
An Exact Algorithm for the Two-

Dimensional Orthogonal Packing

Problem with Unloading Constraints

Jean-François Côté
Michel Gendreau
Jean-Yves Potvin

April 2013

CIRRELT-2013-26

G1V 0A6

Bureaux de Montréal : Bureaux de Québec :

Université de Montréal Université Laval
C.P. 6128, succ. Centre-ville 2325, de la Terrasse, bureau 2642
Montréal (Québec) Québec (Québec)
Canada H3C 3J7 Canada G1V 0A6
Téléphone : 514 343-7575 Téléphone : 418 656-2073
Télécopie : 514 343-7121 Télécopie : 418 656-2624

 www.cirrelt.ca

An Exact Algorithm for the Two-Dimensional Orthogonal Packing
Problem with Unloading Constraints

Jean-François Côté1,2, Michel Gendreau1,3, Jean-Yves Potvin1,2,*

1 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)
2 Department of Computer Science and Operations Research, Université de Montréal, P.O. Box

6128, Station Centre-Ville, Montréal, Canada H3C 3J7
3 Department of Mathematics and Industrial Engineering, École Polytechnique de Montréal, P.O.

Box 6079, Station Centre-ville, Montréal, Canada H3C 3A7

Abstract. This paper describes a branch-and-cut algorithm for solving a two-dimensional

orthogonal packing problem with unloading constraints, which often occurs as a

subproblem of mixed vehicle routing and loading problems. At each node of the branching

tree, cuts are generated to find a feasible integer solution to a one-dimensional contiguous

bin packing problem. If an integer solution is obtained, an auxiliary problem is then solved

to find a feasible two-dimensional packing of the items. Different techniques to reduce the

size of the solution space and uncover infeasibility are also described. A numerical

comparison with the best known exact method is reported at the end on benchmark

instances.

Keywords: Vehicle routing, unloading constraints, packing, branch-and-cut.

Acknowledgements. Financial support for this work was provided by the Natural

Sciences and Engineering Research Council of Canada (NSERC). This support is

gratefully acknowledged.

Results and views expressed in this publication are the sole responsibility of the authors and do not
necessarily reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: Jean-Yves.Potvin@cirrelt.ca
Dépôt légal – Bibliothèque et Archives nationales du Québec
 Bibliothèque et Archives Canada, 2013

© Copyright Côté, Gendreau, Potvin and CIRRELT, 2013

1 Introduction

Typically, when solving a mixed vehicle routing and loading problem, a delivery
route is first generated and then a feasibility check is performed to determine if
the goods can be feasibly packed inside the vehicle. This feasibility problem, in
two dimensions (2D) or three dimensions (3D), is far from obvious and the work
reported here focuses on this issue.

Let us consider the delivery route R of two-dimensional rectangular objects
(called items, thereafter), which is defined as a sequence of cardinality R over a set
of customers J = {1, 2, ..., R}. Without loss of generality, we will assume in the
following that customer j is the j-th customer in the sequence, that is, customer 1
is delivered first, customer 2 is delivered second, etc. Let us also consider the set
of items I = {1, ..., n} to be delivered to the customers, where each item i ∈ I is
characterized by its width wi, its height hi, as well as its associated customer and
delivery order seqi ∈ {1, 2, ..., R} in route R. Note that all items delivered to a
given customer have the same delivery order. The loading area of the vehicle (called
bin, thereafter) has width W and height H. Given these assumptions, we want to
know if the items can fit inside the bin, that is, without overlap and in such a way
that the items of any given customer are directly available at delivery time (i.e.,
the items can be moved out by directly pulling each one of them outside of the bin
without moving any other item). The latter characteristic will be referred to as the
unloading constraints. It should be noted that the unloading constraints are also
referred to as sequential loading, rear loading, multi-drop or LIFO constraints in the
literature. We prefer unloading constraints because these constraints relate to the
deliveries.

Figure 1 presents an example for a route that starts from the depot 0 and then
visits the customers 1, 2, 3, 4 and 5. Figures 1(a) and 1(b) show two possible
packings for this route: the first one satisfies the unloading constraints while the
second one does not (note that the items are taken out from the top of the bin, which
corresponds to the rear of the vehicle). In the second case, the items of customers
2 must clearly be moved to allow the items of customer 1 to be unloaded.

This problem is the classical 2D Orthogonal Packing Problem (2OPP) with the
addition of unloading constraints (UL). The 2OPP is often found as a subproblem
of the 2D Strip Packing Problem (2SPP) and the 2D Bin Packing Problem (2BPP).
Recent exact methods for the 2OPP can be found in [7, 11, 14, 24], while exact
methods for the 2SPP are found in [2, 3, 6, 10, 23]. A recent work on the 2SPP with
unloading constraints is also reported in [26] where a GRASP heuristic, previously
proposed in [1], and two approximation algorithms are used to solve the problem.

The 2OPP-UL occurs in several papers as a subproblem of mixed vehicle routing
and loading problems, when unloading constraints apply as well. In these problems,
a fleet of vehicles must visit a set of customers while minimizing the total traveled
distance. In addition, the items in the route of each vehicle must be feasibly packed.

1

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

Infeasible
0

0

3

1 1 1

1

5

2

4 2 2

3

1

3

4

4

5

5

5

H
y

W x 0

H
y

W x

5 3

4

4

3
1

2 2

5
5

1
1

1

Feasible

Figure 1: Packing examples

The literature on this problem distinguishes four main variants, depending if the
items can be rotated by 90 degrees (non-oriented) or not (oriented) and if unloading
constraints apply or not:

• 2|OU |: two-dimensional oriented with unloading constraints;

• 2|OR|: two-dimensional oriented without unloading constraints;

• 2|NU |: two-dimensional non-oriented with unloading constraints;

• 2|NR|: two-dimensional non-oriented without unloading constraints.

Our work focuses on the 2|OU | variant. The 2|OR| and 2|NR| variants are
related to the 2OPP and a vast literature can be found on the subject. We believe
that the work reported here can also be generalized to the non-oriented variant
2|NU |.

The heuristics reported in the literature for mixed vehicle routing and loading
problems are often local search heuristics which are designed to improve the current
solution by applying some modification to it (see, for example, [12, 15, 16, 22, 29]).
A modification to a vehicle route is accepted only if all constraints related to the
packing are satisfied. This is typically verified with simple heuristics like the Bottom-
Left, Bottom-Left Fill and Touching Perimeter heuristics [29].

Only a few exact algorithms are reported in the literature for these problems
due, in particular, to the inherent difficulty of the packing. In [20], a branch-and-
cut algorithm is proposed where the classical Bottom-Left heuristic if first used
and, if it fails, an exact branch-and-bound algorithm based on the work in [23]
is applied. More recently, the authors in [9] describe a branch-and-cut-and-price

2

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

algorithm where a similar, but more involved, tree-based search is proposed. A
lower bound that takes into account the unloading constraints is also reported. The
reader is referred to the exhaustive surveys in [5, 19] for the three-dimensional case.

When considering the 2OPP, a relaxation known as the One-dimensional Con-

tiguous Bin Packing Problem (1CBP) can be used to generate an initial lower bound
on the required height of the bin. This relaxation is defined as follows:

Definition 1.1 Given that each item i of width wi is cut into hi slices of unitary

height, we ask for the packing of all slices into a minimum number of bins of capacity

W , in such a way that if the first slice of item i is packed into bin j, then the kth

slice is packed into bin j + k, k ∈ {1, 2, ..., hi}.

The number of bins obtained is a lower bound on the required height H. That
is, if the resulting lower bound is larger than H then the problem is infeasible,
otherwise the problem remains undecided. Note that if we have a feasible solution
for the 2OPP, a feasible solution of the 1CBP can be obtained by considering the
y coordinate of the bottom-left corner of each item as the height position of its
starting slice in the 1CBP. Conversely, one could try to build a feasible solution for
the 2OPP from a 1CBP solution by using the height position of the first slice of
every item as the set of y-coordinates and then by determining a set of x-coordinates
that does not lead to any overlap. This kind of two-phase approach can be found
in [10], although the authors go the other way around by first solving for the x-
coordinates and then, for the y-coordinates. Intuitively, this approach looks good
in our case, given that the width W (x-axis) of a vehicle’s loading area is typically
smaller than its height H (y-axis). It means that the first problem is smaller, while
the second problem exhibits a larger degree of freedom when suitable y-coordinates
must be found. Unfortunately, a preliminary computational study has shown that
the structure of the x-coordinates obtained by solving the first problem seems to
preclude, in most cases, the identification of y-coordinates that satisfy the unloading
constraints.

