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Abstract. We introduce the Integrative Cooperative Search (ICS), a multi-thread 
cooperative search method for multi-attribute combinatorial optimization problems. ICS 
musters the combined capabilities of a number of independent exact or meta-heuristic 
solution methods. A number of these methods work on sub-problems defined by suitably 
selected subsets of decision-set attributes of the problem, while others combine the 
resulting partial solutions into complete ones and, eventually, improve them. All these 
methods cooperate through an adaptive search-guidance mechanism, using the central-
memory cooperative search paradigm. Extensive numerical experiments explore the 
behavior of ICS and how the interest of the method through an application to the multi-
depot, periodic vehicle routing problem, for which ICS improves the results of the current 
state-of-the-art methods. 
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1 Introduction

Combinatorial optimization problems prominently appear in many theoretical and real-
life settings. A large number of methodological developments targeted these problems
proposing exact, heuristic, and meta-heuristic solution methods. Parallel computing
enhanced these optimization methods providing the means to accelerate the resolution
process and, for meta-heuristics, to obtain higher-quality solutions for a broad range of
problems (Crainic and Nourredine, 2005; Crainic and Toulouse, 2010).

Yet, although solution methods become more powerful, the combinatorial problems
one faces grow continuously in size and difficulty, as defined by the number of interacting
characteristics defining their feasibility structures and optimality criteria. Such increas-
ingly larger sets of characteristics severely challenge our methodological capability to
efficiently address the corresponding problem settings. Thus, the general approach when
addressing such multi-attribute, also informally known as rich, problem settings is to ei-
ther simplify them, or to sequentially solve a series of restricted ones where part of the
overall problem might be fixed, ignored, or both (Section 2 further discusses the issue).

It is well-known, however, that such approaches lead to sub-optimal solutions. More-
over, one observes in many application settings, including vehicle routing, network design,
and carrier service network design, the need to comprehensively address the associated
combinatorial optimization formulations to simultaneously account for “all” relevant at-
tributes. The current literature does not offer a satisfactory answer to this challenge in
terms of methods able to efficiently address multi-attribute problem settings and provide
good solutions. The goal of this paper is to contribute toward addressing this challenge.

We focus on decision-based characteristics, or decision-set attributes, i.e., the sets of
decisions defining the particular problem setting, and introduce the Integrative Cooper-
ative Search (ICS ), a multi-thread cooperative search method for multi-attribute com-
binatorial optimization problems. ICS musters the combined capabilities of a number
of independent solution methods, exact or meta-heuristic. A number of these methods
work on sub-problems defined by suitably selected subsets of decision-set attributes of
the problem, while others combine the resulting partial solutions into complete ones
and, eventually, improve them. These methods cooperate through an adaptive search-
guidance mechanism, using the central-memory cooperative search paradigm. Our goal is
to present and discuss the ICS concept, its structure, main building blocks, and operating
principles, as well as to present a proof-of-concept of its efficiency.

The main contributions of this paper are to: 1) Introduce and formally describe a
new meta-heuristic solution framework for multi-attribute combinatorial optimization
problems; ICS is general, flexible, and scalable in the number of attributes defining the
problem at hand; 2) Define and exploit a functional decomposition of such problems along
decisional attributes; 3) Show the interest of ICS through an application to a well-known
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multi-attribute case, the multi-depot, periodic vehicle routing problem (MDPVRP), for
which ICS improves the results of the current state-of-the-art methods, and discuss how
to apply the methodology to other combinatorial optimization problem classes; 4) Ex-
perimentally examine the role and impact of various ICS components.

This paper is organized as follows. Section 2 discusses the motivation for our work,
and identifies the sources of inspiration for the methodology we propose. Section 3 intro-
duces the fundamental concepts underlining the Integrative Cooperative Search method-
ology, particularly the decision-set attribute-based decomposition and the ICS algorith-
mic structure. We illustrate these concepts and methods through an application to the
MDPVRP in Section 4. Extensive experiments are presented and discussed in Section 5.
We finally conclude.

2 Motivation and Inspiration

We aim to address extended versions of classical combinatorial-optimization problems,
which are NP-hard in their basic forms. When real-world cases are considered, “new”
characteristics have to be considered while searching for feasible solutions of high qual-
ity. These characteristics take usually the form of a broad set of conditions defining
the solution feasibility or optimality, or both, and may generally be represented through
sets of decision variables. The resulting set of decisions is then much broader than for
the classical problem settings usually found in the literature, each new group of deci-
sions compounding the difficulty of the problem and complicating the solution process,
particularly when one aims to address them simultaneously.

Two examples to illustrate, selected from two major problem classes of significant
methodological interest and widely encountered in actual applications. Network design
aims to select among a set of possible facilities on arcs, nodes, or both, such that the de-
mand for utilization of the resulting network is satisfied at minimum total cost accounting
for the cost of both selecting the facilities and using the network. Many particular design
and location-decision problem settings have been defined during the years, the vast ma-
jority focusing on the facility-selection and demand-flow decisions (Magnanti and Wong,
1984; Grötschel et al., 1995; Drezner and Hamacher, 2002; Crainic, 2000). Crainic et al.
(2006) describe a realistic setting of a wireless network design problem, where the de-
cision set includes not only decisions of the selection of base stations to cover a given
territory, but also on selecting the number of antennae for each of these, as well as their
height, power, tilt, and orientation.

A similar richness of attributes may be increasingly observed in the vehicle rout-
ing field (where the “rich” qualification was first linked to a VRP setting; Hartl et al.,
2006). There exists an extensive literature on the Capacitated Vehicle Routing Problem
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(CVRP), which aims to construct cost-efficient routes to deliver the demand of a given
set of customers with a fleet of vehicles of limited capacity operating out of a unique de-
pot (Toth and Vigo, 2002; Golden et al., 2008). An even greater volume of contributions
address extensions of the CVRP reflecting the extreme variety of actual applications,
including but not limited to multiple depots, vehicle fleets, or commodities, customer
requirements for multi-period visits or within-period time windows, route restrictions on
total distance or time, and so on and so forth (Vidal et al., 2012a). Several of these
generalizations yielded problem classes of their own, the Vehicle Routing Problem with
Time Windows (VRPTW) being probably the most well known of these.

Most generalizations found in the literature either add decisional features, e.g., se-
lecting the number of antennae in addition of the location and number of stations in the
wireless network design problem, or are concerned with adding characteristics to partic-
ular problem elements, e.g., the timing concerns in the VRPTW sequence of customer
visits. While not making problems easier, the latter type of generalization may be ad-
dressed within particular algorithmic components, e.g., route generation and sequencing.
Adding an extra characteristic to the definition of this group of problem elements might
require a more involved algorithmic component (Vidal et al., 2011), but does not change
fundamentally the nature of the problem.

Adding more decision sets to the problem, on the other hand, makes it significantly
harder to address and, thus, the general approach when addressing such multi-attribute
problems is to either simplify them, or to sequentially solve a series of particular cases,
where part of the overall problem is fixed or ignored, or both (e.g. Golden et al., 2002;
Hadjiconstantinou and Baldacci, 1998; Hartl et al., 2006; Homberger and Gehring, 1999,
2005). It is well-known that this leads to sub-optimal solutions. Moreover, one observes in
many application settings, including vehicle routing, network design, and carrier service
network design, the need to comprehensively address the corresponding combinatorial
formulation accounting for “all” relevant decision-set attributes simultaneously.

