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Abstract. This paper describes an exact algorithm for a variant of the vehicle routing 
problem in which customer demands are stochastic. Demands are revealed upon arrival 
at customer locations. As a result, a vehicle may reach a customer and not have sufficient 
capacity to collect the realized demand. Such a situation is referred to as a failure. In this 
paper the following recourse action is then applied when failure occurs: the vehicle returns 
to the depot to unload and resumes its planned route at the point of failure. The 
capacitated vehicle routing problem with stochastic demands (VRPSD) consists of 
minimizing the sum of the planned routes cost and of the expected recourse cost. The 
VRPSD is formulated as a two-stage stochastic programming model and solved by means 
of the integer L-shaped algorithm. This paper introduces three lower bounding functional 
based on the generation of general partial routes, as well as an exact separation 
procedure to identify violated cuts. Extensive computational results confirm the 
effectiveness of the proposed algorithm, as measured by a substantial reduction in the 
number of feasible solutions that have to be explicitly eliminated. This translates into a 
higher proportion of instances solved to optimality, reduced optimality gaps, and lower 
computing times. 
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1. Introduction

The aim of the vehicle routing problem (VRP) is to construct vehicle routes through a set

of customers under side constraints. In the classical VRP, a travel cost matrix between

customers is provided, several identical capacitated vehicles are available, and customers

have demands to be collected. The routes start and end at the depot, each customer is

visited exactly once by a single vehicle, and the demand collected on a route cannot exceed

the vehicle capacity. The objective is to minimize the total travel cost.

The VRP has been extensively studied (see, e.g., Laporte [18]). A number of variants of

the VRP have been proposed (see, e.g., Toth and Vigo [28] and Golden et al. [12]) to represent

more realistic settings, and several efficient solution procedures have been developed for

the VRP and its variants. Most of this research deals with deterministic settings, thus

implicitly implying that all information concerning the instance parameters is known when

the problem is solved. This assumption applies to situations where the estimated variability

in the problem parameters is relatively low. However, in practice, data are often stochastic.

In such contexts solving a deterministic problem in which stochastic parameters are replaced

by their expected values can yield poor solutions (Louveaux [22]). As a result, several

stochastic versions of the VRP have been studied in recent years (Cordeau et al. [9]).

In this paper we solve the VRP with stochastic demands (VRPSD) in which demand

is only revealed when the vehicle reaches the customer’s location. Such problems occur in

a number of applications, for example in the delivery and collection of money to and from

banks (Bertsimas [4] and Lambert et al. [17]), in home oil delivery (Chepuri and Homem de

Mello [7]), beer distribution and garbage collection (Yang et al. [29]).

Because demand is not known beforehand, a vehicle may reach a customer location with

insufficient residual capacity to collect the observed demand. This causes a route failure,

in which case a recourse action can be implemented. One of the most common solution

frameworks for this class of problems is a priori optimization, a concept initially put forward

by Bertsimas [6], Jaillet [15] and Bertsimas et al. [5]. It consists of modeling the problem

in two stages. In the first stage, a planned, or a priori solution is designed, before customer

demands are known. It consists of the set of vehicle routes. In the second stage, these

routes are performed as demands are gradually revealed. Whenever a failure occurs, a

predetermined recourse policy is implemented, which entails an extra recourse cost. The

objective of the problem is to minimize the cost of the first-stage solution plus the expected

cost of recourse.
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Several recourse policies have been proposed for the VRPSD. A classical policy is to

return to the depot upon failure, offload, and resume collections by following the planned

route starting at the point of failure (Christiansen and Lysgaard [8], Gendreau et al. [10],

[11], Goodson et al. [13], Hjorring and Holt [14], Laporte et al. [20], Lei et al. [21] and Rei et

al. [24]). More involved recourse policies have also been considered, such as restocking rules

(Yang et al. [29]), route reoptimization (Secomandi and Margot [25]), pairing strategies (Ak

and Erera [1]), and the use of safety stocks (Juan et al. [16]) . Note that the algorithms

described in Ak and Erera [1], Hjorring and Holt [14], and Secomandi and Margot [25] have

been implemented for the single-vehicle case only. An important managerial advantage of the

classical policy is that it yields stable routes which require minimal alterations in the event

of failure. Solving the VRPSD under the classical recourse policy also provides a benchmark

against which alternative policies can be assessed. Whereas most authors in the field of

stochastic vehicle routing cast the problem in the context of stochastic programming, one

recent study by Sungur et al. [27] defines it in the context of robust optimization which yields

routes that minimize transportation costs while satisfying all demands in a given bounded

uncertainty set.

Compared with the classical VRP, the VRPSD is considerably more difficult to solve.

For example, state-of-the-art algorithms for the VRP can handle instances involving up to

200 customers and 17 vehicles (Baldacci et al. [2]). In contrast, the best available algorithms

for the VRPSD (with multiple vehicles) can only handle instances with 50 customers and

three vehicles under a normal demand distribution (Laporte et al. [20]).

As in Laporte et al. [20], we formulate the VRPSD as a two-stage stochastic programming

model under the classical recourse policy. We solve it optimally by means of the integer

L-shaped method proposed by Laporte and Louveaux [19], an extension of the L-shaped

method of Van Slyke and Wets [26] for continuous stochastic programs, itself an application

of Benders decomposition [3] to stochastic programming. The integer L-shaped method

follows a branch-and-cut framework in which lower optimality cuts are generated to eliminate

feasible solutions, and lower bounding functionals (LBFs) are commonly used to improve

the efficiency of the algorithm. Their role is to tighten the linear relaxation of the current

subproblem, thus stemming the growth of the search tree. When applied to the VRPSD,

LBFs are used to strengthen the lower bounds on the recourse cost associated to partial routes

encountered throughout the solution process. As was numerically illustrated by Hjorring and

Holt [14] and Laporte et al. [20], the use of LBFs is instrumental in optimally solving the

VRPSD.

This paper makes three main scientific contributions. It first generalizes the concept of
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partial routes defined by Hjorring and Holt [14] for the single vehicle case, and by Laporte

et al. [20] for the multi-vehicle case. It then proposes strengthened LBFs based on these

generalized partial routes. Finally, it describes an exact separation algorithm for these

LBFs. Extensive computational experiments on benchmark instances demonstrate that the

combination of these improvements yields shorter computing times, thus enabling the exact

solution of larger instances than what was previously possible. Moreover, it yields smaller

optimality gaps on the unsolved instances.

The remainder of this paper is organized as follows. In Section 2 we present our modeling

and solution framework for the VRPSD. Section 3 introduces the generalized definition of

partial routes. These are used to generate stronger LBFs in Section 4. The exact separation

procedure for the LBFs is presented in Section 5. This is followed by computational results

in Section 6 and by conclusions in Section 7.

2. Model and algorithmic framework

We recall in Section 2.1 the two-stage stochastic programming formulation of VRPSD ini-

tially proposed by Laporte et al. [20], which constitutes the backbone of our solution frame-

work. We then describe in Section 2.2 the integer L-shaped algorithm for which we introduce

improvements in Sections 3, 4, and 5.

2.1 The VRPSD Model

The VRPSD is defined on a complete undirected graph G = (V,E), where V = {v1, . . . , vn}
is the vertex set and E = {(vi, vj) : vi, vj ∈ V, i < j} is the edge set. Vertex v1 is the

depot at which m identical vehicles of capacity D are based, whereas the remaining vertices

represent customers. Each customer has a non-negative stochastic demand ξi to be collected.