Given the above observations, we propose a branch-and-cut algorithm to solve
the 2OPP-UL, where the 1CBP is first solved to get y-coordinates, followed by a
so-called x-check problem to get the corresponding x-coordinates. Several prepro-
cessing routines and inequalities that take into account the unloading constraints
are also proposed to tighten the problem.

The remainder of the paper is organized as follows. A basic mathematical model
is first introduced in Section 2. Then, the outline of the problem-solving methodol-
ogy is explained in Section 3. Various inequalities for LP relaxations of the 1CBP
are reported in Section 4, including a description of the separation routines associ-
ated with these inequalities. Section 5 describes the various preprocessing routines,
while the lower bounds are presented in Section 6. Computational results are finally
reported in Section 7.

3

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

2 Model

In the following, the mathematical notation is first presented. Then, the notion of
normal patterns is introduced to reduce, without impairing optimality, the set of
solutions to be examined. After these preliminaries, an integer programming model
for the 2OPP-UL is reported.

2.1 Notation

The following notation will be used throughout the paper:

• Ii : set of items with delivery order i (same customer),

• I=i : set of items delivered at the same time than item i,

• I<i : set of items delivered before item i,

• I
<,w
i : set of items delivered before item i of width > w,

• I>i : set of items delivered after item i,

• I
>,w
i : set of items delivered after item i of width > w,

• Σ>
(i) =

∑

k∈I\{i}
seqk>seqi

wkhk : total area of the items delivered after item i,

• Σ>,w

(i) =
∑

k∈I\{i}
seqk>seqi
wk>w

wkhk : total area of the items of width > w delivered after

item i ,

• Σ<
(i,j) =

∑

k∈I\{i,j}
seqi<seqk<seqj

wkhk : total area of the items delivered after item i

but before item j,

• Σ<,w

(i,j) =
∑

j∈I\{i,j}
seqi<seqk<seqj

wk>w

wkhk : total area of the items of width > w delivered

after item i but before item j.

This notation is extended in the following to include items that are delivered at
the same time than item i (i.e., the < and > signs are replaced by ≤ and ≥ signs,
respectively).

2.2 Normal Patterns

In general, the bottom-left corner of a given item i ∈ I can be found at every (x, y)
coordinate where x ∈ [0,W − wi] is the width position and y ∈ [0, H − hi] is the

4

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

height position. This set of coordinates can however be reduced by considering only
normal patterns [18], which are defined as follow:

PW
i = {x =

∑

j∈I\{i}

wjξj : 0 ≤ x ≤W − wi, ξj ∈ {0, 1}, j ∈ I\{i}} (1)

PH
i = {y =

∑

j∈I\{i}

hjξj : 0 ≤ y ≤ H − hi, ξj ∈ {0, 1}, j ∈ I\{i}} (2)

When the unloading constraints are considered, the set PH
i can be reduced by

observing that items to be delivered after item i cannot be over it:

PH
i = {y =

∑

j∈I≥i \{i}

hjξj : 0 ≤ y ≤ H − hi, ξj ∈ {0, 1}, j ∈ I
≥
i \{i}} (3)

We define PW =
⋃

i∈I P
W
i and PH =

⋃

i∈I P
H
i as the set of all possible width

and height positions. We also define the set PW
i (r) as the set of positions that cover

width position r. The set PH
i (t) is defined similarly for height position t:

PW
i (r) = {x ∈ PW

i : [r − wi + 1]+ ≤ x ≤ r}, i ∈ I, r ∈ PW (4)

PH
i (t) = {y ∈ PH

i : [t− hi + 1]+ ≤ y ≤ t}, i ∈ I, t ∈ PH

2.3 Mathematical model

Given the decision variables

• xir is 1 if the bottom-left corner of item i is located at width position r, 0
otherwise, i ∈ I, r ∈ PW

i ;

• yit is 1 if the bottom-left corner of item i is located at height position t, 0
otherwise, i ∈ I, t ∈ PH

i ,

we formulate the 2OPP-UL as follow :

5

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

(2OPP-UL)
∑

r∈PW
i

xir = 1 i ∈ I (5)

∑

t∈PH
i

yit = 1 i ∈ I (6)

∑

r∈PW
i (r̄)

xir+
∑

r∈PW
j (r̄)

xjr+
∑

t∈PH
i (t̄)

yit+
∑

t∈PH
j (t̄)

yjt ≤ 3 i ∈ I, j ∈ I=i , r̄ ∈ PW , t̄ ∈ PH(7)

yit̄+
∑

r∈PW
i (r̄)

xir +
∑

r∈PW
j (r̄)

xjr +
∑

t∈PH
j (t̄)

t≤t̄+hi−1

yjt ≤ 3 i ∈ I, j ∈ I<i , r̄ ∈ PW , t̄ ∈ PH
i (8)

xir ∈ {0, 1} r ∈ PW
i , i ∈ I (9)

yit ∈ {0, 1} t ∈ PH
i , i ∈ I (10)

Constraints (5) and (6) impose a (x,y) coordinate for each item. Constraints (7)
insure that no pair of items covers the same (x,y) coordinate. In particular, if items
i and j overlap, it is possible to find a coordinate (x,y) such that the left hand side
of constraint (7) equals 4. The unloading constraints are imposed through (8). If
item i is to be delivered after j and both items cover the same x coordinate (i.e.,
the summation of the two terms involving the x-coordinates equals 2), then item j

cannot be below i (i.e., the summation of the two terms involving the y-coordinates
must be smaller than or equal to 1). The number of constraints of types (7) and
(8) is pseudo-polynomial and grows very quickly with W and H, thus leading to
a model which is not really useful in practice. Accordingly, the next section will
describe an alternative approach to tackle this problem.

3 Problem-solving methodology

In the following, we first describe preprocessing techniques aimed at reducing the
number of solutions to be examined. Then, instead of solving directly the 2OPP-
UL model, a two-phase approach similar to the one reported in [10] for the 2SPP
is applied. Basically, at each node of our branch-and-cut algorithm, a modified
1CBP (formulated as a binary program) is solved to find y coordinates. Then, the
corresponding x-check problem is addressed in the second phase.

3.1 Preprocessing

Some preprocessing is first applied to tighten the problem. In this process, infeasi-
bility might be uncovered. The algorithmic flow is the following:

1. Apply height position restrictions

6

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

2. Apply lifting

3. Calculate lower bounds SPP , L2, L
H
3 , LW

3

4. From bottom to top-fill do

(a) Apply precedence relations

(b) Apply normal pattern dominance

(c) Apply normal pattern removal

5. Select best fill

6. Calculate LH
4 , LW

4

In step 1, the minimum and maximum possible height positions for each item are
determined (section 5.1). This is followed by lifting procedures aimed at artificially
increasing the item sizes (section 5.2). Then, some lower bounds are calculated
(section 6). Different ways of filling the bin, either from the bottom, from the top,
or from the bottom and top are considered (section 5.5), while applying normal
pattern dominance and normal pattern removal to reduce as much as possible the
set of normal patterns (section 5.4). The filling associated with the smallest set
of normal patterns is then selected. At the end, two sophisticated bounds, which
exploit the current set of normal patterns, are applied (section 6) .

At each step, infeasibility tests are performed to detect if the current set of
normal patterns for any given item becomes empty or if the minimum and maximum
height positions of any given item are not coherent with the dimensions of the bin
(e.g., if the minimum height position of item i must be larger than H − hi).

3.2 Modified 1CBP

The modified 1CBP has the same variables than the 2OPP-UL and is defined as
follow :

(1CBP)
∑

t∈PH
i

yit = 1 i ∈ I (11)

∑

i∈I

∑

t̄∈PH
i (t)

wiyit̄ ≤W t ∈ PH (12)

∑

yit∈S

yit ≤ |S| − 1 S ∈ S (13)

yit ∈ {0, 1} i ∈ I, t ∈ PH
i (14)

7

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

Basically, this is a standard 1CBP but with the number of bins fixed at H.
Constraints (11) state that the first slice of each item must be assigned to a bin.
Constraints (12) ensure that the capacity W of each bin is satisfied. Finally, con-
straints (13) correspond to Benders’ feasibility cuts. The set S contains all subsets
S = {yit} ∈ S such that an infeasibility occurs in the x-check problem when all
variables in S are equal to 1. Given that set S can be very large, these constraints
are relaxed in the initial formulation of the problem.

