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Abstract. In this paper, we consider a variant of vehicle routing problems which is 

characterized by the presence of a homogeneous fleet of vehicles, multiple depots, 

multiple periods and two kinds of constraints that are often found in reality, i.e., vehicle 

capacity and route duration constraints. The objective is to minimize total travel costs. 

Since the Vehicle Routing Problem has been proved to be NP-hard in the strong sense, 

an effective Path Relinking Algorithm (PRA) is designed for finding the best possible 

solutions to this problem. The proposed PRA incorporates several purposeful exploitation 

and exploration strategies that enable the algorithm to tackle the problem in two different 

settings: 1) As a stand-alone algorithm, and 2) As a part of a co-operative search 

algorithm called Integrative Co-operative Search (ICS). The performance of the proposed 

Path Relinking Algorithm is evaluated, in each of the above ways, based on various test 

problems. The computational results show that the developed PRA performs impressively, 

in both solution quality and computational efficiency. 
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1 Introduction
The vehicle routing problem (VRP), introduced by Dantzig and Ramser (1959), is one
of the most important and widely studied combinatorial optimization problems, with
many real-life applications in distribution and transportation logistics. In the classical
VRP, a homogeneous fleet of vehicles services a set of customers from a single distri-
bution depot or terminal. Each vehicle has a fixed capacity that cannot be exceeded and
each customer has a known demand that must be fully satisfied. Each customer must
be serviced by exactly one visit of a single vehicle and each vehicle must depart from
the depot and return to the depot (Toth and Vigo (2002)).

Several variations and specializations of the vehicle routing problem, each reflect-
ing various real-life applications, exist. However, surveying the literature, one can
notice that not all VRP variants have been studied with the same degree of attention in
the past five decades. This is the case for the problem considered in this study. More-
over, most of the methodological developments target a special problem variant, the
Capacitated VRP (CVRP) or the VRP with Time Windows (VRPTW), despite the fact
that the majority of the problems encountered in real-life applications display more
complicating attributes and constraints. This also applies to the problem addressed in
this paper.

Our objective is to contribute toward addressing these two challenges. In this paper,
we address a variant of the VRP in which a daily plan is computed for a homogeneous
fleet of vehicles that depart from different depots and must visit a set of customers for
delivery operations in a planning horizon. In this VRP, we consider maximum route
duration constraint and an upper limit of the quantity of goods that each vehicle can
transport. Moreover, the cost of each vehicle route is computed through a system of
fees depending on the distance that is traveled. This type of vehicle routing problem is
typically called the Multi-depot Periodic Vehicle Routing Problem (MDPVRP).

To tackle the MDPVRP, we propose a new Path Relinking Algorithm, which in-
corporates exploitation and exploration strategies allowing the algorithm to solve the
considered problem in two different manners: 1) As a stand-alone algorithm, and 2) As
a part of a cooperative search method named as Integrative Cooperative Search (ICS).

The remainder of this paper is organized as follows. The problem statement is
introduced in Section 2. The literature survey relevant to the topic of this paper is pre-
sented in Section 3. Section 4 deals with the proposed Path Relinking Algorithm. The
experimental results are reported in Section 5. Finally, Section 6 provides conclusions
and the evaluation of the work.

2 Problem statement
In this section, we formally state the MDPVRP, introducing the notations used through-
out this paper. The MDPVRP can be defined as follows (Vidal et al. (2010)): Consider
an undirected graph G(V,E). The node set V is the union of two subsets V = VC ∪VD,
where VC = {v1, ..., vn} represents the customers and VD = {vn+1, ..., vn+m} in-
cludes the depots. With each node i ∈ VC is associated a deterministic demand qi. The
edge set E contains an edge for each pair of customers and for each depot-customer
combination. There are no edges between depots. With each edge (vi, vj) ∈ E is as-
sociated a travel cost cij . The travel time for arriving to node j from node i (tij) is
considered equal to cij . A limited number (K) of homogeneous vehicles of known ca-
pacity Q is available at each depot. Moreover, the MDPVRP has a planning horizon,
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say T periods. Each customer i is characterized by a service frequency fi, stating how
often within these T periods this customer must be visited and a list Li of possible visit-
period combinations, called patterns. Each vehicle performs only one route per period
and each vehicle route must start and finish at the same depot while the travel duration
of the route should not exceed D. The MDPVRP aims to design a set of vehicle routes
servicing all customers, such that vehicle-capacity and route-duration constraints are
respected, and the total travel cost is minimized.

3 Literature review
In this section, we focus our attention on reviewing papers previously published in the
literature to address the MDPVRP. The objective of this review is first to present what
types of solution methodologies have been proposed to solve the considered problem
and second, to distinguish leading solution approaches that have been proved to be
efficient to tackle the MDPVRP.

By surveying the literature, one notices that the most common solution approach
for solving this type of the VRP is to apply a successive-optimization approach which
sequentially solves a series of particular cases instead of considering the problem as
a whole. This procedure usually leads to suboptimal solutions. Solution algorithms,
belonging to this category, can be divided into two groups, i.e., exact methods and
heuristics. To the best of our knowledge, the only exact method used to solve the MD-
PVRP was the one designed by Mingozzi (2005). In the proposed method, first, an
integer programming model which is an extension of the set partitioning formulation
of the CVRP is described. Then, an exact method for solving the problem, which uses
variable pricing in order to reduce the set of variables to more practical proportions,
is proposed. The pricing model is based on the bounding procedure for finding near
optimal solutions of the dual problem of the LP relaxation of the proposed integer pro-
gramming model. The bounding procedure is an additive procedure that determines
a lower bound on the MDPVRP as the sum of the dual solution costs obtained by a
sequence of five different heuristics for solving the dual problem, where each heuris-
tic explores a different structure of the MDPVRP. Three of these heuristics are based
on relaxations, whereas the two others combine subgradient optimization with column
generation. We also aware of three heuristic algorithms in this category. Hadjicon-
stantinou and Baldacci (1998) addressed the Multi-Depot Periodic VRP with Time
Windows (MDPVRPTW). The authors proposed a multi-phase optimization problem
and solved it using a four-phase algorithm. They developed a tabu search algorithm
which solves the VRPTW and improved the solutions obtained during the optimiza-
tion process using a 3-opt procedure. The last phase is the only one that modifies the
depot and visit combination pattern assignments. Kang et al. (2005) studied the prob-
lem considered by Hadjiconstantinou and Baldacci (1998). The authors developed a
two-phase solution method in which all feasible schedules are generated from each de-
pot for each period and the set of routes are determined by solving the shortest path
problem. Parthanadee and Logendran (2006) also solved the problem considered by
Hadjiconstantinou and Baldacci (1998) using a tabu search. In this algorithm, all the
initial assignments are built by cheapest insertion. At the improvement phase, depot
and delivery pattern interchanges are used.

Another type of solution approaches more recently used to solve the MDPVRP tar-
get the problem as a whole by simultaneously considering all its characteristics. Crainic
et al. (2009) proposed a well structured parallel cooperative search method, called
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Integrative Co-operative Search (ICS), to solve combinatorial optimization problems.
The proposed ICS framework relies on an attribute decomposition approach and its
structure is similar to a self-adaptive evolutionary meta-heuristic evolving several in-
dependent populations, where one population corresponds to the solutions of the main
problem whereas the others consist of the solutions addressing specific dimensions of
the problem. The authors used the MDPVRP with time windows to illustrate the appli-
cability of the developed methodology. Vidal et al. (2010) proposed a hybrid Genetic
Algorithm (GA) to solve the MDPVRP and two of its special cases, i.e., the Multi-
depot VRP (MDVRP) and the Periodic VRP (PVRP). The most interesting feature of
the proposed GA is a new population-diversity management mechanism which allows
a broader access to reproduction, while preserving the memory of what characterizes
good solutions represented by the elite individuals of the population.

