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Abstract. In this paper we analyze the optimal joint decisions of when, how and how 

much to replenish customers with products of varying ages. We discuss the main features 

of the problem arising in the joint replenishment and delivery of perishable products, and 

we model them under general assumptions. We then solve the problem by means of an 

exact branch-and-cut algorithm, and we test its performance on a set of randomly 

generated instances. Our algorithm is capable of computing optimal solutions for 

instances with up to 30 customers, three periods, and a maximum age of two periods for 

the perishable product. For the unsolved instances the optimality gap is always small, less 

than 1.5% on average for instances with up to 50 customers. We also implement and 

compare two suboptimal selling priority policies with an optimized policy: always sell the 

oldest available items first to avoid spoilage, and always sell the fresher items first to 

increase revenue. 

Keywords. Perishable products, inventory control, replenishment, inventory-routing, 

vendor-managed inventory, branch-and-cut algorithm. 

Acknowledgements. This work was partly supported by the Natural Sciences and 

Engineering Research Council of Canada (NSERC) under grant 39682-10. This support is 

gratefully acknowledged. We also thank Calcul Québec for providing high performance 

parallel computing facilities. 

Results and views expressed in this publication are the sole responsibility of the authors and do not 
necessarily reflect those of CIRRELT. 

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
 
_____________________________ 

* Corresponding author: Leandro.Coelho@cirrelt.ca 

Dépôt légal – Bibliothèque et Archives nationales du Québec 
                     Bibliothèque et Archives Canada, 2013 

© Copyright  Coelho, Laporte and CIRRELT, 2013 



1 Introduction

Inventory control constitutes an important logistics operation, especially when products

have a limited shelf life. Keeping the right inventory levels guarantees that the demand

is satisfied without incurring unnecessary holding or spoilage costs. Several inventory

control models are available [3], many of which include a specific treatment of perishable

products [30].

Problems related to the management of perishable products inventories arise in several

areas. Applications of inventory control of perishable products include blood management

and distribution [5, 9, 17, 18, 20, 25, 26, 33], as well as the handling of radioactive and

chemical materials [1, 11, 36], of food such as dairy products, fruits and vegetables [4, 12,

29, 31, 34, 35], and of fashion apparel [28]. Several inventory management models have

been specifically derived for perishable items, such as the periodic review with minimum

and maximum order quantity of Haijema [15], and the periodic review with service level

considerations of Minner and Transchel [24]. Reviews of the main models and algorithms

in this area can be found in Nahmias [30] and in Karaesmen et al. [19]. A unified analytical

approach to the management of supply chain networks for time-sensitive products is

provided in Nagurney et al. [27].

Efficient delivery planning can provide further savings in logistics operations. The opti-

mization of vehicle routes is one of the most developed fields in operations research [21].

The integration of inventory control and vehicle routing yields a complex optimization

problem called inventory-routing whose aim is to minimize the overall costs related to

vehicle routes and inventory control. Recent overviews of the inventory-routing problem

(IRP) are those of Andersson et al. [2] and of Coelho et al. [8].

The joint inventory management and distribution of perishable products, which is the

topic of this paper, gives rise to the perishable inventory-routing problem (PIRP). Nagur-

ney and Masoumi [25] and Nagurney et al. [26] studied the distribution and relocation of

human blood in a stochastic demand context, considering the perishability and waste of
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blood related to age and to the limited capacity of blood banks. Hemmelmayr et al. [16]

studied the case of blood inventory control with predetermined fixed routes and stochas-

tic demand. The problem was solved heuristically by integer programming and variable

neighborhood search. Gumasta et al. [14] incorporated transportation issues in an inven-

tory control model restricted to two customers only. Custódio and Oliveira [10] proposed

a strategical heuristic analysis of the distribution and inventory control of several frozen

groceries with stochastic demand. Mercer and Tao [23] studied the weekly food distri-

bution problem of a supermarket chain, without considering product age. A theoretical

paper developing a column generation approach was presented by Le et al. [22] to pro-

vide solutions to a PIRP. The optimality gap was typically below 10% for instances with

eight customers and five periods under the assumptions of fixed shelf life and flat value

throughout the life of the product.

This paper makes several scientific contributions. We first classify and discuss the main

assumptions underlying the management of perishable products. We then formulate the

PIRP as a mixed integer linear program (MILP) for the most general case, and we also

model it to handle the cases where retailers always sell older items first, and where they

sell fresher items first. We devise an exact branch-and-cut algorithm for the solution of

the various models. To the best of our knowledge, this is the first time an IRP is mod-

eled and solved exactly under general assumptions in the context of perishable products

management. Our models do not require any assumption on the shape of the product

revenue and inventory cost functions. We also establish some relationships between the

PIRP and the multi-product IRP recently studied by the authors [7].