Among the few exceptions to the state of the literature described above, we single out
the Multi-Depot Periodic VRP (MDPVRP) problem class, with or without time windows,
encompassing decisions on selecting patterns of multi-period visits for customers, as well
as on assigning each customer to a depot for each of its selected visits. This multi-
decision-set problem was considered until quite recently as difficult to address as a whole.
New exact (Baldacci and Mingozzi, 2009; Baldacci et al., 2011) and meta-heuristic (Vidal
et al., 2012c) contributions have re-defined the state-of-the-art for this class of problems.
We have selected the MDPVRP to illustrate the performance of the methodology we
propose to take advantage of this new set of best-known solutions (BKS).

So, how to proceed to build a method, which is general, scalable, and efficient, to
address multi-attribute combinatorial optimization problems in a comprehensive manner?
We were inspired by three major methodological concepts, decomposition, simplification,
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and cooperative search.

Decomposition is a fundamental technique in mathematical programming and par-
allel/distributed computing. Proceeding through various strategies, e.g., projection and
relaxation in mathematical programming, its main objective is to transform a difficult-
to-address formulation into a number of much simpler ones. All such methods encompass
three main mechanisms. The first defines how the problem is transformed and how de-
rived sub-problems are specified. The second specifies the information exchanged among
the sub-problems. The third brings together the results obtained working on the sub-
problems to create complete solutions to the original problem and, eventually, continues
the decomposition-based algorithm. A so-called master problem (actually, one of the
sub-problems resulting from the decomposition) is performing this task in the context
of mathematical-programming decomposition, as well as for low-level and most domain-
decomposition parallel strategies (Crainic and Toulouse, 2010).

Simplification is and has always been widely used to transform difficult problems into
settings easier to address. As part of the modeling component of operations research,
and of all disciplines based on formal representations of the problems contemplated, it is
indeed an indispensable instrument for problem solving. The challenge in using simplifi-
cation is reaching the right equilibrium between an easy-to-address problem setting and
a high-usefulness of results for decision making for the original problem.

Cooperative search (Crainic, 2005; Crainic and Toulouse, 2008, 2010) has emerged
as one of the most successful meta-heuristic methodologies to address hard optimization
problems (e.g., Crainic and Nourredine, 2005; Crainic, 2008). Described generally as a
parallel strategy for meta-heuristics, cooperative multi-search is based on harnessing the
“solving” capabilities of several solution methods through mechanisms to asynchronously
share information during the course of addressing a given problem instance and, in the
most advanced settings, to create new information out of the exchanged data. The nature
of the information shared, how the sharing proceeds, as well as the global and local (i.e.,
at the level of each collaborating solution method) utilization of the exchanged and re-
ceived information, respectively, are the main characteristics of cooperative-search strate-
gies. We focus on a widely-used class of cooperative strategies where the asynchronous
communications are generally triggered individually by the cooperating algorithms, tak-
ing the form of exchanges of solutions or elements of solutions, and proceeding through
a common data repository, often referred to as adaptive or central memory (Rego, 2001;
Le Bouthillier and Crainic, 2005; Le Bouthillier et al., 2005; Jin et al., 2012b; Cordeau
and Maischberger, 2012; Groër and Golden, 2011). Notice that, while “central”-memory
mechanisms are clearly adaptive, “adaptive memory” is still sometimes used in the origi-
nal sense of gathering fragments of good solutions, which are then used to construct new
search starting points (Rochat and Taillard, 1995; Badeau et al., 1997). We therefore use
“central memory” in this paper.
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Figure 1: The Central-Memory Multi-Search Cooperative Scheme

Figure 1 illustrates the structure of a central-memory-based cooperative search al-
gorithm. Several solution methods (four in the figure) participate to the collaborative
search. As illustrated by the double-ended arrows, the flow of information exchange
proceeds through the central-memory structure, a management-and-guidance module
monitoring the traffic, managing the information deposited in the central memory and,
eventually, using it to generate new relevant information, e.g., new solutions, perfor-
mance measures on solution components, promising areas of the search space, and so on.
Each method, which may be a meta-heuristic, an exact algorithm, or any other method
and is simply identified as solver, thus makes available relevant information to the other
participating methods by sending it to (depositing it into) the central memory. This
information generally includes improved solutions or solution components, as well as so-
called contextual information, e.g., performance measures and memories, to contribute
building an image of the status of the search. The sending of information is triggered
by the internal logic of the method, e.g., on identifying a new best solution or before a
diversification phase, as is the request for new information sent to the central memory
(the two events are usually coupled). The required information is used to inflect the
search trajectory and may take the form of complete or partial solutions, or indications
on regions of the search space to explore or to avoid.

Illustrations of successful application of these principles to problems with several at-
tributes may be found, e.g., in Berger and Barkaoui (2004) and Crainic et al. (2006). The
former addressed a vehicle routing problem with time windows by evolving two popula-
tions, one focusing on minimizing the total traveled distance, the other on minimizing the
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violation of temporal requirements to generate feasible solutions. The latter addressed
the wireless network design problem mentioned previously through a parallel cooperative
meta-heuristic that uses Tabu Search (TS) solvers on limited subsets of attributes only,
while a Genetic Algorithm (GA) amalgamates the partial solutions attained by the TS
procedures into complete solutions to the initial problem.

3 ICS Fundamental Concepts and Structure

We now describe the fundamental concepts and structure of the proposed ICS methodol-
ogy, which builds on the ideas and methodological developments reviewed in the previous
section.

3.1 The ICS idea

The fundamental ICS concept combines the ideas of decomposition, intelligent simplifica-
tion and opportunism, and cooperative search. We aim for a decomposition mechanism
that yields simpler but meaningful problem settings for which one can either opportunis-
tically use existing high-performing methodology or more easily develop new solution ap-
proaches. The resulting simpler problem settings together with the required mechanisms
to reconstruct and enhance full solutions are then brought together into a cooperative-
search framework aimed to address the initial formulation. Figure 2 illustrates the main
elements of the methodology and their interconnection links.

Original problem 

Complete solvers 

Complete solution set 

Partial problems 

Partial solvers 

Partial solution sets 

DECOMPOSITION 

GUIDANCE 

SHARING CONTEXT DATA 

Integration solvers 

INTEGRATION 

Figure 2: The ICS Methodology Idea

Decomposition is the first item that needs to be addressed, in particular, the problem
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dimensions along which it is to be applied and the mechanisms to reconstruct complete
solutions to the initial problem. Given our objective of opportunist simplification for an
intelligent use within a cooperative- search framework, we propose a structural problem
decomposition along sets of decisions variables.

Let x ∈ X be the set of decision variables of the problem at hand, and let δ be a set
of indices identifying a particular subset of x. The decision-set attribute decomposition
then identifies |∆| sets of decision variables, and defines a partial-problem formulation
Πδ(x̃δ) for each decision set xδ, δ ∈ ∆, by fixing the corresponding variables to suitably
selected values x̃δ (and appropriately adjusted constraints, if needed). Notice that this
definition of decomposition does not change the dimensionality of the partial problems
with respect to that of the original setting. Actually, any solution to any partial problem
constructed according to this definition may be considered for the complete formulation.

The selection of the decision sets is specific to each application case. Thus, in particu-
lar, defining ∆ according to spatio-temporal characteristics of the problem elements (e.g.,
node coordinates in a space-time network representation) yields the well known data-
decomposition procedure used in a number of parallel and sequential solution methods.
The choice for ICS is governed by the objective of opportunistic simplification indicated
above and, thus, decision variables are clustered to yield known or identifiable optimiza-
tion problem settings. Thus, for example, fixing the customer-to-depot assignments in
the MDPVRP illustration of Section 4 yields a PVRP, while fixing the patterns for all
customers yields a MDVRP.

