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To the best of our knowledge, the only exact method for the CEARP is [5].
The authors propose an initial formulation for the problem in which there is
a connectivity constraint, and they solve this optimally using a cutting-plane
approach. The algorithm first solves the problem without the connectivity
constraints. The violated connectivity constraints are then added to the
model, and the process is repeated until the connectivity is satisfied. Com-
putational results show that this algorithm can solve to optimality random
instances of a realistic size, such as those introduced in [4].

The CEARP is equivalent to the generalized directed rural postman prob-
lem (GDRPP). In the GDRPP, there are several subsets of arcs (also called
clusters) and the objective is to find a minimum-cost tour traversing at least
one arc from each cluster. The clusters may be connected or disjoint. In the
CEARP, the arcs covering a customer correspond to a subset in the GDRPP.
The version of the GDRPP with no depot is described in [6], where both exact
and heuristic methods are presented. The exact method is a branch-and-cut
algorithm based on a mathematical formulation.

There is another problem that can be seen as a CETSP with vertex-
covering constraints. It is the covering tour problem (CTP) [7] and is similar
to the CEARP except that a closed tour has to be determined so that every
vertex of W lies within a distance r of a vertex of the tour. In [7], an exact
algorithm and a heuristic are presented. A heuristic based on the scatter-
search method has been proposed in [8]. Heuristics for the multi-vehicle
version (m-CTP) are presented in [9]. Heuristics have also been proposed
for problems belonging to the family of covering tour problems, such as the
CETSP in the plane; see [10] and [11].

The aim of this paper is to design exact algorithms for the CEARP. Our
main contributions are: 1) we introduce a new formulation for the CEARP;
2) we compare, both analytically and empirically, this formulation with two
others, the first introduced in [5] and the second presented in [6] for the
GDRPP; 3) we improve the branch-and-cut algorithm of [6] and propose a
new algorithm for the CEARP; and 4) we propose a MIP-based constructive
algorithm to solve the CEARP in practice.

The remainder of the paper is organized as follows. Section 2 presents
in detail our branch-and-cut algorithms and a MIP-based constructive al-
gorithm to solve the CEARP. The computational results are reported and
analyzed in Section 3. Finally, Section 4 summarizes our conclusions.
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2. Branch-and-cut algorithms for CEARP

2.1. Mathematical formulations

Given a node subset, S ⊆ V , let δ+(S) denote the set of outgoing arcs of
S and δ−(S) denote the set of incoming arcs of S. If S = {vk}, we simply
write δ+(k) (or δ−(k)) instead of δ+({vk}) (or δ−({vk})). A(S) is the set
of arcs with both endpoints in S. Each arc a is associated with a cost ca
(distance or travel time). We define the binary coefficients λlk to be equal
to 1 if and only if wl ∈ W can be covered by ak ∈ A. Given x ∈ N |A| and
T ⊂ A, x(T ) denotes

∑
e∈T xe.

In [5], the following formulation, denoted by F1, was presented:

F1: Minimize
∑
a∈A

caxa (1)

subject to x
(
δ+(0)

)
≥ 1 (2)

x
(
δ+(i)

)
− x
(
δ−(i)

)
= 0 ∀i ∈ V (3)∑

a∈A

λwaxa ≥ 1 ∀w ∈ W (4)

Mx
(
δ+(S)

)
− xa ≥ 0 ∀S ⊂ V − {v0}

and 2 ≤ |S| ≤ n− 2, a ∈ A(S) (5)

xa ∈ Z+ ∀a ∈ A (6)

where M is a large number representing an upper bound on the number of
times an arc is used. As in [6], M is set to |A|+ 1.

The objective (1) minimizes total travel cost. Constraint (2) ensures that
the depot belongs to the tour, and constraints (3) are the flow conservation
constraints. Constraints (4) ensure that every customer of W is covered
by the tour, and constraints (5) are the connectivity constraints. These
constraints ensure the presence of at least one outgoing arc of any set S,
for every possible subset S of V containing an arc belonging to the tour.
Constraints (6) define the variables.

Since the CEARP is equivalent to the GDRPP, the formulation in [6] pro-
posed for the GDRPP can be used for the CEARP. Because the formulation
in [6] addresses the no-depot version of the problem, we modify it slightly.
In this formulation, yi is a binary variable that indicates the use of vertex i
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in the solution, and the integer variable xa denotes the number of times that
arc a is traversed. Let hea be the head of arc a. The formulation for the
CEARP is as follows:

F2: Minimize
∑
a∈A

caxa (7)

subject to y0 = 1 (8)

x
(
δ+(i)

)
− x
(
δ−(i)

)
= 0 ∀i ∈ V (9)∑

a∈A

λwaxa ≥ 1 ∀w ∈ W (10)

x
(
δ+(S)

)
− yi ≥ 0 ∀S ⊂ V − {v0},

and 2 ≤ |S| ≤ n− 2, i ∈ S (11)

xa −Myi ≤ 0 ∀i ∈ V, a ∈ A with hea = i
(12)

xa positive integer and yi ∈ {0, 1} ∀a ∈ A and ∀i ∈ V (13)

where M is a large number representing an upper bound on the number of
times an arc is used. In this formulation, constraints (8)–(11) have the same
meaning as in formulation F1, and constraints (12) are used to express the
relation between the two types of variables. As in [6], M is set to |A|+ 1.

We now describe a new formulation for the CEARP, which we call F3.
Let ya be a binary variable that represents the use of arc a with service. The
integer variable xa denotes the number of times that arc a is used without
service. Then the CEARP can be stated as:
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F3: Minimize
∑
a∈A

ca(xa + ya) (14)

subject to x
(
δ+(0)

)
+ y
(
δ+(0)

)
≥ 1 (15)

x
(
δ+(i)

)
+ y
(
δ+(i)

)
− x
(
δ−(i)

)
− y
(
δ−(i)

)
= 0 ∀i ∈ V (16)∑

a∈A

λwaya ≥ 1 ∀w ∈ W (17)

x
(
δ+(S)

)
+ y
(
δ+(S)

)
− ya ≥ 0 ∀S ⊂ V − {v0},

and 2 ≤ |S| ≤ n− 2, a ∈ A(S) (18)

xa positive integer and ya ∈ {0, 1} ∀a ∈ A. (19)

The meaning of each constraint in F3 is as in F1. Constraints (15)–(18)
imply constraints (2)–(5), respectively.