The remainder of the paper is organized as follows. In Section 2 we provide a formal

description of the PIRP. In Section 3 we present our MILP model and its two variants just

described, including new valid inequalities. This is followed by a decription of the branch-

and-cut algorithm in Section 4. Computational experiments are presented in Section 5.

Section 6 concludes the paper.
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2 Problem Description

The joint replenishment and inventory problem for perishable products is concerned with

the combined optimization of delivery routes and inventory control for products having a

transient shelf life. These products typically have an expiry date, after which they are no

longer fit for consumption. This is the case of some law-regulated products such as food

and drugs, but also of a wide variety of unregulated products whose quality, appearance

or commercial appeal diminishes over time, such as flowers, cosmetics, paint, electronic

products or fashion items. In this section we discuss four main assumptions underlying

the treatment of these kinds of products, and we explain how we incorporate them in

our model. Specifically, we discuss the types of product perishability in Section 2.1, the

assumptions governing the inventory holding costs of these products in Section 2.2, their

revenue as a function of age in Section 2.3, and the management of items of different ages

held in inventory in Section 2.4.

2.1 Types of product perishability

There exist two main types of perishable products according to how they decay [30]. The

first type includes products whose value does not change until a certain date, and then goes

down to zero almost immediately. This is the case of products whose utility eventually

ceases to be valued by the customers, such as calendars, year books, electronics or maps,

which quickly become obsolescent after a given date or when a new generation of products

enters the market. However, this is more a case of obsolescence than perishability. Even

though these items may still be in perfect condition, they are simply no longer useful.

Within the same category, we find products with an expiry date, such as drugs, yogurt

and bottled milk. These products can be consumed whether they are top fresh or a few

days old, but after their expiry date, they are usually deemed unfit for consumption. The

second type includes products whose quality or perceived value decays gradually over

time. Typical examples are fruits, vegetables and flowers. The models introduced in
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Section 3 can handle both types of products without any ad hoc modification.

2.2 The impact of item age on inventory holding costs

As a rule, the unit inventory holding cost changes with respect to the age and value of a

product. This general assumption holds, for instance, for insurance costs which are value

related. All the variable costs related to the age of the product can be modeled through

a single parameter, called the unit inventory holding cost, which depends on the age of

the item. In some contexts, all items yield the same holding cost, regardless of their age.

Products with a short shelf life usually fit in this category. In this case, the holding cost,

which encompasses all other variable costs, can be captured by a unique input parameter

independent of the value and age of the product, which is the case in most applications.

2.3 Revenue of the item according to its age

A parameter that greatly affects the profit yielded by products of different ages is their

perceived value by consumers. Brand new items usually have a higher selling price, which

decreases over time according to some function. In this paper we do not make any specific

assumption regarding the shape of this function. Rather, we assume that the selling price

is known in advance for each product age. Note that the function describing the relation

between price and age can be non-linear, non-continuous or even non-convex, but it can

still be accommodated by our model, as will be shown in Section 3.

2.4 Inventory management policies

The final assumption we discuss relates to the management of items of different ages held

in inventory. It is up to the retailer to decide which items to offer to customers, which will

influence the associated revenue. In such a context, three different selling priority policies

can be envisaged. The first one consists of applying a fresh first (FF) policy by which

Optimal Joint Replenishment, Delivery and Inventory Management Policies for Perishable Products
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the supplier always sells the fresher items first. This policy ensures a longer shelf life and

increases utility for the customers but, at the same time, yields a higher spoilage rate.

The second policy is the reverse. Under an old first (OF) policy, older items are sold first,

which generates less spoilage, but also less revenue. The third policy, which we introduce

in our model, is more flexible and general, and encompasses these two extremes. The

optimized priority (OP) policy lets the model determine which items to sell at any given

time period in order to maximize profit. This means that depending on the parameter

settings, one may prefer to spoil some items and sell fresher ones because they generate

higher revenues.

In order to illustrate the FF and the OF policies, first consider the case of bottled milk

having a limited shelf life. A retailer holds in inventory one unit of old milk having a

remaining shelf life of one day, and one unit of one-day old milk still good for several

days. The unit revenue is $2. If the retailer applies an FF policy, he sells his one-day old

milk today, making $2 of revenue. Tomorrow, the remaining bottle will be spoiled and he

will make no revenue. The total revenue under the FF policy is then $2. If, on the other

hand, he applies an OF policy, he sells his old bottle today, and the newer one tomorrow,

making a total revenue of $4, or twice the revenue achieved under the FF policy.

