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Abstract. The multi-vehicle covering tour problem (m-CTP) involves finding a minimum 

length set of vehicle routes passing through a subset of vertices, subject to constraints on 

the length of each route and the number of vertices that it contains, such that each vertex 

not included in any route lies within a given distance of a route. This paper tackles a 

particular case of m-CTP where only the restriction on the number of vertices is 

considered, i.e., the constraint on the length is relaxed. The problem is solved by a 

branch-and-cut algorithm and a metaheuristic. To develop the branch-and-cut algorithm, 

we use a new integer programming formulation based on a two-commodity flow model. 

The metaheuristic is based on the evolutionary local search (ELS) method proposed in 

[23]. Computational results are reported for a set of test problems derived from the 

TSPLIB. 
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1. Introduction

The multi-vehicle covering tour problem (m-CTP) is a generalization of
the vehicle routing problem (VRP), which is an extension of the covering tour
problem (CTP). The m-CTP is defined as follows.

Let G = (V ∪W,E1 ∪ E2) be an undirected graph, where V ∪W is the
vertex set and E1∪E2 is the edge set. V = {v0, ..., vn−1} is the set of n vertices
that can be visited, and W = {w1, w2, ..., wl} is the set of vertices that must
be covered. Let T = {v0, ..., vt−1}, a subset of V , be the set of vertices that
must be visited. Vertex v0 is the depot; m identical vehicles are located there.
This paper considers the case where m is a decision variable. A length cij is
associated with each edge of E1 = {(vi, vj) : vi, vj ∈ V, i < j} and a distance
dij is associated with each edge of E2 = {(vi, vj) : vi ∈ V \ T, vj ∈ W}.
The m-CTP consists in finding m vehicle routes such that the total cost is
minimized and

• Each route begins and ends at the depot;

• Each vertex of T is visited exactly once while each vertex of V \ T is
visited at most once;

• Each vertex j of W is covered by the routes, i.e., lies within a distance
r of at least one vertex of V \ T that is visited, where r is the covering
radius;

• The number of vertices on each route (excluding the depot) is less than
a given value p;

• The length of each route does not exceed a fixed limit q.

The m-CTP is clearly NP-hard since it reduces to a VRP with unit de-
mands whenT = V and W = ∅ or to a CTP when the capacity constraints
are relaxed.

The m-CTP can model problems concerned with the design of bilevel
transportation networks, such as the construction of routes for mobile health-
care teams (see, e.g., [15, 28]) and mobile library teams, and the location of
post boxes [18], banking agencies, and milk collection points [27]. Recently,
the model of the CTP has also been used to solve the disaster relief problem
in [8]. In this application, after a disaster the health care organizations have
to supply the affected populations with food, water and medicine. The relief
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vehicles (e.g. mobile hospitals) stop at several locations and the populations
(the set W in the mathematical description of the problem) must visit one
of the vehicle stops. The health care organizations have to choose the appro-
priate stops among |V | potential locations so that all populations can reach
one of these stops within acceptable time. T can be considered as the set of
stops covering the populations that cannot be covered by other stops.

Many researchers have studied classical vehicle routing problems where
all the customers have to be served, but the number of papers on the CTP
is much more limited. It seems that the first work on this problem can be
credited to [7] in 1981. Since then the CTP has received little attention
from the research community. The one-vehicle version (1-CTP) was solved
exactly by a branch-and-cut algorithm in [10]. A heuristic was also proposed
in this paper. The authors of [3] used a two-commodity flow formulation
and developed a scatter search algorithm. For the multi-vehicle version, [14]
introduced a three-index vehicle flow formulation and three heuristics in-
spired by classical algorithms: Clarke and Wright [6], the sweep algorithm
[11], and the route-first/cluster-second method [5]. The three heuristics are
compared to each other, and the optimality gap is therefore unknown. Re-
cently, [16] has proposed the first exact algorithm. It is based on a column
generation approach in which the master problem is a simple set covering
problem, and the subproblem is formulated similarly to the 1-CTP model
of [10]. The algorithm was tested on instances derived from TSPLIB, and
results for |V |+|W |=100 and |T |=1 are reported.

The close-enough arc routing problem (CEARP) can be seen as an arc-
routing counterpart of CTP. It is similar to the CTP except that a closed
tour must be determined so that every vertex of W lies within a distance r
of an arc of the tour. This problem was considered in [12, 13].

In this paper, we address a particular case of m-CTP where the length
constraint is relaxed, i.e., q=+∞. We refer to this asm-CTP-p (p is the upper
bound on the number of vertices per route). This version can model the ap-
plications where the distance constraint is not important and can be relaxed.
An example is in the vaccination campaigns where the health care team has
to vaccinate the populations at several locations. When the travelling time
among the locations is quite small compared with the service duration at a
location, we can consider that each vehicle can serve only a limited number of
locations and the distance constraint in this case can be neglected. Our con-
tributions are that we present a new formulation for m-CTP-p and propose
an exact method for this problem, as well as a metaheuristic. Computational
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experiments show that our exact approach outperforms the column gener-
ation method of [16], and our metaheuristic gives high-quality solutions for
the tested instances.

The remainder of the paper is organized as follows. Section 2 describes
our formulation and several valid inequalities. The branch-and-cut algorithm
and metaheuristic are presented in Sections 3 and 4 respectively. Section 5
discusses the computational results, and Section 6 summarizes our conclu-
sions.

2. New formulation for m-CTP-p

In this section, we describe a new integer programming formulation for
m-CTP-p. The idea underlying this formulation was first introduced by [9]
for the traveling salesman problem (TSP). Langevin et al. [19] extended this
approach to solve the TSP with time windows. Baldacci et al. [4] used this
method to derive a new formulation and a branch-and-cut for the VRP, and
Baldacci et al. [3] adapted it to formulate the 1-CTP without the capacity
constraints.

Our formulation is an extension of that proposed by Baldacci et al. [3] for
the 1-CTP. To adapt this idea for m-CTP-p, we consider that each vertex of
V \ {v0} has a unit demand and each vehicle has a capacity of p. We also
note that the difference between m-CTP-p and VRP is that we do not need
to visit all vertices of V with the exception of the vertices of T .

The original graph G is first extended to G = (V ∪W, Ē1∪E2) by adding
a new vertex vn, which is a copy of the depot v0. We have V = V ∪ {vn},
V ′ = V \ {v0, vn}, E = E1 ∪ {(vi, vn), vi ∈ V ′}, and cin = c0i ∀ vi ∈ V ′.

This formulation requires two flow variables, fij and fji, to represent an
edge of a feasible m-CTP-p solution along which the vehicle initially carries
a load of p units. When a vehicle travels from vi to vj, flow fij represents
the number of vertices that can still be visited and flow fji represents the
number of vertices already visited (i.e., fji = p - fij).