Within the branch-and-cut algorithm, the x-check problem is called each time
a binary solution to the current 1CBP linear relaxation is obtained. If the x-check
problem is feasible, then we have a feasible solution to the 2OPP-UL. Otherwise,
a Benders’ cut of type (13) is added to the 1CBP model. Such an inequality is
very weak because it typically removes a single (x, y) coordinate from the solution
space. However, stronger cuts can be generated by applying an idea similar to the
one in [10]. Let S be the subset of variables equal to 1 in a solution of the 1CBP
for which the corresponding x-check problem is infeasible. Let S′ ⊂ S be such that
the corresponding x-check problem is also infeasible. Then, any modification to the
y coordinates of the items in S\S′ induces a cut that subsumes the cut generated
by S. Based on this observation, the set S is reduced as much as possible to obtain
a minimal infeasible set (MIS) [8].

To find a MIS, the variables in S = {yit} are considered sequentially from the
one with the smallest height position to the one with the largest height position. We
remove the chosen variable from S and solve the x-check problem for the reduced
set. If it is feasible, the variable is put back in S, otherwise a smaller set that
is still infeasible is found. We repeat the procedure until all variables have been
considered. Although the order of removal of the variables from set S can lead
to different MISs, a single order was considered here (no significant improvement
was observed in preliminary tests using multiple MISs). Note also that the resulting
inequality cannot be lifted as in [10], because the infeasibility of the x-check problem
can come from the unloading constraints.

Apart from the Bender’s cuts, additional cuts are generated when the solution
of the current 1CBP linear relaxation is fractional. These inequalities are described
in Section 4.

3.3 x-check problem

The model for the x-check problem is obtained by replacing the yit variables in
the 2OPP-UL model by their optimal values in the 1CBP problem. Unfortunately,
the resulting model is still too large to be solved in practice with CPLEX. The
x-check problem is thus addressed with an enumerative tree search-based approach,
which proves to be very efficient. Let ȳi be the y-coordinate of item i in the 1CBP
solution. The algorithm starts by filling the bottom of the bin and then moves up
progressively. At the root node, no item is in the bin. Then, for each item i such that

8

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

ȳi = 0 a child node is created with i at coordinate (0, 0) in the bin. For subsequent
nodes, let (xcur, ycur) be the current lowest leftmost position. For each item i such
that ȳi = ycur, a child node is created with item i at (xcur, ycur) if the item fits
without overlap and if the unloading constraints are satisfied. An empty node is
also created where coordinates (xcur, ycur) to (xcur+ex, ycur+ey) are forbidden with
ex = mini∈I′{minr∈PW

i
{r : r > xcur}}, ey = mini∈I′{ȳi : ȳi > ycur} and I ′ the set of

items that are not yet in the bin.

A node is fathomed when the needed empty space is larger than the available
empty space. This simple scheme proved the feasibility or infeasibility of every
x-check problem after generating only a few nodes in the branching tree.

4 Inequalities

Before describing our inequalities, we need to introduce the concept of conflicting
items or, equivalently, conflicting variables. Let Y be the set of variables in our
1CBP. Let also yiti and yjtj be two variables in Y . Then, these variables are con-

flicting if they cannot cover a common x-coordinate without overlapping or violating
the unloading constraints. Figure 2 b) shows an example where the variables asso-
ciated with items 3 and 4 are conflicting. Clearly, at the time of delivery, item 4
needs to be moved to reach item 3, thus violating the unloading constraints. Two
variables yiti and yjtj are conflicting if they satisfy one of these two conditions:

• seqi < seqj and ti < tj + hj ,

• seqi = seqj and ti < tj + hj and tj < ti + hi,

Two variables yit are also considered to be conflicting if they are associated with
the same item i ∈ I. The reason is that only one of these variables should be equal
to 1, see equation (11).

A subset C ⊆ Y is mutually conflicting if for every pair of variables yiti , yjtj ∈ C,
yiti is conflicting with yjtj . For example, the set C = {y1t1 , y2t2 , y3t3 , y4t4} is mutually
conflicting in both Figures 2 a) and b). In the case of Figure 2 b), the solution is not
UL-feasible because the summation over the widths of the items in set C exceeds W .
Conversely, the same summation is equal to W in Figure 2 a), which is a UL-feasible
solution. This observation can be generalized through the following:

Proposition 4.1 In any feasible 2OPP-UL solution, the summation over the widths

of the items in every mutually conflicting set is smaller than or equal to W .

Proof. By contradiction, let us assume that we have a set C = {yi1t1 , yi2t2 , ..., yiktk}
of mutually conflicting variables in a feasible 2OPP-UL solution such that seqi1 ≥

9

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

1

x0

1

Wa)

H

y

0
b)

y

H

W
x

6

4

5

7
8

6
7

54

3

2 3 2

Figure 2: Mutually conflicting sets

seqi2 ≥ ... ≥ seqik and the summation over the widths of the corresponding items
is strictly larger than W (for the sake of simplicity, it is assumed that the ij ’s are
all different). Since variable yi1t1 is conflicting with yi2t2 , the required width for the
two corresponding items is wi1 +wi2 . The same applies to yi3t3 which is conflicting
with yi1t1 and yi2t2 , thus requiring a width of wi1 + wi2 + wi3 . Following the same
line of reasoning, the required width is

∑k
j=1wij which is strictly larger than W

(by hypothesis). This observation contradicts the fact that the 2OPP-UL solution
is feasible. This proof can be easily extended to the case where the ij ’s are not all
different.

These observations led to the conflict inequalities which are descried in the next
section.

4.1 Conflict inequalities

Let us consider the following proposition:

Proposition 4.2 In every feasible 2OPP-UL solution, we have:

∑

yit∈C

wiyit ≤W ∀C ∈ Y such that
∑

i∈I(C)

wi > W, (15)

where Y is the set of all mutually conflicting subsets of Y . Inequalities (15) are
classical knapsack constraints. For any given mutually conflicting set C, we can
instead use the following cover inequality :

∑

yit∈C

yit ≤ |I(C)| − 1 (16)

10

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

where I(C) is the set of items associated with the variables in C. One can observe
that inequality (16) is a special case of the classical GUB cover inequality. We recall
that C is a GUB cover if

∑

i∈I(C)wi > W and if no two variables are associated with
the same item. Set C can be transformed into a GUB cover by removing all variables
but one that belong to the same item. In addition, set C is a minimal GUB cover if
no proper subset of C is a GUB cover. Assuming that C is both mutually conflicting
and a minimal GUB cover, we can consider an extension E such that C ⊆ E, E is
mutually conflicting and maxi∈I(C){wi} ≤ mini∈I(E)\I(C){wi}. Inequality (16) can
then be extended and dominated by:

∑

yit∈E

yit ≤ |I(C)| − 1 (17)

We prefer here to use a special type of GUB lifted cover inequality because a
single weight wi is associated with the yit variables, for any given item i. Let C be
a minimal GUB cover and E be a mutually conflicting set such that C ⊆ E. Then
we can derive the following inequality:

∑

yit∈E,i∈I(C)

yit +
∑

yit∈E,i6∈I(C)

αiyit ≤ |I(C)| − 1 (18)

We will refer to the αi’s as the lifting coefficients. They can be computed by
solving a series of knapsack problems [17]. We will refer to these inequalities as
conflict inequalities.

4.2 Max flow inequalities

Another type of inequality is obtained by considering any mutually conflicting set
C such that

∑

i∈I(C)wi ≤ W . For example, let us assume that items 1, 5 and 6 in
Figure 3 are fixed at their current position. Then, we can identify the feasible areas
for all other items. For example, the items to be delivered after 1 but before 5 must
be in areas A1, B5, B6 or E.

