. The starting temperature τstart is set to 20,000 and the cooling rate
φ is 0.9993. The stopping criterion is satisfied when the temperature reaches
0.01, that is, when approximately 20,000 iterations have been performed. In our
implementation, the segment length ϕ was set to 200 iterations and the reaction
factor η was set to 0.7, that is, new weights will be composed by 70% of the
performance on the last segment and 30% by the last weight value. Scores are
updated with σ1 = 10, σ2 = 5 and σ3 = 2.

At the end of each segment we also perform a 2-opt periodic postoptimiza-
tion. Algorithm 1 presents a simplified pseudocode for this heuristic. For algo-
rithmic and implementation details, the reader is referred to [14].

5 Computational experiments

In this section we provide some implementation specifications, we describe the
generation procedure for the test instances and we present results of extensive
computational experiments. These are described in Section 5.3.1 for the base
case and in Sections 5.3.2 to 5.3.7 for several alternative configurations.
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Algorithm 1 ALNS heuristic - simplified pseudocode

1: Initialize: set all weights equal to 1 and all scores equal to 0.
2: sbest ← s← initial solution.
3: τ ← τstart.
4: while τ > 0.01 do
5: s′ ← s.
6: Select a destroy and a repair operator and apply them to s′.
7: Fix routing decisions, solve the remaining network flow problem.
8: if z(s′) < z(s) then
9: s← s′;

10: if z(s) < z(sbest) then
11: sbest ← s;
12: else if s′ is accepted by the simulated annealing criterion then
13: s← s′;
14: end if
15: end if
16: if the iteration count is a multiple of ϕ then
17: update the weights and reset the scores of all operators.
18: perform an intra-route 2-opt.
19: end if
20: τ ← φτ ;
21: end while
22: return sbest;
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5.1 Implementation specifications

All computations were performed on a grid with 630 nodes available and running
the Scientific Linux 6.1 operating system. Each vertex is equipped with two Intel
Westmere-EP X5650 hexa-core processors running at 2.67 GHz and with 24 GB
or 48 GB of RAM memory.

Our algorithm was coded in C++ and makes use of only one processor.
The min-cost network flow problem was implemented using the LEMON graph
template library [18] running the network simplex algorithm for its internal
computations. Forecasts were carried out using the forecast package [27, 29]
available for R Language and Environment for Statistical Computing [42] and
embeded within our C++ code using the RInside classes [19]. We allowed the
software to run in its default settings, searching through all the 30 variants of
the exponential smoothing models described in [28]. We made use of the 50 past
periods immediately before the current period as historical data for the chosen
forecasting method.

Given that the lead time is equal to one (all deliveries are performed in the
next period) and its standard deviation is zero, the value of si used in equation
(3) is then

si = µ̂i + zασ̂i. (20)

Using the last known demand as an expectation of future demand is equiv-
alent to a näıve forecast method in which the next period forecast is equal to
the last known value, this being the simplest adaptive forecasting method [22].

5.2 Instance generation

We have generated instances following some of the standards used for the in-
stances generated for the IRP by [3, 4], namely the mean customer demand,
initial inventories, vehicle capacity and geographical location of the vertices are
the same as in their tests. Instances were generated with 50 past periods of de-
mand information before the future p periods such that it can used as historical
data. Our set is generated according to the following data:

• number of customers n: 5k where k = 1, 2, 3, 5, 10, 15, 20, 25, 30, 40;

• horizon p: equal to 5, 10 or 20 periods;

• demand distributions: mean demand µi is generated as an integer ran-
dom number following a discrete uniform distribution in the interval [10,
100], and standard deviation σi as an integer random number following a
discrete uniform distribution in the interval [2, 10]. The demands are gen-
erated following a normal distribution with these parameters. If a negative
demand value is generated, it is substituted by zero;

• product availability at the supplier: mean production r̄ is generated as
an integer random number following a discrete uniform distribution in the
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interval [100n, 140n], and σ0 as an integer random number following a
discrete uniform distribution in the interval [2, 10]. The production is
generated following a normal distribution with these parameters. They
are used only to account for inventory costs at the supplier, as in Archetti
et al. [3];