Let xij be a 0-1 variable equal to 1 if edge {vi, vj} is used in the solution
and 0 otherwise. Let yi be a binary variable that indicates the presence of
vertex vi in the solution. We set the binary coefficients λil equal to 1 if and
only if wl ∈ W can be covered by vi ∈ V \ T . Then m-CTP-p can be stated
as:
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Minimize
∑

{vi,vj}∈E

cijxij (1)

subject to
∑

vi∈V \T

λilyi ≥ 1 ∀wl ∈ W (2)

∑
vi∈V ,i<k

xik +
∑

vj∈V ,j>k

xkj = 2yk ∀vk ∈ V ′ (3)

∑
vj∈V

(fji − fij) = 2yi ∀vi ∈ V ′ (4)

∑
vj∈V ′

f0j =
∑
vi∈V ′

yi (5)

∑
j∈V ′

fnj = mp (6)

fij + fji = pxij ∀{vi, vj} ∈ E (7)

fij ≥ 0, fji ≥ 0 ∀{vi, vj} ∈ E (8)

yi = 1 ∀vi ∈ T \ {v0} (9)

xij ∈ {0, 1} ∀{vi, vj} ∈ E (10)

yi ∈ {0, 1} ∀vi ∈ V ′ (11)

m ∈ N. (12)

The objective (1) is to minimize the total travel cost. Constraints (2)
ensure that every customer of W is covered, while constraints (3) ensure
that each vertex of V ′ is visited at most once. Constraints (4) to (7) define
the flow variables. Specifically, constraints (4) state that the inflow minus the
outflow at each vertex vi ∈ V ′ is equal to 2 if vi is used and to 0 otherwise.
The outflow at the source vertex v0 (5) is equal to the total demand of
the vertices that are used in the solution, and the outflow at the sink vn
(6) corresponds to the total capacity of the vehicle fleet. Constraint (7) is
derived from the definition of the flow variables. Constraints (10) and (12)
define the variables.

Figure 1 shows a feasible solution of m-CTP-p with two routes in the case
where p = 3 under the two-commodity form. The solid lines in the figure
represent the flows fij while the dotted lines represent the flows fji.

A disadvantage of this formulation is that it can not express the constraint
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Figure 1: Flow paths for solution with two routes and p=3

on the length of each route. However, its advantages are that the number
of variables and constraints increases polynomially with the size of the prob-
lem, and its LP relaxation satisfies a weak form of the subtour elimination
constraints (see [4]).

The linear relaxation of m-CTP-p can be strengthened by the addition
of valid inequalities. The valid inequalities for 1-CTP apply directly to our
problem (see [10]). In the following dominance inequalities (14), a vertex vi
is said to dominate vj if vi can cover all the vertices of W that vj can cover.
In the dominance inequalities (15), this dominance relation is extended to
three vertices where a subset of two vertices dominates the third vertex. We
have

xij 6 yi and xij 6 yj (vi or vj ∈ V \ T ) (13)

yi + yj 6 1 if vi dominates vj or conversely (vi, vj ∈ V \ T ) (14)

yi + yj + yk 6 2 if two of vi, vj, vk

dominate the other vertex (vi, vj, vk ∈ V \ T ). (15)

All the valid inequalities of the set covering polytope conv{y :
∑

ba.ya ≥
1, ya ∈ {0, 1}} where ba is the binary coefficient, are valid for m-CTP-
p. Balas and Ng [2] introduced the facets with coefficients in {0,1,2} and
Sánchez-Garćıa et al. [26] introduced the more complex facets with coeffi-
cients in {0,1,2,3}. Here, we recall the first one that was used in [10]: let S
be a nonempty subset of W , and define for each vk ∈ V the coefficient
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αS
k =


0 if λkl = 0 for all wl ∈ S,

2 if λkl = 1 for all wl ∈ S,

1 otherwise.

Then the following constraint is valid for m-CTP-p:∑
vk∈V

αS
k yk ≥ 2. (16)

The following flow inequalities were introduced in [3]:

fij ≥ xij, fji ≥ xji if i, j ̸= v0 and i, j ̸= vn. (17)

Several other valid inequalities for the VRP expressed for the set T of
required vertices can be applied directly to our problem. Here we restrict
ourselves to the capacity constraints, originally proposed by [20]:

∑
(vi,vj∈S)

xij ≤ |S| −
⌈
|S|
p

⌉
(S ⊆ T, |S| ≥ 2). (18)

Let z be the minimum number of vertices required to cover all vertices of
W . The following constraint follows immediately:

m ≥
⌈
z

p

⌉
. (19)

The value of z can be calculated by solving a set covering problem as
follows:

Minimize z = |T |+
∑

(vi∈V \T )

yi (20)

subject to
∑

vi∈V \T

λilyi ≥ 1 ∀wl ∈ W (21)

yi = 0, 1 ∀vi ∈ V \ T. (22)
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3. Branch-and-cut algorithm

We solve m-CTP-p exactly using a standard branch-and-cut algorithm.
We solve a linear program containing the constraints (1), (2), (3), (4), (5),
(6), (7), (8), (9), and (19). We then search for violated constraints of type
(13), (14), (15), (16), (17), and (18), and the detected constraints are added
to the current LP, which is then reoptimized. This process is repeated until
all the constraints are satisfied. If there are fractional variables, we branch.
If all the variables are integer, we explore another node.

The separation of the constraints of type (13), (14), (15), and (17) is
straightforward. For constraints (16), as in [10], to reduce the computational
effort we verify only the sets S that include three elements.

To generate the capacity constraints (18), we use the greedy randomized
algorithm, proposed by [1] and reused in [4]. This is an iterative procedure
that is applied to subsets T ′ ⊂ T created a priori. At each iteration, the
following procedure is repeated for each S ∈ T ′. Let vi∗ ∈ T \ S be a vertex
such that

∑
j∈S

(xi∗j + xji∗) = max
i∈T\S

[∑
j∈S

(xij + xji)

]
.

If the current solution x violates the capacity constraints (18) corresponding
to the subset S ′ = S ∪ i∗, then we add this inequality to the model, update
S to S ′, and repeat the process until S contains all vertices of T . In our
implementation, the initial set T ′ can be a single vertex of T because the
number of vertices is fairly small in m-CTP-p instances.