We further assume that these demands are identically and independently distributed with

expected values µi. A travel cost cij is associated with each edge (vi, vj) ∈ E. The aim of the

first-stage problem is to design m vehicle routes of least expected cost 1) starting and ending

at the depot, 2) such that each customer is visited exactly once by exactly one vehicle, and

3) such that the expected demand of each route does not exceed the vehicle capacity. In this

definition the objective function is the sum of the planned routing cost and of the expected

second-stage cost of recourse. The third constraint was originally imposed by Laporte et

al. [20] in order to avoid the creation of routes that would systematically fail while some

vehicles would be underutilized.
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The VRPSD can be formulated as a two-index stochastic program as follows. Let xij

(i < j) be an integer decision variable equal to the number of times edge (vi, vj) appears in

the first-stage solution. In what follows xij must be interpreted as xji whenever i > j. If

i, j > 1, then xij can only take the values 0 or 1; if i = 1, then xij can also be equal to 2

whenever a vehicle makes a return trip between the depot and customer vj. Furthermore,

let Q(x) denote the expected cost of recourse in solution x. The model is then

(VRPSD) Minimize
∑
i<j

cijxij +Q(x) (1)

subject to

n∑
j=2

x1j = 2m, (2)∑
i<k

xik +
∑
j>k

xkj = 2, (k = 2, . . . , n), (3)

∑
vi,vj∈S

xij ≤ |S| −

⌈∑
vi∈S

µi/D

⌉
, (S ⊂ V \ {v1}, 2 ≤ |S| ≤ n− 2) (4)

0 ≤ xij ≤ 1 (2 ≤ i < j ≤ n), (5)

0 ≤ x1j ≤ 2 (j = 2, . . . , n), (6)

x = (xij) integer (1 ≤ i < j ≤ n). (7)

In this model constraints (2) and (3) specify the degree of each vertex, whereas constraints

(4) eliminate subtours and ensure that the expected demand of any route does not exceed

the vehicle capacity.

Given a first-stage solution x, the computation of Q(x) is separable in the routes. It is

well known that the expected cost of route k depends on its orientation:

Q(x) =
m∑
k=1

min{Qk,1,Qk,2}, (8)

where Qk,δ denotes the expected cost of the recourse of route k for orientation δ. Given an

undirected first stage solution, the expected cost of recourse is computed for each direction,

and the cheapest orientation is selected. As in Laporte et al. [20], the computation of Qk,1
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for route k defined by (vi1 = v1, vi2 , . . . , vit+1 = v1) is given by

Qk,1 = 2
t∑

j=2

j−1∑
l=1

P
( j−1∑
s=2

ξis ≤ lD <

j∑
s=2

ξis

)
c1ij . (9)

The first factor in the double summation is the probability of incurring the lth failure at

customer vij . The value of Qk,2 is computed likewise by reversing the orientation of route k.

2.2 The integer L-shaped algorithm

The integer L-shaped algorithm applies branch-and-cut to a relaxation of (VRPSD) in which

the recourse term Q(x) is bounded below by a variable Θ. In addition, the subtour elimina-

tion constraints and the integrality requirements are relaxed. Initially Θ is set greater than

or equal to a lower bound L on the expected cost of recourse, and its value Θν is computed

for the solution of the subproblem solved at iteration ν. We adopt the general lower bound

L on Q(x) described in Proposition 1 of Laporte et al. [20]. This bound is based on the

computation of the probability of failure on each route taken separately. The recourse cost is

bounded below by considering the m customers closest to the depot, and the total demand

is then partitioned among the m vehicles so as to minimize the total cost. As is standard in

branch-and-cut, subtour elimination constraints are generated dynamically as they are found

to be violated, and integrality is gradually recovered by branching on fractional variables.

Optimality cuts are generated at feasible integer solutions. In most applications these cuts

are local, and therefore relying solely on them may yield substantial enumeration in the

search tree. This is why it often pays to also impose lower bounds on the recourse func-

tion Q(x) in the form of linear functionals computed on the basis of infeasible intermediate

solutions. In the following summary of the algorithm, CP denotes the current problem.

Step 0 Compute L and set the iteration counter ν equal to 0. Define the CP as a relaxation

of VRPSD in which constraints (4) and (7) are removed, the Q(x) term of the objective

function is replaced with Θ, and the constraint Θ ≥ L is imposed. Set the value of the

best known solution to z̄ :=∞. At this stage the only pendent node is the initial CP.

Step 1 Select a pendent node from the list. If none exists stop.

Step 2 Set ν := ν + 1 and solve CP. Let (xν ,Θ) be its optimal solution.
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Step 3 Check for any violated subtour elimination constraints and generate them accord-

ingly. At this stage, valid inequalities or LBFs may also be generated. If a violated

constraint is found, add it to the CP and return to Step 2. Otherwise, if cxν + Θ ≥ z̄,

fathom the current node and return to Step 1.

Step 4 If the solution is not integer, then branch on a fractional variable. Append the

corresponding subproblems to the list of pendent nodes and return to Step 1.

Step 5 Compute Q(xν) and set zν := cxν +Q(xν). If zν < z̄, then z̄ = zν .

Step 6 If Θ ≥ Q(xν), then fathom the current node and return to Step 1. Otherwise add

an optimality cut defined as ∑
1<i<j
xνij=1

xij ≤
∑

1<i<j

xνij − 1 (10)

and go to Step 2.

3. General partial routes

The generation of LBFs is based on the identification of partial routes in a solution. Such

partial routes yielding LBFs for the single VRPSD were first proposed by Hjorring and Holt

[14] and extended to the multi-vehicle case by Laporte et al. [20]. In this section we introduce

a generalized definition of partial routes. It is broader than the one proposed by Hjorring

and Holt [14] in that it better exploits the structural information provided by partial routes,

thus enabling the construction of stronger LBFs. It was indeed shown by Laporte et al.

[20] that a rather large number of the Hjorring and Holt [14] LBFs have to be added to the

master problem in order to solve the VRPSD.

Figure 1: Example of a general partial route
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General partial routes h can in principle be defined on any subgraph of G. However, as is

common in most branch-and-cut implementations, we identify them on a graph Ḡ induced

by the positive variables of a non-integer and connected solution of the CP solved in Step

2 of the integer L-shaped algorithm. It is convenient to represent such partial routes as in

Figure 1 by duplicating the depot. When doing so it is necessary to ensure that each copy

of the depot is connected to at least one vertex. A solution can be decomposed into several

components anchored at an articulation vertex, i.e., a vertex whose removal disconnects the

graph into connected components disjoint from each other. These are either unstructured

components of Ḡ (ellipses in the figures) whose vertex sets are called unstructured vertex sets

(UVSs), or chains whose vertex sets are called chain vertex sets (CVSs). The vertices of a

chain are linked together by edges (vi, vj) for which xij = 1 in Ḡ.

Let b denote the number of chains, and let b − 1 denote the number of unstructured

components in a partial route h. This partial route then consists of 2b − 1 components.

Let Srh denote the rth ordered CVS, possibly consisting of a single vertex, defined as Srh =

{v1rh , . . . , vlrhrh}, where vkrh is the kth vertex in Srh and lrh is the number of vertices in Srh. For

simplicity, we write (vi, vj) ∈ Srh if vi and vj are consecutive in Srh, and we write lrh instead

of lrhrh. Thus,

∑
(vi,vj)∈Srh

xij = |Srh| − 1.

Let U r
h denote the rth UVS in h. Then

∑
vi,vj∈Urh

xij = |U r
h| − 1.