• maximum inventory level Ci: µigi, where gi is randomly selected from the
set {2, 3, 4};

• starting inventory level I00 :
∑
i∈V′

Ci;

• starting inventory level I0i : Ci − µi;

• inventory holding cost h0: 0.01;

• inventory holding cost hi (i > 0): randomly generated from a continuous
uniform distribution in the interval [0.02, 0.10];

• shortage penalty: pi = 200hi;

• vehicle capacity Q: 3
2

∑
i∈V′

µi;

• distance/cost cij : b
√

(Xi −Xj)2 + (Yi − Yj)2 + 0.5c, where the points
(Xi, Yi) are the coordinates of vertex i and are obtained randomly from a
discrete uniform distribution in the interval [0, 500].

This set of instances will be called the stationary data set since the mean
of the demand distribution is stationary. We have also generated other sets
of instances in order to evaluate the dynamics of real-life demand, which often
presents some seasonality. Indeed, [11] show that the key challenges faced in
practical supply chains are related to, among others, non-stationary demand
and inventory imbalances. To this end, we have generated the following two
extra sets of instances, called seasonal and correlated.

In the seasonal data set each customer presents an independent seasonal
pattern every five periods. This simulates the weekly variations of orders that
are likely to occur. In its lower state, the demand is allowed to be as low as
40% of the usual demand, and as high as 200% at its peak. Seasonalities are
independent so that, on average, they should cancel each other and the supplier
should not face an overall high or low demand on any given day. In the correlated
data set, on the other hand, all customers present the same seasonality pattern,
that is, all have their lower and higher demands in the same period. This way
the supplier faces a bottleneck of its vehicle capacity when the demand is high
and has spare capacity when the demand is low. All else is kept unchanged
from the standard stationary data set. We should mention that computing the
reorder point with equation (20) assumes that demands of consecutive periods
are independent, which is no longer the case in the presence of seasonality.
However, we believe that computing the reorder point in this approximate way
does not have a major impact on the results.
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For each of the three data sets, and each of the 30 combinations of n
and p, we have generated five instances, yielding 150 instances in each set,
for a total of 450 instances. Their nomenclature follows the rule dirp-n-p-
1 through dirp-n-p-5. In Section 5.3 we provide summaries aggregating in-
stances by their size: those with less than 50 customers are labeled small, those
containing between 50 and 100 customers are called medium, and those with
more than 100 customers are called large instances. These sets of instances as
well as the solutions presented in the next sections are available at the URL
http://www.leandro-coelho.com/instances/.

5.3 Computational results

We now report the results of our extensive computational experiments. The OU
policy is first used to allow fair comparisons; the ML policy will be analyzed
later. The transshipment cost β was set to 0.01 as in [14] and 95% prediction
intervals were used, as in [23]. We first present results for the base case, and
later we provide analyzes for a number of variations of the problem and of the
algorithm.

5.3.1 Results for the base case

We first provide results for the base case defined with the standard data set
in Table 1 for the cases without and with lateral transshipments. For each
method we present the solution cost, the average running time and the average
lost demand per customer per period. Some conclusions can be drawn from
Table 1. First, regarding the use of forecasts one can see that, as expected, the
value added by forecasting a stationary time series is no better than using the
näıve method employed by the reactive policy [17]. Nevertheless, on average
the solution cost is lower and there is significantly less lost demand. More
interestingly, allowing transshipments has a twofold effect: first this helps satisfy
the demand by decreasing the average lost demand under both the reactive and
proactive policies; second, by decreasing the lost demand, it also lowers the
average solution cost. Finally, the computational cost of forecasting and solving
the ALNS heuristic for many customers and several periods is not negligible.

In Table 2 we provide results for the base case defined with the seasonal data
set. Our first observation is that the average running time is higher than in the
standard data set. This reflects the difficulty of solving these instances. The
value of lateral transshipments is corroborated, as in the standard case: allowing
transshipments reduces the average lost demand per customer per period while
significantly decreasing the solution cost. Finally, comparing policies in Table
2 shows that a more streamlined policy helps prevent stockouts. However, in
both cases the average cost of the proactive policy is slightly higher than under
the reactive policy.