Let tmin
i = minyjt∈C{t : j = i} and tmax

i = maxyjt∈C{t : j = i}. A maximum
flow problem, defined on an appropriate network, can be solved to know if the
remaining free items can lead to a feasible solution given that the items associated
with set C are fixed at their current position. More precisely, the network would be
as follow:

• a source node s,

• a destination node t,

• for each i ∈ I(C), nodes Ai and Bi, where Ai stands for the area immediately
under item i and Bi for the area immediately above it,

11

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

E

y

H

x
W0

1

5

6

B6 B5

A1

B1

A5
A6

Figure 3: Areas associated with mutually conflicting sets

• a node E for the remaining area,

• for each i ∈ I\I(C), a node ki,

• for each i ∈ I(C), an arc from s to Ai with a capacity equal to tmax
i wi,

• for each i ∈ I(C), an arc from s to Bi with a capacity equal to (H−tmin
i −hi)wi,

• an arc from s to E with a capacity equal to H(W −
∑

i∈I(C)wi),

• for each i ∈ I(C) and j ∈ I\I(C), an arc from Ai to kj with a capacity equal
to min{wi, wj}hj if hj ≤ tmax

i and seqi ≤ seqj ,

• for each i ∈ I(C) and j ∈ I\I(C), an arc from Bi to kj with a capacity equal
to min{wi, wj}hj if hj ≤ H − tmin

i − hi and seqi ≥ seqj ,

• for each i ∈ I\I(C), an arc from E to ki with a capacity equal to min{wi,W −
∑

i∈I(C)wi}hi

• for each i ∈ I\I(C), an arc from ki to t with a capacity equal to hiwi.

Let maxflow(C) be the maximum flow from s to t in this network. We then
have :

Proposition 4.3 If maxflow(C) is strictly smaller than
∑

i∈I\I(C) hiwi then the

mutually conflicting set C leads to an infeasible solution. The partial solution can

be forbidden through the following constraints:

∑

yit∈C

yit ≤ |I(C)| − 1 ∀C ∈ Y such that maxflow(C) <
∑

i∈I\I(C)

hiwi (19)

We will refer to these inequalities as the max flow inequalities.

12

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

4.3 Separation procedures

In the previous section, we introduced some properties of feasible 2OPP-UL so-
lutions. In many cases, the 1CBP solution given to the x-check problem will not
satisfy these properties. It is thus useful to look for a violated property before calling
the x-check problem. The inequality generated from a violated property will also be
stronger as it will focus on what truly makes the solution infeasible. Accordingly,
at each node of our branch-and-cut algorithm, we first check if the current solution
violates inequalities (15) or (19).

A simple heuristic and an exact method have been developed to separate violated
inequalities. Given that these inequalities are based on mutually conflicting sets,
the first algorithm generates conflicting sets in a heuristic way, while the second one
generates all of them.

Starting with an empty set, the heuristic first adds a randomly chosen variable
to this set. Then, at each iteration, a new randomly chosen variable in considered
and added to the set if it is conflicting with the other variables already in the set.
At the end, we check if the resulting set violates a conflict inequality. If this is the
case, the mutually conflicting set is kept. The method is called n times, where n is
the number of items.

The exact method generates all mutually conflicting sets using a tree search-
based algorithm. First, the yit variables are sorted in ascending order based on item
index i and height position t. Let Ord(yit) be the order of variable yit. At the root
node, for which there is no mutually conflicting set, a child node is created for each
variable and the associated conflicting set is a singleton with only this variable. In
subsequent nodes, a new variable is added to the set only if it is of higher order than
any variable in the set and if the variable is in conflict with all variables in the set.
Each mutually conflicting set produced in this way is checked to see if it violates an
inequality. If it does, the conflicting set is kept.

If the number of variables with a positive value is high, there might just be
too many mutually conflicting sets. Based on preliminary experiments, the exact
method is called only if this number is smaller than or equal to 1.1 times the number
of items n. Otherwise, the heuristic method is used. Note also that each inequality
must be violated by a value greater than or equal to 0.2 and that a maximum of 10
inequalities are added at each call.

The resulting inequalities are strengthened before they are added to the model.
For a conflict inequality of type (15), a corresponding inequality of type (18) is
added as it cuts fractional parts of the feasible domain. To generate an inequality of
type (18) from an inequality of type (15), set C is first transformed into a minimal
GUB cover by removing the variables with the largest weights. Then, variables with
a positive value that are in conflict with all variables already in C are added to
the set (considering these variables first proved to generate stronger inequalities).
Then, the same procedure is applied to the remaining variables. We then find the

13

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

lifting coefficients for the resulting extension by solving a series of knapsack problems

(see [21] for details). As previously mentioned, only one extension is created by
considering the variables to be added to C in random order.

For a max-flow inequality (19), the extension E = {yit ∈ Y : i ∈ I(C) and tmin
i ≤

t ≤ tmax
i } is used. That is, only the variables associated with the items that are

already in C and such that t is between tmin
i and tmax

i are considered.

5 Preprocessing

In this section, the various procedures that are applied during the initial prepro-
cessing phase are described.

5.1 Height position restrictions

If the first items to be delivered are at the bottom of the bin, the corresponding
solution is likely to be infeasible due to the unloading constraints. Figure 4 a) shows
that the items to be delivered before item i must necessarily be in areas B and C.
That is, if they are in area A, item i must be moved to get to these items, which
is forbidden. Similarly, the items to be delivered after i must be in areas A and C.
Figure 4 b) shows that if item i is at some height position yi ∈ [0, H], the unloading
constraints might force some items outside of the bin (we recall that the height
position of an item is defined as the height position of its bottom-left corner).

y1
i

A

C

W x

H

y

0 W

y

H

0

b)
x

a)

BB

i

Figure 4: Height position restrictions

Motivated by some lower bounds reported in [9], we define ymin
i and ymax

i as the
minimal and maximal height positions of item i ∈ I :

14

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

y
min,1
i = max















Σ>,W−wi

(i)

W









, max
j∈I

>,W−wi
i

{hj}







(20)

y
min,2
i =

⌈

[Σ>
(i) −H(W − wi) +

∑

j∈I
≤,wi
i

hj(wj − wi)]
+

wi

⌉

(21)

y
max,1
i = H −max















Σ<,W−wi

(i)

W









, max
j∈I

<,W−wi
i

{hj}







(22)

y
max,2
i = H −

⌈

[Σ<
(i) −H(W − wi) +

∑

j∈I
≥,wi
i

hj(wj − wi)]
+

wi

⌉

(23)

ymin
i = max{ymin,1

i , y
min,2
i } (24)

ymax
i = min{ymax,1

i , y
max,2
i } (25)

Equations (20) and (21) are obtained by considering only the items that must
lie below some item i. More precisely, the value ymin,1

i corresponds to the maximum
between a continuous relaxation over all items that must lie below i and the item of
maximum height that must also lie below i. The value y

min,2
i is the height position

obtained by pushing item i downward as long as the bottom of the bin is not reached
or an item in area A, by moving to area C, does not force an item outside of the
bin. Similar values in equations (22) and (23) are obtained by considering the items
that must lie above i.

The obtained values ymin
i and ymax

i in equations (24) and (25) can be improved
in two different ways. First, by considering items that cannot be beside i. Let us
suppose, for example, that item j is to be delivered after i and that wi + wj > W .
In this case, ymin

j + hj is clearly a lower bound on ymin
i . The second improvement

can be obtained by considering only normal patterns. In fact, the value ymin
i should

be the minimum height position of item i only if it corresponds to a normal pattern
(i.e., the bottom of item i touches the top of another item or the bottom of the
bin). If this is not the case, it can be reset to the minimum height position larger
than ymin

i which corresponds to a normal pattern. The same line of reasoning can
be applied to ymax

i . We thus obtain:

ymin
i = max{ymin,1

i , y
min,2
i , max

j∈I
>,W−wi
i

{ymin
j + hj}, min{t : t ∈ PH

i }} (26)

15

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

ymax
i = min{ymax,1

i , y
max,2
i , min

j∈I
<,W−wi
i

{ymax
j − hi}, max{t : t ∈ PH

i }} (27)

5.2 Lifting

As shown by previous authors [2, 6], if we do not find any combination of widths
such that their sum is equal to W , then it is possible to reduce the width W as
some unused space will remain. The same idea can be applied to the height H. The
values W ∗ and H∗ in equations (28) and (29) can be obtained through dynamic
programming. At the end, we reset W to W ∗ and H to H∗.