It is easy to see that the three formulations F1, F2, and F3 are equivalent.
Table 1 gives a comparison of the three formulations. F1 has the smallest
number of variables and constraints (we do not consider the connectivity
constraints here because of their exponential number). The most important
disadvantage of F1 is that it uses a large number M in the connectivity
constraint. Because we can not find an efficient way to closely estimate
M , an exact procedure to separate this constraint is useless. Experiments
show that the performance of the branch-and-cut algorithm based on this
formulation is poor compared to that of the other two formulations. F3 has
the largest number of variables, but it also has some strong advantages. First,
it does not contain the Big-M constraints that are known to weaken the linear
relaxation and to decrease the performance of MILP models. Second, the set
covering polytope with binary variables has received more attention than
that with integer variables. Hence, the identification of violated constraints
of type (17) in F3 seems to be more favorable than that for (4) in F1 or (10)
in F2. Formulation F2 has fewer variables but more constraints than F3.
Moreover, it contains Big-M constraints.

2.2. Valid equalities and inequalities

In this subsection, we introduce several valid equalities and inequalities
for F3. Let A′ ⊂ A be a set of arcs that can not cover any customer. The
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F1 F2 F3
No. variables |A| |A|+ |V | 2.|A|
No. constraints |V |+ |W |+ 1 |V |+ |A|+ |W |+ 1 |V |+ |W |+ 1
Big-M Yes Yes No

Table 1: Comparison of the three formulations

following dominance relation is valid for the CEARP:

ya = 0 ∀a ∈ A′. (20)

Lemma 1. Without loss of generality, we can assume that in an optimal
solution xa > 0 implies ya = 1 ∀ a /∈ A′.

Proof. Suppose that (x∗, y∗) is an optimal solution such that x∗a′ > 0 and
y∗a′ = 0 for some arc a′ /∈ A′. Define (xa, ya) = (x∗a, y

∗
a), ∀a 6= a′ and (x′a, y

′
a) =

(x∗a′ − 1, 1). It is easy to prove that this new solution is also optimal because
it satisfies the constraints (15), (16), (17), (18) and has the same objective
value (14).

We can derive from Lemma 1 the following dominance property:

Mya ≥ xa ∀a ∈ A \ A′ (21)

where M is a large number representing an upper bound on the number of
times an arc a is used. Its value can be taken as |A|.

Dominance constraints can also be derived, based on covering considera-
tions. Let (ai, aj) ∈ A\A′. Arc ai is said to dominate arc aj if for all wl ∈ W ,
λil ≥ λjl. The following constraints proposed in [7] are valid for the CEARP:

yi + yj ≤ 1 ∀ai, aj ∈ A \ A′

and if ai dominates aj, or conversely. (22)

We also note that the constraints (21) and (22) can not be used at the
same time because of contrary properties. The reason is that the former
implies that if an arc that can cover a customer is traversed, then it is always
used with service while the latter limits the use of arcs with service only
when necessary.

6

Solving the Close-Enough Arc Routing Problem

CIRRELT-2012-72



All the valid inequalities of the set covering polytope conv{x :
∑
ba.ya ≥

1, ya ∈ {0, 1}} are valid for the CEARP. Balas and Ng [12] proposed the
facets with coefficients in {0,1,2} and Sánchez-Garćıa et al. [13] introduced
the more complex facets with coefficients in {0,1,2,3}. Here, we recall the
first inequality that was used in [7]. Let S be a nonempty subset of W and
define for each a ∈ A the coefficient

αS
a =


0 if λal = 0 for all wl ∈ S,
2 if λal = 1 for all wl ∈ S,
1 otherwise.

Then the following inequality is valid for the CEARP:∑
a∈A

αS
aya ≥ 2 ∀a ∈ A \ A′ and ∀S ⊂ W : |S| > 0. (23)

The connectivity constraints (18) can be strengthened by adding infor-
mation about the covering constraint. The following constraint is a stronger
form of connectivity:

x
(
δ+(S)

)
+ y
(
δ+(S)

)
≥ 1 (24)

where S ⊂ V and at least one customer of W is not covered by any arc in
A(V \ S).

2.3. Separation of cuts

We now present separation procedures for each class of valid inequalities
described in the previous subsection. To simplify the presentation, we give
the details only for F3. The separation of cuts for F2 is similar. Let (x∗, y∗) be
a fractional solution to be separated. Let G∗ be the weighted graph induced
by (x∗, y∗) such that the capacity of each arc Ca = x∗a + y∗a.

The detection of constraints of type (20), (21), and (22) is straightfor-
ward. Although these constraints help to reduce the number of vertices in
the branch-and-bound tree, constraints (21) contain the Big-M that decreases
the performance of the branch-and-cut algorithm. Since M is determined by
the number of arcs, the larger the instance, the more important the negative
impact of M . Our tests show that when M can not be closely estimated, a
branch-and-cut algorithm without Big-M constraints is normally more effi-
cient than one with Big-M. This is why we use the constraints (20) and (22)
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in the general case where M can not be estimated effectively. The constraints
(21) are only used if we can find the way to bound M strictly. Whenever
these dominance constraints are used, they are directly included in the initial
model because they are almost certainly violated.

For constraints (23), we tested |S| = 3, as in [7], to reduce the compu-
tational effort. The process was still time-consuming because of the large
number of customers in the CEARP instances. However, we observe that
the zero-half cut of CPLEX can generate this type of constraint. Our tests
show that using the CPLEX cut is more effective and faster than directly
applying (23).

We will present an example to show how a zero-half cut can generate
the constraints (23). Suppose there is a graph with three arcs a1, a2, and a3
serving three customers w1, w2, and w3. These customers can be served by the
arcs (a2, a3), (a1, a3), and (a1, a2), respectively. The covering constraints (17)
for three customers are as follows: y2 + y3 ≥ 1, y1 + y3 ≥ 1, and y1 + y2 ≥ 1.
By considering the sum of these three constraints, dividing the resulting
constraint by 2, and rounding its right-hand side, we get the zero-half cut:
y1 + y2 + y3 ≥ 2. This constraint has the same form as (23). Hence, the
CPLEX zero-half cut can generate the constraints (23).

The connectivity constraints (18) can be separated by both heuristic and
exact methods. In the heuristic method, we first compute the connected
components S1, S2, ..., Sq of the subgraph G∗. If the number of connected

components is at least two (i.e., q ≥ 2) then x
(
δ+(Si)

)
+ y
(
δ+(Si)

)
≥ ya,

for each component i and each a ∈ A(Si), is a violated inequality. We can
also separate these constraints exactly in polynomial time by applying the
following algorithm:

• For each node i ∈ V \ {v0}: Compute the maximum flow from i to
depot v0. Let δ+(Si), Si ⊆ V \ {v0} be the min-cut and let fi be the
value of this flow.

• For each arc a = (vi, vj) ∈ A and xa 6= 0: If fi < xa, then a violated
connectivity constraint has been found.