Finally, we provide the results for the base case defined with the correlated
data set in Table 3. When demands are correlated and peaks occur simul-
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Table 1: Summary of computational results for the Dynamic and Stochastic
Inventory-Routing Problem on the standard data set

Transshipment
Instance Reactive policy Proactive policy

size Solution Time (s) Avg. lost Solution Time (s) Avg. lost

No
small (n < 50) 14974.17 0.0 0.62 14224.84 47.2 0.10
medium (50 ≤ n ≤ 100) 39546.01 4.3 0.41 32774.85 453.3 0.00
large (n > 100) 64854.75 408.5 0.46 64784.85 3781.0 0.00

Average 39791.64 137.6 0.50 37261.51 1427.2 0.03

Yes
small (n < 50) 14382.67 0.0 0.00 8586.53 46.9 0.05
medium (50 ≤ n ≤ 100) 37720.58 4.4 0.00 27743.95 452.7 0.00
large (n > 100) 61455.93 498.4 0.00 56506.38 3934.4 0.00

Average 37853.06 167.6 0.00 30945.62 1478.0 0.02

Table 2: Summary of computational results for the Dynamic and Stochastic
Inventory-Routing Problem on the seasonal data set

Transshipment
Instance Reactive policy Proactive policy

size Solution Time (s) Avg. lost Solution Time (s) Avg. lost

No
small (n < 50) 15994.92 0.1 0.41 14510.22 48.4 0.00
medium (50 ≤ n ≤ 100) 40953.04 5.5 0.38 41071.74 499.7 0.00
large (n > 100) 70442.24 758.3 0.41 73252.94 4734.7 0.00

Average 42463.40 254.6 0.40 42944.97 1760.9 0.00

Yes
small (n < 50) 15515.02 0.1 0.00 14160.04 48.1 0.00
medium (50 ≤ n ≤ 100) 39164.04 5.8 0.00 40433.81 501.1 0.00
large (n > 100) 66093.51 751.5 0.00 68918.08 4739.1 0.00

Average 40257.52 252.5 0.00 41170.64 1762.8 0.00

Dynamic and Stochastic Inventory-Routing

CIRRELT-2012-37 17



taneously, emergency transshipments are still a powerful tool to mitigate lost
demand, relocating inventory and making the system more robust, yet decreas-
ing the average solution values. The use of forecasts helps reduce routing costs
and stockouts.

Table 3: Summary of computational results for the Dynamic and Stochastic
Inventory-Routing Problem on the correlated data set

Transshipment
Instance Reactive policy Proactive policy

size Solution Time (s) Avg. lost Solution Time (s) Avg. lost

No
small (n < 50) 15546.15 0.1 0.43 16466.03 48.3 0.00
medium (50 ≤ n ≤ 100) 42940.79 14.4 0.48 40867.58 503.8 0.00
large (n > 100) 75067.20 1506.5 0.47 71152.13 4727.4 0.00

Average 44518.05 507.0 0.46 42828.58 1759.8 0.00

Yes
small (n < 50) 15132.41 0.2 0.00 14822.28 48.2 0.00
medium (50 ≤ n ≤ 100) 40526.86 15.4 0.00 40224.01 502.9 0.00
large (n > 100) 70536.52 1749.1 0.00 68844.68 4713.8 0.00

Average 42065.26 588.2 0.00 41296.99 1755.0 0.00

Tables 1−3 show the solution values produced by the proactive policies are
sometimes worse than those generated by the reactive policies, especially on
large instances. A possible explanation is that the algorithm developed for the
reactive policies solves the routing problem exactly, whereas the one proposed
for the proactive policies relies on the ALNS matheuristic to sequence the cus-
tomers. Even though this heuristic has been shown in earlier studies to provide
good solutions [15, 14], this time the number of customers is much larger. In
particular, the large instances push the algorithm to its limit, and the ALNS
implementation is streamlined to be executed several times in a rolling horizon
fashion, which could explain the decrease in the solution quality. We further
analyze the effect of running the ALNS algorithm in Section 5.3.2.