W ∗ = max{
∑

i∈I

ziwi :
∑

i∈I

ziwi ≤W, zi ∈ {0, 1}, i ∈ I} (28)

H∗ = max{
∑

i∈I

zihi :
∑

i∈I

zihi ≤ H, zi ∈ {0, 1}, i ∈ I} (29)

A similar procedure can then be applied to the item sizes. The increase in width
and height of item i ∈ I is given by the following equations:

∆wi = W −max{wi −
∑

j∈I\{i}

zjwj :
∑

j∈I\{i}

zjwj ≤W − wi, zj ∈ {0, 1}, j ∈ I\{i}}

(30)

∆hi = H−max{hi−
∑

j∈I\{i}

zjhj :
∑

j∈I\{i}

zjhj ≤ H−hi, zj ∈ {0, 1}, j ∈ I\{i}} (31)

Clearly, not all items can be found at a given height position t ∈ PH , either
because it is not part of their normal patterns or because ymin

i is too large or ymax
i

is too small for some item i ∈ I. Thus, it might well happen that the width occupied
by the set of remaining items It at height position t can only be smaller than W .
In this case, we can further reduce the width W to Wt :

Wt = max{
∑

i∈It

ziwi :
∑

i∈It

ziwi ≤W : zi ∈ {0, 1}, i ∈ It} t ∈ PH (32)

We can extend this line of reasoning to individual items. Let us assume that item
i is at height position t. Then, we can consider the other items one by one and use
the previously described maximum flow algorithm to detect if it can be beside item
i or not (see section 4.2). After removing all items that cannot be beside i, there
might always be an empty space beside i. In this case, we can increase the width of
wi to wit to cover the empty space. The wit values can be obtained by solving (in
pseudo-polynomial time) subset sum-like problems using dynamic programming.

16

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

5.3 Precedence relations

Let us consider items i and j such that i is delivered after j (i.e., seqi > seqj). We
want to know if there is a feasible solution where height position tj is smaller than
ti. If there is no such solution, we have a precedence relation between items i and
j, because the height position of i must be smaller than or equal to the the height
position of j for a solution to be feasible.

Formally, we identify two different types of precedence relations : a weak prece-
dence relation where ti ≤ tj and a strong precedence relation where ti + hi ≤ tj .
Furthermore, we consider a side-by-side relation where ti ≤ tj < ti + hi or tj ≤
ti < tj + hj always holds. The sets of weak precedence, strong precedence and
side-by-side relation associated with item i are denoted H(i)−, H(i)+ and H(i)=,
respectively.

In the following, we present conditions for such precedence relations to occur
between items i and j.

Condition 1 : If ymax
i + hi ≤ ymin

j , then j ∈ H+(i).

Condition 2 : If ymax
i ≤ ymin

j then j ∈ H−(i).

Condition 3 : If maxflow(C) <
∑

k∈I\{i,j} hkwk for all ti ∈ PH
i and tj ∈ PH

j

such that tj < ti and C = {yiti , yjtj} is a mutually conflicting set, then j ∈ H−(i).

Condition 4 : If wi + wj > W , then j ∈ H+(i)..

Condition 5 : If maxflow(C) <
∑

k∈I\{i,j} hkwk for all ti ∈ PH
i and tj ∈ PH

j

such that tj < ti + hi and C = {yiti , yjtj} is a mutually conflicting set, then j ∈
H+(i).

Condition 6 : If maxflow(C) <
∑

k∈I\{i,j} hkwk for all ti ∈ PH
i and tj ∈ PH

j

such that ti > tj or ti < tj and C = {yiti , yjtj} is a mutually conflicting set, then
j ∈ H=(i).

From Conditions 1 to 3, we obtain inequalities (33) where the height position of
item j is forced to be greater than or equal to the height position of item i, when i

is weakly preceding j. From Conditions 4 and 5, we get inequalities (34) where the
height position of item j is forced to be greater than or equal to the height position
of item i plus its height hi, when i is strongly preceding j. Finally, Condition 6
leads to inequalities (35) where items i and j are forced to be side-by-side.

yit ≤
∑

t̄∈PH
j

t̄≥t

yjt̄ i ∈ I, j ∈ H−(i), t ∈ PH
i (33)

yit ≤
∑

t̄∈PH
j

t̄≥t+hi

yjt̄ i ∈ I, j ∈ H+(i), t ∈ PH
i (34)

17

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

yit ≤
∑

t̄∈PH
j (t)

yjt̄ i ∈ I, j ∈ H=(i), t ∈ PH
i , (35)

5.4 Reconsidering the normal patterns

In this section, we describe two different ways of reducing the initial set of normal
patterns.

5.4.1 Normal pattern dominance

It is possible to reduce the set of normal patterns by considering a dominance relation
among the patterns associated with a given item. Let i be an item and ti ∈ PH

i some
height position corresponding to a pattern. If i is at height position ti and nothing
fits over i, then nothing will fit over i at any height position t > ti. Let t

min
i ∈ PH

i

be the lowest height position such that nothing fits over item i. Then every height
position t ∈ PH

i such that t ≥ tmin
i can be removed. This type of relation is called

Normal Pattern Dominance.

5.4.2 Normal pattern reduction

Previously, we introduced a feasibility test based on the solution of a maximum flow
problem to know if a partial solution based on a mutually conflicting set of items
leads to an infeasible solution. This test can also be used to prove the feasibility of
a normal pattern. Suppose that item i is at height position ti ∈ PH

i . If all mutually
conflicting sets that include ti fail the feasibility test then ti can be removed from
PH
i . But since there might be a huge number of mutually conflicting sets, a more

viable approach is the following. For any given item i and height position ti ∈ PH
i , ti

can be removed from PH
i if there is an item j such that for all tj ∈ PH

j and mutually
conflicting set C = {yiti , yjtj}, maxflow(C) is smaller than

∑

k∈I\{i,j} hkwk. The
value ti is then added to a set INFi that contains infeasible height positions for
item i.

By using the previously defined ymin
i values, ymax

i values and INFi sets, an
improved procedure can be designed to calculate a reduced set of normal patterns.
The pseudo-code of this procedure is found in Algorithm 1 for the typical case where
the bin is filled from the bottom to the top.

The normal patterns are generated by a call to the method Calculate Normal

Patterns. Three sets Cur, Prev and Glob are first initialized with position 0 which
is the bottom of the bin. Set Prev contains all normal patterns generated up to
(but not including) the current customer j. Note that Cur is reset to Prev before
generating the patterns of each item associated with customer j. The patterns

18

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

for item i ∈ Ij are generated recursively by the method Generate Patterns if the
current customer has more than one item. When the set of all patterns associated
with item i has been produced, the global variable PH

i is assigned with this set. The
newly generated patterns are also added to set Glob. When all items of the current
customer are done, Prev is set to Glob just before handling the next customer. The
methods Generate Patterns and Generate Patterns Recursively consider all possible
ordered combinations of items in set I and make sure that the corresponding patterns
are feasible normal patterns.

The complexity of this algorithm is O(Hn(o− 1)!) where H is the height of the
bin, n is the number of items and o = maxj=1,...,R |Ij |. The algorithm performs
well when the number of items per customer is small. However, if (o− 1)! is larger
than n, it is better to use the dynamic algorithm based on equations (1) and (2), as
reported in [18], which is in the order of O(Hn2).

Algorithm 1 Calculate Normal Patterns

Require: ymin
i , ymax

i and INFi

Prev ← {0}
Cur ← {0}
Glob← {0}
for j = R to 1 do

for i ∈ Ij do

Cur ← Prev

if Ij\{i} 6= ∅ then
Generate Patterns(Ij\{i}, Cur)

end if

PH
i ← {t ∈ Cur\INFi : y

min
i ≤ t ≤ ymax

i }
for t ∈ PH

i do

Cur ← Cur ∪ {t+ hi}
end for

Glob← Glob ∪ Cur

end for

Prev ← Glob

end for

5.5 Top-fill versus bottom-fill

Typically, a bottom-left approach is used to generate the set of normal patterns (as
in Algorithm 1). More precisely, the bottom of every item must be in contact with
either the bottom of the bin or the top of another item. Furthermore, the left side
of each item must be in contact with the left side of the bin or the right side of
another item.

Due to the unloading constraints, solutions to our problem exhibit a special

19

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

Algorithm 2 Generate Patterns

Require: I : set of items, P : set of patterns
miny ← min

i∈I
ymin
i

maxy ← max
i∈I

ymax
i

for t = maxy to miny do

if t ∈ P then

for i ∈ I do

Generate Patterns Recursively(t+ hi, I\{i}, P)
end for

end if

end for

Algorithm 3 Generate Patterns Recursively

Require: t: a starting position, I : set of items, P : set of patterns
if t ∈ P then

Exit
end if

P ← P ∪ {t}
for i ∈ I do

if ymin
i ≤ t ≤ ymax

i and t 6∈ INFi then

Generate Patterns Recursively(t+ hi, I\{i}, P)
end if

end for

20

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

structure which can be exploited by choosing to fill the bin from the bottom, from
the top or from both the bottom and the top (mixed fill), in the hope of reducing the
set of normal patterns. With regard to the mixed approach, if the items with delivery
order j (customer j) fill the bin from the bottom, then the items with delivery order
k (customer k) with k > j also fill the bin from the bottom. Conversely, if the items
with delivery order j fill the bin from the top, then the items with delivery order k
with k < j also fill the bin from the top.