This brief review supports the general statement made in Section 1 that the MD-
PVRP is among the VRP variants which did not not receive an adequate degree of atten-
tion and the solution algorithms proposed to solve the MDPVRP are scarce. Moreover,
solution methodologies which solve the MDPVRP as a whole by simultaneously con-
sidering all its characteristics are scarcer. To contribute toward addressing these two
challenges, we develop a Path Relinking Algorithm to efficiently address the MDPVRP
as a whole. The proposed Path Relinking Algorithm is described in the next section.

4 The Path Relinking Algorithm (PRA)
In recent years, meta-heuristic algorithms, especially population-based ones, have been
applied with success to a variety of hard optimization problems. Among the population-
based meta-heuristics, the PRA is known as a powerful solution methodology which
solves a given problem using purposeful and non-random exploration and exploitation
strategies (Glover and Laguna (2000)). The general concepts and principles of a Path
Relinking are first described in Section 4.1. Then, the main components of the PRA
proposed to solve the MDPVRP are explained in details in Section 4.1.

4.1 The Path Relinking Algorithm in general
The Path Relinking Algorithm has been suggested as an approach to integrate intensi-
fication and diversification strategies in the context of tabu search (Glover and Laguna
(2000)). The PRA can be considered as an evolutionary algorithm where solutions
are generated by combining elements from other solutions. Unlike other evolutionary
methods, such as genetic algorithms, where randomness is a key factor in the creation
of offsprings from parent solutions, Path Relinking systematically generates new so-
lutions by exploring paths that connect elite solutions. To generate the desired paths,
an initial solution and a guiding solution are selected from a so-called reference list of
elite solutions to represent the starting and the ending points of the path. Attributes
from the guiding solution are gradually introduced into the intermediate solutions, so
that these solutions contain less characteristics from the initial solution and more from
the guiding solution as one moves along the path.

Based on the description mentioned above, the main components of the general
Path Relinking Algorithm are summarized as follows:

1. Rules for building the reference set
2. Rules for choosing the initial and guiding solutions
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3. A neighbourhood structure for moving along paths

Algorithm 1 shows a simple Path Relinking procedure presenting how the above-
mentioned different components interact.

Algorithm 1 The general Path Relinking Algorithm
1: Generate a starting set of solutions.
2: Designate a subset of solutions to be included in the reference list.

While the cardinality of the reference list > 1

• Select two solutions from the reference list;
• Identify the initial and guiding solutions;
• Remove the initial solution from the reference list;
• Move from the initial toward the guiding solution, generating intermediate so-

lutions.
• Update the reference list;

3: Verify stopping criterion: Stop or go to 1.

To the best of our knowledge, the only Path Relinking Algorithm proposed to solve
a VRP was developed by Ho and Gendreau (2006). The authors suggested a hybrid al-
gorithm that uses tabu search and Path Relinking to solve the capacitated vehicle rout-
ing problem. The major novelty of this paper is to introduce an assignment problem to
determine similarities and differences in the structure of initial and guiding solutions
in the proposed Path Relinking. The assignment problem considered in this paper can
be briefly described as follows. Once the initial and guiding solutions are selected, a
matching of their routes is performed. The matching procedure amounts to solving
an assignment problem on an auxiliary complete bipartite graph G = (V,E), where
V = Vi ∪ Vg and the vertices of Vi and Vg correspond to the routes of the initial and
of the guiding solutions, respectively. To each edge (k, l) ∈ E is associated a weight
ckl , which is defined as the number of identical customers in routes k and l of the
two solutions. The aim of this algorithm is to find a matching of the routes of the two
solutions such that the number of identical customers in matched routes is maximized.
In the Path Relinking phase, a moving mechanism ensures that the algorithm is mak-
ing progress towards the guiding solution. Towards this end, the routes of the guiding
solution are first relabeled in accordance with the matching of the routes determined
previously, i.e., if the matching problem determines that route l of the guiding solution
is matched by route k of the initial solution, label k is assigned to route l of the guiding
solution. Then, a moving mechanism consisting of two neighbourhood search algo-
rithms is used. The first neighbourhood is made up of all the potential solutions that
can be reached from the current solution by moving customers from their current route
to another while taking into account the structure of the guiding solution. Similarly, the
second neighbourhood is defined as the set of all potential solutions that can be reached
from the current solution by exchanging two customers between their respective routes
while taking into account the structure of the guiding solution.

4.2 The proposed Path Relinking Algorithm
4.2.1 General idea

The Path Relinking Algorithm proposed in this paper relies on an easy-to-build and effi-
cient reference list evolving several independent subsets, where one subset, called com-
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plete set, corresponds to elite solutions of the main problem while the others, named
as partial sets, consist of elite solutions addressing specific dimensions of the problem.
The cooperation between the sets of the reference list is set up by means of information
exchange, through the searching mechanism of the PRA.

To construct such a reference list, the MDPVRP is first decomposed into two VRPs
with fewer attributes, i.e., PVRP and MDVRP, by respectively fixing the attributes
”multiple depots” and ”multiple periods”. Each of the constructed sub-problems is
then solved by a dedicated solution algorithm which is called partial solver. The main
advantage of applying such a decomposition procedure is that working on selected
attribute subsets, instead of considering all attributes at a time, provides relatively high-
quality solutions rapidly. Furthermore, well-known solution methodologies found in
the literature may be used to solve sub-problems.

Elite solutions obtained by each partial solver are sent to a partial set of the ref-
erence list. The partial sets can be either kept unchanged in the course of the PRA
or iteratively updated in order to include better solutions, in terms of both solution
quality and diversification level, as the algorithm reaches the termination criterion. We
respectively call these two possibilities as static and dynamic scenarios. Challenges,
advantages and deficiencies of each scenario are thoroughly discussed in Section 5.

After constructing the initial partial sets, the proposed Path Relinking Algorithm
starts to construct high-quality solutions of the main problem by exploring trajecto-
ries that connect solutions selected from the reference list. Towards this end, several
selection strategies, each choosing initial and guiding solutions in a different manner,
are first implemented. Then, for each selected initial and guiding solutions, a neigh-
bourhood search generates a sequence of high-quality complete solutions using the
information shared by the selected solutions. Elite solutions generated by the search-
ing mechanism of the PRA are kept in the complete set of the reference list in order to
avoid losing high-quality and diverse solutions.

Two special variants of the proposed Path Relinking Algorithm explained above
can be obtained by respectively ignoring complete and partial sets. In the former case,
the PRA generates complete solutions only based on the information gathered from
partial solutions, while, in the latter case, the developed algorithm is converted to a
general Path Relinking whose main characteristics have been described in Section 4.1.

Note that, throughout this paper, we use the term ”partial” for the solutions ob-
tained by the partial solvers only in order to distinguish between these solutions and
the solutions generated in the Path Relinking Algorithm and it does not imply that these
solutions are not complete and feasible for the main problem, i.e., MDPVRP. Different
components of the proposed Path Relinking Algorithm are described in the following
subsections.

4.2.2 Search space

It is well known in the meta-heuristic literature that allowing the search to enter infea-
sible regions may result in generating high-quality and diverse feasible solutions. One
of the main characteristics of the proposed PRA is that infeasible solutions are allowed
throughout the search. Let us assume that x denotes the new solution generated by
the searching mechanism. Moreover, let c(x) denote the travel cost of solution x, and
let q(x) and t(x) denote the total violation of the load and duration constraints, respec-
tively. Solution x is evaluated by a cost function z(x) = c(x) + αq(x) + βt(x), where
α and β are self-adjusting positive parameters. By dynamically adjusting the values
of these two parameters, this relaxation mechanism facilitates the exploration of the
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search space and is particularly useful for tightly constrained instances. Parameter α is
adjusted as follows: if there is no violation of the capacity constraints, the value of α
is divided by 1+γ , otherwise it is multiplied by 1+γ , where γ is a positive parameter.
A similar rule applies also to β respect to route duration constraint.