Now consider the case of flowers, whose value declines quickly from one day to the next. A

one-day old bouquet of flowers generates a revenue of $10, whereas a two-day old bouquet

yields only $4. Under an FF policy, she will sell the one-day old flowers today, and nothing

tomorrow, making a total revenue of $10. Under an OF policy, the retailer will sell the

older flowers today and the other ones tomorrow, achieving a smaller revenue of $8.

Note that in these two examples, the OP policy coincides with either the OF or the FF

policy. However, this is not always the case, namely when the revenue function is not

monotonic with respect to the age of the product. Consider for example the case of

bananas, which start their shelf life as green products, not yet ripe for consumption, then

turn yellow when they reach their peak value, and finally become brown close to their

spoilage date. Suppose there are two hands of bananas of each color in inventory. Let
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the revenue be $1.50 for a hand of green bananas, $2 for a yellow hand, and $0.50 for a

brown hand. Note how the green product is valued higher than the brown one, because it

will mature over time and will eventually become yellow. For a daily demand of one hand

over two periods, the FF policy yields a revenue of $3, the OF policy yields only $1, but

an OP policy consisting of selling yellow bananas each day yields an optimal revenue of

$4. If the inventory contains only green and yellow bananas, then the OF and OP policies

coincide; similarly, if only yellow and brown bananas are considered, then the FF and OP

policies coincide.

Thus, the choice of which of the FF or OF policy to apply depends on the trade-off

between the inventory level and the revenue functions of the product under consideration.

The advantage of the OP policy is that it does not impose any constraints on the age of

the items to sell and is able to generate the most general and profitable solutions.

We implement all three policies and we analyze their trade-offs in the context of profit

maximization.

3 Mathematical Formulations

We now formally describe the mathematical formulation of PIRP under the assumptions

just presented for a single product and under the three inventory management policies just

described. The case of several products is conceptually similar, but requires an additional

index [7]. We assume that the routing cost matrix is symmetric. Thus, we define the

problem on an undirected graph G = (V , E), where V = {0, ..., n} is the vertex set and

E = {(i, j) : i, j ∈ V , i < j} is the edge set. Vertex 0 represents the supplier and the

remaining vertices V ′ = V \{0} correspond to n customers. A routing cost cij is associated

with edge (i, j) ∈ E .

Because of the general assumptions presented in Section 2, we consider that both the

supplier and customers are fully aware of the number of items in inventory according
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to their age. This is important because the sales revenue and inventory holding costs

are affected by the age of the product. The supplier has the choice to deliver fresh or

aged product items, and each case yields different holding costs. Each customer has a

maximum inventory holding capacity Ci, which cannot be exceeded in any period of the

planning horizon of length p. At each time period t ∈ T = {1, ..., p}, the supplier receives

or produces a fresh quantity rt of the perishable product. We assume the supplier has

sufficient inventory to meet the demand of its customers during the planning horizon, and

all demand has to be satisfied. At the beginning of the planning horizon the decision

maker knows the current inventory level of the product at each age held by the supplier

and by the customers, and receives information on the demand dti of each customer i for

each time period t. Note again that, as discussed in the previous section, the demand can

be equally satisfied by fresh or aged products, which will in turn affect the revenue.

As is typically the case in the IRP literature [8], we assume that the quantity rt made

available at the supplier in period t can be used for deliveries to customers in the same

period, and the delivery amount received by customer i in period t can be used to meet

the demand in that period. A set K = {1, . . . , K} of vehicles are available. We denote by

Qk the capacity of vehicle k. Each vehicle can perform at most one route per time period,

visiting a subset of customers, starting and ending at the supplier’s location. Also, as

in other IRP papers, we do not allow split deliveries, i.e., customers receive at most one

vehicle visit per period.

The perishable product under consideration becomes spoiled after s periods, i.e., the age

of the product belongs to a discrete set S = {0, . . . , s}. The product is valued according

to its age, and the decision maker is aware of the selling revenue ug of one unit of product

of age g. Likewise, the inventory holding cost hg
i in location i ∈ V is a function of the age

g of the product. This general representation allows for flat or variable revenues, and for

flat or variable holding costs depending on the age and value of the product, thus covering

all situations described in Section 2.