Let fa be the maximum flow passing through arc a = (vi, vj). To ensure
connectivity from the depot to arc a, there must be at least a flow of xa
passing through a. Note that fi ≥ fa. Then, if fi < xa, we have fa < xa.
Hence, fi < xa is a violated constraint. On the other hand, if fi ≥ xa, we can
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always send a flow of at least xa through a and connectivity is ensured. If the
Edmonds-Karp algorithm, which runs in O(|V ||A|2) time, is used to solve the
maximum flow problems, the running time of this procedure is O(|V |2|A|2).

Finally, constraints (24) can be generated by a heuristic similar to that
proposed for (18). Compute the connected components S1, S2, ..., Sq of the
subgraph G(x∗, y∗) induced by the arcs a ∈ A with x∗ + y∗ ≥ ε, where
0 ≤ ε < 1 is a given parameter. If the number of connected components
is at least two (i.e., q ≥ 2), and the arcs with two endpoints in V \ S
can not cover all the customers and x∗

(
δ+(Si)

)
+ y∗

(
δ+(Si)

)
< 1 then

x
(
δ+(Si)

)
+ y
(
δ+(Si)

)
≥ 1 for each component i = 1, ..., q is a violated

inequality.

2.4. Upper bound for CEARP

In this subsection, we introduce a fast heuristic called UB1 that gives
feasible solutions for the CEARP. This heuristic is used in the exact algorithm
to provide an initial upper bound. It is based on the algorithm proposed for
the DRPP [2] and is as follows:

Step 1. Solve an integer program including the constraints (1), (3), (4),
and (6) using CPLEX. The solution of this MIP is rapid even for the large
instances in our tests.

Step 2. Construct a directed graph GR = (VR, AR) induced by the
solution from Step 1, adding the depot if it is not already present. If GR is
connected then stop; the solution found in Step 1 is also a feasible solution
for the CEARP. Otherwise, go to Step 3.

Step 3. Compute the connected components C1, C2, ..., Ck of the graph
GR. Let Ki be the set of vertices corresponding to the connected component
i. Build the undirected graph Ḡ = (N,E) with set of vertices N = 1, ..., k
and set of edges E = {(i, j), i, j ∈ N, i 6= j. The corresponding edge costs
are cij = min{c(p, q)+ c(q, p), p ∈ Ki, q ∈ Kj} for each edge (i, j) ∈ E, where
c(p, q) is the length of the shortest path from vertex p in component i to
vertex q in component j. Determine a minimum-cost spanning tree in Ḡ.
Let AT be the set of arcs in the original graph corresponding to the edges in
the tree. Add to Ḡ all the arcs of AT .

2.5. Branch-and-cut algorithms

We first introduce a procedure that can reduce the number of customers.
Given wl ∈ W , let Z(wl) be the set of arcs that can cover wl. For each pair
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of customers wi and wj, if Z(wi) ⊆ Z(wj) then customer wj can be ignored.
This is because when wi is served, wj is covered at the same time. Note that
the number of customers remaining is also the maximum number of arcs that
must be activated for covering purposes. This procedure eliminates at least
50% of the customers in our tests.

We solve the CEARP exactly using a classic branch-and-cut algorithm.
To simplify the description we describe the algorithm only for F3; the imple-
mentation is similar for F1 and F2. We solve a linear program containing the
constraints (15), (16), (17), (20), (21) (or (22)), and constraints 0 ≤ ya ≤ 1.
We then search for violated constraints of type (18) and (24), and the con-
straints detected are added to the current LP, which is then reoptimized.
This process is repeated until all the constraints are satisfied. If there are
fractional variables, we branch to generate two new subproblems. If all the
variables are integer, we explore another subproblem.

Because the exact separation for (18) is quite time-consuming, after nu-
merous tests, we decided to apply it only at the root node. More precisely,
at every node, we first find the strongly connected components of the graph
created by the current variables. For each component, we check which cus-
tomers are covered. If these customers can not be covered by the arcs outside
the component, a constraint of type (24) is found. Otherwise, a constraint
of type (18) is detected and added to the current program. At the root
node, if this procedure fails to find violated constraints, we carry out the
exact separation method. In other words, the exact separation of constraint
(18) is used at the root node only if the heuristic fails. At the other nodes,
only heuristic separation is applied. For F1, since we can not find any way
to closely estimate M in constraints (5), the exact separation is useless for
these constraints. Therefore, only the heuristic method is used even at the
root node.

Our branch-and-cut algorithm is built around CPLEX 11.2 with the
Callable Library. All CPLEX cuts except the zero-half cut are turned off.
The parameter CPX–PARAM–ZEROHALFCUTS is set to 2 to generate
zero-half cuts aggressively. All the other CPLEX parameters are set to their
default values.

We tested several branching techniques, such as branching on the vari-
ables y before x as in [7] and branching on the variables x before y, but these
do not outperform the CPLEX branching. Hence, we let CPLEX make the
branching decisions.

In [6], a branch-and-cut algorithm based on F2 is developed to solve the
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GDRPP. The differences with our algorithm are that all the cuts of CPLEX
9.1 are turned on by default, the constraints (24) are not used, and the exact
method to separate the connectivity constraints (11) is used at all nodes in
the search tree. We also note that zero-half cuts were not implemented in
CPLEX 9.1.

2.6. A MIP-based constructive algorithm

In this subsection, we propose an algorithm called UB2 that gives good
solutions for the CEARP. In practice, arcs are usually traversed just a few
times, and the number of traversals is much lower than the lowest provable
value of M . This suggests that we can bound the large number M in the
branch-and-cut algorithm by a small value to improve performance. To en-
sure that a solution exists, a Chinese postman problem (CPP) is first solved,
and M is determined by the maximum number of times an arc is traversed in
the CPP solution. We use only F2 and F3 to construct this algorithm. For
F3, the dominance constraint (21) is used and added directly to the initial
model.

3. Computational experiments

In this section, we describe the CEARP instances and the computational
evaluation of the proposed algorithms. Our algorithm is coded in C/C++
and is run on a 2.4 GHz CPU with 6 GB of RAM. The running time of the
branch-and-cut algorithms is limited to 2 hours for each instance.

3.1. Data instances

We first use the CEARP instances of [5], which are random instances
based on directed graphs. We now recall how to build these instances. Graphs
that imitate real street networks are first generated randomly; this procedure
is as follows:

• The coordinates of n vertices are randomly generated in a unit square.
Then a heuristic is used to find the shortest tour passing through all
the nodes exactly once. This tour is a Hamiltonian circuit, and it is
used as a framework to construct the full graph. The resulting graph
is therefore strongly connected.
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• To imitate real networks, random arcs are added to the current tour to
give a total of m = nd arcs, where n is the number of vertices and d the
ratio between the number of arcs and the number of nodes, in such a
way that: (i) the arcs are not too long, and (ii) there is no intersection
between any two arcs.