Our branch-and-cut algorithm is built around CPLEX 11.2 with the
Callable Library. We tested the algorithm with the activation of each CPLEX
cut one by one, and observed that only two of them (Gomory cut and implied-
bound cut) were useful. Thus, all CPLEX cuts except the Gomory and
implied-bound cuts are turned off. Gomory cuts are generated by apply-
ing integer rounding on a pivot row in the optimal LP tableau for a (basic)
integer variable with a fractional solution value. These cuts are applied to
solve the VRP (see [21] for example). Implied-bound cuts are generated in
some models where binary variables imply bounds on continuous variables.
Unfortunately, we do not know why the implied-bound cuts are useful. All
the other CPLEX parameters are set to their default values.
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We tested several branching techniques, such as branching on the vari-
ables y before x as in [10] and branching on the variables x before y, but
these do not outperform the CPLEX branching. Hence, we let CPLEX make
the branching decisions.

4. Metaheuristic

In this section, we introduce a metaheuristic for m-CTP-p that is a two-
phase hybrid algorithm. The aim of the first phase is to randomly generate
nt subsets of V such that each subset can cover all the customers. The
vertices of each subset combined with T create a set N of the vertices that
must be visited. The problem now becomes a VRP with unit demands, and
it is solved in the second phase by an algorithm based on the ELS method
of [23].

4.1. First phase

To randomly generate subsets of vertices covering all vertices of W , we
solve the following θ1 mixed integer programming problems:

Minimize
∑

vi∈V \T

biyi (23)

subject to
∑

vi∈V \T

λilyi ≥ 1 ∀wl ∈ W (24)

yi = 0, 1 ∀vi ∈ V \ T (25)

where bi is a random number in {1,2}. The solution of this model is rapid
even for the large instances in our tests.

4.2. Second phase

The goal of the second phase is to solve the VRP problems. We apply
the ELS method proposed in [23] because of its simplicity, speed, and good
performance. In the ELS method, a single solution is mutated to obtain
several children that are then improved by local search. The next generation
is the best solution among the parent and its children. We now introduce
the procedures for the construction of the second phase.
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4.2.1. Split, concat, and mutate procedures

The split procedure is the backbone of our metaheuristic. Its goal is to
split a giant tour into VRP routes. This procedure was originally introduced
in [5] and then integrated into memetic algorithms to successfully solve var-
ious vehicle routing problems (see [17, 24, 22] for example). The reader is
referred to [25] for an efficient implementation of this procedure. The concat
procedure does the opposite: it concatenates VRP routes into a giant tour.

The output of the mutate(L) procedure is a randomly perturbed copy L′

of the input giant tour L. This procedure randomly swaps the position of
two vertices in the original tour.

4.2.2. Local search procedures

As in [23], we can use classical moves such as 2-opt moves, Or-opt moves,
or string-exchange moves. Here, we use two simple classical local searches:
relocation of a node (LS2) and two-point moves that swap the position of
two nodes (LS3). We also introduce two new approaches: saturation moves
(LS1) that combine two unsaturated routes, and new-node moves (LS4) that
try to replace a node in the solution by a new node.

Local search LS1. After we split the giant tour, some routes may not
be saturated, and they can be combined with other routes if the total number
of nodes in the two routes is less than p. In other words, this technique helps
us to reduce the number of routes. To combine two routes (if possible), we
consider the four methods illustrated in Fig. 2 and choose the best.

Local search LS4. This technique replaces a node in the tour by a new
node that is not present in the current solution. The swap is done if it does
not violate the covering constraint and improves the solution (see Fig. 3).
LS4 is called after each ELS phase. If it can improve the solution, the new
solution (i.e., after LS4) becomes the initial solution for a new ELS phase;
otherwise, we return to the first phase.

After many tests, we decided to use first-improvement local search for
LS1 and LS4 and best-improvement local search for LS2 and LS3. In first-
improvement local search, if an improving move is detected, it is immediately
executed and the remaining moves are bypassed. The process is repeated un-
til we can not find a better solution. Best-improvement local search evaluates
all the possible moves and executes the best one.
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Figure 2: Four ways to combine two routes in LS1

Figure 3: Local search LS4

4.2.3. Initial solution

We use the route-first/cluster-second approach to generate the initial so-
lution. To create giant tours, we use two procedures: insertion of the nearest
neighbor (Insert1) and the greatest-saving insertion (Insert2). We split these
two tours to obtain two solutions. The initial solution is the best found by
local search LS1.
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4.2.4. Tabu list

In our algorithm, the tabu list stores attributes of the giant tours instead
of final solutions. We use the insertion of nearest neighbor procedure to
build the tabu list by calculating the length of the giant tour created. The
set of nodes that must be visited is now represented by the length of a tour
constructed by procedure Insert1. The tabu list is initialized only once and
has a length of θ1, i.e., we will store all θ1 solutions generated at the first
phase. The computational results show that this list helps us to avoid re-
exploiting 27.43% of the giant tours on average.

4.3. Resulting algorithm

Algorithm 1 gives the pseudocode for the resulting metaheuristic. Note
that because the split procedure can handle the length constraints (see [25]
for details), our algorithm can solve the general m-CTP problem.

5. Computational experiments

In this section, we describe them-CTP-p instances and the computational
evaluation of the proposed algorithm. Our algorithm is coded in C/C++ and
is run on the same CPU used in [16], i.e., a 2.4-GHz CPU with 4GB of RAM.
The running time of the branch-and-cut algorithm is limited to 2 h for each
instance.

The parameters θ1, θ2, and θ3 in the metaheuristic are chosen so that
they depend only on the problem data, i.e., they are generated accord-
ing to an automatic mechanism. We tested many combinations and found
that the following combination gives the best performance for our algorithm:
{θ1, θ2, θ3}={5(|V | − |T |), |N |, |N |} where N is the set of required vertices
generated by the first phase.

In the tables of results, the blank entries indicate that the algorithm did
not find a solution. The column headings are as follows:

Data: name of instance;
Node: number of nodes in search tree of branch-and-cut algorithm;
Time: running time in seconds;
m: number of vehicles in solution;
Nv: number of vertices of V visited by the route in the optimal solution;
Imp: number of implied-bound cuts;
Go: number of Gomory cuts;
Do1: number of constraints of type (13);
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Algorithm 1 Pseudocode for metaheuristic
1: f(Sfinal) ⇐ +∞;
2: Tabulist ⇐ ∅;
3: for t = 1 → θ1 do
4: N ⇐ initialize random MIP generator;
5: if N ∈ Tabulist then
6: go to line 4;
7: else
8: add N to Tabulist;
9: end if
10: L1 ⇐ Insert1(N);
11: S1 ⇐ Split(L1);
12: S1 ⇐ LS1(S1);
13: S∗ ⇐ S1;
14: L2 ⇐ Insert2(N);
15: S2 ⇐ Split(L2);
16: S2 ⇐ LS1(S1);
17: if f(S2) < f(S1) then
18: S∗ ⇐ S2;
19: end if
20: for i = 1 → θ2 do
21: f ⇐ +∞;
22: for j = 1 → θ3 do
23: L ⇐ Concat(S∗);
24: L ⇐ Mutate(L);
25: S ⇐ Split(L);
26: S ⇐ LS1(S);
27: S ⇐ LS2(S);
28: S ⇐ LS3(S);
29: if f(S) < f then
30: f ⇐ f(S);
31: S ⇐ S;
32: end if
33: end for
34: if f < f(S∗) then
35: S∗ ⇐ S;
36: end if
37: end for
38: S ⇐ S∗;
39: S∗ ⇐ LS4(S∗);
40: if f(S∗) < f(S) then
41: go to line 20;
42: end if
43: if f(S∗) < f(Sfinal) then
44: Sfinal ⇐ S∗;
45: f(Sfinal) ⇐ f(S∗);
46: end if
47: end for
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Do2: number of constraints of type (14) and (15);
Cov: number of constraints of type (16);
Flow: number of constraints of type (17);
Cap: number of constraints of type (18);
LB0: value of lower bounds at the root of the search tree (before adding