The inventory level I ti held by customer i in period t comprises items of different ages. We
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break down this variable into I ti =
∑
g∈S

Igti , where Igti represents the quantity of product of

age h in inventory at customer i in period t. Likewise, we decompose the demand dti into∑
g∈S

dgti .

The aim of the problem is to simultaneously construct vehicle routes for each period and

to determine delivery quantities of products of different ages for each period and each

customer, in order to maximize the total profit, equal to the sales revenue, minus the

routing and inventory holding costs. This problem is extremely difficult to solve since

it encompasses several NP-hard problems such as the vehicle routing problem [21] and a

number of variants of the classical IRP [8].

Our MILP model works with routing variables xkt
ij equal to the number of times edge (i, j)

is used on the route of vehicle k in period t. We also use binary variables ykti equal to one

if and only if node i is visited by vehicle k in period t. Formally, variables I ti =
∑
g∈S

Igti

denote the inventory level at vertex i ∈ V at the end of period t ∈ T , and dgti denotes the

quantity of product of age g used to satisfy the demand of customer i in period t, and

we denote by qgkti the quantity of product of age g delivered by vehicle k to customer i in

period t. The problem can then be formulated under an OP policy as follows:

(PIRP) maximize
∑
g∈S

∑
t∈T

ug
i d

gt
i −

∑
i∈V

∑
g∈S

∑
t∈T

hg
i I

gt
i −

∑
(i,j)∈E

∑
k∈K

∑
t∈T

cijx
kt
ij , (1)

subject to

Igt0 = Ig−1,t−10 −
∑
i∈V ′

∑
k∈K

qgkti g ∈ S\{0} t ∈ T (2)

I0t0 = rt t ∈ T (3)

Igti = Ig−1,t−1i +
∑
k∈K

qgkti − dgti i ∈ V ′ g ∈ S\{0} t ∈ T (4)

I0ti =
∑
k∈K

q0kti − d0ti i ∈ V ′ t ∈ T (5)
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∑
g∈S

Igti ≤ Ci i ∈ V ′ t ∈ T (6)

dti =
∑
g∈S

dgti i ∈ V ′ t ∈ T (7)

∑
g∈S

∑
k∈K

qgkti ≤ Ci −
∑
g∈S

Ig,t−1i i ∈ V ′ t ∈ T (8)

qgkti ≤ Ciy
kt
i i ∈ V ′ g ∈ S k ∈ K t ∈ T (9)∑

i∈V ′

∑
g∈S

qgkti ≤ Qky
kt
0 k ∈ K t ∈ T (10)

∑
j∈V,i<j

xkt
ij +

∑
j∈V,j<i

xkt
ji = 2ykti i ∈ V k ∈ K t ∈ T (11)

∑
i∈S

∑
j∈S,i<j

xkt
ij ≤

∑
i∈S

ykti − yktm S ⊆ V ′ k ∈ K t ∈ T m ∈ S (12)

∑
k∈K

ykti ≤ 1 i ∈ V ′ t ∈ T (13)

Igti , dgti , q
gkt
i ≥ 0 i ∈ V ′ g ∈ S k ∈ K t ∈ T (14)

xkt
i0 ∈ {0, 1, 2} i ∈ V ′ k ∈ K t ∈ T (15)

xkt
ij ∈ {0, 1} i, j ∈ V ′ k ∈ K t ∈ T (16)

ykti ∈ {0, 1} i ∈ V k ∈ K t ∈ T . (17)

The objective function (1) maximizes the total sales revenue, minus inventory and rout-

ing costs. Constraints (2) define the inventory conservation conditions for the supplier,

aging the product by one unit in each period. Constraints (3) ensure that the supplier

always produces or receives top fresh products. Constraints (4) and (5) define inventory

conservation and aging of the items for the customers. Constraints (6) impose a maxi-

mal inventory capacity at each customer. Constraints (7) state that the demand of each

customer in each period is the sum of product quantities of different ages. Note that by

design, any product whose age g is higher than s is spoiled, e.g., it no longer appears

in the inventory nor can it be used to satisfy the demand. Constraints (8) and (9) link

the quantities delivered to the routing variables. In particular, they only allow a vehicle

to deliver products to a customer if a vehicle has been assigned to it. Constraints (10)
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ensure that the vehicle capacities are respected. Constraints (11) and (12) are degree con-

straints and subtour elimination constraints, respectively. Inequalities (13) ensure that

at most one vehicle visits each customer in each period, thus forbidding split deliveries.