4.2.3 Solution representation

One of the most important decisions in designing a meta-heuristic lies in deciding
how to represent solutions and relate them in an efficient way to the searching space.
Representation should be easy to decode to reduce the cost of the algorithm. In the pro-
posed Path Relinking Algorithm, a path representation based on the method proposed
by Kytöjoki et al. (2005) is used to encode the solution of the MDPVRP. The idea of
the path representation is that the customers are listed in the order in which they are
visited. To explain this solution representation, let us consider the following example:
Suppose that there are four customers numbered 1-4 which have to be visited by two
depots in two periods. Moreover, let us assume that the two first customers are served
by the first depot, whereas the two last ones are visited by the second depot. Besides
that, all customers need to be visited in each period. Figure 1 shows how a solution of
the problem described above is represented.

Figure 1: An example of the solution representation

As depicted in Figure 1, in this kind of representation, a single row array of the
size equal to n+1 is generated for each depot in each period. Note that n is the number
of customers to be visited. The first position of the array (index 0) is related to the
corresponding depot, while each of the other positions (index i; 1 ≤ i ≤ n) represents
a customer. The value assigned to a position of the array represents which customer
should be immediately visited after the customer or depot related to that position. For
example, in Figure 1, the value ”2” has been assigned to the second position (index 1)
of the first array. It means that the second customer is immediately visited after the
first customer by a vehicle departed from the first depot. In this path representation,
negative values give the beginning of the next route index, 0 refers to the end of the
routes and a vacant position (drawn as a black box in Figure 1) reveals that the customer
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corresponding to that position is not served by the depot to which the array belongs.
Using this representation, changes to the solution can be performed very quickly. For
example, the insertion of a new customer k between two adjacent customers a and b
is done simply by changing the ”next-values” of k to b and a to k. Similarly, one can
delete a customer or reverse part of a route very quickly (Kytöjoki et al. (2005)).

4.2.4 Constructing the initial reference list

The reference list is a collection of high-quality solutions that are used to generate new
solutions by way of applying the searching mechanism of the Path Relinking Algo-
rithm. What solutions are included in the reference list, how good and how diversified
they are, have a major impact on the quality of the new generated solutions (Gham-
louche et al. (2004)). Based on the descriptions mentioned in Section 4.2.1, the refer-
ence list implemented in the PRA consists of three different subsets where the first two
subsets are the partial sets, each keeping elite partial solutions generated by a dedicated
partial solver, while the last subset is the complete set consisting of elite solutions of
the main problem. Note that, in the proposed algorithm, the maximum size of each
subset is fixed to a predetermined value shown by Rmax.

For the sake of the following descriptions, let us define first the following notations:

• Φi: the set of partial solutions added to the ith partial set of the reference list,
• Ψi: the set of whole partial solutions generated by the ith partial solver,
• φij : the jth partial solution of Φi,
• ψik: the kth solution of Ψi.

The construction of the initial reference list starts by adding Rmax elite partial
solutions existing in Ψi (i = 1, 2) to the ith partial set of the reference list using the
following strategy whose main aim is to ensure both the quality and diversity of the
preserved solutions:

1. First, fill partially the ith partial set (i = 1, 2) with dRmax/2e partial solutions
of Ψi which have the best objective function values. Then, delete the added
solutions from Ψi.

2. Define ∆(φij , ψ
i
k)(φij ∈ Φi, ψik ∈ Ψi;∀i, j, k) as the Hamming distance of the

jth partial solution existing in Φi to the kth remaining partial solution of Ψi.
3. Calculate dΦi

k = minφi
j∈Φi ∆(φij , ψ

i
k)(∀ψik ∈ Ψi).

4. Sort the solutions of Ψi (i = 1, 2) in descending order of dΦi

k .
5. Extend the ith partial set of the reference list (i = 1, 2) with the first bRmax/2c

solutions of Ψi.

Finally, the construction of the reference list is done by considering its last sub-
set (the complete set) as an empty list which is gradually filled up by elite complete
solutions generated during the Path Relinking Algorithm.

4.2.5 The reference list update method

The reference list constructed based on the principles described in the previous sec-
tion is iteratively updated during the Path Relinking Algorithm. Unlike the general
Path Relinking Algorithm in which the reference list is updated only when a new so-
lution is generated, in the proposed PRA, two different kinds of updating method are
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independently applied as follows: The first type of updating method, called Internal
Update Method (IUM), occurs whenever a high-quality complete solution is generated
by the searching mechanism of the Path Relinking Algorithm. In IUM, once a feasible
complete solution, Snew, is generated, it is directly added to the complete set of the
reference list if the number of elite complete solutions preserved in this set is less than
Rmax; otherwise, the following replacement strategy is implemented. We first define
the diversity contribution of the complete solution S to the complete set of the reference
list shown by P, D(S, P ), as the similarity between itself and its nearest neighbour in
the complete set, that is:

D(S, P ) = minX∈P,X 6=S ∆(S,X)

where ∆(S,X), as mentioned in the previous section, is the Hamming distance.
Moreover, let us define OFS as the objective function value of the complete solution
S. The replacement strategy schematically shown by Figure 2 is implemented in three
phases as follows: Firstly, the replacement strategy considers all the complete solutions
of the complete set with poorer objective function values than Snew and finds the one,
Smax, which maximizes the ratio of (objective function value)/(contribution of diver-
sity) (Step 1). Then, the new generated solution, Snew, replaces Smax if the following
inequality holds (Step 2):

OFSnew
/D(Snew, P − Smax) < OFSmax

/D(Smax, P )

In this way, we introduce into the complete set a solution with better objective
function value and possibly higher contribution of diversity. If the inequality mentioned
in the second step does not hold, the worst solution of the set determined in the first
step is replaced by Snew (Step 3).

Figure 2: The proposed replacement strategy

On the other hand, the second type of the updating method, called External Update
Method (EUM), occurs for the ith partial set of the reference list (i = 1, 2) whenever
a new partial solution is obtained by the ith dedicated partial solver. As previously
mentioned, the ith partial set of the reference list (i = 1, 2) consists of a set of high-
quality solutions B1 and a set of diverse solutions B2. Suppose a new partial solution,
xnew, is obtained by the ith partial solver. EUM updates the corresponding subset of
the reference list as follows: First, xnew is examined in terms of solution quality. If
it is better than the worst existing solution in B1, the latter is replaced by the former.
Otherwise, xnew is assessed in terms of solution diversification. In this case, xnew
is added to the list if it increases the distance of B2 to B1. In other words, if the
minimum Hamming distance of xnew to any solution inB1 is greater than the minimum
Hamming distance of the last existing solution in B2 to any solution in B1, the last
solution in B2 is replaced by xnew.

The main purpose of implementing two different update methods is to simultane-
ously maintain the elite partial and complete solutions generated respectively by the
partial solvers and Path Relinking Algorithm.
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4.2.6 Choosing the initial and guiding solutions

The performance of the Path Relinking Algorithm is highly dependent on how the
initial and guiding solutions are selected from the reference list (Ghamlouche et al.
(2004)). In the proposed Path Relinking Algorithm, four different strategies, each fol-
lowing a different purpose, are used to choose the initial and guiding solutions.

The first strategy called Partial Relinking Strategy (PRS) selects two partial so-
lutions, each from a different partial set of the reference list, and sends them to the
neighbourhood search phase to generate high-quality complete solutions. The main
idea involved in implementing such a selection strategy is to produce complete solu-
tions by integrating the best characteristics of the chosen partial solutions. Towards this
end, the effect of four different sub-strategies, each generating Rmax pairs of partial
solutions, is investigated in order to choose the one having the most positive impact on
the performance of the PRA. These four sub-strategies are described as follows:

PRS1 : The ith pair of the first sub-strategy is constructed by defining the guiding and
initial solutions as the ith best solution of the jth (j = 1, 2) and kth (k = 1, 2,
k 6= j) partial sets, respectively. This sub-strategy is motivated by the idea
that high-quality solutions share some common characteristics with optimum
solutions. One then hopes that linking such solutions yields improved new ones.

PRS2 : The ith pair of the second sub-strategy is generated by determining the guiding
solution as the ith best solution of the jth (j = 1, 2) partial set, while the initial
solution is defined as the ith worst solution of the kth (k = 1, 2, k 6= j) partial
set. The purpose of this sub-strategy is to improve the worst partial solution
of a partial set based on the appropriate characteristics of a high-quality partial
solution of the other partial set.