Notice that the proposed decomposition does not require the sets δ ∈ ∆ to induce a
partition of the feasible domain. Furthermore, with respect to the mathematical program-
ming literature, the decision-set decomposition may be viewed as a multiple simultaneous
projection (Geoffrion, 1970) performed through variable fixing. Further notice that there
is no a priori limit on the number of sets. Actually, the decomposition process should
aim for a “best” compromise between the ease of addressing each partial problem and
the difficulty in building complete solutions to the original problem from the solutions to
the partial problems.

Indeed, decomposition very often needs to be coupled with integration providing
an efficient way to use the solutions obtained by addressing the partial problems to
build a complete solution to the initial formulation. This functionality makes up the
second main element of the ICS methodology. Integration is generally not an easy task,
however. Integration solvers need to address three, possibly contradictory, challenges: 1)
solution quality, 2) transmission of critical features (which may be incompatible) from the
partial solutions, and 3) computational efficiency. Thus, the simple integrator consisting
in transferring directly to the complete-solution set a solution (feasible or not) to a
partial problem achieves the latter but fails in most cases to achieve the first two goals.
Even when this simple integrator achieves solution quality, it is generally due to a good
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partial solution and not through combining, and respecting critical features of, several
partial solutions, as often required by decomposition schemes. More advanced methods
are thus required and evolutionary methods, genetic algorithms and path relinking, in
particular, have proved their flexibility and stability in combining solution characteristics
to yield high-quality solutions, often at the price of higher computational efforts. A formal
definition of integration problems for meta-heuristics is provided by Crainic et al. (2012).

We complete the ICS concept with a third main element, a purposeful-evolution
mechanism geared to produce high-quality complete solutions while avoiding a heavy-
handed control of the process (which has been shown to be unproductive for most
meta-heuristics). We build upon the central-memory cooperative search meta-heuristic
paradigm presented above, integrating a dynamically adaptive guidance mechanism based
on monitoring the activities of the partial solvers, the partial and complete solutions pro-
duced, and the context information shared by the solvers. The ICS methodology, its
structure, elements, and operational mechanisms are detailed next.

3.2 The ICS Method

ICS implements the decision-set attribute decomposition described in the previous sec-
tion, and takes the form of a self-adaptive cooperative meta-heuristic concurrently evolv-
ing and combining several populations, one corresponding to solutions to the original
problem, each of the others addressing specific dimensions of the problem resulting from
the decision-set attributes used to decompose the problem.

Figure 3 illustrates the structure and components of ICS as inspired by the central-
memory cooperative search meta-heuristic paradigm. Following the initial decomposition
of the original problem into partial problems through decision-variable fixing as defined
previously, each partial problem is addressed by one or several solution methods within
a Partial Solver Group (PSG), two of which are illustrated in Figure 3. Concurrently
with PSG activities, integrators select partial solutions from PSGs (represented by full
arrows in the figure), combine them to create complete ones, which are then sent (short
slashed arrow) to the Complete Solver Group (CSG). (All solutions are “complete” in
our setting; we use the terms “partial” and “complete” solution, however, to indicate
the solver group of origin.) The latter could enhance these solutions, when appropri-
ate solvers are available, but its main task is to extract out of the complete-solution
set the information required by the smooth but purposeful guidance of the partial and
global searches. Dotted-line arrows represent the exchange of information supporting
the cooperation under the supervision and lightly-handed guidance of the Global Search
Coordinator (GSC - the Global M&G hexagonal box in the figure).

According to this decomposition-cooperation strategy, the problem is concurrently
tackled by several solvers, which indirectly and asynchronously interact through a two-
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layer central-memory and guidance mechanism. It is noteworthy that the representation
of solutions for all solvers and in all central memories is identical no matter the partic-
ular partial or complete problem addressed or the specific solution method used. This
characteristic, derived from the choice of fixing rather than eliminating variables when
defining partial problems, facilitates communications, information extraction and knowl-
edge creation from exchanged solutions, as well as the development of generic operators
and solvers. The cooperation is built on these indirect exchanges through collections of
elite solutions, communications being triggered either by the internal logic of each (par-
tial) solver deciding when to send its “good” (e.g., just improved current best) solutions
to the central memory or to request new solutions from the same population, or by the
reaction of a local or global search coordinator monitoring the status of the memories
and the search trajectory.

Partial  
Solution set Pj  

+ 
Context information 

Integrator set I  

Partial solver set Sj  

Partial Solver Group j 

Local 
M&G 

Partial  
Solution set Pi  

+ 
Context information 

Partial solver set Si  

Partial Solver Group i 

Local 
M&G 

Complete solver set S  

Global 
M&G 

Complete Solver Group 

Complete solution set P 
Complete context information 

Figure 3: The Integrative Cooperative Search Structure

This framework ensured a high search efficiency, as solvers never interact directly, and
has been shown to display very good performance in terms of solution quality, speed, and
robustness in its “classical” central-memory incarnation (see the surveys of, e.g., Crainic
and Nourredine, 2005; Crainic, 2008). ICS expands this concept to include Partial Solvers
and Integrators into the cooperation, as well as a richer set of tasks for the Search
Coordinators. We now examine each component in more details.
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Partial Solver Group. Each PSG investigates a partial problem obtained through
the decision-set decomposition procedure. It thus focuses on a particular subset of the
original decision variables, the values of the other ones being fixed, directly or indirectly,
through communications with the Global Search Coordinator. The PSG i is composed
of a set of Partial Solvers Si that work with complete solutions, but may modify only
the values for the decision subset they are assigned to. Partial Solvers construct Pi, the
corresponding set (population) of elite partial solutions.

Each PSG operates according to the central-memory cooperative search paradigm.
Thus, Partial Solvers may be simple constructive methods (providing initial solutions),
metaheuristics or exact methods tailored to the subset of attributes they are dedicated
to, or post-optimization methods. The type of solvers depends only on the available
methods to efficiently address the particular problem. The number of solvers depends on
the availability of appropriate solution methods and the choice of the analyst. ICS does
not impose any actual limit, but the usual concerns related to an efficient implementation
of parallel methods (e.g., computer architecture, communication protocol and latency,
programming language, etc.) also apply in this context.

Communications and exchanges among Partial Solvers are performed through the
central-memory mechanism made up of the population of elite solutions, context infor-
mation, and the Local Search Coordinator (LSC ) providing supervision, management,
communications, and guidance functionalities. The actual Partial Solvers involved in
cooperation and the corresponding cooperation mechanism are application specific and,
thus, so is the local context information. The latter may consist in simple pointers to
the best solutions and a relative order of the elements in the population, or may be en-
riched with memories related to, e.g., solution elements, solutions, performance measures
for the Partial Solvers involved, and partial solution structures (see, e.g., Le Bouthillier
et al., 2005; Jin et al., 2012a), to be used in guiding the Partial Solvers and the search
trajectory of the group.

Communications between the central memory and the Partial Solvers is generally
initiated by the latter to deposit or request, or both, solutions and context information.
Guidance instructions issued by the local or global search coordinators may reverse this
general policy. Indeed, the LSC may include functionalities to monitor the performance
of the Partial Solvers and act when this performance becomes locally unsatisfactory (e.g.,
a given Partial Solver did not send any solution for a given time or all its latest solutions
received by the LSC are weak compared to the best solutions in memory). The LSC could
then, for example, force a Partial Solver to restart from a suitable solution in memory,
modify the search parameters, or even change the solution method.