For each r ≤ b− 1,

∑
vj∈Urh

xlrh,j = 1,

Similarly, for each r ≥ 2, ∑
vj∈Ur−1

h

x1rh,j = 1.

Given that a chain is a structured special case of a UVS and a single vertex is a degenerate

chain, a general solution such as the one depicted in Figure 1 can be viewed differently

depending on how chains and vertices are interpreted. For example, in Figure 2a only the
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first and last chains are viewed as such, whereas the intermediate part of the solution is

viewed as a UVS. In Figure 2b, the original alternation of chains and UVSs is maintained.

In Figure 2c, each chain is viewed as a UVS and the articulation vertices are considered as

degenerate chains. The partial routes corresponding to these three constructions are called

α-routes, β-routes and γ-routes, respectively. In Section 4 we will develop LBFs based on

these structures.

c) γ-route

b) β-route

a) α-route

Figure 2: Examples of general partial routes
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4. Lower bounding functionals

We present in Section 4.1 a lower bound on the cost of recourse. This bound is applied in

Section 4.2 to the derivation of a lower bounding functional based on general partial routes.

Three particular cases of the lower bounding functional associated with α-, β- and γ-routes

are then presented in Section 4.3.

4.1 Lower bound on the cost of recourse

A lower bound Ph on the cost of recourse associated with general partial route h is constructed

by aggregating the demand of each UVS, while the distance to the depot is bounded by

the smallest distance between the depot and the vertices within a UVS. For each UVS,

r = 1, . . . , b− 1, we create an artificial customer vr with demand

ξr =
∑
vi∈Urh

ξi and c1r = minvj∈Urh{c1j}. (11)

The partial route is then constructed as (v0 = v11h , . . . , vlrh , v
1, v12h , . . . , vl2h , v

2, . . . , vb−1,

v1bh , . . . , vlbh) and the value of Qk,δ for this route k is computed as in Equation (9). Then

Ph = min{Qk,1,Qk,2}. (12)

To compute a lower bound P on the total cost of recourse, first define

Rh = (∪br=1S
r
h) ∪ (∪b−1

r=1U
r
h).

Assuming f ≤ m partial routes, let Pr+1 be a lower bound on the cost of recourse for m− f
routes involving the customer set V \ ∪fh=1Rh, with Pm+1 = 0. Then the lower bound is

P =

f+1∑
h=1

Ph. (13)
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4.2 Computation of the lower bounding functional

In this section we construct a lower bounding functional that will act as a valid inequality in

the integer L-shaped algorithm to eliminate some infeasible solutions. Given a solution x we

first construct a lower bounding functional Wh(x) for each partial route h in x. The sum of

the functionals Wh(x) of all partial routes in x determines when a cut is active in the solution

space. The functional operates on all vertices included in partial route h. It uses variables

associated with the edges that are part of chains and with all possible edges between the

vertices contained in each UVS. Furthermore, the functional includes all variables associated

with edges between each articulation vertex and all vertices of its corresponding UVS.

The remainder of this section is organized as follows. In Section 4.2.1 we formally define

Wh(x) and explain each of its terms separately. In Section 4.2.2 we project Wh(x) onto the

solution space. We then characterize solutions for which Wh(x) is equal to 1 and those for

which it is less than or equal to 0. Using this characterization we construct a valid inequality

in Section 4.2.3.

4.2.1 Description of Wh(x)

We first define the following functional for a partial route h:

Wh(x) =
b∑

r=1

∑
(vi,vj)∈Srh
vi 6=v1

3xij +
∑

(v1,vj)∈S1
h

x1j +
∑

(v1,vj)∈Sbh

x1j +
b−1∑
r=1

∑
vi,vj∈Urh

3xij

+
b−1∑
r=1

∑
vj∈Urh
v
lrh
6=v1

3xlrh,j +
b∑

r=2

∑
vj∈Ur−1

h
v
1rh
6=v1

3x1rh,j +
∑

vj∈U1
h

v
l1h

=v1

xl1h,j +
∑

vj∈Ub−1
h

v
1bh

=v1
v
lb−1,h 6=v1

x1bh,j

− (3|Rh| − 5). (14)

In Equation (14), the coefficients of all edges containing the depot are equal to 1 while all

other edges have a coefficient of 3. The functional ends by subtracting a constant which will

be shown to be equal to the sum of all edge variables multiplied by their coefficients, minus

1. In what follows we explain each component of Wh(x), and we show that contrary to what

was presented in Proposition 2 of Laporte et al. [20], our definition of Wh(x) is always valid.

The sum of all edge variables that are part of chains and not connected to the depot is
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expressed by

b∑
r=1

∑
(vi,vj)∈Srh
vi 6=v1

3xij,

which is equal to 0 if |Srh| = 1. If |S1
h| ≥ 2 then the edge connected to the depot will have a

coefficient of 1, this is expressed by
∑

(v1,vj)∈S1
h

x1j. Similarly, if |Sbh| ≥ 2 the term
∑

(v1,vj)∈Sbh

x1j

attributes a coefficient of 1 to the edge connected to the depot in Sbh. As expressed by

b−1∑
r=1

∑
vi,vj∈Urh

3xij,

a coefficient of 3 is attributed to all possible edges variables between the vertices of a UVS.

Because not all vertices of the UVS are necessarily connected in h, the above summation

implies that the functional Wh(x) may contain variables associated to edges that do not

appear in the partial route h.

The functional contains a coefficient of 3 for edge variable between articulation vertices

which are not the depot, and each vertex in its corresponding UVS. This is expressed by

b−1∑
r=1

∑
vj∈Urh
v
lrh
6=v1

3xlrh,j +
b∑

r=2

∑
vj∈Ur−1

h
v
1rh
6=v1

3x1rh,j.

Again the above summation implies that the functional Wh(x) may contain variables asso-

ciated to edges that do not appear in the partial route h.

If the articulation vertex of the first chain is the depot, i.e., vl1h = v1, then all edges

between the depot and each vertex in the first UVS have a coefficient of 1. Thus,

∑
vj∈U1

h
v
l1h

=v1

xl1h,j.

For vlb−1,h = v1, if the partial route consists of a single UVS and two single vertex chains,

i.e., v1bh = v1 and vlb−1,h = v1, then to avoid double counting, all edges between the depot

and each vertex in the last UVS will have a coefficient of 0. Otherwise, i.e., if |S1
h|+ |Sbh| > 2

or b > 2, all edges between the depot and each vertex in the last UVS will have a coefficient
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of 1. This is expressed by

∑
vj∈Ub−1

h
v
1bh

=v1
v
lb−1,h 6=v1

x1bh,j.

In order for Wh(x) to equal 1 for a given h, we subtract the sum of variables associated

to edges included in h multiplied by their corresponding coefficients in Wh(x) and add 1.

All variables that appear in h and are associated to edges connected to the depot have a

coefficient of 1 in Wh(x), while all others have a coefficient of 3. Therefore, we subtract the

constant 3(|Rh| − 2) accounting for each edge not connected to the depot and subtract 2 to

account for the edges connected to the depot. Therefore, the sum of the edge variables is

expressed as

3(|Rh| − 2) + 2 = 3|Rh| − 4.

Thus, considering h, the functional Wh(x) equals 1 when 3|Rh|−5 is subtracted from the sum

of variables associated to edges included in h, multiplied by their corresponding coefficients

in Wh(x).