PRS3 : The ith pair of the third sub-strategy is constructed by randomly choosing
the guiding and initial solutions from the jth (j = 1, 2) and kth (k = 1, 2,
k 6= j) partial sets, respectively. The aim of this sub-strategy is simply to select
the initial and guiding solutions in a random manner with the hope of choos-
ing those pairs of elite partial solutions which are not selected using the other
sub-strategies explained in this section.

PRS4 : The ith pair of the fourth sub-strategy is generated by defining the guiding
solution as the ith best solution of the jth (j = 1, 2) partial set, whereas the
initial solution is chosen as the solution of the kth (k = 1, 2, k 6= j) partial
set with maximum Hamming distance from the guiding solution. The aim of the
fourth sub-strategy is to select the initial and guiding solutions not only according
to the objective function value but also according to a diversity, or dissimilarity
criterion.

On the other hand, in the second strategy called Complete Relinking Strategy
(CRS), two different high-quality complete solutions are selected from the complete
set of the reference list as the source for constructing a path of new solutions. In other
words, in CRS, trajectories that connect complete solutions generated by the Path Re-
linking Algorithm are explored to obtain other high-quality complete solutions. The
main purpose of this strategy is to prevent losing good complete solutions which can be
obtained by searching paths constructed between other complete solutions previously
generated by the algorithm. Suppose that the number of existing complete solutions in
the complete set is equal to Ω (Ω ≤ Rmax). In CRS, the effect of the following three
sub-strategies, each generating Ω pairs of complete solutions, is investigated.
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CRS1 : The ith pair of the first sub-strategy is constructed by defining the guiding
and initial solutions as the best and ith complete solutions of the complete set,
respectively. The main idea involved in this sub-strategy is to improve each of
the existing complete solution based on appropriate characteristics of the best
complete solution found by the Path Relinking Algorithm.

CRS2 : The ith pair of the second sub-strategy is generated by determining the guiding
and initial solutions as the ith and (i+1)th best solutions of the complete set,
respectively. The idea behind this sub-strategy is exactly the same as the idea of
implementing the first sub-strategy of PRS.

CRS3 : The ith pair of the last sub-strategy is generated as follows: The guiding so-
lution is selected as the ith best solution of the complete set, whereas the initial
solution is chosen as the solution of the same set with maximum Hamming dis-
tance from the selected guiding solution.

The third strategy called Mixed Strategy (MS) selects two distinct partial and com-
plete solutions as the inputs of the moving mechanism phase. Using this selection
strategy, we hope to improve the selected partial solution based on good features of the
chosen complete solution. In MS, the effect of two different sub-strategies is investi-
gated. These two sub-strategies are explained as follows:

MS1 : The ith pair of the first sub-strategy is constructed by defining the guiding and
initial solutions as the ith best solution of the jth (j = 1, 2) and complete sets of
the reference list, respectively.

MS2 : The ith pair of the second sub-strategy is generated as follows: The guiding
solution is selected as the best solution of the complete set, whereas the initial
solution is chosen as the solution of the jth (j = 1, 2) partial set of the reference
list with maximum Hamming distance from the selected guiding solution.

The last strategy is called Ideal Point Strategy (IPS). For the sake of the following
description, let us first consider the following definition:

Definition 1 Ideal Point (IP) is a virtual point whose ith coordinate (i = 1, 2) is made
by the best partial solution preserved in the ith subset of the reference list (i = 1, 2).

IPS first selects two different guiding solutions so that the ith guiding solution is the
solution kept in the ith coordinate of ideal point. Then, each of the solutions preserved
in the reference list (partial or complete) serves respectively as the initial solution. The
main purpose of choosing multiple guiding solutions is that promising regions may be
searched more thoroughly in Path Relinking by simultaneously considering appropriate
characteristics of multiple high-quality guiding solutions.

4.2.7 Neighbourhood structure and guiding attributes

In the proposed algorithm, unlike a general Path Relinking, two neighbourhood searches,
each targeting a different goal, are implemented in parallel.

The first neighbourhood search is a memory-based searching mechanism which is
done on each pair of partial solutions selected from the reference list using the par-
tial relinking strategy. The aim of implementing such a neighbourhood search is to
generate a sequence of high-quality complete solutions through integrating appropriate
characteristics shared by the selected partial solutions.

As mentioned in Section 4.2.6, the partial relinking strategy selects a solution (A)
from the first partial set of the reference list, as either initial or guiding solution, while
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the other solution (B) is chosen from the second partial set. Each of the selected partial
solutions shares two important kinds of information: 1) A depot assignment pattern
which shows that each customer is assigned to what depot, and 2) A visit pattern which
reflects that each customer is serviced in what periods of the horizon. Without loss
of generality, let us suppose that the first partial set of the reference list contains elite
partial solutions of the MDVRP, whereas the second partial set is made up of elite
partial solutions of the PVRP. Consequently, the selected solution (A) is a solution that
the partial solver obtained by fixing the attribute ”multiple periods” and by optimizing
based on the attribute ”multiple depots”. Hence, it is reasonable to claim that in such
a solution, each customer is assigned to a good depot, while there is no guarantee
that the customers are visited based on good visit patterns. On the other hand, the
chosen solution (B) is a solution that the other partial solver attained by fixing the
attribute ”multiple depots” and by optimizing based on the attribute ”multiple periods”.
Therefore, each customer in this solution is visited through a good visit pattern, while
there is no guarantee that the customers are served by good depots.

Based on the descriptions mentioned above, we can deduce that the good charac-
teristic of the selected solution (A) is that each customer is served by a good depot,
while the appropriate characteristic of the chosen solution (B) is that each customer is
served based on a good visit pattern. The following definitions reveal the major idea
involved in the proposed neighbourhood search:

Definition 2 A customer is called eligible if it is visited: 1) by the depot to which that
customer is assigned in the solution selected from the first partial set, and 2) based on
the visit pattern through which that customer is served in the solution chosen from the
second partial set.

Definition 3 A good complete solution generated by the neighbourhood search is a
solution in which all the customers are eligible.

Therefore, the main purpose of the neighbourhood search is to progressively intro-
duce the properties mentioned in Definition 2 to all the customers of the selected initial
solution. Towards this end, we define an algorithm which is repeated θ iterations where
θ is a predetermined positive value. At the ith iteration of the algorithm, a customer of
the initial solution is randomly selected and its eligibility is investigated based on the
properties of Definition 2. Note that, depending on the partial set from which the initial
solution is selected, one of the criteria mentioned in Definition 2 is always met. For ex-
ample, if the initial solution is selected from the first partial set, each of the customers
is assigned to a good depot. Consequently, the first property is always satisfied for all
the customers and, thus, the second property should only be verified for the eligibility
of the chosen customer. If the second property is not met and the selected customer
is served by a visit pattern different from its corresponding visit pattern in the guiding
solution, it is considered as an ineligible customer. The neighbourhood search follows
then on of the following situations:

1. Eligible customer: If the customer is eligible, the following operators are suc-
cessively applied:

• Intra-route relocate operator- In this operator, the eligible customer is
first removed, on each period of its visit pattern, from the route by which
it is visited. It is then re-inserted to the best position, based on the penalty
function described in Section 4.2.2, of the same route.
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• Inter-route relocate operator- In this operator, the chosen customer is
first removed, on each period of its visit pattern, from its current route and,
then, it is re-inserted to the best position of the other routes assigned to the
depot by which the customer is served.

2. Ineligible customer: If the selected customer is ineligible, a neighbourhood
search, based on the relocate operator, is applied to the solution in order to over-
come the ineligibility of the customer. To implement the relocate operator-based
neighbourhood search, the following four steps are done in a sequential manner:

(a) The depot to which the selected customer is currently assigned is changed
to the depot by which that customer is served in the solution selected from
the first partial set.

(b) The current visit pattern of the selected customer is changed to the visit
pattern through which the customer is visited in the solution chosen from
the second partial set.