Similar behavior could also be triggered by messages from the GSC that monitors
the progress of the global search. We discuss in more depth the role of the GSC later in
this section, but want to emphasize that a thorough exploration of the original problem
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solution space would often require the modification of the focus of particular Partial
Solver Groups. The modification will generally proceed through changes to the x̃δ values
defining the search space of given Πδ(x̃δ) PSGs, but could also involve the definition of the
∆ partition. This modification is communicated to the corresponding LSC that, in turn,
will instruct Partial Solvers, as well as work on the solutions and context information
(initialize or modify values) in memory.

Integrators select solutions in the populations of one or more PSGs, combine them to
yield complete solutions, and transmit some or all of these new solutions to the Complete
Solver Group. Integrators are defined by the particular rules and procedures used to
perform these tasks. Similarly to the Partial Solvers, Integrators can be very simple
procedures selecting partial solutions to pass directly to the CSG, or comprehensive
exact or heuristic solution methods.

Integrators play an essential role in the ICS methodology. While Partial Solvers ad-
dress a single aspect of the original problem, with a number of attributes fixed, Integrators
build complete solutions by mixing partial solutions with promising features from these
various populations. The selection operators thus need to take into account this objective
by picking up not only the currently best solution in a given population, but rather a
small number of diverse elite solutions. Similarly, in order to contribute to the progress
of the global search, the usual quality and diversity criteria should guide the choice of
complete solutions to be sent to the CSG (when the Integrator yields more than a single
solution). More than one Integrator can be involved in an ICS implementation. Using
different solution methodologies would then contribute toward the diversity objective.

Complete Solver Group and Global Search Coordinator. The CSG is the com-
ponent of ICS where complete solutions are kept, and sometimes enhanced (e.g., Crainic
et al., 2006), and from where the final solution to the original problem is obtained once
the stopping conditions are verified.

The CSG is organized similarly to the PSGs, but the complete-solver set is optional
or could hold a few methods only. Indeed, in most applications of interest for ICS, meth-
ods targeting the respective problem, if they exist, would be inadequate in computing
efficiency or solution quality, or both. ICS is intended to replace them and, in such cases,
the inclusion of solvers would not be warranted. On the other hand, post-optimization
techniques may profitably be used to locally enhance solutions (e.g., customer sequenc-
ing for VRP or flow distribution for network design). Post-optimization methods could
therefore belong to the complete-solver set.

Most importantly, it is the CSG that produces the complete context information
required by the GSC for the global guidance of the search. Indeed, the purposeful-
evolution objective of ICS requires the monitoring and guidance of the progress of the
search. This is the main role of the Global Search Coordinator. More specifically, the GSC
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monitors the evolution of the complete solution set, and those of the partial populations,
as well as the behavior of the solver groups and integrators. This activity enables it
to build and maintain the context information of the global search. This later may
include various performance measures (e.g., the cost or elaborate functions that reflect
multiple characteristics) and indicators (e.g., membership to a specific class of solutions,
or information on the solver that yielded it) for each solution in the complete solution
set. It may also include an image of the global search through statistical information
(memories) on the evolution of solutions in the complete and partial populations, the
contribution of solutions and their components (e.g., routes or arcs in VRP) to the
evolution of the search, the relative performances of Partial Solvers and Integrators, etc.

The complete context information provides the means to detect undesired situations,
e.g., loss of diversity in the partial or complete elite population, stagnation in the im-
provement of the best solution quality, awareness that some zones of the solution space -
defined by particular values for particular decision sets - have been scarcely explored, if at
all, and the search should be diversified in that direction, and so on. Thresholds on such
global performance measures trigger guidance operations for ICS performed by sending
“instructions” to Partial Solvers and Integrators. The particular type of guidance is ap-
plication specific, but instructions may modify the values x̃δ of the fixed attributes for a
specific Partial Solver to orient the search toward a different area, change the attribute
subset under investigation (i.e., change the decomposition of the decision-set attributes),
or modify/replace the solution method in a Partial Solver or Integrator. The last two
types of instructions significantly modify the structure of the global search and should
reflect major observations in the behavior of the method, e.g., a solver is constantly
under-performing compared to the others. Their usage should therefore be rather infre-
quent.

The first type of instructions, on the contrary, is the core guidance mechanism of the
method and is implemented in the application discussed later on in this paper. In their
simplest form, instructions take the form of a particular solution or solution subset being
sent to re-initialize a particular partial population (re-initialization may be complete or
partial, retaining in the latter case a few very good and diverse solutions) and thus re-
start the Partial Solver searches. Additional context information (e.g., the promising arc
patterns of Le Bouthillier et al., 2005) may complete the guiding instructions, to further
inflect the search trajectory toward regions that appear promising from the point of view
of the global search.

This general ICS framework can be applied to any multi-attribute combinatorial prob-
lem class for which a decision set decomposition may be defined. The next section illus-
trates the application of the ICS methodology to such a problem class.
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4 Application to the MDPVRP

We illustrate the ICS methodology with an application to the multi-depot periodic vehicle
routing problem (MDPVRP). Our aim is double. First, to document the instantiation
of ICS components and general method on a well-known multi-attribute problem and,
second, to evaluate the performance of the method. We first briefly recall the MDPVRP
setting and then detail the ICS application.

4.1 The multi-depot periodic vehicle routing problem

Briefly, see Vidal et al. (2012c) for a full description, the MDPVRP (Mingozzi, 2005)
is defined on a multi-period planning horizon, each customer requiring service several
times during this planning horizon according to one of a particular set of pre-defined
visit patterns (i.e., lists of periods when visits may occur). Service is provided out of a
set of depot, operating in all periods, by a homogeneous fleet of limited-capacity vehicles.
The distribution of the fleet among depots is known and the same for all periods. The
MDPVRP aims to select a depot and a visit pattern for each customer, with services in
different periods to the same customer being required to originate at the same depot,
such that the total cost of distribution is minimized.

The literature, we refer the reader to Vidal et al. (2012c) for a detailed review, shows
a richer set of contributions for two restrictions of the MDPVRP, the periodic VRP
(PVRP) where service proceeds out of a single depot, and the multi-depot VRP (MD-
VRP) where the planning horizon has a single period only. Most contributions to the
MDPVRP did not consider all attributes simultaneously, but rather applied a successive-
optimization approach (e.g., Hadjiconstantinou and Baldacci, 1998; Kang et al., 2005;
Yang and Chu, 2000). We are aware of only two methods that address problems sim-
ilar to the MDPVRP with a comprehensive approach. Parthanadee and Logendran
(2006) implemented a tabu search method for a complex variant of the MDPVRP with
backorders. Vidal et al. (2012c) proposed a hybrid genetic methodology, named Hybrid
Genetic Search with Adaptive Diversity Control (HGSADC ), combining the exploration
capability of population-based evolutionary search, the aggressive-improvement capabil-
ities of neighborhood-based meta-heuristics to enhance (educate) solution newly created
by genetic operators, and advanced population-diversity management mechanisms to
evaluate and select solutions. HGSADC is the current state-of-the-art method for the
MDPVRP, as well as for the PVRP and the MDVRP. We therefore use HGSADC as
solver in our ICS implementation for the MDPVRP and give more details in the next
subsection.
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4.2 ICS for the MDPVRP

To apply ICS to a given problem, we have to specify the decision-set attributes for the
decomposition, the state of the art algorithms making up the solvers to address the
resulting partial problems, the organization of each Partial Solver Group, the integrators
to reconstruct solutions, and finally the Complete Solver Group and the coordination
mechanisms.