In addition to the analyses presented so far, we have investigated a number
of other scenarios using the best of the proposed policies, i.e. the one described
in Section 3.2.2.

5.3.2 Increasing the number of ALNS iterations

We first analyze the quality of the solutions obtained for the problem solved at
each period when the ALNS heuristic is allowed to perform twice the original
number of iterations, thus also roughly doubling the execution time. We now
allow the ALNS to iterate 40,000 times. Average solutions for the proactive
policy without and with transshipments are shown in Table 4. We see that
allowing more computing time improves the average solution cost. For the case
without transshipments, improvements are on average larger than 5%. This
shows that these policies perform well if the algorithm used to solve the problem
at each period is able to identify high quality solutions.
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Table 4: Summary of solutions when applying the OU inventory policy for the
Dynamic and Stochastic Inventory-Routing Problem on the standard data set
with longer ALNS iterations

Instance
Without transshipments With transshipments

Solution Time (s) Avg. lost Increase (%) Solution Time (s) Avg. lost Increase (%)
small (n < 50) 9131.45 67.1 0.10 −7.20 8355.69 67.4 0.05 −2.16
medium (50 ≤ n ≤ 100) 30137.81 888.3 0.00 −4.39 26891.26 880.5 0.00 −4.23
large (n > 100) 60051.36 9248.9 0.00 −3.76 55530.30 9196.0 0.00 −2.08
Average 33106.87 3401.4 0.03 −5.12 30259.08 3381.3 0.02 −2.82

5.3.3 Applying an ML inventory policy

We have also implemented an ML inventory policy which relaxes the OU rule.
Under this policy, the ALNS heuristic optimizes the quantities delivered while
respecting the vehicle and the customer capacities. A summary of results on the
standard data set is provided in Table 5. Specifically, we compute the average
cost savings with respect to the OU policy when such a policy is applied, as well
as the average lost demand (per customer per period) both without and with
transshipments. Applying the ML policy yields reductions in solution costs and
in lost demands.

Table 5: Summary of cost savings when applying the ML inventory policy for
the Dynamic and Stochastic Inventory-Routing Problem on the standard data
set

Instance
Without transshipments With transshipments

Solution Time (s) Avg. lost % increase over OU Solution Time (s) Avg. lost % increase over OU
small (n < 50) 10225.93 46.3 0.24 −0.78 7926.71 44.6 0.16 −9.96
medium (50 ≤ n ≤ 100) 30360.66 452.7 0.01 −1.50 26527.05 444.1 0.01 −3.78
large (n > 100) 61250.17 3860.1 0.01 −0.49 54292.38 4100.1 0.00 −4.19
Average 33945.59 1453.0 0.09 −0.92 29582.05 1529.6 0.06 −5.97

5.3.4 Varying the inventory holding costs

The inventory holding cost parameters play an important role in changing the
balance between making more frequent deliveries or holding higher average in-
ventories. To this end, we have analyzed two different scenarios: one in which
inventory holding costs are doubled, and another in which they are halved. We
present in Table 6 the results of these experiments. For all situations tested the
variations occurred as expected, exhibiting a positive correlation between the
inventory holding cost and the solution cost. Moreover, multiplying or dividing
the inventory cost by two does not change the conclusion that the proactive
policy still performs better than the reactive one.
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Table 6: Summary of cost savings when varying the inventory holding costs for
the Dynamic and Stochastic Inventory-Routing Problem on the standard data
set

Inventory
Instance

Reactive policy Proactive policy
cost Solution Time (s) Avg. lost % increase Solution Time (s) Avg. lost % increase

Halved
small (n < 50) 14036.64 0.1 0.00 −2.52 8011.02 47.3 0.08 −8.29
medium (50 ≤ n ≤ 100) 39703.27 18.9 0.00 −4.86 30366.73 721.7 0.00 −6.72

Average 26869.95 9.5 0.00 −3.69 19188.87 384.5 0.04 −7.51

Doubled
small (n < 50) 15074.69 0.1 0.00 4.66 9291.39 47.4 0.05 8.26
medium (50 ≤ n ≤ 100) 45346.88 19.3 0.00 8.45 36087.193 707.3 0.00 10.62