For a sequence of R customers, there are R + 1 ways to choose the cut point
between the customers whose items will fill the bin from the bottom and the cus-
tomers whose items will fill the bin from the top. It is then possible to choose,
among these R+ 1 cut points, the one that leads to the smallest number of normal
patterns. Figure 5 presents an example of a mixed fill where the cut point is chosen
between customers 3 and 4, that is, items of customers 1, 2 and 3 fill the bin from
the top and items of customers 4, 5 and 6 fill the bin from the bottom.

5

0 W x

H
y

4

32

5

6

1

1

4

Figure 5: Mixed Fill

Proposition 5.1 If a solution is feasible for a given cut point, it is feasible for

every cut point.

Proof. Let us assume that a feasible solution s1 is obtained when the cut point
is in position 1, that is, just before the first customer (which corresponds to filling
the bin from the bottom, as it is typically done). Then, a feasible solution s2 for
the cut point in position 2, i.e. between customers 1 and 2, is obtained from s1 by
pushing the items of customer 1 up until the top of the bin is reached. Similarly, a
feasible solution s3 for the cut point in position 3, i.e. between customers 2 and 3,
is obtained from s2 by pushing the items of customer 2 up until the top of the bin
or the bottom of another item is reached. The result is obtained by repeating this
argument until the cut point is in position R+ 1.

21

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

This proposition also means that if a solution is infeasible for a given cut point,
it is infeasible for every cut point. Thus, we are guaranteed not to miss any feasible
solution. As indicated in the demonstration of the above proposition, there might
also be a gap between the top-filled and bottom-filled items. Inspired by the work in
[6], a constraint is associated with each item and each height position to force down
(up) a top-filled item so that its bottom (top) touches another item which must be
delivered after (before) it. These constraints are the following:

yit ≤
R
∑

j=seqi

∑

k∈Ij
k 6=j

yk(t−hk) t ∈ PH
i , i ∈ I and i is bottom-filled (36)

yit ≤

seqi
∑

j=1

∑

k∈Ij
k 6=j

yk(t+hk) t ∈ PH
i , i ∈ I and i is top-filled (37)

6 Lower bounds

In this section we present some lower bounds on the required height of the bin.

6.1 Simple Lower Bounds

First, we can use the lower bound for the SPP reported in [23]. This so-called
continuous lower bound, denoted L1, calculates the number of strips of width W

and height 1 needed to accommodate all items.

L1 =

⌈
∑

i∈I wihi

W

⌉

(38)

From the definition of ymin
i and ymax

i in equations (26) and (27), the following
lower bound can also be derived:

L2 = max
i∈P
{ymin

i + hi + (H − ymax
i)} (39)

It is worth noting that this bound improves upon the one reported in [9], through
the addition of the third term in the numerator of ymin,2

i and y
max,2
i in equations

(21) and (23) and through the consideration of the third and fourth components in
the definition of ymin

i and ymax
i in equations (26) and (27).

22

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

6.2 Lower Bounds based on the Cutting Stock Problem

The bounds presented in this section are based on the Gilmore-Gomory formulation
of the Cutting Stock Problem (CSP). We define a cutting pattern as a subset of
items I ′ ⊂ I. A pattern is said to be h-feasible if

∑

i∈I′ hi ≤ H and w-feasible if
∑

i∈I′ wi ≤ W . Let KH and KW be the sets of all h-feasible and w-feasible cutting
patterns. Let also the variable vk be equal to the number of times cutting pattern
k appears in a solution with aik = 1 if item i is in cutting pattern k, 0 otherwise.
The CSP based on w-feasible cutting patterns (CSPW) can be formulated as follow
:

(CSPW) min
∑

k∈KW

vk (40)

∑

k∈KW

aikvk ≥ hi i ∈ I (41)

vk ≥ 0 and integer k ∈ KW (42)

The optimal solution value of (CSPW) provides a lower bound on the required
height of the bin. Thus, an instance is infeasible if the obtained value is larger than
H. A CSPH can be defined similarly to obtain a lower bound on the required width.
We will call these two lower bounds LH

3 and LW
3 , respectively.

The CSP is famous for the strength of its linear relaxation and it is often the
case that the round up value of the linear relaxation is optimal. Column (cutting
pattern) generation is typically used to solve this problem and it is well known that
the pricing subproblem is a knapsack problem (KP), where the item values come
from the dual variables. We refer to [4] for more details on this issue in the context
of the 2OPP. A column of negative reduced cost generated at a given width or height
position often corresponds to subsets of items that cannot be side by side or one
over the other because the corresponding KP does not account for any unloading
structure. Clearly, integrating some unloading structure can only improve LW

3 and
LH
3 .

For example, we can improve LH
3 to obtain LH

4 by considering only the items
i ∈ I that can be at some height position, based on the current set PH and the
values ymin

i and ymax
i . Although we might still end up with infeasible columns, this

approach has proven to be very effective.

We can also improve LW
3 to obtain LW

4 . Here, we must generate a feasible stack

of items of negative reduced cost at some width position, as illustrated in Figure 6.
For generating stacks, an algorithm similar in spirit to the one used for generating
normal patterns is applied (see section 5.4). Let V (j, h) be the sum of the item values
over all items that are below position h in an optimal stack for customers with a
delivery order between j and R. Also, let S be a subset of items associated with

23

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

a given customer and consider that function δ(S, h) returns the minimum height
required by the items in S, if they are all below position h (if this is not feasible
then δ(s, h) = −∞). To find a stack of negative reduced cost, one needs to solve
the following recursion for V (1, H) :

V (j, h) = max{ V (j + 1, h),

max
s⊆Ij
{
∑

i∈S

λi + V (j + 1, δ(S, h)) } }

It should be noted that V (j, h) =∞ for j > R in this recursion.

x

H

y

W

Figure 6: Stacking

If either LH
4 or LW

4 is larger than H or W , the items cannot fit within an area
of size HW, but the value obtained is not necessarily a lower bound on the required
height or width of the bin. For example, if LH

4 = H +∆H with ∆H > 1, the items
might well fit within an area of size (H+1)W, because increasing H by only one unit
typically leads to many new feasible height and width positions in sets PH and PW .

We end this section by observing that the lower bounds for the Strip Packing
Problem or the Two-Dimensional Bin Packing Problem are also valid lower bounds
for the 2OPP-UL. We refer the reader to [2, 6] for an exhaustive list of lower bounds
for the SPP .

7 Computational results

In this section, we first analyze the lower bounds presented in section 6. Then,
the impact of the preprocessing is quantified. Finally, our branch-and-cut algo-
rithm is compared with the algorithm in [20], where the authors implemented the
tree search-based enumeration scheme proposed in [23] with additional fathoming
criteria. This is the best know exact algorithm for solving packing problems with

24

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

Items Vertical Horizontal Homogeneous
Type per cust. Height Width Height Width Height Width

1 1 1 1 1 1 1 1
2 [1,2] [.4H,.9H] [.1W,.2W] [.1H,.2H] [.4W,.9W] [.2H,.5H] [.2W,.5W]
3 [1,3] [.3H,.8H] [.1W,.2W] [.1H,.2H] [.3W,.8W] [.2H,.4H] [.2W,.4W]
4 [1,4] [.2H,.7H] [.1W,.2W] [.1H,.2H] [.2W,.7W] [.1H,.4H] [.1W,.4W]
5 [1,5] [.1H,.6H] [.1W,.2W] [.1H,.2H] [.1W,.6W] [.1H,.3H] [.1W,.3W]

Table 1: Types of instances

unloading constraints. The authors were kind enough to give us their code for this
comparison. Our branch-and-cut algorithm is implemented in C++ and calls Cplex
12.5. The tests were performed on a 2.2 GHz AMD Opteron 275 processor running
under Linux.