the cuts);
LB1: value of lower bounds at the root of the search tree (after adding

the cuts);
LB: the best lower bound in the branch-and-cut tree;
LS1: number of times LS1 is called;
LS2: number of times LS2 is called;
LS3: number of times LS3 is called;
LS4: number of times LS4 is called.

5.1. Data instances

We use the same procedure used in [16] to generate the instances for m-
CTP-p. The instances kroA100, kroB100, kroC100, and kroD100 of TSPLIB
are first used to create a set of nbtotal = V + W = 100 vertices. Tests
are run for n = ⌈0.25nbtotal⌉ and ⌈0.5nbtotal⌉ and |T | = 1 and ⌈0.20n⌉, and
W is defined by taking the remaining points. The cij are computed as the
Euclidean distances between the points. The value of c is determined so that
each vertex of V \T covers at least one vertex of W , and each vertex of W is
covered by at least two vertices of V \T (see [10, 16] for further information).
We also use instances kroA200 and kroB200 with nbtotal = 200 vertices to
generate larger instances for m-CTP-p.

The instances are labeled X-T -n-W -p, where X is the name of the TSPLIB
instance. For example, A2-1-50-150-4 indicates an instance derived from
kroA200 of TSPLIB with 1 required vertex (|T | = 1), 50 vertices that can
be visited (|V | = 50), 150 vertices that must be covered (|W | = 150), and
p = 4.

5.2. Comparison with method of [16]

For a fair comparison with the exact algorithm of [16], we do not use the
upper bound provided by the metaheuristic, and the running time for each
instance is, as in [16], limited to 3600 s.

Table 1 gives the results of this experiment. The results in bold are
proved to be optimal. The results of [16] which in some cases are not in bold
(for example, the instance A1-25-75-6) mean that the method of [16] gives
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a solution not proven optimal. Jozefowiez gave some non-optimal solutions
although the running time did not reach to limit because he developed an
algorithm based on the column generation, not a branch-and-price one and
the maximum number of columns searched at each iteration was limited to
25.

As can be seen, our method clearly outperforms that of [16]. Our branch-
and-cut algorithm can solve all 32 instances, whereas the algorithm of [16] is
unable to solve 10 instances. Our method is also faster on almost all of the
successfully solved instances.

Our method Jozefowiez
Data m Node Time Result m Time Result
A1-25-75-4 2 10 1.23 8479 2 8 8479
A1-25-75-5 2 154 4.20 8479 2 10 8479
A1-25-75-6 2 628 10.90 8479 2 9 8724
A1-25-75-8 1 1180 13.32 7985 1 9 7985
A1-50-50-4 3 280 16.88 10271 3 252 10271
A1-50-50-5 2 250 15.67 9220 2 1156 9220
A1-50-50-6 2 1922 47.41 9130 2 1515 9130
A1-50-50-8 2 13345 228.61 9130 2 3600 11375
B1-25-75-4 2 30 2.28 7146 2 4 7146
B1-25-75-5 2 170 5.14 6901 2 8 7013
B1-25-75-6 1 115 4.65 6450 1 10 6450
B1-25-75-8 1 655 12.89 6450 1 11 6450
B1-50-50-4 2 360 21.35 10107 2 2297 10107
B1-50-50-5 2 3655 86.03 9723 2 2038 9723
B1-50-50-6 2 10970 229.12 9382 2 3600 9529
B1-50-50-8 2 3026 92.07 8348 1 3600 8701
C1-25-75-4 1 22 2.61 6161 1 3 6161
C1-25-75-5 1 149 5.24 6161 1 2 6161
C1-25-75-6 1 496 9.23 6161 1 3 6161
C1-25-75-8 1 1050 13.87 6161 1 2 6161
C1-50-50-4 3 504 24.69 11372 3 174 12156
C1-50-50-5 2 270 12.76 9900 2 1258 9900
C1-50-50-6 2 2915 65.35 9895 2 2169 10894
C1-50-50-8 2 114 11.72 8699 2 3450 8699
D1-25-75-4 2 12 1.33 7671 2 3 7671
D1-25-75-5 2 288 5.50 7465 2 15 7759
D1-25-75-6 1 147 4.87 6651 1 13 6651
D1-25-75-8 1 1713 24.10 6651 1 10 6651
D1-50-50-4 3 126 14.00 11606 3 239 11606
D1-50-50-5 2 882 38.22 10770 2 1562 10770
D1-50-50-6 2 7659 175.25 10525
D1-50-50-8 2 5698 132.04 9361 3 3600 11703

Table 1: Comparison with method of [16]

5.3. Results for branch-and-cut algorithm

This subsection presents the results of the branch-and-cut algorithm in
the case where the initial upper bounds provided by our metaheuristic are
integrated as the bounds on the objective function. Let UB be the value
of the final solution found by branch-and-cut algorithm or the value of the
solution of the metaheuristic (if the branch-and-cut algorithm fails to find a
solution), GapBnC in Tables 2 and 3 is computed as:
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GapBnC =
100.(UB − LB)

UB
(26)

Table 2 shows that our exact method can solve all but one of the instances
with 100 vertices. Compared with the version without initial upper bounds,
the number of nodes in the search tree is now lower in 25 of the 32 instances
of [16]. For the 32 instances with 200 vertices (see Table 3), our algorithm
can solve 20 instances successfully; most of them have n = 50. The problem
difficulty increases with n and T but is fairly insensitive to |W |. This is
similar to problem 1-CTP in [10]. Moreover, the greater the value of p, the
harder the problem. Instances with p = 4 or 5 are usually solved more readily
than instances with higher p values.