(c) The customer is removed from the routes by which it is visited.
(d) Finally, on each period of the new visit pattern, the removed customer is

re-inserted to one of the routes assigned to the new depot. Once again,
the position to which the customer is inserted is the position in which the
described penalty function in Section 4.2.2 has the least value.

The neighbourhood search described above is equipped by a virtual memory whose
aim is to enable the algorithm to search promising regions more thoroughly. Each ele-
ment preserved in the implemented memory is represented by three indices (i,D∗, P ∗),
where i (i = 1, 2...n) shows the customer’s index, D∗ and P ∗ represent, respectively,
the depot and visit pattern based on which the ith customer is visited in the best solution
generated so far by the Path Relinking. Suppose, in the course of the neighbourhood
search, we select the ith customer which is an ineligible customer. To describe how the
proposed memory works, let us consider the two following cases:

1. The initial solution has been selected from the first partial set: In this case, if
the visit pattern through which the chosen customer is served is equal to P ∗, the
current visit pattern remains unchanged; otherwise, the visit pattern is changed
to the one through which the customer is visited in the guiding solution.

2. The initial solution has been chosen from the second partial set: In this case,
if the depot to which the selected customer is assigned is equal toD∗, the current
depot is not changed; otherwise, the depot is changed to the one by which the
customer is serviced in the guiding solution.

The main purpose of applying such a mechanism is to keep the structure of the
selected solution as near as possible to the structure of the best solution obtained so far
by the algorithm. This memory is updated when a new best solution is found and, for
diversify search directions, the above rule is broken if the current best solution is not
changed for ε iterations. Note that ε is a predetermined positive value.

The second neighbourhood search is another memory-based searching mechanism
which explores trajectories connecting initial and guiding solutions selected through
one of the other selection strategies, i.e., complete relinking, mixed or ideal point strat-
egy. Like various neighbourhood searches implemented for the general Path Relinking
Algorithm, the second neighbourhood search tries to gradually introduce best charac-
teristics of either a single or multiple guiding solutions (based on the strategy used to
select initial and guiding solutions) to new solutions obtained by moving away from
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the chosen initial solution. Similar to the neighbourhood search proposed above, the
second neighbourhood is iterated θ times so that at each iteration, the eligibility of a
randomly selected customer is investigated.

Definition of an eligible customer is different form what was given in the first neigh-
bourhood search and is dependent on the strategy used to select initial and guiding
solutions. Definition 4 represents the properties of an eligible customer in the cases
where initial and single guiding solutions are selected using either partial relinking or
mixed strategy.

Definition 4 A customer is called eligible if it is served based on the depot and visit
pattern through which that customer is visited in the guiding solution.

On the other hand, Definition 5 shows the conditions under which a customer is
called eligible if initial and multiple guiding solutions are chosen using ideal point
strategy. Note that, in Definition 5, without loss of generality, we suppose that the first
and second guiding solutions are respectively selected as the best solutions of the first
and second partial sets.

Definition 5 A customer is called eligible if it is served: 1) by the depot to which
that customer is assigned in the first guiding solution, and 2) based on the visit pattern
through which that customer is served in the second guiding solution.

If the chosen customer is considered eligible, two operators described in the first
neighbourhood search, i.e., inter- and intra-route relocate operators, are respectively
implemented. Otherwise, to overcome the ineligibility of the chosen customer, a re-
locate operator-based neighbourhood search is applied. The proposed neighbourhood
search removes first the customer from all the routes through which it is currently
served. Then, one of the two following situations occurs:

• If the initial solution has been selected using either complete relinking or mixed
strategy, the depot and visit pattern of the removed customer are respectively
replaced by the depot and visit pattern based on which the customer is visited in
the guiding solution.
• If the initial solution has been chosen using ideal point strategy, the depot and

visit pattern of the removed customer are respectively changed to the depot and
visit pattern of that customer in the first and second guiding solutions.

Finally, on each period of new visit pattern, the removed customer is inserted to one
of the existing routes of new depot. Like the first neighbourhood search, the position to
which the customer is inserted is the one in which the penalty function takes the least
value.

4.2.8 Termination criterion

It is a condition that terminates the search process. In this paper, the two following
stopping criteria are simultaneously considered:

• The algorithm is stopped if no improving solution is found for µ successive itera-
tions. µ is a positive value which is determined at the beginning of the algorithm.
Or,
• The algorithm is terminated if it passes a maximum allowable running time.
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4.2.9 Skeleton of the proposed PRA

Algorithm 3 represents the skeleton of the Path Relinking Algorithm proposed for the
MDPVRP.

Algorithm 2 Path Relinking Algorithm
Initialize the search parameters.
Set υ=1, ρ=1.
Construct the initial reference list.
while the termination criterion is not met do

Set α=1, β=1
Update the reference list using the External Update Method (EUM).
repeat

Select one initial solution, Si, and one or multiple guiding solutions
according to one of the selection strategies.
Set x = Si.
repeat

Select randomly a customer of x.
Verify the eligibility of the selected customer.
Generate a solution x̄ using the neighbourhood search corresponding
to the chosen selection strategy.
If x̄ is feasible, update the reference list using the Internal Update
Method (IUM).
Compute q(.) and t(.) and update α and β.
Set x = x̄.
Increment υ by 1.

until υ ≤ θ.
Increment ρ by 1.

until ρ ≤ Rmax.
end while

5 Experimental results
In this section, the performance of the proposed Path Relinking Algorithm is inves-
tigated based on different test problems. The only problem instances existing in the
literature are those proposed by Vidal et al. (2010). The authors generated 10 prob-
lems whose characteristics are shown by Table 1.

To prove the efficiency of the proposed PRA, two different scenarios, each inves-
tigating one special aspect of the algorithm, are independently followed. In the first
scenario, called static scenario, the partial sets of the reference list, initially filled up
by the dedicated partial solvers, remain unchanged during the algorithm. In such a sce-
nario, we aim to study how the PRA performs as a pure stand-alone algorithm without
benefiting of the information that are shared by the partial solvers through updating
the partial sets of the reference list. Towards this end, in each of the above problem
instances, a feasible solution is first generated using the local search proposed by Vidal
et al. (2010). Let us denote the constructed solution by A. Then, the problem in hand
is decomposed into two vehicle routing problems with exactly one less attribute, i.e.,
PVRP and MDVRP. In the PVRP, the attribute ”multiple depots” is considered fixed
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Table 1: Problem instances
Instance n K m T

pr01 48 1 4 4
pr02 96 1 4 4
pr03 144 2 4 4
pr04 192 2 4 4
pr05 240 3 4 4
pr06 288 3 4 4
pr07 72 1 6 6
pr08 144 1 6 6
pr09 216 2 6 6
pr10 288 3 6 6

by assigning each customer to the depot by which it is served in solution A. On the
other hand, in the MDVRP, the other attribute ”multiple periods” is set to be fixed by
allocating each customer to the visit pattern through which it is visited in solution A.
Thereafter, each of the above sub-problems is solved using the hybrid genetic algorithm
proposed by Vidal et al. (2010) to generate the required number of partial solutions.
Finally, the obtained partial solutions are sent to the Path Relinking Algorithm in order
to generate solutions of the main problem. Note that, the number of partial solutions
fed to the PRA is set to 20 and the above procedure is repeated in 10 different runs for
each of the problem instances.

On the other hand, in Scenario 2, called dynamic scenario, the partial sets of the
reference list are updated in the course of the optimization by partial solutions gen-
erated through the Integrative Cooperative Search (ICS) method designed by Crainic
et al. (2009). To more precisely understand how this scenario is built, let us briefly
describe the solution methodology used in the ICS. In the ICS approach, three funda-
mental questions are carefully answered: how to decompose the problem at hand to
define sub-problems; how to integrate partial solutions obtained from the decomposi-
tion phase to construct and improve solutions of the main problem and, finally, how to
perform and guide the search. In the decomposition phase, the main problem is first
decomposed into several sub-problems by fixing the values of given sets of attributes.
The constructed sub-problems are then simultaneously solved by partial solvers which
can be well-known constructive methods, heuristics, meta-heuristics or exact methods.
The elite partial solutions obtained are sent to the central memory accompanied with
context information (measures, indicators, and memories). Then, in order to construct
whole solutions, integrators play their important role. integrators, which could be ei-
ther exact methods or meta-heuristics, construct, and possibly improve, solutions to the
main problem using solutions from the different partial solution sets. Finally, in order
to repeatedly control the evolution of partial solvers and integrators implemented in the
ICS approach, a guiding and controlling mechanism, namely global search coordina-
tor, guides the global search by sending appropriate instructions to partial solvers and,
eventually, integrators.