In the tests in [5], graphs with n ∈ {300, 400, 500} vertices and a ratio
d ∈ {1.5, 2, 2.5, 3} are used. For each combination of n and d, five different
graphs are generated. The cost of an arc (vi, vj) is the Euclidean distance
between vi and vj multiplied by five to obtain an average arc length close to
that seen in practice (from about 0.2 to 0.4 km).

Once the graphs have been built, the CEARP instances are generated by
randomly positioning q = mt customer nodes in the square containing the
graph, where m is the number of arcs and t the ratio between the number of
customers and the number of arcs, t ∈ {0.5, 1, 5, 10}. Thus, for each graph,
four CEARP instances are created. The effective radius r is set to 150 m.
The distance between the arcs and the customer vertices are computed by
the distance from the closest point of the arc to the customer. To ensure
that a solution exists, we delete all the customers that can not be covered
by any arc. We also examine the impact of increasing the radius parameter
from 150 m to 200 m. To do this, we use the graph created with r = 150 m
but change the read range to 200 m.

From the instances of [5], we choose the largest ones with 500 nodes and
1500 arcs (r=150 m), and 500 nodes and 1000 arcs (r=200 m) to test our
algorithms. The instances are labeled ce-n-k-r-t-i, where n is the number of
nodes, k is the number of arcs, r is the read range, t is the ratio between the
number of customers and the number of arcs, and i (=1,...,5) is the instance
number. For example, ce-500-1500-150-10-5 indicates the 5th instance with
500 nodes, 1500 arcs, 150 m of read range, and t =10.

We also use mixed graphs from the literature to generate instances for the
CEARP. We choose the mixed graphs introduced in [14] for which the coor-
dinates of the vertices are published. These are large graphs with a structure
similar to that of real street networks. To transform the mixed graphs to
directed graphs, we model each undirected edge by two arcs with the same
cost. From these graphs, we select two, MB537 and MB547, which, after
being transformed to directed graphs, have fewer than 1500 arcs. MB357
has 500 nodes, 364 edges, and 476 arcs and MB547 has 500 nodes, 351 edges,
and 681 arcs.
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For the mixed graphs, the procedure to generate the customers is the
same, except that the read range r is determined by the average length of all
the arcs in the graph. For each graph and each value of t, we generate five
CEARP instances.

We also test our algorithms on 30 instances defined on undirected graphs.
We use two sets of graphs taken from [15] with 15 general routing prob-
lem instances each, generated from the Albaida and Madrigueras graphs
proposed in [16] by defining each edge as being required with probability
P = {0.3, 0.5, 0.7}. The Albaida graph includes 116 nodes and 174 edges,
and the Madrigueras graph has 196 nodes and 316 edges. From these graphs,
we generate CEARP instances as follows:

• The number of clients is defined by the number of required edges in the
graph; each client is covered by a required edge.

• Each client is covered by e additional required edges where e is a random
number taking values from 1 to 5, so that each client is covered by at
least 2 and at most 6 edges.

To solve the undirected instances as directed instances, we transform each
edge into two arcs with the same cost. As in other arc routing problems
defined on undirected graphs (see [17], for example), it is easy to prove that,
for a given CEARP instance defined on an undirected graph, an optimal
solution exists in which no edge is traversed more than twice. This allows us
to fix the large number M to 2 in F2 and to 1 in F3. Therefore, we use the
dominance constraints of type (21) for the undirected instances. Note that,
in this case, all variables in F3 are now binary. For the directed and mixed
instances where M cannot be estimated effectively, the constraints (22) are
used.

3.2. Comparisons of lower bounds

The first set of results compares the lower bounds obtained at the root
node of our branch-and-cut algorithms. These are based on the formulations
F1–F3 and the formulation similar to that in [6] in which all the CPLEX
cuts except the zero-half cuts are turned on. The formulations are tested
on the directed-graph instances of [5]. The results are given in Table 2.
This table presents, for each formulation F1, F2 and F3, the lower bound
obtained at the root node (lbi). The value lb4 is the lower bound obtained
by the branch-and-cut algorithm of [6]. The best results are in bold.
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The results shown in Table 2 indicate that the lb4 bounds are always worse
than the lb2 bounds. This proves the efficiency of the addition of zero-half
cuts in CPLEX. The results also imply that the formulations F2 and F3 are
more efficient than F1. It seems that F3 is slightly better than F2, since lb3
is larger than lb2 in 30 of the 40 instances.

3.3. Overall comparisons

Table 3 compares the five exact algorithms for the CEARP in terms of the
number of instances successfully solved to optimality. Column F0 gives the
results for the cutting-plane method introduced in [5], and columns F1, F2,
and F3 give the results for our three branch-and-cut algorithms based on the
corresponding formulations. Column F4 presents the number of successful
instances for the algorithm proposed in [6] using CPLEX 11.2 instead of 9.1
which contains, among other improvements, the zero-half cuts. Again, the
formulations are tested on the directed-graph instances of [5].

From Table 3, an interesting observation is that the branch-and-cut al-
gorithms based on F1 and proposed in [6] are worse than the cutting-plane
method introduced in [5]. The branch-and-cut algorithms based on F2 and
F3 outperform the others. For r = 150 m, it seems that F2 and F3 are
equivalent. For r = 200 m, F3 is better because it can solve 2 instances with
t = 0.5 that F2 can not. Therefore, in the next subsection, we compare only
F2 and F3 on other criteria and other instances.