We are opportunistic in this implementation and decompose the MDPVRP along the
depot and period decision sets to create two partial problems, managed through two PSGs
called PSG-fixDep and PSG-fixPat, respectively, which complement the CSG dedicated
to the complete MDPVRP. The partial problem addressed in the PSG-fixDep group is
a set of independent PVRPs optimizing pattern assignment and routing decisions, given
customer-to-depot assignments. (The depot-specific PVRPs can be optimized indepen-
dently when depot assignments are fixed.) Symmetrically, the second partial problem,
addressed in PSG-fixPat, is a multiple MDVRP optimizing depot assignment and rout-
ing decisions for each period given pattern-to-customer selections. Notice that, fixing
the pattern-to-customer selections simplifies the problem, but does not lead to a sepa-
rable formulation as previously, since the depot assignment for each customer must be
consistent among different periods.

Solver Groups. Two algorithms are used in this implementation, namely, GUTS, a gen-
eralized version of the Unified Tabu Search (UTS) of Cordeau et al. (2001) and the Hybrid
Genetic Search with Adaptive Diversity Control (HGSADC) of Vidal et al. (2012c). UTS
is a tabu search-based meta-heuristic implementing advanced insertion neighborhoods
and allowing the exploration of infeasible solutions by dynamically adjusted penalties on
violation of vehicle capacity and route duration constraints. We implemented a general-
ized version, GUTS, which can be used either as complete or partial solver by fixing the
appropriate attributes. HGSADC harnesses the strength of local-search improvement
procedures and the exploration capacities of population-based methods, including ad-
vanced crossover operators and diversity management mechanisms. A new evaluation of
individuals driven by both solution quality and contribution to the population diversity
is proposed to further promote innovation within selection and population management
procedures. This strategy was shown to be highly successful on periodic and multi-depot
problems. We therefore rely on it to manage individuals in the elite sets of partial and
complete solver groups with the same parameters as in Vidal et al. (2012c).

As illustrated in Algorithm 1, both GUTS and HGSADC can be used to work on a
solution Sini received from an elite set with fixed depot or pattern assignments. These
solvers are designed to use pattern-change, depot-change, and inter-route movements, as
well as intra-route optimization, but only on the solution components they are allowed to
work on. In the case of GUTS, Sini is simply considered an initial solution to be enhanced
by the algorithm. In the case of HGSADC, initial individuals are generated as in Vidal
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et al. (2012c), considering the allowed pattern and depot assignment alternatives, to
create an initial population to which Sini is added. These two algorithms are then run
until Itend = 5000 successive iterations (number of local-search moves in the case of
GUTS or number of generated individuals for HGSADC) have been performed without
improvement of the best solution. When this threshold is reached, the solver restarts
from a new solution from the elite set. Any improving solution is sent to the elite set if it
remains the best for at least Itcomm = 200 successive iterations, and thus the elite set only
receives solutions known to require some effort for further improvement. Furthermore,
the solver receives after each Itcomm iterations a new solution selected from the elite
set. This solution becomes the new starting solution of GUTS and it is included in the
population of HGSADC, if it improves upon the current best solution of the solver. The
solutions sent to the solvers are selected from the elite sets by binary tournament, using
the individual evaluation function of Vidal et al. (2012c). To avoid sending the same
solution multiple times, any solution which a solver has worked on until the termination
criteria is marked with a flag, and cannot be received again by the same solver. A
solution, which has been considered by all types of solvers without success, remains in
the elite set for the purpose of integration, migration, and bookkeeping only.

Various combinations of GUTS and HGSADC, or parts thereof, yield different Partial
Solver Groups. Preliminary experiments showed that“pure” cooperation, involving only
GUTS or HGSADC solvers, outperforms “mixed” ones. The speed and quality of the
evolution performed by HGSADC is the main reason behind this observation, as includ-
ing one more HGSADC was experimentally shown to be in all cases more profitable than
one additional GUTS. We thus investigate in Section 5 different versions of ICS, one
with only neighborhood-based solvers (UTS) in the solver groups, and the other with
HGSADC only. For the latter implementation, two different strategies have been evalu-
ated. The first is the previously described encapsulated setting, where HGSADC is used
with a dedicated population to improve single solutions, exchanging solutions (“migrat-
ing” individuals) with the elite set. The second is the sharing setting, where the elite set
directly serves as population for all HGSADC solvers involved in the cooperation. In this
latter case, flags are not used to mark solutions, and the role of the partial solver simply
comes to iteratively receiving a pair of individuals, performing a crossover and a local
search, and sending the resulting solution to the elite set (Line 2-4 in the HGSADC iter-
ation of Algorithm 1). Notice that, in the sharing versions, the two individuals selected
in the respective elite set for the crossover operation do not necessarily have the same
depot or patterns associated to customers, and that the crossover operator will further
modify these assignments.

Integration. Four integrators operate in parallel in the proposed MDPVRP application.
The first, named IBEST, selects the best solution from the population of each PSG and
transfers it directly to the complete solution set of the GSG. The best solutions of each
PSG are thus rapidly made available for sharing with the other PSGs and for extraction
of relevant information for global guidance. The other three integrators aim to create new
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Algorithm 1 Partial solvers

UTS case:
Repeat
RECEIVE an initial solution Sini

Scur ← Sini and Sbest ← Sini

While Number of Local Search moves since
last best solution ≤ Itend

//One GUTS iteration
For each customer, search for a better in-
sertion position given the fixed attributes
(pattern or depot assignments);
Apply best non-tabu move to Scur;
Adjust diversification parameters;
Adjust infeasibility penalties;
Update tabu list and status

//Update best and eventual communication
If cost(Scur) < cost(Sbest) then

Sbest ← Scur

If WhenFound(Sbest) = Itcomm then
SEND Sbest

If Nb LS moves = k × Itcomm then
RECEIVE a solution Sini

If cost(Sini) < cost(Sbest) then
SEND Scur and Scur ← Sini

HGSADC case:
Repeat
RECEIVE an initial solution Sini

Create an initial local population P
Add Sini to P and Sbest ← Sini

While Number of generated individuals since
last best solution ≤ Itend

//One HGSADC iteration
(S1, S2) ← Select two parents in P by bi-
nary tournament;
Scur ← Crossover(S1, S2);
Scur ← LocalSearch(Scur)
Add Scur to P
if |P| > MaxPopSize then manage the pop-
ulation by removing some individuals;
Adjust infeasibility penalties;

//Update best and eventual communication
If cost(Scur) < cost(Sbest) then

Sbest ← Scur

If WhenFound(Sbest) = Itcomm then
SEND Sbest

If Nb generated indivs = k× Itcomm then
RECEIVE a solution Sini

If cost(Sini) < cost(Sbest) then
SEND Scur and add Sini to P
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complete solutions out of pairs of partial solutions SfixDep and SfixPat randomly selected
among the best 25% of the PSG-fixDep and PSG-fixPat populations, respectively. The
ICROSS integrator relies on the crossover operator of HGSADC, which extracts from each
parent a subset of promising solution elements and is particularly efficient for combining
two solutions. ICROSS consists in applying 50 different times the crossover operator on
SfixDep and SfixPat, and improving the respective resulting solution with local search.
The best obtained solution is sent to the global solver group. The last two integrators,
detailed in Crainic et al. (2012), aim to promote attributes obtained by solvers working
on different facets of the problem while modifying part of these solutions to move to a
different search subspace. The IAND integrator fixes the attributes shared by the selected
partial solutions and, then, addresses the resulting restricted formulation by means of
HGSADC, to return the best solution. The IPEN integrator modifies the original complete
formulation by adding cost incentives to direct HGSADC toward the depot-to-customer
assignments of SfixPat and the pattern-to-customer assignments of SfixDep.