In the dynamic scenario, the proposed PRA, in fact, plays the same role as an
integrator which works based on partial solutions generated during the optimization
procedure of the ICS. Towards this end, a modified version of the ICS method proposed
by Crainic et al. (2009) is executed on each problem instance in 10 different runs. In
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each of the runs, the ICS is interrupted in four different snapshots, i.e., 5, 10, 15 and
30 minutes, and partial solutions obtained at each snapshot are served in the PRA. The
most distinguishable difference between these two scenarios is that, in the dynamic
scenario, we examine how the quality of the proposed Path Relinking Algorithm is
affected when better and more diversified partial solutions are eventually fed to the
algorithm by the ICS solution methodology.

The proposed algorithm has been coded in C++ and executed on a Pentium 4, 2.8
GHz, and Windows XP using 256 MB of RAM. Different aspects of the experimental
results are discussed as follows: In Section 5.1, we first use a well-structured algorithm
to calibrate all the parameters involved in the PRA, Then, in Section 5.2, we explore
the impact of different combination of selection strategies, mentioned in Section 4.2.6,
on the performance of the PRA. Finally, experimental results, on the two considered
scenarios, are given in Section 5.3.

5.1 Parameter setting
Like the most meta-heuristic algorithms, the proposed PRA relies on a set of correlated
parameters. Table 2 provides a summary of all the PRA parameters.

Table 2: Parameters of PRA
Symbol Description
Rmax Maximum size of each subset of the reference list
α, β Self-adjusting parameters in the penalty function
γ Factor involved in updating the self-adjusting parameters
θ Number of times that each neighbourhood search is iterated
ε Number of iterations after which the memory rule is broken
µ Maximum allowable number of non-improving iterations

There are various different methods in the literature to calibrate parameters used
in a meta-heuristic. Recently, Smith and Eiben (2010) proposed a robust calibration
method called Relevance Estimation and VAlue Calibration (REVAC) which is able to
find good parameter values for a set of problems. In our paper, we adopted this method
to tune the parameters used in the PRA. Note that, selection strategies PRS4, CRS3,
MS2 and IPS were used for this parameters tuning procedure. Table 3 represents the
selected value of each parameter as follows:

Table 3: Calibration results
Symbol Description
Rmax 20
α, β 1,1
γ 1
θ 5*n
ε 10000
µ 400000
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Table 4: Average improvement in the static scenario (%)
PRS1 PRS2 PRS3 PRS4

(CRS1,MS1) 5.41 5.14 4.26 6.39
(CRS1,MS2) 5.50 5.24 4.51 6.64
(CRS2,MS1) 5.49 5.22 4.48 6.61
(CRS2,MS2) 5.52 5.25 4.59 6.71
(CRS3,MS1) 5.47 5.19 4.43 6.57
(CRS3,MS2) 5.61 5.33 4.89 7.12

Table 5: Average improvement in the dynamic scenario (%)
PRS1 PRS2 PRS3 PRS4

(CRS1,MS1) 0.49 0.47 0.34 0.56
(CRS1,MS2) 0.62 0.54 0.49 0.69
(CRS2,MS1) 0.60 0.52 0.47 0.68
(CRS2,MS2) 0.64 0.56 0.51 0.72
(CRS3,MS1) 0.59 0.51 0.43 0.65
(CRS3,MS2) 0.71 0.63 0.59 0.81

5.2 Path Relinking selection strategies
We tested all combinations of selection strategies, mentioned in Section 4.2.6, in order
to identify the best way to select initial and guiding solutions. The best combination is
then used for the extensive experimental analysis of the Path Relinking Algorithm.

The same 10 problem instances used to calibrate the parameter settings are also
used here. Moreover, each run is repeated 5 times. Thus, since there are 24 possi-
ble combinations of selection strategies (4 partial relinking strategies × 3 complete
relinking strategies × 2 mixed strategies), a total of 1200 runs are performed. The
performance of each combination of selection strategies is measured, in both the static
and dynamic scenarios, as the average improvement in solution quality, compared to
the best partial solution initially fed to the partial sets of the reference list. Note that,
in the dynamic scenario, the best partial solution found at the first snapshot, 5 minutes,
is used to compare the efficiency of all combinations. The comparative performances
of all combinations of selection strategies, in the static and dynamic scenarios, are
respectively presented in Tables 4 and 5.

Both of Tables 4 and 5 identify the combination of strategies PRS4, CRS 3 and
MS2 as offering the best results. This set of selection strategies is therefore retained
for our experimental analyses. The choice of this combination confirms the importance
of selecting initial and guiding solutions non-randomly and also not only according to
the objective function value but also according to a diversity criterion.

5.3 Results on MDPVRP instances
5.3.1 Static scenario

We tested the PRA on the problem instances described at the beginning of this section.
For solve these problems, the maximum running time is set to 30 minutes. Table 6
summarizes the characteristics of partial solutions fed to the PRA using the hybrid
genetic algorithm.

In Table 6, SP1 and SP2 represent partial solutions sets generated for the MDVRP
and the PVRP, respectively. SP1 + SP2 is the union of all partial solutions obtained
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Table 7: Results on MDPVRP instances in the static scenario
PRA

Worst Average Best Computational Gap to
Instance time (sec) BKS (%)

pr01 2019.07 2019.07 2019.07 37 0
pr02 3547.45 3547.45 3547.45 146 0
pr03 4533.47 4502.28 4480.87 487 0.47
pr04 5164.66 5160.17 5148.23 1096 0.45
pr05 5672.71 5619.72 5583.31 1612 0.97
pr06 6618.38 6571.32 6554.47 1782 0.11
pr07 4511.92 4504.77 4502.02 139 0.01
pr08 6038.44 6031.56 6023.98 428 0.14
pr09 8377.31 8353.94 8301.14 1800 1.19
pr10 10105.39 9982.63 9876.24 1800 1.70

by the hybrid genetic algorithm. Moreover, For each set, worse, average and best
partial solutions on 10 runs are shown. Finally, the last column reveals the Best Known
Solution (BKS) reported by Vidal et al. (2010).

In each of the problem instances, we carefully answer to the following questions:
1) What percentage of the gap is there between the PRA’s output and the BKS?, and
2) How much is the PRA capable of improving the gap between partial solutions ini-
tially fed to the algorithm and the BKS?. Table 7 shows the results dealing with the
first question. In this table, columns 2-4 respectively indicate the worst, average and
best results obtained by the PRA on 10 runs for each instance. Moreover, the average
computational time and the average error gap compared to BKS are shown in the last
two columns. If the PRA gives a result (worst, average or best one) equal to the BKS,
we indicate the corresponding value in boldface.

The average error gap to the BKS reported by Vidal et al. (2010) is +0.50% which
is very reasonable considering the problem complexity. The PRA results vary clearly
depending on the problem difficulty so that the average gap ranges from 0.00% to
1.70%. On two problems (pr01 and pr02), the algorithm seems to always converge
toward the BKS, whereas problems pr08 to pr10, with larger number of depots and
periods, seem particularly difficult to tackle. Generally, the proposed Path Relinking
Algorithm performs well compared to the BKS even for more challenging instances
including a larger number of customers, depots and periods.

On the other hand, Table 8 represents the results concerning with the second ques-
tion. This table indicates what percentage of the gap between the BKS and worse,
average and best partial solutions of the sets mentioned at the beginning of Section
6.2.1 (SP1, SP2 and SP1 + SP2) is improved using the PRA.