Tables 4 and 5 present the number of constraints generated in the branch-
and-cut algorithm and the lower bounds at the root node of the search tree.
In these tables, GapLB shows the deviation between the lower bounds LB0
and LB1 and is computed as:

GapLB =
100.(LB1− LB0)

LB0
(27)

Tables 4 and 5 clearly show the performance of valid inequalities in im-
proving the linear relaxation of m-CTP-p, specially on the instances with
|T | = 1. Among the cuts added, the flow constraints (17) are the most fre-
quent; capacity constraints (18) are generated only when the value of |T | is
important.

5.4. Results for metaheuristic

Tables 6 and 7 report our results for the metaheuristic. The numbers in
bold indicate the optimal solutions found by the branch-and-cut algorithm.
The numbers marked with an asterix correspond to solutions that can not
be improved by the branch-and-cut algorithm. Let UB be the value of the
solution of the metaheuristic, GapUB in these tables reports the percentage
deviation of the metaheuristic and is computed as:

GapUB =
100.(UB − LB)

UB
(28)

16

An Exact Algorithm and a Metaheuristic for the Multi-Vehicle Covering Tour Problem with a Constraint on the 
Number of Vertices

CIRRELT-2012-64



where LB is the best lower bound in the branch-and-cut tree.
Our results confirm the quality of the metaheuristic. For the 82 instances

for which the branch-and-cut algorithm can find an optimal solution, our
metaheuristic can find an optimal solution in 79 cases. The optimality gaps
for the three unsuccessful instances are small: 0.11%, 0.16%, and 1.45%.
For the instances whose optimal solution is unknown, the branch-and-cut
algorithm can not improve on the metaheuristic solution and we believe that
the large gap GUB in some cases are due to the poor quality of the lower
bounds LB. Moreover, the running time is acceptable: it has a maximum of
126.00 s on the largest instance, kroB200-20-100-100-5.

6. Conclusion

In this paper, we have formulated and solved a particular case of the m-
CTP where the length constraint is relaxed. We have presented an integer
linear programming formulation that is solved using a branch-and-cut algo-
rithm and developed a metaheuristic based on the ELS principle. We have
reported computational results for a set of instances with up to 200 vertices
where the tour contains up to 100 vertices. Our results clearly show the per-
formance of our approach. Our branch-and-cut algorithm outperforms the
algorithm of [16], and the solution provided by the metaheuristic is within
1.45% of optimality for the considered test instances.

The next step of our research will be to improve the branch-and-cut algo-
rithm by adding more efficient cuts, so that we can evaluate our metaheuris-
tic on larger instances. One line of investigation will be to study how the
implied-bound cuts of CPLEX strengthen the linear relaxation of the model.
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Data m Nv Node Time GapBnC Result
A1-1-25-75-4 2 8 7 1.13 0 8479
A1-1-25-75-5 2 8 111 3.27 0 8479
A1-1-25-75-6 2 8 441 6.87 0 8479
A1-1-25-75-8 1 8 1827 20.10 0 7985
A1-5-25-75-4 2 8 489 9.49 0 10827
A1-5-25-75-5 2 8 0 0.11 0 8659
A1-5-25-75-6 2 8 6 0.63 0 8659
A1-5-25-75-8 1 8 169 4.20 0 8265
A1-1-50-50-4 3 11 211 9.91 0 10271
A1-1-50-50-5 2 11 249 12.36 0 9220
A1-1-50-50-6 2 11 1223 24.79 0 9130
A1-1-50-50-8 2 11 12370 203.93 0 9130
A1-10-50-50-4 5 19 312215 4828.55 0 17953
A1-10-50-50-5 4 19 10554 173.61 0 15440
A1-10-50-50-6 3 19 123466 1586.21 0 14064
A1-10-50-50-8 357749 7200.12 5.61
B1-1-25-75-4 2 7 20 1.81 0 7146
B1-1-25-75-5 2 7 87 3.23 0 6901
B1-1-25-75-6 1 7 102 4.33 0 6450
B1-1-25-75-8 1 7 593 10.88 0 6450
B1-5-25-75-4 2 9 0 0.22 0 9465
B1-5-25-75-5 2 9 178 5.74 0 9460
B1-5-25-75-6 2 9 1177 18.07 0 9148
B1-5-25-75-8 1 9 465 8.94 0 8306
B1-1-50-50-4 2 9 306 16.63 0 10107
B1-1-50-50-5 2 9 3642 84.08 0 9723
B1-1-50-50-6 2 10 8941 162.24 0 9382
B1-1-50-50-8 2 10 3862 76.06 0 8348
B1-10-50-50-4 4 17 8560 127.64 0 15209
B1-10-50-50-5 3 16 8504 149.24 0 13535
B1-10-50-50-6 3 16 6115 104.70 0 12067
B1-10-50-50-8 2 17 2000 32.27 0 10344
C1-1-25-75-4 1 5 21 2.82 0 6161
C1-1-25-75-5 1 5 177 5.81 0 6161
C1-1-25-75-6 1 5 289 7.73 0 6161
C1-1-25-75-8 1 5 577 9.42 0 6161
C1-5-25-75-4 2 9 6 0.39 0 9898
C1-5-25-75-5 2 9 112 2.98 0 9707
C1-5-25-75-6 2 9 170 4.17 0 9321
C1-5-25-75-8 2 9 1 0.35 0 7474
C1-1-50-50-4 3 11 258 8.12 0 11372
C1-1-50-50-5 2 10 354 13.28 0 9900
C1-1-50-50-6 2 11 2671 56.91 0 9895
C1-1-50-50-8 2 10 109 8.47 0 8699
C1-10-50-50-4 4 17 9647 164.37 0 18212
C1-10-50-50-5 4 17 8592 126.79 0 16362
C1-10-50-50-6 3 17 15289 240.39 0 14749
C1-10-50-50-8 2 17 303 5.62 0 12394
D1-1-25-75-4 2 7 13 1.04 0 7671
D1-1-25-75-5 2 7 256 5.38 0 7465
D1-1-25-75-6 1 7 89 3.80 0 6651
D1-1-25-75-8 1 7 1037 12.85 0 6651
D1-5-25-75-4 2 9 78 1.65 0 11820
D1-5-25-75-5 2 9 1626 16.72 0 10982
D1-5-25-75-6 2 10 150 3.40 0 9669
D1-5-25-75-8 1 9 129 1.25 0 8200
D1-1-50-50-4 3 10 95 9.34 0 11606
D1-1-50-50-5 2 11 938 29.32 0 10770
D1-1-50-50-6 2 11 12461 281.28 0 10525
D1-1-50-50-8 2 10 5222 110.62 0 9361
D1-10-50-50-4 5 19 393 10.93 0 20982
D1-10-50-50-5 4 18 27584 393.45 0 18576
D1-10-50-50-6 3 17 6574 116.08 0 16330
D1-10-50-50-8 3 17 15423 248.39 0 14204