4.2.2 Projection of Wh(x) onto the solution space

In what follows we show that Wh(x) takes a value of 1 not only on partial route h, but on a

broader set of routes. We also show that for a solution x′ in which the vertices of h appear

in more than one route, Wh(x
′) is at most 0. For this purpose we will introduce the notion

of ordered vertices.

The functional Wh(x) may contain variables associated to edges that do not appear in the

partial h. Therefore, for i < j we define the vector x̂ij = {ζ12, . . . , ζ1n, ζ23, . . . , ζ2n, . . . , ζn−1,n},
where ζij = 1 and all other components are equal to 0. Let Gh(xij) = Wh(x̂ij) + 3|Rh| − 5.

Definition 4.1. Let x̄ be a solution satisfying constraints (2), (3), (5) and (6) and let x′ be

a feasible solution to the VRPSD. Let h be a partial route of x̄ and J = {vk1 , . . . , vkq} such

that for all 1 ≤ i < q the following relations hold: 1) vki 6= v1, 2) Gh(x̄ki,ki+1
) > 0, and 3)

x′ki,ki+1
> 0. Then J is said to be ordered in the feasible solution x′ as in h.

Definition 4.1 implies that if vki and vki+1
are part of a chain in h, then x′i,i+1 > 0. If vki

is an articulation vertex, then x′i,i+1 > 0 where vki+1
is one of the vertices associated with the

corresponding UVS. If vki+1
is an articulation vertex, then x′i,i+1 > 0 where vki is one of the
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vertices associated with the corresponding UVS. Otherwise vki and vki+1
belong to a UVS of

h.

Definition 4.2. Consider a solution x̄ satisfying constraints (2), (3), (5) and (6) containing

a partial route h, and another feasible solution x′ containing route h′. Partial route h is said

to be compatible with h′ if Rh = Rh′ and all customer vertices are ordered in h′ as in h.

Furthermore, x̄ is said to be compatible with x′ if for each partial route in x̄ there exists a

compatible route in x′.

Next we show that Wh(x) = 1 when route compatibility is attained and that Wh(x) ≤ 0

otherwise. Finally we construct the valid inequality showing that x̄ is compatible with x′.

Consider a solution x̄ satisfying constraints (2), (3), (5) and (6) containing a partial

route h, and another feasible solution x′ containing route h′. We start by showing that if

Rh′ = {Rh \ J}, where |J | ≥ 1, then Wh(x
′) ≤ 0. Given Wh(x) defined by partial route h,

we define the functional

Wh(J |x) =
b∑

r=1

∑
(vi,vj)∈Srh∩J
vi 6=v1

3xij +
∑

(v1,vj)∈S1
h∩J

x1j +
∑

(v1,vj)∈Sbh∩J

x1j +
b−1∑
r=1

∑
vi,vj∈Urh∩J

3xij

+
b−1∑
r=1

∑
vj∈Urh∩J
v
lrh
6=v1

3xlrh,j +
b∑

r=2

∑
vj∈Ur−1

h ∩J
v
1rh
6=v1

3x1rh,j +
∑

vj∈U1
h

v
l1h

=v1

xl1h,j

+
∑

vj∈Ub−1
h ∩J

v
1bh

=v1
v
lb−1,h 6=v1

x1bh,j. (15)

Let Wh(J |x′) be the value taken by functional (15) evaluated at x′. The functional Wh(J |x′)
is maximized when the vertices included in J are ordered in h′ as in h. In Lemma 4.3, we

introduce an upper bound on Wh(J |x′). This result is then used in Proposition 4.4 to show

that Wh(x
′) ≤ 0 when Rh′ = {Rh \ J}, where J = {vk1 , . . . , vkq}, 1 ≤ q ≤ |Rh| − 2, and

vki 6= v1 for all 1 ≤ i < q. Subsequently, in Proposition 4.5 we show that if h is compatible

with h′, then Wh(x
′) = 1.

Lemma 4.3. Let x̄ be a solution satisfying constraints (2), (3), (5) and (6) and let x′ be a fea-

sible solution to the VRPSD. Let h be a partial route of x̄ and let J = {vk1 , . . . , vkq}, where 1 ≤
q ≤ |Rh| − 2, and vk1 6= v1 for all 1 ≤ i < q. Define Wh(J |x′) as the value obtained by func-

tional (15) evaluated at x′. Then Wh(J |x′) ≤ 3(|J | − 1) + 2.
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Proof. Let J1 = {v1
k1
, . . . , v1

kq
}, where J1 ⊂ J , and let h′1 be a route of x′ such that J1 ⊂ Rh′1

.

Then, considering partial route h, we observe that

b∑
r=1

∑
(vi,vj)∈Srh∩J1
vi 6=v1

3x′ij

b−1∑
r=1

∑
vi,vj∈Urh∩J1

3x′ij +
b−1∑
r=1

∑
vj∈Urh∩J1
v
lrh
6=v1

3x′lrh,j +
b∑

r=2

∑
vj∈Ur−1

h ∩J1
v
1rh
6=v1

3x′1rh,j

≤ 3(|J1| − 1),

where the equality holds if J1 is ordered in h′1 ordered as is in h. Furthermore,∑
(v1,vj)∈S1

h∩J1

x′1j +
∑

(v1,vj)∈Sbh∩J1

x′1j +
∑

vj∈U1
h∩J1

v
l1h

=v1

x′l1h,j +
∑

vj∈Ub−1
h

v
1bh

=v1
v
lb−1,h 6=v1

x′1bh,j ≤ 2,

where the equality holds if Gh(x̄1,k11
) > 0 and Gh(x̄1,k1q

) > 0. Therefore,

Wh(J1|x′) ≤ 3(|J1| − 1) + 2. (16)

Let {J1, . . . , Jw} define a partition of J such that Ji = {vik1 , . . . , v
i
kq
} for all 1 ≤ i ≤ w. Let

h′i be a route of x′ such that Ji ∈ Rh′i
. From inequality (16) we infer that

Wh(Ji|x′) ≤ 3(|Ji| − 1) + 2 (1 ≤ i ≤ w).

Therefore,

Wh(J |x′) =
w∑
i=1

Wh(Ji|x̄) ≤
w∑
i=1

[3(|Ji| − 1) + 2]

≤
w∑
i=1

3(|Ji|)− 3w,

which is maximized for w = 1. We therefore conclude that Wh(J |x̄) ≤ 3(|J | − 1) + 2.

Lemma 4.3 implies that Wh(J |x′) is maximized when the vertices of J appear in a single
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route and are ordered as in h.

Proposition 4.4. Let x̄ be a solution satisfying constraints (2), (3), (5) and (6) and let x′

be a feasible solution to the VRPSD. Let h be a partial route of x̄ and let h′ be a route of

x′. Let Rh′ = {Rh \ J}, where J = {vk1 , . . . , vkq}, 1 ≤ q ≤ |Rh| − 2, and v1 6= vki for all

1 ≤ i < q. Then Wh(x
′) ≤ 0.

Proof. Let {R′h \ v1} = {vk′1 , . . . , vk′l}. We recall that Wh(Rh|x̄) = 3(|Rh| − 2) + 2. As in

Lemma 4.3, the value Wh(Rh′ |x′) is maximized if all vertices in Rh′ \ {v1} are ordered in h′

as in h. Therefore,

Wh(Rh′|x′) ≤ 3(|Rh′ | − 2) + 2,

where the equality holds if R′h \ {v1} is ordered in x′ ordered as in h, Gh(x̄1,k11
) > 0 and

Gh(x̄1,k1q
) > 0. Since J and Rh′ define a partition of Rh, then

Wh(Rh′ ∪ J |x′) = Wh(Rh′ |x′) +Wh(J |x′).