Global Solver Group and Search Coordination. The Global Search Coordinator
assumes the fourfold role of collecting statistical information on the past search, moni-
toring the status of the solver groups, triggering migration of individuals when necessary,
and building new guiding solutions to orient the search towards promising features. The
statistical information is developed on (client, depot, pattern) triplets entering the com-
plete solution set, by monitoring the number of occurrences (frequency) of each triplet in
the population as well as in the best, average and worst sub-populations (Le Bouthillier
et al., 2005), and finally the best cost of a solution containing any given triplet.

The GSC monitors the elite sets to check whether more than five non-flagged indi-
viduals are available (UTS and encapsulated-HGSADC implementations), and whether
improving solutions have been received during the Itcontrol = 2000 last solutions. If one
of these two criteria is not fulfilled, the GSC sends three solutions to the corresponding
elite set. The three solutions are either randomly selected (equiprobably) from the com-
plete solution set, or are three guiding solutions, as defined in the next paragraph. In
the shared-HGSADC implementations, this migration is preceded by a reset of the pop-
ulation, where all the solutions are replaced by new initial random solutions. It should
be noted that the solutions to be migrated do not necessarily have the same values for
the fixed attributes, and thus the solver groups process individuals with identical sets of
fixed attributes, but potentially different attribute values.

The GSC generates guiding solutions by selecting promising triplets to create feasible
pattern and depot customer assignments. “Promising” is based on the complete search
history and is meant as appearing in at least one solution with a cost difference of less than
3% with respect to the best found solution. Once these patterns and depots are selected,
complete solutions with routes are generated by local search, to serve as initial population
(HGSADC implementations) or solution (UTS implementations) and be optimized with
the solver of choice. The termination criterion for GUTS or HGSADC is here set to
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It′end = 2000 iterations without improvement. Since creating such an individual is time
consuming, guiding individuals are generated by the GSC in background, and stored in a
temporary pool of guiding individuals. These solutions significantly contribute to inflect
the search trajectory towards different alternatives of assignment combinations.

We experimented with two settings of the CSG, with and without a complete-solver
set. The same two algorithms, GUTS and HGSADC, are used in the former case, tar-
geting the full MDPVRP. The results are presented next.

5 Experimental Results and Analyses

Extensive experimental analyses were conducted to 1) assess the performance of ICS
when compared to state-of-the-art sequential methods and, 2) investigate several imple-
mentation alternatives, including the choice of solver type (GUTS vs. HGSADC) and of
cooperation strategy in the case of HGSADC (encapsulated vs. shared), as well as the
potential inclusion of global solvers in the complete solver group.

The ICS method was implemented in C++. Experiments were run on an Altix 4700
server, using double Core processors Itanium 2 with 1.5GHz cadence and a NUMAlink
communication network. 14 processors were used for the MDPVRP experiments:

• 3 CPUs managing each one of the elite sets;
• 6 CPUs for solvers: three for each of the two PSGs when no global solver was used,

two for each PSG and two for the CSG, otherwise;
• 3 CPUs for the integrators, IBEST and ICROSS being run on the same CPU;
• 2 CPUs for the GSC, one for creating the guiding individuals, and the other fulfilling

the remaining tasks.

This choice of task-to-CPU assignment is mostly due to implementation simplic-
ity. Computational experiments show that, in practice, only 10 CPU out of 14 perform
computationally-intensive tasks. The other four CPUs, dedicated to the elite set man-
agement and GSC monitoring, could be implemented on a single core in a more advanced
implementation. We therefore consider in analyzing the results that the effective work-
load of ICS is 10 times the load of a sequential method.

Experiments were performed on six versions of ICS for the MDPVRP. HGSADC-
ICS1, HGSADC-ICS2, and GUTS-ICS represent the population-based HGSADC sharing
and encapsulated versions and the GUTS implementation, respectively, without general
solvers. Their counterparts, HGSADC-ICS1+, HGSADC-ICS2+, and GUTS-ICS+, in-
clude the MDPVRP solvers. Each method was run ten times on each instance, recording
the best solutions after 5, 10, 15 and 30 minutes minutes of computation time.
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The ten MDPVRP instances pr01 - pr10 of Vidal et al. (2012c), derived from the
Cordeau et al. (2001) data sets, were used for these tests. These instances present a
uniform geographical distribution of customers coupled with a few customer clusters.
The largest instances include up to 288 customers, 6 depots, 6 days, and a total of 864
deliveries. Detailed descriptions are provided in the Annex.

Table 1 sums up the performance comparison of the ICS versions and the two sequen-
tial solvers at different instances of computing time. Solution quality is reported as the
average percentage of cost deviation (on all instances and all runs) with respect to the
best known solutions in the MDPVRP literature, reported in Vidal et al. (2012c). In
addition, Tables 2 and 3 provide detailed comparisons of the quality of solutions between
the GUTS-ICS+ version and the sequential GUTS, and between the “best” population-
based ICS version, HGSADC-ICS2+, and the sequential HGSADC, respectively. The
first column in these tables specifies the instance solved, while the next columns report
the average solution quality, the run time, and the best solution found by the sequential
method. The two next groups of columns report the average and best results of the ICS
versions at different points in time, and finally the last column reports the previous BKS
from the literature. For each line, the best solution is reported in boldface. New best
known solutions are underlined. Detailed results for the other ICS implementations are
provided in the Annex.

Version Gap 5 min Gap 10 min Gap 15 min Gap 30 min
HGSADC NC NC NC +0.42%

HGSADC-ICS1 +0.78% +0.51% +0.40% +0.29%
HGSADC-ICS2 +1.12% +0.65% +0.49% +0.32%

HGSADC-ICS1+ +0.59% +0.37% +0.29% +0.21%
HGSADC-ICS2+ +0.79% +0.34% +0.23% +0.17%

GUTS NC NC NC +2.77%
GUTS-ICS +1.62% +1.04% +0.78% +0.58%

GUTS-ICS+ +1.29% +0.94% +0.71% +0.52%

Table 1: Average performance of ICS versions and sequential algorithms

The reported results underline the large contribution of the ICS framework in en-
hancing neighborhood-based searches such as GUTS. Thus, the solution quality improves
from a 2.77% gap to a 0.52% gap when relying on the cooperative framework. The im-
provement in the case of population-based searches appears smaller but still significant,
reducing the average gap from 0.42% to 0.17%. This is impressive, given the smaller
potential for improvement due to the high-quality solutions provided by HGSADC. It
should be noted that ICS also enables to obtain high-quality solutions in reduced time,
the average solution quality being higher after 10 minutes of ICS than after 30 minutes
of HGSADC. Finally, during the overall experimentation process, HGSADC-ICS2+ qal-
lowed us to find three new best known solutions for the considered problems: 5558.02 for
pr05, 8254.73 for pr09, and 9776.28 for pr10 (these solutions may be obtained from the
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Inst GUTS GUTS-ICS+ BKS
Avg T(min) Best Avg Best