Table 2: Computational results of branch-and-cut algorithm on instances with nbtotal =
100
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Data m Nv Node Time GapBnC Result
A2-1-50-150-4 2 9 150 82.21 0 11550
A2-1-50-150-5 2 10 1476 340.58 0 10407
A2-1-50-150-6 2 11 6498 1075.80 0 10068
A2-1-50-150-8 1 9 359 153.40 0 8896
A2-10-50-150-4 4 16 7108 1256.98 0 17083
A2-10-50-150-5 3 16 2374 494.66 0 14977
A2-10-50-150-6 3 16 4575 978.92 0 13894
A2-10-50-150-8 2 16 1164 280.21 0 11942
A2-1-100-100-4 3 10 25896 4593.91 0 11885
A2-1-100-100-5 2 11 6079 1440.13 0 10234
A2-1-100-100-6 23889 7200.13 5.85
A2-1-100-100-8 24359 7200.12 12.88
A2-20-100-100-4 43723 7200.08 1.97
A2-20-100-100-5 30722 7200.13 4.38
A2-20-100-100-6 31371 7200.14 4.43
A2-20-100-100-8 27579 7200.08 8.76
B2-1-50-150-4 3 10 253 166.00 0 11175
B2-1-50-150-5 2 10 4429 1114.67 0 10502
B2-1-50-150-6 2 10 6527 1273.97 0 9799
B2-1-50-150-8 2 10 2636 629.77 0 8846
B2-10-50-150-4 5 17 34309 5972.52 0 16667
B2-10-50-150-5 4 17 424 124.21 0 14188
B2-10-50-150-6 3 17 3893 773.56 0 12954
B2-10-50-150-8 2 17 3151 732.65 0 11495
B2-1-100-100-4 4 17 48551 6614.98 0 18370
B2-1-100-100-5 4 17 8181 1471.99 0 15876
B2-1-100-100-6 26450 7200.08 4.65
B2-1-100-100-8 27427 7200.09 6.60
B2-20-100-100-4 44254 7200.14 1.00
B2-20-100-100-5 34898 7200.11 4.24
B2-20-100-100-6 3536 7200.16 4.99
B2-20-100-100-8 38336 7200.10 8.97

Table 3: Computational results of branch-and-cut algorithm on instances with nbtotal =
200
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Data Imp Go Do1 Do2 Cov Flow Cap LB0 LB1 GapLB
A1-1-25-75-4 24 9 95 3 0 105 0 6018.33 8217.95 36.55
A1-1-25-75-5 32 11 135 66 0 157 0 5473.29 7521.08 37.41
A1-1-25-75-6 37 23 165 127 0 201 0 5100.11 7411.28 45.32
A1-1-25-75-8 34 21 195 161 0 309 0 4075.52 6340.25 55.57
A1-5-25-75-4 36 25 135 90 0 500 0 8052.23 9466.44 17.56
A1-5-25-75-5 8 16 11 1 0 8 0 7544.67 8659.00 14.77
A1-5-25-75-6 8 11 39 22 0 48 0 7243.45 8576.57 18.40
A1-5-25-75-8 25 14 78 76 0 125 0 6107.76 7398.16 21.13
A1-1-50-50-4 80 10 318 88 1 489 0 7395.66 9345.99 26.37
A1-1-50-50-5 98 9 330 160 1 503 0 5990.35 7925.38 32.30
A1-1-50-50-6 101 2 366 374 3 562 0 5449.91 7186.33 31.86
A1-1-50-50-8 121 8 491 617 1 756 0 4741.54 6325.92 33.41
A1-10-50-50-4 115 21 546 457 0 1062 0 14017.99 16223.01 15.73
A1-10-50-50-5 81 31 336 291 0 749 0 11943.33 14317.22 19.88
A1-10-50-50-6 81 40 445 226 2 913 0 10367.16 12769.89 23.18
A1-10-50-50-8 82 22 679 548 2 11382 6 9252.83 11280.34 21.91
B1-1-25-75-4 30 6 106 12 3 145 0 5070.24 6563.78 29.46
B1-1-25-75-5 30 6 124 38 3 173 0 4602.00 5821.71 26.50
B1-1-25-75-6 45 7 138 53 5 183 0 3835.19 5009.56 30.62
B1-1-25-75-8 36 9 201 90 9 296 0 3512.53 4464.54 27.10
B1-5-25-75-4 28 3 26 0 6 52 0 8198.25 9465.00 15.45
B1-5-25-75-5 23 12 94 43 6 180 0 7418.07 8713.15 17.46
B1-5-25-75-6 32 17 153 77 13 297 0 6877.75 8291.14 20.55
B1-5-25-75-8 27 11 95 51 8 220 0 5757.54 7193.69 24.94
B1-1-50-50-4 146 8 369 47 16 705 0 6546.09 8706.10 33.00
B1-1-50-50-5 166 12 501 249 20 977 0 5640.16 7750.26 37.41
B1-1-50-50-6 151 18 580 374 11 985 0 5038.11 7193.29 42.78
B1-1-50-50-8 161 6 532 395 27 779 0 3854.96 5744.45 49.01
B1-10-50-50-4 53 30 264 162 21 778 0 11940.07 14106.86 18.15
B1-10-50-50-5 52 27 314 186 23 802 0 10037.92 12125.23 20.79
B1-10-50-50-6 66 17 298 99 15 699 0 9106.06 10815.94 18.78
B1-10-50-50-8 56 25 218 62 18 516 3 7692.75 9342.99 21.45
C1-1-25-75-4 40 8 106 2 0 131 0 3824.38 5265.87 37.69
C1-1-25-75-5 44 9 133 50 2 177 0 3554.07 4946.48 39.18
C1-1-25-75-6 45 14 137 46 11 185 0 3364.92 4678.16 39.03
C1-1-25-75-8 41 12 157 120 4 588 0 3090.08 4279.73 38.50
C1-5-25-75-4 16 4 36 1 5 49 0 9010.92 9795.45 8.71
C1-5-25-75-5 23 10 87 29 21 125 0 8441.60 9205.33 9.05
C1-5-25-75-6 15 24 107 31 24 151 0 8077.32 8688.03 7.56
C1-5-25-75-8 16 3 43 0 0 63 0 6629.66 7474.00 12.74
C1-1-50-50-4 56 7 231 60 19 384 0 8435.52 10462.34 24.03
C1-1-50-50-5 74 10 315 120 9 360 0 6826.63 8896.96 30.33
C1-1-50-50-6 88 15 375 287 7 579 0 6242.41 8210.56 31.53
C1-1-50-50-8 56 14 234 81 6 294 0 5546.26 7479.82 34.86
C1-10-50-50-4 81 32 337 155 24 720 0 14892.18 17216.99 15.61
C1-10-50-50-5 65 24 283 237 18 590 0 13414.50 15583.38 16.17
C1-10-50-50-6 71 44 331 250 12 655 0 11648.63 13932.40 19.61
C1-10-50-50-8 31 11 102 12 0 209 0 9701.08 12000.56 23.70
D1-1-25-75-4 12 8 77 8 0 98 0 5665.90 7471.37 31.87
D1-1-25-75-5 24 7 109 42 0 197 0 5125.49 6630.58 29.36
D1-1-25-75-6 22 9 100 8 0 170 0 4088.89 5764.07 40.97
D1-1-25-75-8 27 13 172 98 0 235 0 3709.17 5187.67 39.86
D1-5-25-75-4 19 9 87 5 18 160 0 9291.02 11241.78 20.71
D1-5-25-75-5 51 18 171 43 18 298 0 8192.40 9870.06 20.48
D1-5-25-75-6 21 18 89 11 72 178 0 7521.79 8976.05 19.33
D1-5-25-75-8 16 9 66 1 18 119 0 6180.13 7516.38 21.62
D1-1-50-50-4 102 4 358 12 37 672 0 8180.47 10704.44 30.85
D1-1-50-50-5 124 7 430 129 38 747 0 6801.93 9139.56 34.37
D1-1-50-50-6 173 5 648 383 27 1048 0 5992.69 8264.90 37.92
D1-1-50-50-8 154 10 511 365 35 830 0 5013.83 6954.79 38.71
D1-10-50-50-4 50 12 250 45 9 640 5 17996.72 20346.85 13.06
D1-10-50-50-5 55 26 373 139 21 935 15 15024.75 17130.57 14.02
D1-10-50-50-6 59 23 309 136 11 822 0 12999.15 15073.76 20.81
D1-10-50-50-8 77 16 313 188 14 874 6 10775.99 12613.53 17.05