3.4. Detailed comparisons of directed-graph instances

This subsection provides the results for the branch-and-cut algorithms
using F2 and F3. For each formulation, Table 4 shows the time required
(time), the gap (gap), and the solution value (result), and Table 5 presents
the number of dominance constraints of type (22) (domi), the number of zero-
half cuts (zero), the number of connectivity cuts (user), and the number of
vertices (bb) in the branch-and-bound tree. The gap for F3 is better than
that for F2. F3 also finds better solutions than F2. We believe this is because
F2 contains Big-M constraints that lead to numerical difficulties because of
the many generated connectivity constraints (the user column in Table 5).
These increase the size of the model, and so CPLEX needs more time to
process each node. Therefore, there are less chances to find good solutions.
In contrast, the branch-and-bound tree of F3 is much larger. This is because
we use the constraints (22) instead of the constraints (21) to reduce the size
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Instance lb1 lb2 lb3 lb4
ce500-1500-150-0.5-1 97408.9 100806.7 102217.6 97120.2
ce500-1500-150-0.5-2 91174.4 94106.2 93793.5 90109.9
ce500-1500-150-0.5-3 105610.5 109639.3 109641.2 102412.4
ce500-1500-150-0.5-4 89407.1 92052.3 92023.0 86579.5
ce500-1500-150-0.5-5 97380.9 99276.9 100212.6 93786.0
ce500-1500-150-1-1 124365.7 126587.0 127317.0 122182.1
ce500-1500-150-1-2 119585.3 121820.3 122007.2 116832.0
ce500-1500-150-1-3 129284.2 131544.9 131222.7 126613.8
ce500-1500-150-1-4 109707.3 112258.5 113558.1 108049.6
ce500-1500-150-1-5 112212.1 114481.8 113600.8 106513.5
ce500-1500-150-5-1 158893.7 160143.6 160772.9 157372.1
ce500-1500-150-5-2 158452.9 159078.5 159897.7 157100.3
ce500-1500-150-5-3 174584.4 176492.5 176166.2 171283.5
ce500-1500-150-5-4 149310.1 150954.0 150965.4 147512.2
ce500-1500-150-5-5 159917.1 161005.9 161236.8 156457.5
ce500-1500-150-10-1 172904.7 173757.7 174219.1 170685.1
ce500-1500-150-10-2 171701.5 172117.5 172691.4 169647.9
ce500-1500-150-10-3 183425.9 184383.5 184608.3 180971.4
ce500-1500-150-10-4 160815.3 161200.2 161279.4 157174.1
ce500-1500-150-10-5 166463.3 166789.9 167919.9 163820.5
ce500-1000-200-0.5-1 68866.5 70697.9 73487.9 65020.4
ce500-1000-200-0.5-2 75673.2 79838.8 82208.3 74942.7
ce500-1000-200-0.5-3 75831.4 79291.9 86063.8 70341.0
ce500-1000-200-0.5-4 64885.7 72082.7 73116.8 68179.2
ce500-1000-200-0.5-5 78765.6 83502.2 83082.8 79526.7
ce500-1000-200-1-1 75801.9 79880.2 80334.8 71999.5
ce500-1000-200-1-2 83930.2 85511.7 88301.9 75334.9
ce500-1000-200-1-3 90527.1 94697.9 95175.6 90869.7
ce500-1000-200-1-4 73571.1 77859.5 79749.0 75844.6
ce500-1000-200-1-5 87119.4 91569.9 90790.5 88867.4
ce500-1000-200-5-1 94893.6 98107.2 98547.0 93816.3
ce500-1000-200-5-2 105008.9 108094.2 108484.0 104636.4
ce500-1000-200-5-3 110631.7 113553.4 112952.4 112829.9
ce500-1000-200-5-4 98142.1 99483.7 103466.7 97615.6
ce500-1000-200-5-5 108961.5 111696.9 111932.5 110569.1
ce500-1000-200-10-1 108402.9 110222.7 109062.8 107673.1
ce500-1000-200-10-2 108827.2 112565.9 112129.0 110069.1
ce500-1000-200-10-3 123741.6 125644.3 125647.7 124849.3
ce500-1000-200-10-4 111134.0 112184.6 115022.7 111502.0
ce500-1000-200-10-5 124283.3 126852.4 127171.7 124776.1

Table 2: Comparison of lower bounds of the four algorithms
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Data F0 F1 F2 F3 F4
ce500-1500-0.5 0 0 0 0 0
ce500-1500-1 1 0 2 2 0
ce500-1500-5 4 3 5 5 2
ce500-1500-10 5 5 5 5 4
ce500-1000-0.5 2 0 1 3 1
ce500-1000-1 3 2 4 4 2
ce500-1000-5 5 3 5 5 4
ce500-1000-10 5 5 5 5 5

Table 3: Number of successful instances

of the search tree and it seems that the constraints (21) are more efficient
than the constraints (22).

3.5. Comparisons of undirected- and mixed-graph instances

Table 6 gives the results for the two formulations on undirected-graph
instances. F3 can solve the instance MADR-7-3 that F2 can not. It is
also faster on 22 of 30 instances. Therefore, on undirected instances F3
outperforms F2. Note that in this case, all the variables of F3 are binary and
this is probably why F3 is better than F2.

Table 7 gives the results for mixed-graph instances. All the results are
averages over five instances. F2 can solve more instances than F3 but once
again its gap is, in some cases, poor.