5 min 10 min 15 min 30 min 5 min 10 min 15 min 30 min
pr01 2019.07 0.14 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07
pr02 3547.72 2.39 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45
pr03 4639.50 18.87 4578.14 4495.73 4488.85 4482.96 4482.21 4483.24 4480.87 4480.87 4480.87 4480.87
pr04 5246.39 20.03 5225.67 5187.92 5167.56 5161.60 5153.83 5154.93 5153.73 5150.40 5149.09 5134.17
pr05 5738.40 21.10 5666.35 5726.11 5693.80 5652.20 5630.05 5686.88 5624.05 5618.88 5599.41 5570.45
pr06 6759.41 20.06 6723.52 6640.94 6621.20 6604.15 6586.48 6566.44 6566.09 6566.09 6565.69 6524.92
pr07 4644.93 0.71 4644.93 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02
pr08 6217.23 20.82 6174.15 6052.42 6024.29 6024.20 6024.15 6024.41 6023.98 6023.98 6023.98 6023.98
pr09 8644.82 23.85 8548.63 8408.71 8356.79 8338.22 8302.88 8324.61 8294.79 8278.58 8277.63 8257.80
pr10 10241.67 26.45 10120.30 10270.76 10178.57 10102.29 10040.94 9990.04 9946.60 9935.10 9930.32 9818.42
Gap +2.77% +2.10% +1.29% +0.94% +0.71% +0.52% +0.57% +0.37% +0.33% +0.28%

Table 2: Performance of GUTS-ICS

Inst HGSADC HGSADC-ICS2+ BKS
Avg T(min) Best Avg Best

5 min 10 min 15 min 30 min 5 min 10 min 15 min 30 min
pr01 2019.07 0.35 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07
pr02 3547.45 1.49 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45
pr03 4491.08 7.72 4480.87 4480.94 4480.87 4480.87 4480.87 4480.87 4480.87 4480.87 4480.87 4480.87
pr04 5151.73 22.10 5144.41 5152.10 5145.63 5145.15 5144.42 5144.41 5144.41 5144.41 5144.41 5134.17
pr05 5605.60 10.00 5581.10 5649.40 5597.52 5588.82 5582.86 5610.52 5573.79 5572.44 5558.92 5570.45
pr06 6570.28 10.00 6549.57 6615.02 6554.82 6542.43 6538.54 6582.20 6534.18 6533.67 6529.67 6524.92
pr07 4502.06 2.18 4502.06 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02
pr08 6029.58 7.96 6023.98 6024.03 6023.98 6023.98 6023.98 6023.98 6023.98 6023.98 6023.98 6023.98
pr09 8310.19 27.79 8271.66 8312.31 8287.48 8283.34 8274.42 8283.95 8256.99 8256.47 8256.47 8257.80
pr10 9972.35 30.00 9852.87 10215.12 10003.86 9938.42 9907.24 10099.90 9962.31 9887.07 9868.98 9818.42
Gap +0.42% +0.13% +0.79% +0.34% +0.23% +0.17% +0.50% +0.19% +0.11% +0.06%

Table 3: Performance of HGSADC-ICS2+ with encapsulated population-based solvers
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authors).

We complete this analysis by examining the performance distribution of all these
methods with respect to their respective trade-offs between solution quality and overall
CPU effort. Figure 4 illustrates this analysis, by displaying average and best-solution
results for GUTS and HGSADC-based methods. The computation effort is computed
multiplying the run time and the number of effectively working CPUs. Because the total
effort to achieve best solutions is that of all the corresponding runs, the computation
effort for these results is scaled accordingly.

Figure 4: Solution Quality versus Computational Effort

Figure 4 shows that the exploration capabilities of the GUTS solvers are greatly en-
hanced by the cooperative framework, GUTS-ICS implementations leading to a variety of
non-dominated (time/CPU consumption) trade-offs. Four variants of HGSADC consti-
tute a Pareto set with respect to the twofold objective of solution quality and CPU effort:
HGSADC-ICS1+best30m, HGSADC-best, HGSADC-ICS2+avg10m, and HGSADC-avg.
For an equal CPU effort, a 10-processor parallel multi-search with HGSADC (HGSADC-
best), seems to produce solutions of moderately higher quality than HGSADC-ICS2+
(deviation of 0.13% versus 0.17%). However, we must remark that HGSADC-ICS2+
with general solvers only rely on 2 solvers working on the general problem, while the best
run of HGSADC out of 10 is comparable to the joint effort of 10 parallel general solvers.
This emphasizes the excellent performance of ICS.

We now turn to discussing the results of a series of experiments targeting the impact
of two particular ICS design features, the encapsulating or sharing of populations within
PSGs, and the inclusion of general solvers in the CSG.

The results show that for short computation times (5 or 10 minutes), genetic algo-
rithms that work directly on the elite sets (sharing ICS) seem to conduct to higher-quality
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solutions. This observation relates to the fact that such a tight cooperation enables a fast
exchange of solutions for an aggressive intensification. On longer runs, the encapsulated
version of ICS, where each genetic solver operates its own population, seems to lead to
better best solutions, thanks to an increased diversity of the search trajectories.

Finally, using general solvers within the CSG yields moderate increases in solution
quality in all experiments. This is not surprising as it corroborates the general observa-
tion that addressing the complete problem formulation within the resolution approach
is highly profitable, if possible. Indeed, of particular importance is the fact that, even
when general solvers are not used, the ICS solution quality does only slightly decrease
(a 0.08% difference in the worst case). This illustrates the remarkable ability of ICS to
produce results of similar quality to the ones of the best methods addressing the complete
problem, with only solvers that work on partial aspects of the problem. This observation
is critical when dealing with multi-attribute, rich problems for which integrated solvers
are either not available or not sufficiently efficient. ICS becomes the method of choice in
these cases.

6 Conclusions

We introduced the Integrative Cooperative Search framework to efficiently address the
challenges of rich, multi-attribute combinatorial optimization problems.

ICS decomposes such complex problems along decision-set attributes and musters,
within a multi-thread cooperative search framework, the combined capabilities of a num-
ber of independent exact or meta-heuristic solution methods. A number of these methods
work on sub-problems defined by suitably selected subsets of decision-set attributes of
the problem, while others combine the resulting partial solutions into complete ones and,
eventually, improve them. These methods cooperate through an adaptive search-guidance
mechanism, using the central-memory cooperative search paradigm.

We illustrated the interest of the Integrative Cooperative Search methodology through
an application to the multi-depot, periodic vehicle routing problem, for which ICS en-
hances the results of the current state-of-the-art methods.

To apply ICS to other combinatorial optimization problems is sufficient to identify
decision-set attributes yielding suitable partial problems. Thus, for example, the re-
cently proposed Unified Hybrid Genetic Search methodology (Vidal et al., 2012b) of-
fers the means to rapidly devise high-performing meta-heuristics for a wide gamut of
routing problem settings. Similarly, multi-attribute design problems may be addressed
through ICS integrating efficient tabu search and path relinking meta-heuristics (Crainic
et al., 2006). This emphasizes the generality and broad applicability of the proposed ICS
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methodology.
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fellows with the Chair, and M. Gendreau was the NSERC/Hydro-Québec Industrial Re-
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Annex

We first display the characteristics of the test instances and then present the detailed
result tables for the four ICS versions not included in the body of the text. Each entry
is the average of ten repetitions.