7.1 Instances

The Two-Dimensional Loading Capacitated Vehicle Routing Problem (2L−CV RP)
instances reported in [16] were used for testing purposes. As indicated in Table 1,
there are 5 different types of instances, with 36 instances of each type, for a total
of 180 instances. The height H and width W of the bin are equal to 40 and 20,
respectively. The number of items per customer is indicated in column Items per

cust. In types 2 to 5, each item also has one of three different dimensions, referred to
as vertical, horizontal and homogeneous. The exact number of items per customer
and dimension values were randomly generated in the intervals shown in Table 1.
The largest instances have up to 255 customers, 786 items and a fleet of 51 vehicles.

We also created additional instances by simply modifying the dimensions of the
bin, as indicated below. With 180 instances in each class, we end up with a total of
900 different 2L− CV RP instances.

• Class 1 : H = 40, W = 20

• Class 2 : H = 32, W = 25

• Class 3 : H = 50, W = 16

• Class 4 : H = 80, W = 14

• Class 5 : H = 130, W = 14

7.2 Lower Bounds

Tables 2, 3 and 4 compare our lower bounds on the packing instances generated
from the 180 original 2L − CV RP instances in [16]. Note that these bounds are
useless for Type 1 because all items have their width and height equal to 1. For this
comparison, solutions (sets of routes) were generated for each 2L−CV RP instance

25

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

with the ALNS heuristic in [25]. For efficiency purposes, some bounds taken from
[2, 6, 23] were calculated before inserting a customer into a route. These bounds
could detect, in particular, situations where the additional area required by the items
of the current customer would lead to infeasibility by exceeding the total area of the
bin. Accordingly, lower bound L1 is automatically satisfied. For each 2L− CV RP

instance, the ALNS heuristic was run for 20,000 iterations and a maximum of 800
best solutions produced during the search were kept. The total number of routes
(or packing instances) in these solutions appears in column # Instances of Table
2. The average number of items per packing instance is also shown in column #

Items. After applying the height position restrictions and the lifting procedure, the
lower bounds SPP , L2, L

COR
2 , LH

3 and LW
3 were applied on each individual packing

instance to detect infeasibility (see the algorithmic flow in section 3.1). In the case of
SPP , it should be noted that we really have a collection of lower bounds, including
the dual functions in [6] and the so-called L8 bound in [2]. Also, LCOR

2 corresponds
to the bound reported in the work of Cordeau et al. [9], which is improved by L2.
The value in each entry is the percentage of infeasible packing instances detected
by the corresponding lower bound. The CPU time in seconds is only shown for LH

3

and LW
3 , because the other ones are too small.

Table 3 then shows the performance of the preprocessing routines, without the
application of LH

4 and LW
4 , and the resulting number of undecided packing instances.

Then, the performance of LH
4 and LW

4 , which are applied to the undecided instances
at the end of the preprocessing, is reported (see the algorithmic flow in section 3.1).

Overall, we can see that the performance substantially diminishes from the type
2 instances to the type 5 instances, which are clearly the most difficult ones. Lower
bounds LH

3 and LW
3 largely outperform the simple bounds SPP , L2 and LCOR

2

(with our L2 bound only slightly better than LCOR
2 on instances of type 2). The

preprocessing routines, as a whole, are quite good, but LH
4 and LW

4 still allow a
substantial number of additional infeasible instances to be detected.

Table 4 shows the percentage of packing instances that were found infeasible
only by the corresponding lower bound or only by the preprocessing routines. It
also reports the percentage of instances where L2 was better than SPP and LH

4

was better than LW
4 (by detecting infeasibility while the other did not). We can

see that LH
4 is worth considering even if it is not as good as LW

4 in Table 2. Note
also that the simple bounds are still useful, in spite of the 0.0% value in each entry,
because they can detect infeasible instances quickly, that is, before going into the
more sophisticated preprocessing routines.

7.3 Impact of preprocessing

For this study, we started with the routes produced by the ALNS heuristic when
applied to the five classes of 2L−CV RP instances, while keeping a maximum of 800
visited solutions for each instance. The feasibility of the obtained routes (packing

26

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

SPP LCOR
2

L2 LH
3

LW
3

Type # Instances # Items Inf. Inf. Inf. Inf. sec Inf. sec
2 84571 8.7 24.8% 2.8% 3.0% 38.5% 0.008 40.3% 0.007
3 81637 11.0 8.6% 1.2% 1.2% 20.0% 0.011 25.5% 0.011
4 81806 13.2 3.3% 0.2% 0.2% 7.5% 0.013 12.9% 0.012
5 70132 19.8 0.0% 0.0% 0.0% 0.1% 0.015 0.3% 0.016

Table 2: Comparison of lower bounds SPP , LCOR
2 , L2, L

H
3 and LW

3

Preprocessing LH
4

LW
4

Type # Instances # Items Inf. sec # Instances Inf. sec Inf. sec
2 84571 8.7 89.3% 0.002 9066 13.3% 0.010 23.9% 0.007
3 81637 11.0 54.3% 0.024 37292 11.1% 0.011 23.1% 0.008
4 81806 13.2 20.4% 0.089 65154 6.1% 0.012 16.4% 0.008
5 70132 19.8 0.2% 0.389 70020 0.2% 0.014 0.7% 0.011

Table 3: Comparison of LH
4 and LW

4 after preprocessing

instances) was then assessed with a simple heuristic reported in [20], which is derived
from the classical Bottom-Left heuristic. If a packing instance could be proven
feasible, it was discarded. Then, a simple enumeration procedure was applied for 20
seconds and, again, if the feasibility or infeasibility of the packing instance could be
proven, it was discarded. A maximum of 8 undecided packing instances were kept
for each 2L− CV RP instance. At the end, a total of 2,183 packing instances were
collected. Clearly, this process led to difficult packing instances, which is exactly
what we wanted. The number of instances collected by type and class are shown in
Table 5. We note, in particular, that all instances of type 1 were discarded, while
only one instance of type 2 was still undecided. Thus, the packing instances of type
1 and 2 are quite easy to solve.

Table 6 shows the average CPU time and number of max flow problems generated
during the preprocessing phase (since this number has a significant impact on the
CPU time) over each class, based on the 2,183 remaining instances. The average
number of items per instance and dimensions of the bin for each class are also shown.
Then, Table 7 compares the impact of each individual preprocessing routine. The
values shown on each line correspond to the increase in percentage in the number
of normal patterns for each class when the corresponding preprocessing routine is
removed from the basic implementation (with all routines). In this Table, L stands
for lifting, HR for height restrictions, PR for precedence relations, NPD for Normal
Pattern dominance, NPR for normal pattern removal and TBF for mixed top,

L2 > LH
4

>

Type SPP LCOR
2

L2 LH
3

LW
3

Preprocessing LH
4

LW
4

SPP LW
4

2 0.0% 0.0% 0.0% 0.0% 0.0% 44.9% 0.2% 1.1% 0.5% 0.2%
3 0.0% 0.0% 0.0% 0.0% 0.0% 27.2% 0.6% 5.0% 0.6% 1.3%
4 0.0% 0.0% 0.0% 0.0% 0.0% 10.6% 0.7% 6.2% 0.1% 1.4%
5 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.3% 0.0% 0.1%

Table 4: Comparison of different lower bounds

27

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

Type
Class 1 2 3 4 5 Total
1 0 0 30 198 200 428
2 0 1 128 198 200 527
3 0 0 2 155 206 363
4 0 0 0 187 182 369
5 0 0 11 246 239 496

Total 0 1 171 984 1027 2183

Table 5: Number of instances by class and type

Class 1 Class 2 Class 3 Class 4 Class 5 All
CPU time (sec.) 0.3 0.1 0.5 1.6 9.5 2.6

Max flow 16 683.2 9 194.0 27 960.6 77 845.9 313 626.7 93 942.4
Items 17.6 16.6 18.6 23.9 36.9 23.0
[H,W] [40,20] [32,25] [50,16] [80,14] [130,14]

Table 6: Preprocessing with all routines

bottom-fill. Table 7 also includes the average number of maximum flow problems
and the CPU time when the corresponding preprocessing routine is removed. The
method with the largest impact is clearly TBF . Without it, the number of normal
patterns increases by 22% to 57% when compared to the implementation with all
routines. The HR method has also a significant impact on the CPU time because its
removal substantially increases the number of maximum flow problems to be solved.

7.4 Comparison with another exact algorithm

The results of the comparison between our algorithm and the one reported in [20] on
the 2,183 difficult packing instances with unloading constraints are shown in Table
8. Column # Inst. is the number of instances of each type in each class. Then,
columns Fea. and Inf. show the number of proven feasible and infeasible instances,
within the allowed 1,200 seconds of computation time, while the average CPU time
in seconds is shown in column sec. Column Solved reports the total number of solved
instances (either feasible or infeasible).