Table 4: Details of branch-and-cut algorithm on instances with nbtotal = 100
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Data Imp Go Do1 Do2 Cov Flow Cap LB0 LB1 GapLB
A2-1-50-150-4 86 8 235 14 31 407 0 7453.86 10437.83 40.03
A2-1-50-150-5 156 11 337 58 44 575 0 6512.04 9168.45 40.79
A2-1-50-150-6 179 18 454 122 56 712 0 5931.43 8527.62 43.77
A2-1-50-150-8 119 13 285 79 22 403 0 4510.18 7169.25 58.96
A2-10-50-150-4 189 25 283 76 46 677 0 14155.92 16049.60 13.38
A2-10-50-150-5 195 15 240 12 80 540 0 11994.84 13904.95 15.92
A2-10-50-150-6 138 31 274 145 68 588 0 11052.65 12959.76 17.25
A2-10-50-150-8 121 17 206 91 56 398 0 9224.62 11207.41 21.49
A2-1-100-100-4 742 2 1368 462 332 2301 0 7748.61 9675.91 24.87
A2-1-100-100-5 557 3 1121 410 259 1972 0 6355.55 8212.05 29.21
A2-1-100-100-6 619 3 1365 843 332 2578 0 5459.96 7162.93 31.19
A2-1-100-100-8 605 4 1491 1061 280 2657 0 4335.14 5883.03 35.71
A2-20-100-100-4 328 19 720 390 255 2232 150 21689.48 25042.62 15.46
A2-20-100-100-5 267 14 883 523 238 2486 75 18207.18 21331.41 17.16
A2-20-100-100-6 285 12 825 667 224 2245 40 15921.97 18775.14 17.92
A2-20-100-100-8 267 13 1028 767 238 2571 6 13150.13 15552.06 18.27
B2-1-50-150-4 137 6 373 39 95 624 0 6922.26 9572.96 38.29
B2-1-50-150-5 198 8 564 159 213 925 0 5918.43 8245.40 39.32
B2-1-50-150-6 184 24 514 193 94 884 0 5323.13 7604.10 42.85
B2-1-50-150-8 195 18 492 225 164 2643 0 4164.34 6213.36 49.20
B2-10-50-150-4 129 22 381 54 120 938 5 12762.43 15125.63 18.52
B2-10-50-150-5 56 26 158 19 78 339 0 11340.13 13574.24 19.70
B2-10-50-150-6 74 19 245 41 101 526 0 9971.28 11947.58 19.82
B2-10-50-150-8 80 22 245 52 132 503 0 8410.43 10078.25 19.83
B2-1-100-100-4 281 8 1246 847 30 2364 0 13110.87 16748.90 27.75
B2-1-100-100-5 248 8 856 750 15 1685 0 10989.93 14214.52 29.34
B2-1-100-100-6 296 7 1124 937 22 2542 0 9411.66 12394.72 31.70
B2-1-100-100-8 249 7 1207 1101 27 2311 0 7523.01 10366.04 37.79
B2-20-100-100-4 161 28 756 431 58 2241 31 29049.93 32913.34 13.30
B2-20-100-100-5 135 22 927 537 51 2620 96 23939.47 27494.07 14.85
B2-20-100-100-6 144 11 999 569 67 2711 82 20706.77 23954.74 15.69
B2-20-100-100-8 162 18 1090 647 52 3307 41 16794.95 19488.63 16.04