3.6. Results for upper bounds

Tables 8 and 9 give the results for algorithms UB1 and UB2. In these
tables, MCPP is the value of M calculated by solving the CPP problems.
The names of instances in bold indicate that these instances were proved
optimal by the branch-and-cut algorithms. The BnC Time column gives the
running time in seconds of the branch-and-cut algorithm based on F2. The
Gap column displays the gap in percent of upper bounds to the best solu-
tions found by the two branch-and-cut algorithms in the previous subsection.
The negative results imply that the upper-bound algorithms found better so-
lutions than the branch-and-cut algorithms. From the results of the exact
algorithms, we observe that an arc is rarely crossed more than 5 times in the
solution. Therefore, we also test the MIP-based constructive algorithms with
M = 5. Note that this algorithm is not competitive on undirected-graph in-
stances because in these cases we can bound the large number M efficiently.
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F2 F3
Data time gap result time gap result
ce500-1500-150-0.5-1 7202.29 4.21 106474.2 7202.77 1.76 105231.4
ce500-1500-150-0.5-2 7202.72 3.34 97900.6 7203.01 2.13 97435.3
ce500-1500-150-0.5-3 7202.46 0.82 112363.3 7202.91 0.39 112129.6
ce500-1500-150-0.5-4 7202.45 2.23 95657.7 7202.98 2.53 95778.1
ce500-1500-150-0.5-5 7202.51 2.35 102603.2 7202.91 0.98 102323.9
ce500-1500-150-1-1 7206.93 1.25 129790.7 7207.52 0.40 129659.7
ce500-1500-150-1-2 505.35 0 123123.0 278.86 0 123123.0
ce500-1500-150-1-3 121.73 0 133418.3 598.91 0 133418.3
ce500-1500-150-1-4 7206.53 2.11 116531.6 7207.07 1.04 116058.8
ce500-1500-150-1-5 7206.48 2.21 117967.2 7206.98 1.55 117003.4
ce500-1500-150-5-1 452.86 0 162097.8 278.01 0 162097.8
ce500-1500-150-5-2 128.71 0 160792.7 101.33 0 160792.7
ce500-1500-150-5-3 166.73 0 177242.4 122.72 0 177242.4
ce500-1500-150-5-4 64.19 0 151852.9 78.69 0 151852.9
ce500-1500-150-5-5 147.09 0 161833.4 191.63 0 161833.4
ce500-1500-150-10-1 152.53 0 174504.1 174.82 0 174504.1
ce500-1500-150-10-2 212.81 0 173404.5 190.57 0 173404.5
ce500-1500-150-10-3 197.64 0 185330.8 201.41 0 185330.8
ce500-1500-150-10-4 201.64 0 162071.7 222.80 0 162071.7
ce500-1500-150-10-5 945.25 0 168734.3 240.02 0 168734.3
ce500-1000-200-0.5-1 7200.69 1.59 76033.0 4275.83 0 76033.0
ce500-1000-200-0.5-2 7200.78 1.22 84311.6 385.83 0 84237.2
ce500-1000-200-0.5-3 7200.74 12.82 95790.2 7200.95 0.80 89653.5
ce500-1000-200-0.5-4 7200.71 2.51 76226.2 7201.04 1.52 76084.4
ce500-1000-200-0.5-5 137.05 0 85097.0 1714.54 0 85097.0
ce500-1000-200-1-1 461.58 0 82687.1 4440.20 0 82687.1
ce500-1000-200-1-2 140.30 0 89896.5 257.57 0 89896.5
ce500-1000-200-1-3 6209.50 0 98051.8 279.85 0 98051.8
ce500-1000-200-1-4 7202.02 1.95 82682.3 7202.20 0.41 82344.2
ce500-1000-200-1-5 38.03 0 91915.6 59.10 0 91915.6
ce500-1000-200-5-1 130.37 0 100395.3 1233.24 0 100395.3
ce500-1000-200-5-2 36.33 0 109318.5 92.57 0 109318.5
ce500-1000-200-5-3 121.71 0 114362.3 121.69 0 114362.3
ce500-1000-200-5-4 57.89 0 103790.9 75.01 0 103970.9
ce500-1000-200-5-5 19.58 0 112625.0 52.97 0 112625.0
ce500-1000-200-10-1 67.97 0 110527.9 119.54 0 110527.9
ce500-1000-200-10-2 57.21 0 113694.1 83.24 0 113694.1
ce500-1000-200-10-3 82.84 0 126659.9 95.27 0 123733.9
ce500-1000-200-10-4 69.35 0 115281.4 54.81 0 115281.4
ce500-1000-200-10-5 44.56 0 128163.2 58.86 0 128163.2

Table 4: Comparison of performance of F2 and F3
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F2 F3
Data zero user bb domi zero user bb
ce500-1500-150-0.5-1 259 19913 5817 3293 1910 9334 61903
ce500-1500-150-0.5-2 263 20036 6236 3575 2374 3701 113037
ce500-1500-150-0.5-3 390 9797 16080 2998 2785 1818 169909
ce500-1500-150-0.5-4 592 7189 30983 3469 2658 4539 71536
ce500-1500-150-0.5-5 349 17751 12756 3333 2426 4453 66482
ce500-1500-150-1-1 269 16305 11690 2797 2567 1540 264117
ce500-1500-150-1-2 686 2015 16271 2644 1569 361 20852
ce500-1500-150-1-3 427 1229 3969 2900 2053 1300 40877
ce500-1500-150-1-4 418 7696 22392 2791 2101 2778 125514
ce500-1500-150-1-5 262 15410 12192 3044 2029 6288 48432
ce500-1500-150-5-1 355 3663 3119 2243 1140 264 33910
ce500-1500-150-5-2 340 535 1270 2293 664 177 1561
ce500-1500-150-5-3 246 2040 343 2444 467 328 716
ce500-1500-150-5-4 231 158 136 2159 529 124 1047
ce500-1500-150-5-5 366 224 582 2226 984 149 4817
ce500-1500-150-10-1 242 164 174 2152 400 46 144
ce500-1500-150-10-2 289 1013 1286 2425 667 135 1158
ce500-1500-150-10-3 244 512 141 2259 376 448 487
ce500-1500-150-10-4 301 211 292 2396 806 92 2667
ce500-1500-150-10-5 639 6493 5309 2152 948 129 2741
ce500-1000-200-0.5-1 200 17037 11274 2110 3179 2845 180230
ce500-1000-200-0.5-2 160 27332 8960 1972 1618 1064 26006
ce500-1000-200-0.5-3 116 37116 1143 1942 4397 2381 194081
ce500-1000-200-0.5-4 196 18965 21752 1989 1572 8734 64879
ce500-1000-200-0.5-5 218 3417 1146 1994 3372 2458 51554
ce500-1000-200-1-1 272 6291 4822 1666 2106 6997 104788
ce500-1000-200-1-2 338 2709 3206 1590 1668 1232 10894
ce500-1000-200-1-3 148 29035 2314 1520 1613 738 18844
ce500-1000-200-1-4 230 19286 17746 1444 681 8147 79627
ce500-1000-200-1-5 160 945 70 1456 636 495 3987
ce500-1000-200-5-1 214 2670 785 1146 2354 2546 64371
ce500-1000-200-5-2 182 221 125 1245 527 162 1329
ce500-1000-200-5-3 164 2870 285 1024 652 1656 3312
ce500-1000-200-5-4 161 1376 176 1070 385 137 266
ce500-1000-200-5-5 142 156 27 1208 339 264 194
ce500-1000-200-10-1 162 298 46 1020 568 257 2052
ce500-1000-200-10-2 273 810 194 1306 812 116 5612
ce500-1000-200-10-3 146 979 305 1067 421 733 1549
ce500-1000-200-10-4 133 961 79 1104 224 21 18
ce500-1000-200-10-5 134 192 27 1191 449 107 468