In Lemma 4.3 we have shown that Wh(J |x′) ≤ 3(|J | − 1) + 2. Therefore,

Wh(Rh′|x′) +Wh(J |x′) ≤ 3(|Rh′| − 2) + 2 + 3(|J | − 1) + 2

≤ 3(|Rh| − 3) + 4

≤ 3(|Rh| − 2) + 1.

Since, Wh(Rh|x̄)−Wh(Rh′ ∪ J |x′) ≥ 1, we conclude that Wh(x
′) ≤ 0.

We now proceed to show that Wh(x
′) = 1 if h′ contains exactly the same vertices as h,

and these are ordered in h′ as h.

Proposition 4.5. Let x̄ be a solution satisfying constraints (2), (3), (5) and (6) and let x′

be a feasible solution to the VRPSD. Let h be a partial route of x̄ and let h′ be a route of x′.

Then Wh(x
′) = 1 if Rh′ = Rh and the vertices in h′ are ordered as in h.
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Proof. Proposition 4.4 states that Wh(x
′) ≤ 0 for Rh′ = {Rh \ J} where 1 ≤ |J | ≤ |Rh| − 2.

Next we show that Wh(x
′) ≤ 0 for Rh′ = {Rh ∪ J}. Let J = {vk1}. We distinguish between

the following two cases:

1) x′1,k1 = 1, then

b∑
r=1

∑
(vi,vj)∈Srh∩Rh′
vi 6=v1

3x′ij +
b−1∑
r=1

∑
vi,vj∈Urh∩Rh′

3x′ij +
b−1∑
r=1

∑
vj∈Urh∩Rh′
v
lrh
6=v1

3x′lrh,j +
b∑

r=2

∑
vj∈Ur−1

h ∩Rh′
v
1rh
6=v1

3x′1rh,j

≤ 3(|Rh| − 2),

where the equality holds if all vertices in Rh are ordered in x′ as in h. Furthermore,∑
(v1,vj)∈S1

h∩Rh′

x′1j +
∑

(v1,vj)∈Sbh∩Rh′

x′1j +
∑

vj∈U1
h∩Rh′

v
l1h

=v1

x′l1h,j +
∑

vj∈Ub−1
h ∩Rh′

v
1bh

=v1
v
lb−1,h

6=v1

x′1bh,j ≤ 1.

This inequality stems from the fact that x′1,ik = 1.

2) x′i,k1 = 1, where vi ∈ {Rh \ v1}. This entails that the vertices in Rh are not ordered in h′

as in h and therefore,

b∑
r=1

∑
(vi,vj)∈Srh∩Rh′
vi 6=v1

3x′ij +
b−1∑
r=1

∑
vi,vj∈Urh∩Rh′

3x′ij +
b−1∑
r=1

∑
vj∈Urh∩Rh′
v
lrh
6=v1

3x′lrh,j +
b∑

r=2

∑
vj∈Ur−1

h ∩Rh′
v
1rh
6=v1

3x′1rh,j

≤ 3(|Rh| − 3)

and ∑
(v1,vj)∈S1

h∩Rh′

x′1j +
∑

(v1,vj)∈Sbh∩Rh′

x′1j +
∑

vj∈U1
h∩Rh′

v
l1h

=v1

x′l1h,j +
∑

vj∈Ub−1
h ∩Rh′

v
1bh

=v1
v
lb−1,h

6=v1

x′1bh,j ≤ 2.

We conclude that for J = {vk1},

Wh(Rh′ |x′) ≤ 3(|Rh′ | − 2) + 1.
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When J = {vk1 , . . . , vkq} and q ≥ 2, Wh(Rh′|x′) is also bounded above by 3(|Rh| − 2) + 1.

This bound is reached when x′1,kq = 1, x′ki,ki+1
= 1 for all 1 ≤ i < q, and all vertices in

Rh are ordered in h′ as in h. Thus, we infer that Wh(Rh′|x′) ≤ 3(|Rh| − 2) + 1. Since,

Wh(Rh|x̄) −Wh(Rh′|x′) ≥ 1, we conclude that Wh(x
′) ≤ 0 for Rh = {Rh′ \ J} and q ≥ 1.

Any case for which |J1| ≥ 1, |J2| ≥ 1 and Rh′ = {Rh \ J1} ∪ J2, where J1 ⊂ Rh and

{J2 ∩Rh} = ∅, will be a combination of the cases presented above and of the ones presented

in Proposition 4.4, yielding Wh(x
′) ≤ 0. Finally it is straightforward to show that Wh(x

′) = 1

when Rh′ = Rh and all customer vertices are ordered in h′ as in h.

4.2.3 Valid inequality

We recall that Θ is a lower bound on the cost of recourse, L is the lower bound on Θ defined

in Step 0 of the integer L-shaped algorithm, and P is defined by Equation (13).

Proposition 4.6. Let x̄ be a solution satisfying constraints (2), (3), (5) and (6) and let x′

be a feasible solution to the VRPSD. The constraint

Θ ≥ L+ (P − L)

(
r∑

h=1

Wh(x̄)− r + 1

)
(17)

is a valid inequality for the (VRPSD).

Proof. It follows from Proposition 4.5 that Wh(x
′) = 1 if partial route h is compatible with

a route h′ in x′, otherwise Wh(x) ≤ 0. Therefore,
∑r

h=1Wh(x
′) = r if x̄ is compatible

with x′. If x̄ is not compatible with x′, then
∑r

h=1Wh(x) ≤ r − 1. We conclude that∑f
h=1 Wh(x

′)− r+ 1 = 1 if x̄ is compatible with x′, and
∑f

h=1Wh(x
′)− r+ 1 ≤ 0 otherwise.

Therefore, inequality (17) reduces to Θ ≥ P for
∑f

h=1Wh(x
′)− r + 1 = 1, and is redundant

otherwise.

4.3 Three special cases of the lower bounding functional

Various LBFs can be obtained by applying different aggregation strategies on the connected

components along the partial route. In this paper we are interested in the three particular

structures illustrated in Figure 2. In the following three special cases, we define different

structures yet the lower bound P and the lower bounding functional defined earlier remain

unchanged.
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4.3.1 α-routes

The partial routes originally proposed by Hjorring and Holt [14] correspond to our α-routes.

A standard partial route is made up of three components: two chains (b = 2) connected by

one unstructured component, which may or may not include chains (Figure 2a). The two

CVSs are denoted by S1
h and S2

h; in addition the UVS is equal to U1
h . In this case Wh(x) is

defined by (14).

4.3.2 β-routes

The β-route depicted in Figure 2b is an alternation of b chains and b−1 UVSs, where b ≥ 2.

The functional W β
h (x) applied in this case is identical to Wh(x). Defining P β

h and Pα
h as

Ph adapted to α-routes and β-routes, respectively, the relationship between the proposed

partial routes is P β
h ≥ Pα

h . This stems from the fact that when compared to Pα
h , the lower

bound P β
h better exploits the specificity of h because it is computed by making use of all

sequences present in that partial route. However, the LBF computed with W β
h (x) will be

active on a smaller solution space, when compared to Wα
h (x).

4.3.3 γ-routes

In order to define γ-routes, we first consider the same structure as for β-routes, i.e., an

alternating sequence of b chains and b− 1 unstructured components. We then consider each

chain as an unstructured component to yield a sequence of 2b−1 UVSs but no chains (Figure

2c). The articulation points remain unchanged.