Table 5: Details of branch-and-cut algorithm on instances with nbtotal = 200
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Data LS1 LS2 LS3 LS4 m Time Result GapUB
A1-1-25-75-4 1675 15188 3010 332 2 0.16 8479 0
A1-1-25-75-5 410 18728 612 298 2 0.17 8479 0
A1-1-25-75-6 26 119554 1694 314 2 0.16 8724 0
A1-1-25-75-8 0 20502 374 319 1 0.16 7985 0
A1-5-25-75-4 396 2508 259 24 2 0.13 10827 0
A1-5-25-75-5 87 2504 70 20 2 0.14 8659 0
A1-5-25-75-6 4 2671 269 20 2 0.16 8659 0
A1-5-25-75-8 0 2628 0 19 1 0.14 8265 0
A1-1-50-50-4 4097 115543 18088 1161 3 0.80 10271 0
A1-1-50-50-5 10343 113686 25981 1141 2 0.78 9220 0
A1-1-50-50-6 8789 132666 768 1167 2 0.81 9130 0
A1-1-50-50-8 851 124757 4022 1168 1 0.81 9130 0
A1-10-50-50-4 19572 352699 91340 790 5 3.26 17973 0.11
A1-10-50-50-5 15487 396159 120965 879 4 3.81 15440 0
A1-10-50-50-6 13842 330348 248498 884 3 3.85 14064 0
A1-10-50-50-8 2851 454544 15607 816 3 3.92 13369* 5.61
B1-1-25-75-4 612 13666 1592 283 2 0.22 7146 0
B1-1-25-75-5 181 16526 2058 313 2 0.18 6901 0
B1-1-25-75-6 0 16822 277 311 1 0.23 6450 0
B1-1-25-75-8 0 16033 486 315 1 0.20 6450 0
B1-5-25-75-4 371 7900 5533 88 2 0.17 9465 0
B1-5-25-75-5 560 11756 1079 97 2 0.16 9460 0
B1-5-25-75-6 196 12082 822 81 2 0.17 9148 0
B1-5-25-75-8 0 14094 221 113 1 0.17 8306 0
B1-1-50-50-4 4722 48864 41466 999 2 0.62 10107 0
B1-1-50-50-5 4338 80211 5719 1065 2 0.64 9723 0
B1-1-50-50-6 1602 69445 4093 838 2 0.58 9382 0
B1-1-50-50-8 0 67874 1784 884 2 0.58 8348 0
B1-10-50-50-4 20284 203798 220064 763 4 2.53 15209 0
B1-10-50-50-5 2583 143178 51826 610 3 2.08 13535 0
B1-10-50-50-6 11045 237408 60456 604 3 1.97 12067 0
B1-10-50-50-8 10411 218846 119601 603 2 1.99 10344 0
C1-1-25-75-4 0 1493 40 75 1 0.16 6161 0
C1-1-25-75-5 0 2729 19 119 1 0.16 6161 0
C1-1-25-75-6 0 2729 19 119 1 0.15 6161 0
C1-1-25-75-8 0 2729 19 119 1 0.17 6161 0
C1-5-25-75-4 265 6570 6330 91 2 0.16 9898 0
C1-5-25-75-5 560 19909 2131 153 2 0.18 9707 0
C1-5-25-75-6 237 18507 1080 143 2 0.19 9321 0
C1-5-25-75-8 0 612694 47 122 1 0.19 7474 0
C1-1-50-50-4 729 76365 27063 992 3 0.64 11372 0
C1-1-50-50-5 2677 84615 18207 1099 2 0.67 9900 0
C1-1-50-50-6 1765 96358 1637 1039 2 0.67 9895 0
C1-1-50-50-8 180 91985 4164 1007 2 0.65 8699 0
C1-10-50-50-4 9962 174488 193441 651 4 2.23 18212 0
C1-10-50-50-5 2841 250973 85292 610 4 2.14 16362 0
C1-10-50-50-6 8750 272387 9479 698 3 2.00 14749 0
C1-10-50-50-8 5417 224571 137632 635 2 2.07 12414 0.16
D1-1-25-75-4 456 9332 1009 197 2 0.16 7671 0
D1-1-25-75-5 52 10340 738 178 2 0.16 7465 0
D1-1-25-75-6 0 11099 608 187 1 0.15 6651 0
D1-1-25-75-8 0 11074 585 212 1 0.16 6651 0
D1-5-25-75-4 87 8366 7010 77 2 0.18 11820 0
D1-5-25-75-5 460 13077 1443 74 2 0.17 10982 0
D1-5-25-75-6 363 14337 1076 85 2 0.17 9669 0
D1-5-25-75-8 10 16711 657 77 1 0.17 8200 0
D1-1-50-50-4 5405 122525 59874 1236 3 0.93 11606 0
D1-1-50-50-5 3834 120039 63496 1134 2 0.85 10770 0
D1-1-50-50-6 4361 135090 8384 1070 2 0.82 10680 1.45
D1-1-50-50-8 1563 149689 9205 1170 2 0.93 9361 0
D1-10-50-50-4 11357 276458 275638 731 5 3.82 20982 0
D1-10-50-50-5 8226 319468 156224 579 4 3.38 18576 0
D1-10-50-50-6 4823 276232 185681 450 3 2.91 16330 0
D1-10-50-50-8 5627 366309 157389 580 3 3.54 14204 0

Table 6: Computational results of metaheuristic on instances with nbtotal = 100
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Data LS1 LS2 LS3 LS4 m Time Result GapUB
A2-1-50-150-4 874 70356 34886 1024 2 0.89 11550 0
A2-1-50-150-5 2922 86127 15372 1014 2 0.87 10407 0
A2-1-50-150-6 1486 92947 1102 884 2 0.89 10068 0
A2-1-50-150-8 181 90790 5226 1069 1 0.94 8896 0
A2-10-50-150-4 9563 180071 126534 513 4 2.03 17083 0
A2-10-50-150-5 4457 167133 130439 462 3 1.50 14977 0
A2-10-50-150-6 6740 241410 26618 510 3 1.95 13894 0
A2-10-50-150-8 6093 234843 71875 566 2 2.07 11942 0
A2-1-100-100-4 6558 230334 53549 2791 3 2.89 11885 0
A2-1-100-100-5 7759 205319 110844 2839 2 2.82 10234 0
A2-1-100-100-6 6289 232113 4360 2533 2 2.92 10020* 5.85
A2-1-100-100-8 1556 253097 10516 2732 2 2.92 9093* 12.88
A2-20-100-100-4 57528 1328048 1656892 1613 7 43.91 26594* 1.97
A2-20-100-100-5 47550 1885843 746084 1417 6 37.29 23419* 4.38
A2-20-100-100-6 51174 2087397 712975 1583 5 39.50 20966* 4.43
A2-20-100-100-8 23543 2314063 295578 1748 4 42.42 18418* 8.76
B2-1-50-150-4 1593 67434 38854 776 3 0.91 11175 0
B2-1-50-150-5 5021 88174 15235 833 2 0.90 10502 0
B2-1-50-150-6 3080 91896 4423 877 2 0.91 9799 0
B2-1-50-150-8 170 80900 3311 766 2 0.87 8846 0
B2-10-50-150-4 14351 256685 136664 722 2 2.87 16667 0
B2-10-50-150-5 5410 282663 81587 773 2 2.78 14188 0
B2-10-50-150-6 9778 256081 35977 591 2 2.53 12954 0
B2-10-50-150-8 4927 269622 72082 595 1 2.53 11495 0
B2-1-100-100-4 51333 1045925 774566 4908 2 15.03 18370 0
B2-1-100-100-5 53439 1274929 614557 5073 2 15.61 15876 0
B2-1-100-100-6 28740 1152819 678806 4861 2 14.83 14926* 4.65
B2-1-100-100-8 22866 1348932 475145 4930 1 15.68 13137* 6.60
B2-20-100-100-4 144950 2947716 2554329 2542 9 117.01 34073* 1.00
B2-20-100-100-5 123354 3297460 2981437 2609 7 126.00 29412* 4.24
B2-20-100-100-6 93415 3827705 1968470 2784 6 116.79 25960* 4.99
B2-20-100-100-8 80471 3780534 1248722 2311 5 114.01 22156* 8.97

Table 7: Computational results of metaheuristic on instances with nbtotal = 200
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