As shown in Table 8, The PRA is considerably powerful to decrease the gap existing
between the BKS and partial solutions of all the sets. This fact, besides the results
shown in Table 7, reveals that the proposed algorithm plays very well its role as a
stand-alone algorithm to generate high-quality solutions of the considered MDPVRP.

5.3.2 Dynamic scenario

In the dynamic scenario, we try to properly answer to the same questions mentioned
in the previous section. Table 9 indicates the main characteristics of partial solutions
generated by the ICS in different snapshots. In each of the problem instances, the PRA
is executed on partial solutions of each snapshot and the obtained results on 10 runs is
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Table 8: Gap improvement to BKS in the static scenario (%)
SP1 SP2 SP1+SP2

Instance Worst Average Best Worst Average Best Worst Average Best
pr01 6.60 5.05 4.94 17.45 11.61 11.30 17.45 8.08 4.94
pr02 6.67 6.11 5.65 33.71 33.68 33.66 33.71 19.89 5.65
pr03 9.16 8.42 8.38 52.42 43.24 41.45 52.42 25.83 8.38
pr04 10.71 9.19 8.33 70.89 70.93 71.21 70.89 40.06 8.33
pr05 6.94 7.35 7.45 47.70 48.48 49.19 47.70 27.92 7.45
pr06 8.85 9.90 8.82 27.40 27.66 27.86 27.40 13.46 8.82
pr07 6.86 6.58 6.36 20.22 20.33 20.43 20.22 13.45 6.36
pr08 9.66 9.59 9.47 47.54 44.83 39.80 47.54 27.21 9.47
pr09 4.52 4.48 4.70 41.33 41.45 9.47 41.33 22.96 4.70
pr10 5.84 6.81 7.55 44.52 45.63 46.68 44.52 26.12 7.55

reported in Table 10.
The average error gap to the BKS is +0.33%, +0.19%, +0.15% and +0.10% at 5,

10, 15 and 30-min snapshot, respectively. These average error gaps reveal that the
quality of the proposed PRA increases by gradually feeding better and more diversified
partial solutions by the ICS. On the other hand, in all the snapshots, the values of error
gaps seem reasonable considering the problem difficulty. On four problem instance
(pr01, pr02, pr07 and pr08), the PRA always trap, in all snapshots, on the best partial
solution fed by the ICS. This phenomenon seems inevitable because, in each of these
problems, there exists apparently no better solution than the BKS which is initially sent
as a partial solution to the PRA by the ICS. On two problems (pr03 and pr10), the PRA
obtained new best known solutions which are shown as boldface starred values in the
table.

Table 11 reports the improvement percentage on the gap between the BKS and par-
tial solutions initially sent to the PRA. Note that, pr01, pr02, pr07 and pr08 are ignored
in Table 11 because, as mentioned above, the ICS always sends, in these problems, the
BKS as a partial solution to the PRA.

By considering the results obtained in the static and dynamic Scenarios, we deduce
that the proposed PRA is considerably a competitive structural method to generate
high-quality solutions of the MDPVRP either as a stand-alone algorithm or as an inte-
grator in the ICS solution methodology.

6 Conclusions
This paper presented a new Path Relinking Algorithm to efficiently tackle the multi-
depot periodic vehicle routing problem, for which few efficient algorithms are currently
available. The proposed algorithm was designed based on prominent exploration and
exploitation strategies which enable the algorithm to solve the problem in two different
ways: 1) As a pure stand alone algorithm, and 2) As an integrator in the ICS solution
framework.

To validate the efficiency of PRA, different test problems, existing in the litera-
ture, were solved. The computational results revealed that the proposed Path Relinking
Algorithm performs considerably well, in all the problem instances.

21

A Path Relinking Algorithm for a Multi-Depot Periodic Vehicle Routing Problem

CIRRELT-2012-50



Ta
bl

e
9:

C
ha

ra
ct

er
is

tic
s

of
pa

rt
ia

ls
ol

ut
io

ns
in

th
e

dy
na

m
ic

sc
en

ar
io

S
P
1

S
P
2

S
P
1

+S
P
2

In
st

an
ce

Sn
ap

sh
ot

W
or

st
A

ve
ra

ge
B

es
t

W
or

st
A

ve
ra

ge
B

es
t

W
or

st
A

ve
ra

ge
B

es
t

5
m

in
.

20
53

.4
3

20
28

.1
4

20
19

.1
7

21
12

.5
1

20
44

.0
5

20
19

.1
7

21
12

.5
1

20
36

.0
9

20
19

.1
7

pr
01

10
m

in
.

20
43

.0
1

20
20

.1
9

20
19

.1
7

20
44

.0
7

20
26

.4
2

20
19

.1
7

20
44

.0
7

20
32

.2
7

20
19

.1
7

15
m

in
.

20
33

.1
9

20
26

.3
8

20
19

.1
7

20
27

.4
8

20
24

.2
6

20
19

.1
7

20
27

.4
8

20
25

.6
1

20
19

.1
7

30
m

in
.

20
22

.8
8

21
21

.8
3

20
19

.1
7

20
23

.9
7

20
21

.7
5

20
19

.1
7

20
23

.9
7

20
21

.9
2

20
19

.1
7

5
m

in
.

36
08

.7
7

35
58

.9
6

35
47

.4
5

36
11

.2
8

35
62

.3
1

35
47

.4
5

36
11

.2
8

35
67

.1
4

35
47

.4
5

pr
02

10
m

in
.

35
95

.1
4

35
52

.1
6

35
47

.4
5

35
95

.1
4

35
50

.5
1

35
47

.4
5

35
95

.1
4

35
53

.2
2

35
47

.4
5

15
m

in
.

35
88

.4
2

35
50

.6
8

35
47

.4
5

35
59

.6
6

35
49

.1
4

35
47

.4
5

35
88

.4
2

35
50

.0
9

35
47

.4
5

30
m

in
.

35
65

.3
1

35
49

.6
6

35
47

.4
5

35
54

.0
4

35
48

.2
3

35
47

.4
5

35
65

.3
1

35
49

.5
3

35
47

.4
5

5
m

in
.

47
21

.4
8

45
37

.0
4

44
81

.9
4

48
53

.3
3

44
86

.8
8

44
81

.9
4

48
53

.3
3

45
07

.5
3

44
81

.9
4

pr
03

10
m

in
.

47
00

.6
2

45
03

.3
7

44
81

.9
4

48
50

.6
6

44
83

.2
3

44
81

.9
4

48
50

.6
6

44
93

.2
8

44
81

.9
4

15
m

in
.

45
64

.7
4

45
23

.1
9

44
80

.8
7

44
86

.4
1

44
83

.3
4

44
80

.8
7

45
64

.7
4

45
03

.1
4

44
80

.8
7

30
m

in
.

45
38

.5
3

45
14

.1
9

44
80

.8
7

44
84

.3
5

44
82

.4
5

44
80

.8
7

45
38

.5
3

44
95

.9
1

44
80

.8
7

5
m

in
.

52
01

.6
9

51
88

.0
6

51
72

.7
6

52
48

.7
2

51
95

.2
6

51
75

.7
7

52
48

.7
2

51
92

.5
9

51
72

.7
6

pr
04

10
m

in
.

51
70

.8
2

51
64

.5
8

51
49

.0
5

51
62

.3
2

51
61

.0
2

51
49

.0
5

51
70

.8
2

51
62

.8
1

51
49

.0
5

15
m

in
.

51
77

.8
3

51
68

.4
2

51
49

.0
5

52
39

.5
5

51
78

.4
4

51
49

.0
5

52
39

.5
5

51
73

.4
7

51
49

.0
5

30
m

in
.

54
42

.7
4

52
39

.4
1

51
44

.4
5

51
52

.9
6

51
49

.7
5

51
44

.4
5

54
42

.7
4

51
99

.3
4

51
44

.4
5

5
m

in
.

59
58

.5
0

57
88

.2
4

56
03

.2
8

59
58

.5
0

57
62

.1
9

56
82

.1
6

59
58

.5
0

57
68

.2
2

56
03

.2
8

pr
05

10
m

in
.