Average 30210.79 9.7 0.00 6.55 22689.29 377.4 0.02 9.44

5.3.5 Increasing the length f of the planning horizon

We now evaluate the impact on the final solution cost of using a larger planning
horizon. To this end, we have doubled to six the length f of the horizon used in
the forecasts and in the ALNS, and we have solved a subset of instances from
the standard data set. The fact that the ALNS matheuristic has to make twice
as many decisions should be taken into account. In other words, keeping the
number of ALNS iterations fixed, solution quality degradation is most likely to
occur when doubling the length of the horizon. As a result, it makes sense to
apply the idea used in Section 5.3.2 which consists of running the ALNS over
a longer number of iterations. The average cost increases (or savings, when
negative) are shown in Table 7. As expected, solution quality deteriorates with
a longer horizon and computation times approximately double. Horizons of less
than three periods make little sense since the main advantage of the proactive
policy is to plan ahead and avoid visits to the same geographical area over
consecutive periods, which is unlikely when f is very small.

Table 7: Summary of the impact on cost when time slices f are doubled (to
six periods) under an OU inventory policy for the Dynamic and Stochastic
Inventory-Routing Problem on the standard data set

Instance
Without transshipments With transshipments

Solution Time (s) Avg. lost % increase over OU Solution Time (s) Avg. lost % increase over OU
small (n < 50) 15553.77 62.8 0.04 0.25 10322.57 63.1 0.02 0.09
medium (50 ≤ n ≤ 100) 45963.58 1337.8 0.00 0.22 38864.04 1341.1 0.00 0.16
Average 30758.67 700.3 0.02 0.24 24593.31 702.1 0.01 0.12

5.3.6 Varying the service level

The percentage of the unknown demand covered against stockouts also plays
an important role in the decision making process. We have varied the service
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level parameter, which directly affects the safety stock level of the proactive
policy. We have run the algorithm on a subset of instances with a service level
equal to 90% and to 99%, and we have summarized the results in Table 8. As
the table shows, a lower service level means that customers are more likely to
face a stockout, translating into increased transshipment costs; on the other
hand, a higher service level protects customers against demand variations and
emergency transshipments are then no longer needed as often, thus decreasing
the total solution cost.

Table 8: Summary of cost savings when varying the service level for the Dynamic
and Stochastic Inventory-Routing Problem on the standard data set

Instance
Low service level (1− α = 90%) High service level (1− α = 99%)

Solution Time (s) Avg. lost % increase Solution Time (s) Avg. lost % increase
small (n < 50) 8774.46 47.0 0.07 3.57 8145.81 47.4 0.03 −10.77
medium (50 ≤ n ≤ 100) 32257.77 702.2 0.00 −0.48 33566.23 738.6 0.00 2.55
Average 20516.12 374.6 0.03 1.54 20856.02 393.0 0.01 −4.11

5.3.7 Implementing consistency features in a dynamic environment

From a business and practical perspective, the decision making process is not
only driven by costs but by quality of customer service. Our analysis has so
far focused on cost minimization, disregarding other factors which may affect
quality of service. Some of these factors were studied by [15] who have analyzed
the effect of incorporating different consistency features into IRP solutions. For
example, it may be undesirable to dispatch an almost empty vehicle, or one
would not like to frequently deliver small amounts to the same customer since
this is time consuming for both parties. To this end, we have run a subset of
instances subject to two consistency features next described.

We first apply the vehicle filling rate consistency feature ensuring that the
vehicle is only used if it is at least γ% full, under the policy described in Section
3.2.2. We have tested the ML inventory policy with γ equal to 30, 50 and 70.
Table 9 provides the average cost increase and the average lost demand (per
customer per period) with respect to the base case. Running times are highly
stable and, in general, as the requirement for the vehicle load increases, so does
the solution cost. Adding this requirement to a deterministic environment [15]
did not produce an increase of this magnitude.