Table 5: Details of branch-and-cut algorithms for F2 and F3
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F2 F3
Data lb1 gap bb time result lb1 gap bb time result
ALBA-3-1 2391.8 0 236 5.34 2511 2319.2 0 209 2.08 2511
ALBA-3-2 2124.7 0 119 4.14 2324 2011.2 0 74 2.15 2324
ALBA-3-3 2012.8 0 74 1.88 2155 2070.7 0 30 1.32 2155
ALBA-3-4 2363.7 0 959 53.42 3074 2621.0 0 334 13.39 3074
ALBA-3-5 2244.0 0 71 3.63 2440 2355.1 0 21 2.04 2440
ALBA-5-1 2845.0 0 703 28.15 3125 2712.3 0 1105 24.26 3125
ALBA-5-2 2468.3 0 637 24.70 2926 2480.5 0 1655 35.78 2926
ALBA-5-3 3013.8 0 279 9.93 3170 2961.5 0 446 13.12 3170
ALBA-5-4 2447.8 0 298 8.78 2584 2405.8 0 433 7.77 2584
ALBA-5-5 2472.4 0 477 24.66 2642 2535.6 0 112 3.22 2642
ALBA-7-1 2989.7 0 495 21.33 3397 2879.4 0 528 13.64 3397
ALBA-7-2 3200.1 0 793 29.71 3558 3192.1 0 740 21.77 3558
ALBA-7-3 3234.6 0 1939 68.88 3647 3125.3 0 1913 64.31 3647
ALBA-7-4 3255.8 0 365 15.20 3461 3264.4 0 789 24.63 3461
ALBA-7-5 2540.8 0 401 23.27 2821 2642.5 0 249 8.81 2821
MADR-3-1 2511.2 0 11215 2027.39 2925 2658.0 0 4757 137.62 2925
MADR-3-2 3103.3 0 10653 1972.94 3665 3197.5 0 28755 2731.95 3665
MADR-3-3 2580.7 0 2556 366.50 3045 2714.9 0 2516 112.25 3045
MADR-3-4 2829.3 0 8838 2463.51 3295 2936.4 0 11386 794.31 3295
MADR-3-5 2704.7 0 3603 552.06 3165 2760.4 0 7960 1303.2 3165
MADR-5-1 3479.6 0 7116 1398.53 3945 3568.7 0 4261 593.94 3945
MADR-5-2 4234.9 0 3124 280.35 4570 4239.4 0 6871 213.86 4570
MADR-5-3 3850.6 0 17362 4067.07 4505 3810.2 0 4395 480.13 4505
MADR-5-4 3780.9 0 1526 184.09 4020 3840.0 0 2605 180.52 4120
MADR-5-5 3583.5 0 7894 1156.25 4010 3695.5 0 6199 738.96 4010
MADR-7-1 4287.3 0 5041 850.95 4645 4329.4 0 14985 2512.30 4645
MADR-7-2 4363.8 0 7424 1499.57 4650 4350.3 0 4825 477.29 4650
MADR-7-3 4120.9 1.05 33074 7200.08 4620 4234.8 0 16184 2128.87 4620
MADR-7-4 4190.7 2.27 27065 7200.07 4655 4186.7 2.48 39664 7200.06 4645
MADR-7-5 4370.1 0 12706 2958.65 4735 4338.2 0 23533 4535.04 4735

Table 6: Comparison of performance of F2 and F3 on undirected instances

F2 F3
Data succ gap bb time result succ gap bb time result
MB0537-0.5 4 1.75 10330.2 3379.42 17592.0 0 1.07 38679.6 7200.72 17460.4
MB0537-1 3 0.59 10425.2 4707.06 18646.8 0 1.33 63897.2 7201.54 18671.4
MB0537-5 5 0 3242.0 185.89 21712.2 3 0.19 138095.6 3937.83 21712.2
MB0537-10 5 0 1040.2 74.01 22666.2 5 0 163733.6 2418.27 22666.2
MB0547-0.5 0 9.28 5450.2 7200.63 15559.8 0 6.95 19457.4 7201.09 15489.2
MB0547-1 0 3.38 14069 7201.74 17155.0 0 3.48 42625.4 7202.20 17216.2
MB0547-5 5 0 4428.6 470.27 21343.2 4 0.13 27233.8 1639.97 21343.2
MB0547-10 5 0 1461.6 79.97 22404.0 5 0 31992.4 756.16 22404.0

Table 7: Comparison of performance of F2 and F3 on mixed-graph instances
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When M is bounded more strictly, F2 is much better than F3, so we do not
present the results of the algorithm for F3.

The results for directed- and mixed-graph instances show the good per-
formance of the algorithm UB2. It not only finds better solutions but is also
faster in almost all the instances that the branch-and-cut algorithms can not
solve exactly. The performance of algorithm with M = 5 is slightly better
than with M = MCPP but bounding M too strictly can make the problem
infeasible, two instances ce500-1500-5-3-150 and ce500-1500-10-3-150 for ex-
ample. The quality of UB1 is poor, especially on the directed-graph instances
where r = 200 m as well as on the mixed-graph instances. It only works bet-
ter on the easy instances with r = 150 m and t = 0.5, 1. However, it is much
faster than UB2.