57
20

.8
3

56
87

.2
8

56
42

.9
9

56
83

.1
5

56
64

.2
3

56
42

.9
9

57
20

.8
3

56
65

.1
2

56
42

.9
9

15
m

in
.

57
14

.5
7

56
81

.4
5

56
42

.9
9

59
58

.5
0

57
73

.2
1

56
42

.9
9

59
58

.5
0

57
28

.3
5

56
42

.9
9

30
m

in
.

57
06

.8
1

56
53

.2
3

56
04

.9
5

57
17

.6
9

56
64

.1
2

56
04

.9
5

57
17

.6
9

56
58

.9
2

56
04

.9
5

5
m

in
.

70
85

.2
1

66
75

.2
1

66
08

.9
8

70
47

.2
9

66
63

.2
9

66
08

.9
8

70
85

.2
1

66
69

.5
3

66
08

.9
8

pr
06

10
m

in
.

67
72

.9
5

66
59

.4
1

65
89

.8
8

67
35

.3
8

66
48

.2
1

65
89

.8
8

67
72

.9
5

66
53

.1
2

65
89

.8
8

15
m

in
.

67
44

.3
9

66
38

.7
9

65
89

.8
1

67
35

.3
8

66
26

.4
7

65
89

.8
1

67
44

.3
9

66
30

.2
5

65
89

.8
1

30
m

in
.

65
94

.5
0

65
74

.2
5

65
67

.6
6

65
90

.3
6

65
71

.1
9

65
67

.6
6

65
94

.5
0

65
72

.2
2

65
67

.6
6

5
m

in
.

46
38

.6
0

45
78

.2
9

45
02

.0
2

47
78

.4
2

45
89

.2
3

45
02

.0
2

47
78

.4
2

45
84

.1
8

45
02

.0
2

pr
07

10
m

in
.

45
77

.9
1

45
38

.2
5

45
02

.0
2

45
17

.7
9

45
06

.7
7

45
02

.0
2

45
77

.9
1

45
27

.5
1

45
02

.0
2

15
m

in
.

45
77

.9
1

45
28

.8
4

45
02

.0
2

45
09

.3
6

45
04

.8
7

45
02

.0
2

45
77

.9
1

45
20

.3
6

45
02

.0
2

30
m

in
.

45
09

.9
7

45
04

.9
3

45
02

.0
2

45
04

.4
5

45
03

.3
3

45
02

.0
2

45
09

.9
7

45
03

.6
6

45
02

.0
2

5
m

in
.

62
46

.7
8

61
67

.3
2

60
24

.2
4

65
77

.0
4

63
21

.8
7

60
24

.2
4

65
77

.0
4

62
44

.2
5

60
24

.2
4

pr
08

10
m

in
.

62
46

.7
8

60
97

.4
4

60
23

.9
8

64
85

.5
6

62
99

.4
1

60
23

.9
8

64
85

.5
6

62
26

.0
9

60
23

.9
8

15
m

in
.

62
46

.7
8

60
77

.2
9

60
23

.9
8

60
69

.1
2

60
44

.6
5

60
23

.9
8

62
46

.7
8

60
60

.4
3

60
23

.9
8

30
m

in
.

62
46

.7
8

60
54

.3
8

60
23

.9
8

60
25

.2
1

60
24

.4
6

60
23

.9
8

62
46

.7
8

60
44

.6
1

60
23

.9
8

5
m

in
.

85
70

.6
4

84
33

.1
2

83
26

.5
8

85
31

.5
5

84
17

.1
7

83
16

.9
5

85
70

.6
4

84
25

.6
2

83
16

.9
5

pr
09

10
m

in
.

83
12

.4
0

83
04

.9
9

82
96

.4
2

83
05

.6
5

83
01

.4
4

82
96

.4
2

83
12

.4
0

83
02

.7
8

82
96

.4
2

15
m

in
.

83
07

.9
4

83
01

.4
5

82
96

.0
9

83
05

.6
5

82
99

.5
2

82
96

.0
9

83
07

.9
4

83
00

.2
7

82
96

.0
9

30
m

in
.

84
24

.4
9

83
49

.5
1

82
93

.3
3

83
00

.3
4

82
97

.4
4

82
93

.3
3

84
24

.4
9

83
24

.6
6

82
93

.3
3

5
m

in
.

12
62

6.
90

10
85

7.
44

10
12

8.
8

13
34

0.
10

11
19

0.
51

10
12

8.
8

13
34

0.
10

13
15

2.
27

10
12

8.
8

pr
10

10
m

in
.

10
48

9.
30

10
22

7.
44

99
93

.9
4

10
40

2.
10

10
20

0.
36

99
93

.9
4

10
48

9.
30

10
21

4.
77

99
93

.9
4

15
m

in
.

10
16

9.
20

10
13

4.
98

99
93

.9
4

10
05

9.
70

10
03

2.
46

99
93

.9
4

10
16

9.
20

10
08

1.
33

99
93

.9
4

30
m

in
.

10
09

1.
90

10
04

9.
77

99
93

.9
4

12
19

2.
90

10
10

4.
71

99
93

.9
4

12
19

2.
90

10
07

0.
14

99
93

.9
4

22

A Path Relinking Algorithm for a Multi-Depot Periodic Vehicle Routing Problem

CIRRELT-2012-50



Table 10: Results on MDPVRP instances in the dynamic scenario
PRA

Worst Average Best Computational Gap to
Instance Snapshot time (sec) BKS (%)

5 min. 2019.07 2019.07 2019.07 15 0
pr01 10 min. 2019.07 2019.07 2019.07 15 0

15 min. 2019.07 2019.07 2019.07 15 0
30 min. 2019.07 2019.07 2019.07 15 0
5 min. 3547.45 3547.45 3547.45 70 0

pr02 10 min. 3547.45 3547.45 3547.45 70 0
15 min. 3547.45 3547.45 3547.45 70 0
30 min. 3547.45 3547.45 3547.45 70 0
5 min. 4480.87 4480.87 4480.87 156 0

pr03 10 min. 4480.87 4480.87 4480.87 156 0
15 min. 4480.87 4479.68∗ 4472.22∗ 156 -0.061
30 min. 4480.87 4478.15∗ 4472.22∗ 156 -0.12
5 min. 5155.32 5153.60 5150.73 257 0.36

pr04 10 min. 5149.05 5148.95 5142.26 257 0.28
15 min. 5149.05 5148.39 5142.26 257 0.27
30 min. 5148.45 5147.92 5142.26 257 0.27
5 min. 5597.12 5595.78 5582.45 338 0.43

pr05 10 min. 5603.28 5593.33 5581.10 338 0.37
15 min. 5596.73 5589.14 5581.10 338 0.31
30 min. 5594.94 5585.27 5581.10 338 0.23
5 min. 6573.29 6562.70 6542.33 459 0.53

pr06 10 min. 6566.46 6547.39 6542.33 459 0.33
15 min. 6566.46 6545.99 6538.91 459 0.30
30 min. 6549.57 6542.55 6538.91 459 0.25
5 min. 4502.02 4502.02 4502.02 75 0

pr07 10 min. 4502.02 4502.02 4502.02 75 0
15 min. 4502.02 4502.02 4502.02 75 0
30 min. 4502.02 4502.02 4502.02 75 0
5 min. 6023.98 6023.98 6023.98 184 0

pr08 10 min. 6023.98 6023.98 6023.98 184 0
15 min. 6023.98 6023.98 6023.98 184 0
30 min. 6023.98 6023.98 6023.98 184 0
5 min. 8312.14 8305.74 8294.69 477 0.54

pr09 10 min. 8292.23 8291.44 8287.14 477 0.37
15 min. 8292.23 8287.14 8288.14 477 0.35
30 min. 8286.01 8277.60 8274.38 477 0.24
5 min. 9995.29 9964.27 9859.12 732 1.49

pr10 10 min. 9886.34 9876.51 9844.78 732 0.59
15 min. 9886.34 9855.13 9811.3∗ 732 0.35
30 min. 9871.06 9835.78 9811.3∗ 732 0.16
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