Defining the P γ
h as the lower bound Ph adapted to γ-routes and using the same argument

as in Section 4.3.2, one observes that P β
h ≥ Pα

h ≥ P γ
h . Again, the LBF computed with W γ

h (x)

will be active on a larger solution space, when compared to Wα
h (x) and W β

h (x).

5. Exact separation procedure for the lower bounding

functional

The exact separation procedure identifies partial routes for a given solution and generates

their corresponding bounds P λ =
∑f+1

h=1 P
λ
h , where λ stands for α, β or γ. This procedure

explores the induced graph associated with the current solution in order to detect partial

routes, if they exist. For each identified partial route, the procedure provides its associated

19

New Valid Inequalities for the Multi-Vehicle Routing Problem with Stochastic Demands

CIRRELT-2012-58



chains and UVSs. All vertices not contained in the identified partial routes are grouped in a

set used to compute Pr+1. Next we provide a description of this separation procedure. The

two pseudo-codes detailing this procedure are presented in the appendix as Algorithm 1 and

Algorithm 2.

Recall that Laporte et al. [20] proposed a heuristic separation procedure for constraints

(17). This procedure determines α-routes by first initializing sets S1
h and S2

h with two vertices

strongly connected to the depot in the current solution and then by expanding these sets

using a greedy strategy. However, it should be noted that the procedure proposed in Laporte

et al. [20] only applies to α-routes. In order to separate constraints associated with β- and

γ-routes described in Section 4, it is necessary to first identify all chains and unstructured

components of the current solution, and then combine them into partial routes that will

become candidates for LBFs.

The pseudo-code of the exact separation procedure we have developed to construct the

general partial routes is summarized in Algorithm 1. This algorithm is called once the sepa-

ration procedure associated with constraints (17) has been applied to no avail at the solution

of the current node. Algorithm 2 identifies partial routes by first expanding unstructured

vertex sets as much as possible. Once these sets are constructed, then all other vertices

assigned to a partial route are part of chains.

The procedure operates on two types of stacks, one for unstructured vertex sets (U stack),

and another one for the chains (C stack). These stacks serve as temporary buffers that hold

vertices until a complete component is identified, i.e., a complete unstructured vertex set or

chain. Once identified, the components are added to a components list and are then used to

construct partial routes if they exist. The vertices that are not contained in the partial routes

are stored into set B, which is used to compute the general lower bound L in constraint (17).

6. Implementation and computational results

The integer L-shaped algorithm was coded in a C++ environment with CPLEX 12.3. All

experiments were conducted on a cluster of 15 computers, each having two 2.2-GHz Dual-

Core AMD Opteron processor 275 with 7.7 GB of RAM, and operating under Linux SuSe

11.3. The branching procedure was implemented by using the OOBB package developed at

the CIRRELT. The separation procedure of the subtour elimination and capacity constraints

(4) was performed using the CVRPSEP package of Lysgaard et al. [23]. These cuts were

added as long as violated constrains were found. The instances were generated based on

20

New Valid Inequalities for the Multi-Vehicle Routing Problem with Stochastic Demands

CIRRELT-2012-58



the same principles as in Laporte et al. [20]. Namely, n vertices were generated in [0, 100]2

following a continuous uniform distribution. Also, five rectangular obstacles in [20, 80]2 were

generated, each having a base of 4 and height of 25, covering 5% of the entire area.

In our instances customer demands ξi follow a normal distribution N (µi, σi) truncated

at zero, and all demands are independently distributed. The coefficient of variation of the

demand distribution was set equal to 30%. Let f =
n∑
i=2

µi/mD be the average vehicle filling

coefficient. Table 1 summarizes the parameter combinations used in our experiments. In

each case, 10 instances were generated for a total of 270 instances. The computation time

limit for any given instance was set to 10 hours.

Table 1: Parameter combinations used in the experiments

m n f
2 60, 70, 80 90%, 92.5%, 95%
3 50, 60, 70 85%, 87.5%, 90%
4 40, 50, 60 80%, 82.5%, 85%

We have performed extensive numerical analyses to assess the performance of the algo-

rithm. Section 6.1 assesses our separation procedure, whereas Section 6.2, compares several

LBF schemes.

6.1 Heuristic vs. exact separation procedure

In order to evaluate the added value of incorporating the exact separation procedure, we have

compared the performance of the heuristic separation algorithm proposed by Laporte et al.

[20] with the exact separation procedure of Section 5. The results of the former algorithm

are denoted by LBF0 while those of the latter are denoted by LBFα.

Out of the 270 test instances, LBF0 solved 77 to optimality, while LBFα solved five

additional instances. Table 2 summarizes the experimental results for these instances. The

last four columns report average values over the ten instances of each type. The reported

averages at the bottom of the table are weighted averages. The number of instances solved

decreases with the number of vehicles, for example, 40 out 90 instances with two vehicles were

solved to optimality while only nine instances with four vehicles were solved to optimality.

Similarly, the number of solved instances decreases with the average filling coefficient. The

runtime for the instances solved by both LBF0 and LBFα, is significantly lower for LBFα

when compared to LBF0. The last two columns of Table 2 report the gaps for instances
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unsolved by both LBF0 and LBFα. For these cases the average gap of LBFα is 1.07% while

that of LBF0 is 1.15%.

Table 2: Results for solved instances by both LBF0 and LBFα

n m f
Number solved

solved
Runtime (min)

LBF0

Runtime (min)
LBFα

Gap LBF0

(unsolved by both)
Gap LFBα

(unsolved by both)
60 2 0.90 6 40.7 31.9 0.3% 0.3%
60 2 0.93 9 25 18.9 0.65% 0.63%
60 2 0.95 2 25.8 26.1 0.88% 0.85%
70 2 0.90 7 25 22.6 0.86% 0.78%
70 2 0.93 4 73.3 72.1 0.99% 0.87%
70 2 0.95 1 44 23.7 1.35% 1.14%
80 2 0.90 9 49.7 49.1 0.24% 0.24%
80 2 0.93 2 8.4 8.5 0.6% 0.62%
80 2 0.95 0 1.13% 1.14%
50 3 0.85 3 69.4 60 1.09% 0.96%
50 3 0.88 4 152.8 114 1.32% 0.69%
50 3 0.90 2 56.3 41.3 2.53% 2.6%
60 3 0.85 6 65 50.1 1.52% 1.49%
60 3 0.88 2 215.1 184.4 1.16% 1.07%
60 3 0.90 1 359.4 318.7 2.08% 2%
70 3 0.85 8 75.5 62.4 1.28% 1.31%
70 3 0.88 2 253.5 184.9 1.13% 1.09%
70 3 0.90 0 2.85% 2.87%
40 4 0.80 1 3.5 3.2 2.76% 2.63%
40 4 0.82 1 26.7 24.2 2.75% 2.25%
40 4 0.85 1 47.1 48.9 4.09% 4.18%
50 4 0.80 2 297.7 212.9 2.36% 2.32%
50 4 0.82 1 117.5 91.9 3.23% 3.14%
50 4 0.85 0 4.63% 4.54%
60 4 0.80 1 425.9 394.6 3.07% 2.16%
60 4 0.82 2 191.3 192.8 2.21% 2.21%
60 4 0.85 0 0 3.05% 3.32%
Average 82.1 68.7 1.15% 1.07%
Total 77

Table 3: Solved and unsolved instances by LBF0 and LBFα

LBFα solved, LBF0 unsolved

n m Number
Runtime (min)

LBFα

Gap
0

60 2 1 510.7 0.12%
70 2 1 446.0 0.02%
80 2 1 569.4 0.03%
50 3 0
60 3 0
70 3 0
40 4 1 252.3 0.13%
50 4 1 103.8 0.29%
60 4 0

A total of five instances were solved by LBFα only. Table 3 summarizes the results for

these cases. The gaps obtained by LBF0 on these instances are reported in the last column

of the table.
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6.2 Comparative assessment of the lower bounding functionals

We now assess and compare the performance of the three families of LBFs using the exact

separation procedure. We present six experimental settings. The first three correspond to

α-routes, β-routes, and γ-routes. In the fourth set, α-route and β-route LBFs are added si-

multaneously: these are denoted by LBFαβ. Similarly, in the fifth set we present experiments

for LBFβγ. Finally, we combine the three options in the experimental set LBFαβγ.