4. Conclusion

We have proposed a new formulation for the CEARP. In contrast to
two formulations in the literature, this formulation has an important ad-
vantage: it does not require Big-M constraints. Branch-and-cut algorithms
have been developed for three formulations, and the three formulations have
been compared. The results show that the branch-and-cut algorithms based
on our new formulation and on the formulation of [6] outperform the other
algorithms considered. In comparison with the formulation of [6], our new
formulation is better on directed- and undirected-graph instances but worse
on mixed-graph instances. Normally, our new formulation gives a better gap,
but an enormous branch-and-bound tree is the price to pay. We also propose
a MIP-based constructive heuristic for the CEARP on directed- and mixed-
graph instances based on the formulation of [6] in which the large number
M is bounded more strictly.
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UB1 UB2-F2, M=5 UB2-F2, M=MCPP Bnc
Data Time Gap Time Gap MCPP Time Gap Time
ce500-1500-150-0.5-1 6.93 14.71 3819.53 -0.32 11 1128.79 -0.32 7202.29
ce500-1500-150-0.5-2 7.49 16.97 473.07 -0.69 12 1084.34 -0.69 7202.72
ce500-1500-150-0.5-3 7.80 15.81 141.14 -0.02 15 171.44 -0.02 7202.46
ce500-1500-150-0.5-4 8.28 13.30 1337.99 -0.80 12 7202.44 -0.79 7202.45
ce500-1500-150-0.5-5 7.30 13.97 1699.12 -0.33 10 7202.37 -0.33 7202.51
ce500-1500-150-1-1 10.97 10.02 143.32 -0.07 11 129.40 -0.07 7206.93
ce500-1500-150-1-2 11.25 6.24 83.17 0 12 90.92 0 505.35
ce500-1500-150-1-3 11.50 6.39 153.90 0 15 121.17 0 121.73
ce500-1500-150-1-4 11.60 12.62 480.28 -0.10 12 746.87 -0.10 7206.53
ce500-1500-150-1-5 11.19 11.38 7206.52 -0.12 10 7206.26 0.03 7206.48
ce500-1500-150-5-1 57.61 2.94 140.66 0 11 117.08 0 452.86
ce500-1500-150-5-2 54.70 2.41 133.76 0 12 132.17 0 128.71
ce500-1500-150-5-3 54.15 3.58 15 147.08 0 166.73
ce500-1500-150-5-4 51.24 3.62 93.06 0 12 79.82 0 64.19
ce500-1500-150-5-5 53.93 3.04 147.37 0 10 166.00 0 147.09
ce500-1500-150-10-1 119.36 1.75 143.05 0 11 152.90 0 152.53
ce500-1500-150-10-2 107.62 2.26 164.46 0 12 175.16 0 212.81
ce500-1500-150-10-3 118.05 2.57 15 178.73 0 197.64
ce500-1500-150-10-4 101.88 2.78 175.58 0 12 178.49 0 201.64
ce500-1500-150-10-5 115.54 2.91 250.78 0 10 218.16 0 945.25
ce500-1000-200-0.5-1 4.58 30.25 88.65 0 10 54.29 0 7200.69
ce500-1000-200-0.5-2 4.69 42.00 66.63 0 14 161.62 0 7200.78
ce500-1000-200-0.5-3 4.62 33.06 96.97 0 12 354.75 0 7200.74
ce500-1000-200-0.5-4 4.57 41.92 287.06 -0.17 12 252.59 -0.17 7200.71
ce500-1000-200-0.5-5 4.68 39.59 89.17 0 11 81.70 0 137.05
ce500-1000-200-1-1 5.78 24.22 78.95 0 10 106.86 0 461.58
ce500-1000-200-1-2 5.87 35.84 73.87 0 14 182.10 0 140.30
ce500-1000-200-1-3 6.07 23.36 180.66 0 12 81.72 0 6209.50
ce500-1000-200-1-4 5.94 30.50 112.85 0 12 358.85 0 7202.02
ce500-1000-200-1-5 5.99 28.21 23.47 0 11 15.51 0 38.03
ce500-1000-200-5-1 19.57 30.18 60.29 0 10 97.54 0 130.37
ce500-1000-200-5-2 17.98 10.98 74.72 0 14 81.14 0 36.33
ce500-1000-200-5-3 21.04 10.41 58.55 0 12 71.51 0 121.71
ce500-1000-200-5-4 21.14 18.55 34.15 0 12 42.40 0 57.89
ce500-1000-200-5-5 21.19 18.32 24.90 0 11 28.32 0 19.58
ce500-1000-200-10-1 39.85 9.79 67.88 0 10 95.28 0 67.97
ce500-1000-200-10-2 35.85 6.63 49.28 0 14 55.72 0 57.21
ce500-1000-200-10-3 42.70 4.45 80.61 0 12 86.33 0 82.84
ce500-1000-200-10-4 42.54 11.91 49.51 0 12 46.20 0 69.35
ce500-1000-200-10-5 43.33 12.98 62.41 0 11 57.18 0 444.56

Table 8: Upper bounds based on F2 for directed-graph instances
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UB1 UB2-F2, M=5 UB2-F2, M=MCPP BnC
Data Time Gap Time Gap MCPP Time Gap Time
MB0537-0.5-1 4.77 34.40 345.39 0 7 278.38 0 992.57
MB0537-0.5-2 4.77 39.41 382.67 0 7 397.07 0 4491.65
MB0537-0.5-3 5.04 36.08 2726.26 -0.51 7 981.18 -0.51 7200.69
MB0537-0.5-4 4.73 37.74 146.45 0 7 212.68 0 690.54
MB0537-0.5-5 5.09 31.65 478.33 0 7 214.05 0 3521.67
MB0537-1-1 5.79 33.56 276.76 0 7 155.04 0 1382.62
MB0537-1-2 5.79 33.60 108.31 0 7 127.44 0 3629.55
MB0537-1-3 5.78 33.08 393.87 -0.45 7 287.98 -0.45 7201.13
MB0537-1-4 5.53 38.33 723.45 0 7 3143.52 0 7201.26
MB0537-1-5 5.88 34.87 2471.76 0 7 617.78 0 4120.76
MB0537-5-1 13.40 17.44 274.46 0 7 283.69 0 593.70
MB0537-5-2 13.08 15.59 41.81 0 7 50.01 0 60.67
MB0537-5-3 13.78 18.12 92.07 0 7 96.55 0 138.32
MB0537-5-4 14.10 17.96 63.01 0 7 107.87 0 93.19
MB0537-5-5 13.66 15.07 64.30 0 7 57.08 0 43.58
MB0537-10-1 23.27 13.45 69.48 0 7 72.61 0 73.15
MB0537-10-2 25.68 14.77 67.03 0 7 74.79 0 75.52
MB0537-10-3 25.64 18.29 185.10 0 7 144.82 0 114.87
MB0537-10-4 25.22 11.42 49.43 0 7 30.24 0 30.61
MB0537-10-5 24.12 14.85 40.86 0 7 46.35 0 75.92
MB0547-0.5-1 5.60 44.89 7200.58 -4.03 14 7200.88 -1.40 7200.65
MB0547-0.5-2 5.23 41.12 1460.73 -1.20 14 2645.67 -1.20 7200.60
MB0547-0.5-3 5.22 45.92 7200.57 -1.06 14 2215.78 -1.33 7200.59
MB0547-0.5-4 5.31 39.19 7200.69 -1.34 14 7201.31 -0.65 7200.62
MB0547-0.5-5 5.21 40.64 7200.58 -1.65 14 7200.61 -1.63 7200.68
MB0547-1-1 6.25 36.72 66.54 -0.17 14 233.73 -0.17 7201.69
MB0547-1-2 6.27 33.26 383.36 -0.31 14 1211.10 -0.31 7201.86
MB0547-1-3 6.54 26.39 7201.62 -1.06 14 7201.70 -1.09 7201.60
MB0547-1-4 6.20 32.59 954.23 -0.21 14 969.81 -0.21 7201.87
MB0547-1-5 6.21 33.52 7201.62 -0.69 14 7201.59 -0.66 7201.67
MB0547-5-1 17.35 29.24 17.54 0 14 24.49 0 46.89
MB0547-5-2 17.62 40.39 18.28 0 14 43.18 0 32.89
MB0547-5-3 18.28 139.02 18.05 0 14 67.34 0 2158.19
MB0547-5-4 17.27 14.59 33.64 0 14 50.53 0 40.31
MB0547-5-5 17.46 16.91 64.69 0 14 52.02 0 73.08
MB0547-10-1 22.94 44.51 17.99 0 14 48.91 0 98.00
MB0547-10-2 35.85 14.71 60.13 0 14 67.20 0 54.33
MB0547-10-3 32.65 12.50 83.55 0 14 105.39 0 138.32
MB0547-10-4 31.59 11.56 69.47 0 14 64.96 0 47.86
MB0547-10-5 31.88 14.39 55.85 0 14 67.30 0 61.35

Table 9: Upper bounds based on F2 for mixed-graph instances
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