The MDPVRP benchmark instances introduced in Vidal et al. (2012c) were produced
by merging the instances for the MDVRP and the PVRP described in Cordeau et al.
(2001). The characteristics of the instances are summarized in Table 4. The number of
customers in each instance is represented by n, while t is the number of periods in the
PVRP and the number of depots in the MDVRP. m is the number of vehicles for the
MDPVRP. This number of vehicles available each day at each depot is set to the minimum
number of vehicles needed. D and Q are the capacity and the duration constraints on
the vehicles, respectively.

Inst n t m D Q
pr01 48 4 1 500 200
pr02 96 4 1 480 195
pr03 144 4 2 460 190
pr04 192 4 2 440 185
pr05 240 4 3 420 180
pr06 288 4 3 400 175
pr07 72 6 1 500 200
pr08 144 6 1 475 190
pr09 216 6 2 450 180
pr10 288 6 3 425 170

Table 4: MDPVRP instances

Inst GUTS GUTS-ICS BKS
Avg T(min) Best Avg Best

5 min 10 min 15 min 30 min 5 min 10 min 15 min 30 min
pr01 2019.07 0.14 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07
pr02 3547.72 2.39 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45
pr03 4639.50 18.87 4578.14 4492.07 4483.49 4482.74 4481.51 4483.29 4480.90 4480.87 4480.87 4480.87
pr04 5246.39 20.03 5225.67 5188.12 5171.35 5168.81 5163.29 5170.63 5156.16 5156.16 5148.06 5134.17
pr05 5738.40 21.10 5666.35 5762.78 5674.16 5644.62 5633.24 5663.68 5635.88 5626.66 5616.02 5570.45
pr06 6759.41 20.06 6723.52 6716.27 6615.74 6603.22 6585.77 6575.16 6559.11 6555.71 6548.86 6524.92
pr07 4644.93 0.71 4644.93 4502.06 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02
pr08 6217.23 20.82 6174.15 6038.41 6024.40 6024.19 6024.08 6024.00 6023.98 6023.98 6023.98 6023.98
pr09 8644.82 23.85 8548.63 8430.12 8356.94 8322.31 8306.93 8323.97 8305.61 8286.66 8277.93 8257.80
pr10 10241.67 26.45 10120.30 10421.26 10324.62 10192.87 10071.34 10106.10 10092.50 10018.80 10006.50 9818.42
Gap +2.77% +2.10% +1.62% +1.04% +0.78% +0.58% +0.69% +0.55% +0.43% +0.36%

Table 5: Performance of GUTS-ICS
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Inst HGSADC HGSADC-ICS1 BKS
Avg T(min) Best Avg Best

5 min 10 min 15 min 30 min 5 min 10 min 15 min 30 min
pr01 2019.07 0.35 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07
pr02 3547.45 1.49 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45
pr03 4491.08 7.72 4480.87 4485.72 4483.03 4482.07 4480.88 4480.87 4480.87 4480.87 4480.87 4480.87
pr04 5151.73 22.10 5144.41 5162.75 5156.36 5153.18 5149.17 5154.83 5146.29 5146.14 5144.41 5134.17
pr05 5605.60 10.00 5581.10 5674.21 5622.02 5608.19 5598.38 5606.55 5580.53 5577.83 5574.61 5570.45
pr06 6570.28 10.00 6549.57 6602.40 6579.26 6568.33 6555.72 6574.52 6548.81 6543.54 6542.32 6524.92
pr07 4502.06 2.18 4502.06 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02
pr08 6029.58 7.96 6023.98 6024.29 6024.03 6024.03 6023.99 6023.98 6023.98 6023.98 6023.98 6023.98
pr09 8310.19 27.79 8271.66 8325.98 8297.34 8290.60 8281.60 8265.31 8262.99 8261.74 8261.74 8257.80
pr10 9972.35 30.00 9852.87 10138.28 10052.64 10003.22 9949.62 9970.82 9907.04 9904.36 9830.38 9818.42
Gap +0.42% +0.13% +0.78% +0.51% +0.40% +0.29% +0.35% +0.17% +0.16% +0.07%

Table 6: Performance of HGSADC-ICS1 with shared populations

Inst HGSADC HGSADC-ICS1+ BKS
Avg T(min) Best Avg Best

5 min 10 min 15 min 30 min 5 min 10 min 15 min 30 min
pr01 2019.07 0.35 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07
pr02 3547.45 1.49 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45
pr03 4491.08 7.72 4480.87 4482.33 4481.35 4480.99 4480.87 4480.87 4480.87 4480.87 4480.87 4480.87
pr04 5151.73 22.10 5144.41 5158.64 5152.78 5150.57 5148.79 5146.63 5145.62 5145.62 5144.45 5134.17
pr05 5605.60 10.00 5581.10 5631.65 5601.88 5593.40 5587.97 5613.77 5590.25 5576.38 5573.91 5570.45
pr06 6570.28 10.00 6549.57 6599.25 6567.80 6560.05 6551.72 6573.99 6550.10 6543.19 6536.97 6524.92
pr07 4502.06 2.18 4502.06 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02
pr08 6029.58 7.96 6023.98 6024.09 6024.03 6024.01 6024.01 6023.98 6023.98 6023.98 6023.98 6023.98
pr09 8310.19 27.79 8271.66 8306.52 8287.13 8278.86 8273.77 8288.08 8263.17 8261.70 8256.67 8257.80
pr10 9972.35 30.00 9852.87 10065.30 9993.48 9950.46 9902.44 9995.04 9879.76 9859.08 9826.14 9818.42
Gap +0.42% +0.13% +0.59% +0.37% +0.29% +0.21% +0.39% +0.17% +0.11% +0.05%

Table 7: Performance of HGSADC-ICS1+ with shared populations

Inst HGSADC HGSADC-ICS2 BKS
Avg T(min) Best Avg Best

5 min 10 min 15 min 30 min 5 min 10 min 15 min 30 min
pr01 2019.07 0.35 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07 2019.07
pr02 3547.45 1.49 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45 3547.45
pr03 4491.08 7.72 4480.87 4495.57 4482.45 4480.91 4480.91 4480.87 4480.87 4480.87 4480.87 4480.87
pr04 5151.73 22.10 5144.41 5168.41 5155.54 5150.79 5148.27 5154.51 5144.41 5144.41 5144.41 5134.17
pr05 5605.60 10.00 5581.10 5682.73 5639.67 5617.91 5604.86 5621.61 5570.54 5570.54 5568.28 5570.45
pr06 6570.28 10.00 6549.57 6638.89 6585.02 6569.59 6551.77 6605.94 6560.20 6541.38 6528.58 6524.92
pr07 4502.06 2.18 4502.06 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02 4502.02
pr08 6029.58 7.96 6023.98 6029.07 6024.01 6023.98 6023.98 6023.98 6023.98 6023.98 6023.98 6023.98
pr09 8310.19 27.79 8271.66 8341.98 8308.42 8292.10 8277.61 8291.09 8263.99 8261.47 8261.10 8257.80
pr10 9972.35 30.00 9852.87 10339.20 10139.79 10075.60 9984.54 10147.90 9986.01 9959.13 9896.27 9818.42
Gap +0.42% +0.13% +1.12% +0.65% +0.49% +0.32% +0.63% +0.25% +0.19% +0.10%

Table 8: Performance of HGSADC-ICS2 with encapsulated population-based solvers
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