Table 4 summarizes the number of instances solved for each of the three routes types,

and three of their combinations. When using a single type of partial route, the γ-routes solve

the largest number of instances when compared to α- and β-routes. Although LBFγ yields a

weak lower bound, the corresponding cuts are active on a larger solution space, which leads

to overall better results in terms of the number of solved instances. In contrast, LBFβ solves

the least number of instances to optimality, and LBFβ yields the strongest lower bound. Yet

their corresponding cuts are active on a smaller subset of the solution space, which translates

into the exact solution of fewer instances. However, using LBFβ in conjunction with LBFγ

(combination LBFβγ) yields results that are superior to those achieved by LBFβ alone in

terms of the number of instances solved to optimality. Table 5 summarizes the runtimes

for the solved instances for all experimental settings. On average LBFβ has relatively large

runtimes.

Table 6 presents the average gaps for the unsolved instances. All algorithms achieved an

average gap of less than 2.6%. The table shows that the gaps increase with the number of

vehicles. A similar observation can be made by considering the total number of instances

solved in Table 4. Although LBFβ solved the least number of instances to optimality, it

yielded a relatively low average gap. This is partly due to the fact that LBFβ yields low

gaps on instances solved to optimality by other combinations.

We have computed in Table 7 the cumulative percentage of instances solved for several

ranges of gaps. For example, 83.7% of the 270 instances solved with LBFβ had a gap of

at most 3%. Similarly we observe that LBF0 solves more than 94% of the instances with

a gap under 5%, indicating that while the exact separation procedure helped solve a larger

number of instances to optimality, the heuristic separation procedure yielded a relatively low

variability in the distribution of the resulting gaps.

Finally, in Table 8 we compare several solution characteristics for instances solved by both

LBF0 and LBFγ, the latter representing the best solution strategy in terms of the number of

solved instances. In total 72 instances were solved to optimality by both LBF0 and LBFγ,

and an additional 15 instances were solved to optimality only by LBFγ. The runtime of the
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Table 4: Number of solved instances for families of partial routes

m n f LBFα LBFβ LBFγ LBFαβ LBFβγ LBFαβγ
60 2 0.90 7 6 8 7 8 8
60 2 0.93 9 9 9 9 9 9
60 2 0.95 2 2 2 2 2 3
70 2 0.90 7 7 7 7 7 7
70 2 0.93 4 4 5 4 6 6
70 2 0.95 2 1 2 1 2 2
80 2 0.90 9 8 10 9 10 10
80 2 0.93 3 2 4 2 4 4
80 2 0.95 0 0 0 0 0 0
50 3 0.85 3 3 5 3 3 3
50 3 0.88 4 3 3 4 3 2
50 3 0.90 2 2 1 2 1 1
60 3 0.85 6 6 6 6 6 6
60 3 0.88 2 2 2 1 1 2
60 3 0.90 1 1 0 1 0 0
70 3 0.85 8 8 9 8 7 6
70 3 0.88 2 2 2 2 2 2
70 3 0.90 0 0 0 0 0 0
40 4 0.80 1 1 1 1 1 1
40 4 0.82 2 1 3 2 2 2
40 4 0.85 1 1 1 1 1 1
50 4 0.80 3 3 3 3 3 3
50 4 0.82 1 1 1 1 1 1
50 4 0.85 0 0 0 0 0 0
60 4 0.80 1 1 1 1 1 1
60 4 0.82 2 2 2 1 2 2
60 4 0.85 0 0 0 0 0 0

Total 82 76 87 78 82 82

instances solved by LBFγ is 14.8 minutes shorter than that of LBF0, and in 54 out of the

72 instances the runtime for LBF0 was longer than that of LBFγ. The instances solved by

LBF0 required on average 345.7 fewer subtour elimination and capacity constraints. The

third line of Table 7 compares the total number of LBF cuts produced by LBFγ and LBF0.

We observe that on average 1244.7 additional LBF cuts were added per instance in LBF0.

Furthermore, the number of optimality cuts added by LBFγ is on average only 299 more

than the corresponding number for LBF0.
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Table 5: Runtimes in minutes for the solved instances

m n f LBFα LBFβ LBFγ LBFαβ LBFβγ LBFαβγ
60 2 0.90 1911.9 7006.3 708.4 9317.4 787.2 943
60 2 0.93 1132.4 2409.3 703.6 2035.4 456.6 887.8
60 2 0.95 1567.8 3583.8 551.9 2272.2 1057 10753.5
70 2 0.90 1354.6 4964.6 3296.6 1796.7 1084.9 1187.8
70 2 0.93 4325.5 8709.2 8102 5128 12455.7 14551.5
70 2 0.95 1424.5 5539.1 14773.4 2150 6188.4 7773.1
80 2 0.90 2947.7 3998 5116.7 3422.1 5137.4 5524.6
80 2 0.93 508.6 807.1 8092.5 613.7 7185 6897.9
80 2 0.95
50 3 0.85 3599.9 2901.9 10356.3 3786 751 916.7
50 3 0.88 6837.4 3417.5 2046.7 11156.9 2839.7 1250.9
50 3 0.90 2477.2 3661 9979.1 8086.6 23453.8 30122.4
60 3 0.85 3005.1 4425.8 3634.1 4684.4 2688.8 3202.5
60 3 0.88 11062.3 20868.4 18523.6 1964.4 10666.7 22203.6
60 3 0.90 19122.3 19794.8 28082.4
70 3 0.85 3741.6 5096.7 6774.1 5663.8 3131.6 2474.3
70 3 0.88 11095.5 13528.6 4734.7 11560.1 15413.9 17117.8
70 3 0.90
40 4 0.80 191.3 189 95.7 163.5 140.3 141.4
40 4 0.82 1451.7 24556.4 8202.3 19216.7 11621.5 10669.2
40 4 0.85 2931.5 3883.4 8784.6 3136.4 3775.3 4950.4
50 4 0.80 12775 14283.1 4667.9 9214.2 4732.8 5845.3
50 4 0.82 5511.4 5366.7 1557.1 7127.8 1821.8 1692.7
50 4 0.85
60 4 0.80 23676 22045.2 9163.7 23240.7 12689.6 16564.4
60 4 0.82 11567.2 16238.4 5943.8 2486.8 13353.2 10704.6
60 4 0.85