Constraints (14)−(17) enforce integrality and non-negativity conditions on the variables.

This model can be strengthened through the inclusion of the following families of valid

inequalities [6]:

xkt
i0 ≤ 2ykti i ∈ V k ∈ K t ∈ T (18)

xkt
ij ≤ ykti i, j ∈ V k ∈ K t ∈ T (19)

ykti ≤ ykt0 i ∈ V ′ k ∈ K t ∈ T (20)

ykt0 ≤ yk−1,t0 k ∈ K\{1} t ∈ T (21)

ykti ≤
∑
j<i

yk−1,tj i ∈ V k ∈ K\{1} t ∈ T . (22)

Constraints (18) and (19) enforce the condition that if the supplier is the immediate

successor of a customer in the route of vehicle k in period t, then i must be visited by the

same vehicle. A similar reasoning is applied to customer j in inequalities (19). Constraints

(20) ensure that the supplier is visited if any customer i is visited by vehicle k in period

t.

When the vehicle fleet is homogeneous, one can break some of the vehicle symmetry by

means of constraints (21), thus ensuring that vehicle k cannot leave the depot if vehicle

k− 1 is not used. This symmetry breaking rule is then extended to the customer vertices

by constraints (22) which state that if customer i is assigned to vehicle k in period t, then

vehicle k − 1 must serve a customer with an index smaller than i in the same period.

We also introduce additional cuts in order to strengthen this formulation. If the sum of

the demands over [t1, t2] is at least equal to the maximum possible inventory held, then

there must be at least one visit to this customer in the interval [t1, t2]. This constraint

can be strengthened by considering that if the quantity needed to satisfy future demands
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is larger than the maximum inventory capacity, then several visits are needed. Since the

maximum delivery size is the minimum between the holding capacity and the maximum

vehicle capacity, one can round up the right-hand side of (23). Making the numerator

tighter by considering the actual inventory instead of the maximum possible inventory

yields inequalities (24), which cannot be rounded up because they would then become

non-linear due to the presence of the I t1i variable in their right-hand side:

∑
k∈K

t2∑
t′=t1

ykt
′

i ≥


t2∑

t′=t1

dt
′
i − Ci

min{maxk{Qk}, Ci}

 i ∈ V ′ t1, t2 ∈ T , t2 ≥ t1 (23)

∑
k∈K

t2∑
t′=t1

ykt
′

i ≥

t2∑
t′=t1

dt
′
i − I t1i

min{maxk{Qk}, Ci}
i ∈ V ′ t1, t2 ∈ T , t2 ≥ t1. (24)

A different version of the same inequalities can be written as follows. It is related to

whether the inventory hold at each period is sufficient to fulfill future demands. In

particular, if the inventory held in period t1 by customer i is not sufficient to fulfill

future demands, then a visit to this customer must take place in the interval [t1, t2]. This

condition can be enforced by the following set of inequalities:

∑
k∈K

t2∑
t′=t1

ykt
′

i ≥

t2∑
t′=t1

dt
′
i − I t1i

t2∑
t′=t1

dt
′
i

i ∈ V ′ t1, t2 ∈ T , t2 ≥ t1. (25)

Even if these inequalities are redundant for our model, they are useful in helping CPLEX

generate new cuts.

It is relevant to note that this model distinguishes items of different ages through the use

of index g. The variables have a meaning similar to those of the multi-product IRP [7].

In the case of a single perishable product, the model works as if products of different ages

are different from each other (through their index) and have different profits, but contrary
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to what happens in the multi-product case, any of these products can be used to satisfy

the same demand. Another particularity of this model is that at each period, an item

transforms itself into another one through the process of aging. Thus, our problem shares

some features of the multi-product problem [7], but it is structurally different from it.

3.1 Modeling an FF policy

We now show how the formulation just described can be used to solve the problem under

an FF policy under which the retailer sells fresher items first. We add extra variables and

constraints to the PIRP formulation in order to restrict the choice of products age to be

sold.