We observe that our algorithm performs very well in comparison with the one
reported by Iori et al. [20]. In particular, we can solve 1088 new instances (while only
one previously solved instance was not solved by our algorithm). The computation

Routine Class 1 Class 2 Class 3 Class 4 Class 5 # Max flow CPU time
(sec.)

L 0.47% 1.28% 0.06% 0.08% 0.17% 84 003.0 2.2
HR 0.02% 0.00% 1.02% 2.10% 4.29% 286 133.6 8.5
PR 0.03% 0.00% 0.00% 0.18% 0.56% 98 421.2 2.8

NPD 9.79% 11.70% 6.98% 1.91% 0.42% 94 935.9 2.6
NPR 0.03% 0.00% 0.00% 0.18% 0.56% 43 517.0 1.5
TBF 55.26% 57.77% 50.83% 37.09% 22.84% 92 248.7 2.6

Table 7: Impact of each preprocessing routine

28

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

Iori et al. (2007) Our Branch & Cut
Class Type Inst. Fea. sec. Inf. sec. Solved Fea. sec. Inf. sec. Solved
1 3 30 4 34.1 26 111.7 30 4 0.2 26 0.4 30

4 198 17 164.9 106 377.2 123 27 1.1 171 1.2 198
5 200 5 509.9 1 595.3 6 53 196.1 108 95.4 161

2 2 1 0 1 0.3 1 0 1 0.1 1
3 128 4 2.0 124 61.3 128 4 0.1 124 0.3 128
4 198 17 175.9 110 380.9 127 23 0.8 175 0.6 198
5 200 9 309.3 4 730.6 13 64 63.0 117 43.9 181

3 3 2 0 2 19.6 2 0 2 0.1 2
4 155 20 223.0 53 431.9 73 29 3.0 126 3.4 155
5 206 9 337.5 0 9 54 199.4 103 118.4 157

4 4 187 18 298.5 30 366.7 48 41 90.1 141 60.0 182
5 182 3 280.6 0 3 37 200.6 46 222.9 83

5 3 11 0 5 555.6 5 2 14.3 9 6.3 11
4 246 8 421.7 0 8 45 268.5 119 217.5 164
5 239 0 0 0 2 602.3 11 296.8 13

Total 2183 114 462 576 385 1279 1664

Table 8: Comparison of two algorithms

times are also significantly smaller. It should be noted that the smallest undecided
instance has 20 items, as compared with 13 items for the algorithm of Iori et al.
Conversely, the largest instance solved with our algorithm has 52 items, as compared
with 29 items for Iori et al.

8 Conclusion

This paper has demonstrated the effectiveness of a new branch-and-cut algorithm for
a two-dimensional packing problem with unloading constraints through numerical
results on a set of benchmark instances. The next step will now consist in integrating
this algorithm into a problem-solving methodology for a mixed vehicle routing and
loading problem. Alternative approaches, in particular dynamic programming, are
also currently considered to tackle the packing problem.

Acknowledgments. Financial support for this work was provided by the Canadian
Natural Sciences and Engineering Research Council (NSERC). This support is grate-
fully acknowledged.

References

[1] Alvarez-Valdes R., Parreño F., Tamarit J.M., A GRASP algorithm for con-
strained two-dimensional non guillotine cutting problems. Journal of the Oper-
ational Research Society 56, 414-425, 2005.

[2] Alvarez-Valdes R., Parreño F., Tamarit J.M., A branch and bound algorithm
for the strip packing problem. OR Spectrum 31, 431-459, 2009.

29

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

[3] Arahori Y., Imamichi T., Nagamochi H., An exact strip packing algorithm
based on canonical forms, Computers & Operation Research 39, 2991-3011,
2012.

[4] Belov G., Rohling H., A branch-and-price graph-theoretical algorithm for
orthogonal-packing feasibility. Technical report, Preprint MATH-NM-10-2009,
Technische Universität Dresden, 2009.

[5] Bortfeldt A., Wäscher G., Container loading problems : A state-of-the-art
review. Technical Report, 2012.

[6] Boschetti M.A., Montaletti L., An exact algorithm for the two-dimensional
strip-packing problem, Operations Research 58, 1774-1791, 2010.

[7] Caprara A., Monaci M., Bidimensional packing by bilinear programming. Math-
ematical Programming 118, 75-108, 2009.

[8] Codato G., Fischetti M., Combinatorial Benders cuts for mixed-integer linear
programming. Operations Research 54, 756-766, 2006.

[9] Cordeau J.-F., Iori M., Ropke S., Vigo D., Branch-and-cut-and-price for the
capacitated vehicle routing problem with two-dimensional loading constraints.
ROUTE 2007, Jekyll Island, U.S.A., May 2007.

[10] Côté J.-F., Iori M., Dell’Amico M., Combinatorial Benders cuts for the strip
packing problem, Technical Report, DISMI, University of Modena and Reggio
Emilia, 2013.

[11] Clautiaux F., Carlier J., Moukrim A., A new exact method for the two-
dimensional orthogonal packing problem. European Journal of Operational Re-
search 183, 1196-1211, 2007.

[12] Duhamel C., Lacomme P., Quilliot A., Toussaint H., A multi-start evolution-
ary local search for the two-dimensional loading capacitated vehicle routing
problem, Computers & Operation Research 38, 617-640, 2011.

[13] Fekete S., Schepers J., A combinatorial characterization of higher-dimensional
orthogonal packing, Mathematics of Operations Research 29, 353-368, 2004.

[14] Fekete S., Schepers J., van der Veen J.C., An exact algorithm for higher-
dimensional orthogonal packing, Operations Research 55, 569-587, 2007.

[15] Fuellerer G., Doerner K.F., Hartl R.F., Iori M., Ant colony optimization for
the two-dimensional loading vehicle routing problem. Computers & Operations
Research 36, 655-673, 2009.

[16] Gendreau M., Iori M., Laporte G., Martello S., A tabu search heuristic for the
vehicle routing problem with two-dimensional loading constraints. Networks 51,
4-18, 2008.

30

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

[17] Gu Z., Nemhauser G.L., Savelsbergh M.W.P., Lifted cover inequalities for 0-1
integer programs: Complexity. INFORMS Journal on Computing 11, 117-123,
1999.

[18] Herz J.C., Recursive computational procedure for two-dimensional stock cut-
ting. IBM Journal of Research and Development 16, 462-469, 1972.

[19] Iori M., Martello S., Routing problems with loading constraints, TOP 18, 4-27,
2010.

[20] Iori M., Salazar-González J.-J., Vigo D., An exact approach for the vehicle rout-
ing problem with two-dimensional loading constraints. Transportation Science
41, 253-264, 2007.

[21] Kaparis K., Letchford A.N., Separation algorithms for 0-1 knapsack polytopes.
Mathematical Programming 124, 69-91, 2010.

[22] Leung S.C.H., Zhang Z., Zhang D., Hua X., Lim M.K., A meta-heuristic al-
gorithm for heterogeneous fleet vehicle routing problems with two-dimensional
loading constraints. European Journal of Operational Research 225, 199-210,
2013.

[23] Martello S., Monaci M., Vigo D., An exact approach to the strip-packing prob-
lem. INFORMS Journal on Computing 15, 310-319, 2003.

[24] Mesyagutov M., Scheithauer G., Belov G., LP bounds in various constraint
programming approaches for orthogonal packing. Computers & Operation Re-
search 39, 2425-2438, 2012.

[25] Ropke S., Pisinger D., An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows, Transportation Science 40,
455-472, 2006.

[26] da Silveira J.L.M., Miyazawa F.K., Xavider E.C., Heuristics for the strip pack-
ing problem with unloading constraints. Computers & Operation Research 40,
991-1003, 2013.

[27] Wäscher G., Haussner H., Schumann H., An improved typology of cutting and
packing problems. European Journal of Operational Research 183, 1109-1130,
2007.

[28] Wolsey L.A., Valid inequalities for 0-1 knapsacks and MIPS with generalised
upper bound constraints. Discrete Applied Mathematics 29, 251-261, 1990.

[29] Zachariadis E.E., Tarantilis C.D., Kiranoudis C.T., A guided tabu search for the
vehicle routing problem with two-dimensional loading constraints. European
Journal of Operational Research 3, 729-743, 2009.

31

An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints

CIRRELT-2013-26