Average 4092.4 6489.2 5253.6 5850.3 4679.1 5774.5

Table 6: Optimality gaps for the unsolved instances

m n f LBFα LBFβ LBFγ LBFαβ LBFβγ LBFαβγ
60 2 0.90 0.3% 0.3% 0.1% 0.3% 0.1% 0.1%
60 2 0.93 0.6% 1.2% 0.4% 1.1% 0.5% 0.5%
60 2 0.95 0.9% 1% 0.6% 1% 0.7% 0.8%
70 2 0.90 0.8% 0.9% 0.3% 0.8% 0.3% 0.3%
70 2 0.93 0.9% 1.2% 0.8% 1% 1% 1%
70 2 0.95 1.1% 1.1% 0.9% 1.1% 0.9% 0.9%
80 2 0.90 0.2% 0.2% 0% 0.3% 0% 0%
80 2 0.93 0.6% 0.6% 0.6% 0.6% 0.6% 0.6%
80 2 0.95 1.1% 1.3% 1.1% 1.2% 1% 1.1%
50 3 0.85 1% 1.2% 0.5% 1% 0.7% 0.7%
50 3 0.88 0.7% 1.1% 0.6% 1.2% 1.1% 1.1%
50 3 0.90 2.6% 2.5% 2% 2.7% 2.1% 2.1%
60 3 0.85 1.5% 1.6% 1.2% 1.6% 1.9% 2.3%
60 3 0.88 1.1% 1.2% 1.5% 1.1% 1.4% 1.6%
60 3 0.90 2.0% 2.0% 1.5% 2.0% 1.9% 2.1%
70 3 0.85 1.3% 1.3% 2.8% 1.4% 1% 1%
70 3 0.88 1.1% 1.2% 1.5% 1.2% 1.7% 1.7%
70 3 0.90 2.9% 2.9% 3.2% 3.2% 3.1% 3.3%
40 4 0.80 2.6% 2.8% 2.7% 3.4% 3.3% 3.7%
40 4 0.82 2.2% 2.1% 1.8% 2.3% 4.6% 2.9%
40 4 0.85 4.2% 4.2% 4.2% 4.2% 5.6% 6.1%
50 4 0.80 2.3% 2.3% 2.5% 2.3% 2.4% 2.8%
50 4 0.82 3.1% 3.2% 3.1% 3.2% 3.4% 3.3%
50 4 0.85 4.5% 4.9% 7.1% 4.6% 7.1% 7.3%
60 4 0.80 2.2% 2.9% 3.2% 2.9% 3.1% 3.1%
60 4 0.82 2.2% 2.3% 2.4% 1.9% 2.5% 2.5%
60 4 0.85 3.3% 3.5% 4% 3.2% 4.6% 4.5%

Average 2.0% 2.1% 2.3% 2.1% 2.6% 2.6%
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Table 7: Cumulative percentage of instances solved for several ranges of gaps

Range LBF0 LBFα LBFβ LBFγ LBFαβ LBFβγ LBFαβγ
=0% 28.5% 30.4% 28.1% 32.2% 28.9% 30.4% 30.4%
≤ 1% 57.0% 59.3% 54.4% 62.2% 57.0% 58.9% 59.3%
≤ 3% 81.9% 83.7% 83.0% 82.6% 81.9% 80.0% 77.8%
≤ 5% 94.1% 94.8% 93.7% 91.9% 94.1% 88.9% 89.3%
≤ 7% 97.8% 97.8% 97.4% 95.6% 97.0% 94.4% 94.8%
≤ 9% 98.5% 98.9% 98.5% 96.7% 98.5% 95.9% 95.6%

Table 8: Results for the instances solved by both LBF0 and LBFγ

Average % of instances
LBF0 LBFγ LBF0− LBFγ LBF0> LBFγ

Runtime (min) 64.1 49.3 14.8 75.0%
Subtour elimination and capacity constraints (4) 1329.4 1675.1 −345.7 25.0%
Total LBF cuts 1385.7 141.0 1244.7 98.6%
Optimality cuts (10) 237.1 536.1 −299 44.4%

26

New Valid Inequalities for the Multi-Vehicle Routing Problem with Stochastic Demands

CIRRELT-2012-58



7. Conclusions

We have developed an exact algorithm for the vehicle routing problem with stochastic de-

mands. It extends and improves the integer L-shaped algorithm of Laporte et al. [20] by

generalizing the lower bounding functional introduced by these authors and by separating

them exactly. The proposed LBFs stem from a generalization of the concept of a partial

route originally proposed by Hjorring and Holt [14]. Extensive computational experiments

have shown that some combinations of the proposed LBFs outperform the classical version.

As a result, on a set of 270 benchmark instances the number of optimally solved instances

increases from 77 to 87, which is significant in the context of stochastic vehicle routing.

Our experiments have shown that the exact separation procedure solved a larger number

of instances to optimality compared with the heuristic version of Laporte et al. [20]. Using

our algorithm the largest instances solved with normally distributed demands contain 60

vertices and four vehicles, or 80 vertices and two vehicles. Our success can be attributed to

the use of new LBFs which substantially reduce the number of cuts added to the relaxed

problem. Our results also indicate that the overall performance of LFBγ is better than that

of LFBβ, implying that in our instances a weaker lower bound active on a larger solution

space outperforms a stronger bound restricted to a smaller space.

This study can be extended in a number of ways. First, the generalization of a partial

route may lead to the development of other families of LBFs by using different aggregation

mechanisms for chains and unstructured components. Second, the LBFs we have developed

can potentially be incorporated within exact algorithms applicable to the solution of other

types of stochastic routing problems involving, for example, different recourse functions or

problems with stochastic customers.
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Appendix: Pseudo-codes for the separation procedure

Algorithm 1 Partial route separation procedure
1: consider all edges of the current solution
2: repeat
3: if there exists an integer edge from the depot, not already visited in the C stack then
4: initialize C stack with depot
5: else
6: initialize U stack with depot
7: end if
8: repeat
9: if U stack is not empty then
10: generate an unstructured vertex set from the first vertex of the U stack.
11: remove vertex from U stack iteratively while adding sequentially all adjacent edges with fractional values linked

to it. If integer edges are encountered fill C stack with the connected vertices
12: if there is only one vertex in the U stack that is not the depot then
13: then transfer vertex to the C stack
14: end if
15: if two chains or more are coming out of the U stack then
16: expand unstructured vertex set by Algorithm 2
17: end if
18: end if
19: repeat
20: if C stack is not empty then
21: generate chain from solution by sequentially adding and iteratively removing vertices that are connected by

integer edges and putting fractional edges in U stack.
22: insert chain into component list and remove from C stack
23: end if
24: until C stack is empty
25: if current U stack contains the depot or has at least two elements then
26: insert unstructured vertex set into component list and remove from U stack
27: end if
28: until both stacks are empty
29: if the number of vehicles involved equals one and the U stack and C stack are empty then
30: current sequence of components induces a partial route
31: end if
32: if number of vehicles involved is greater than one then
33: the identified structure is not a partial route
34: merge all components and place all vertices into the L component
35: end if
36: until all edges have been processed
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Algorithm 2 Expanding unstructured component
1: repeat
2: repeat
3: generate chain from solution by sequentially adding and iteratively removing vertices that are connected by integer

edges and putting fractional edges in U stack.
4: if segment contains depot then
5: insert segment into component list
6: else
7: insert segment into expanded unstructured vertex set
8: end if
9: until C stack is empty
10: repeat
11: generate an unstructured vertex set from the first vertex of the U stack.
12: remove vertex from U stack iteratively while adding sequentially all adjacent edges with fractional values linked to

it. If integer edges are encountered fill C stack with the connected vertices
13: if current unstructured vertex set contains the depot or has at least two elements then
14: insert current unstructured vertex into the expanded unstructured vertex set
15: end if
16: until U stack is empty
17: until one chain coming out of the U expanded unstructured vertex set
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