Second, we apply a quantity consistency feature requiring that a customer
can be visited only if the quantity delivered to it is at least twice its average
demand. Results provided in Table 10 show that this policy yields a significant
average cost increase with respect to the base case, and with respect to the
average lost demand (per customer per period). Once more, ensuring consistent
solutions over time turns out to be very costly in a dynamic environment, even
though computational times are practically unchanged. Moreover, a slight in-
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Table 9: Summary of the analysis for the Dynamic and Stochastic Inventory-
Routing Problem with the vehicle filling rate consistency on the standard data
set

Instance
γ = 30 γ = 50 γ = 70

Solution Time (s) Avg. lost % increase Solution Time (s) Avg. lost % increase Solution Time (s) Avg. lost % increase
medium

41233.80 707.8 0.00 31.06 41680.54 731.4 0.00 31.39 42474.15 744.6 0.00 34.22
(50 ≤ n ≤ 100)

crease in the average lost demand is observed when the quantities delivered to
the customers are somewhat restricted.

Table 10: Summary of the analysis for the Dynamic and Stochastic Inventory-
Routing Problem with the quantity consistency feature on the standard data
set

Instance set
Under quantity consistency

Solution Time (s) Avg. lost % increase in cost
medium (50 ≤ n ≤ 100) 48892.78 702.0 0.26 53.38

5.4 Final remarks

The two main features analyzed in these paper are now summarized. First,
the use of demand forecasts has proved a powerful asset for the solution of the
DSIRP. However, it requires the use of an optimization algorithm that can some-
times take very long to run if high quality solutions are expected. Nevertheless,
our implementation of the ALNS as a means of solving each periodic problem
has proved to be very efficient and flexible in the sense that we have solved the
problem under two inventory policies and with two consistency features.

The second option considered in this paper concerns the use of lateral trans-
shipments. Even if there are relatively few stockouts when transshipments are
not considered, allowing them further reduces stockouts as well as the total cost.
From an algorithmic point of view, enabling transshipments does not make the
problem more difficult to solve since these can easily be integrated within the
min-cost network flow problem which is used to compute the delivery quantities.

We have also analyzed the cost breakdown into its routing, inventory, direct
deliveries and transshipments, and penalty components. Corroborating our pre-
liminary findings from Sections 5.3.1 and 5.3.2, we found that routing costs are
significantly reduced under proactive policies. This is due to the fact that when
forecasts are used, the algorithm can avoid consecutive and costly visits to the
same geographical area, yielding a better equilibrium between routing and in-
ventory costs, in addition to reducing the use of emergency deliveries.

Finally, it is important to note that thanks to our choice of policies and to
the algorithm design, the solution quality does not deteriorate when instances
with very long horizons are solved. If a 20-period instance were to be solved
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by dynamic or stochastic programming, it is likely that it would be intractable,
which is not the case for the rolling horizon algorithms we have developed.

6 Conclusions

We have successfully solved the dynamic and stochastic version of the IRP un-
der different policies. The first one uses a reactive framework, in which future
visiting decisions are based only on the current state of the inventory of the cus-
tomers. We have also implemented a more involved policy under which demand
forecasts are used to support future decisions. In both cases, we have solved the
problem without and with lateral transshipments as a means of reducing lost
demand and diminishing total costs. We have implemented these policies in a
rolling horizon fashion. We have shown through extensive computational exper-
iments that the algorithms proposed perform very well and allow the proactive
policies to take advantage of stochastic information in the form of demand fore-
casts. We have shown that increasing the length of the rolling horizon does not
have a positive impact on the overall solution quality. In contrast, increasing the
computation time of the subproblem associated with each period significantly
improves solution quality. We have analyzed the impact of different inventory
holding costs and service levels. Our experiments have shown that solution costs
are correlated with the inventory holding cost for all policies. Imposing a high
service level ensures that customers are protected against demand variations,
which avoids unnecessary emergency transshipments and reduces lost demand.
Decreasing the service level even slightly negatively impacts the solution cost.
Moreover, we have considered the inclusion of consistency features in the solu-
tions of the DSIRP. Our experiments show that ensuring consistent solutions
over time under a dynamic and stochastic environment is much more expensive
than under a deterministic setting.
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