We implement this idea as follows. We first introduce new binary variables Lgt
i equal to

one if and only if products of age g can be used to satisfy the demand of customer i in

period t. The first set of new constraints restricts the use of variables dgti , i.e., the use of

products of age g to satisfy the demand of customer i in period t, only to those products

allowed by the respective Lgt
i variables, that is:

dgti ≤ UiL
gt
i i ∈ V ′ g ∈ S t ∈ T . (26)

We also order the new variables in increasing order of age index. The following set of

constraints allows selling products of age g + 1 only if products of age g have been used

to satisfy the demand of customer i in period t:

Lgt
i ≥ Lg+1,t

i i ∈ V ′ g ∈ S\{s} t ∈ T . (27)

We then impose the following constraints to disallow the use of older products if there

exists enough inventory of fresher products. The use of products of age g + 1 is allowed if

and only if the total inventory of products of ages g, g−1, . . . , 0 is insufficient to satisfy the

demand of customer i in period t. This can be enforced through the following constraints:
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Ui(1− Lg+1,t
i ) ≥

g∑
j=0

Ijti +

g∑
j=0

∑
k∈K

qjkti − dti + 1 i ∈ V ′ g ∈ S\{s} t ∈ T . (28)

3.2 Modeling an OF policy

It is straightforward to model the OF policy from the constraints developed for the FF

case. This policy can be enforced by considering the same Lgt
i variables and the following

three sets of constraints:

dgti ≤ UiL
gt
i i ∈ V ′ g ∈ S t ∈ T . (29)

Constraints (29) only allow the use of inventory of age g to satisfy the demand if its

associated Lgt
i variable is set to one. Then, we also rank the Lgt

i variables in increasing

order of age index. The following set of constraints allow selling products of age g − 1

only if products of age g are being used to satisfy the demand of customer i in period t:

Lg−1,t
i ≤ Lg,t

i i ∈ V ′ g ∈ S\{0} t ∈ T . (30)

Finally, we force some of the L variables to take value zero by adding the following

constraints to the model. If the total inventory available of ages {g, g + 1, . . . , s} is

sufficient to satisfy the demand of customer i in period t, then the right-hand side of

inequalities (31) is positive, which in turn guarantees that Lg−1,t
i will take value zero:

Ui(1− Lg−1,t
i ) ≥

s∑
j=g

Ijti +
s∑

j=g

∑
k∈K

qjkti − dti + 1 i ∈ V ′ g ∈ S\{0} t ∈ T . (31)

4 Branch-and-Cut Algorithm

For very small instances sizes, the model presented in Section 3 can be fully described and

all constraints and variables generated. It can then be solved by feeding it directly into an
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integer linear programming solver. However, for instances of realistic sizes, the number of

subtour elimination constraints (12) is too large to allow full enumeration and these must

be dynamically generated throughout the search process. The exact algorithm we present

is then a classical branch-and-cut scheme in which subtour eliminations constraints are

only generated and incorporated into the program whenever they are found to be violated.

It works as follows. At a generic node of the search tree, a linear program containing a

subset of the subtour elimination constraints is solved, a search for violated inequalities is

performed, and some of these are added to the current program which is then reoptimized.

This process is reiterated until a feasible or dominated solution is reached, or until there

are no more cuts to be added. At this point, branching on a fractional variable occurs.

We provide a sketch of the branch-and-bound-and-cut scheme in Algorithm 1.

5 Computational Experiments

In order to evaluate the proposed algorithm, we have coded it in C++ and used IBM

Concert Technology and CPLEX 12.5 running in parallel with two threads. All compu-

tations were executed on a grid of Intel Xeon™ processors running at 2.66 GHz with up

to 24 GB of RAM installed per node, with the Scientific Linux 6.1 operating system.

5.1 Instances generation

We have created randomly generated instances to assess the performance of our algorithm

on a wide range of situations. We have generated a total of 60 different instances which

vary in terms of the number of customers, periods, vehicles and maximum age of the

product. Our testbed is composed of instances generated with the following parameters:

• Number of customers n: 10, 20, 30, 40, 50;

• Number of periods H: 3 for up to n = 50; 6 for up to n = 40; and 10 for up to

n = 30;
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Algorithm 1 Branch-and-cut algorithm

1: At the root node of the search tree, generate and insert all valid inequalities into the

program.

2: Subproblem solution. Solve the LP relaxation of the current node.

3: Termination check:

4: if there are no more nodes to evaluate then

5: Stop.

6: else

7: Select one node from the branch-and-cut tree.

8: end if

9: while the solution of the current LP relaxation contains subtours do

10: Identify connected components as in Padberg and Rinaldi [32].

11: Determine whether the component containing the supplier is weakly connected as

in Gendreau et al. [13].

12: Add all violated subtour elimination constraints (12).

13: Subproblem solution. Solve the LP relaxation of the current node.

14: end while

15: if the solution of the current LP relaxation is integer then

16: Go to the termination check.

17: else

18: Branching: branch on one of the fractional variables.

19: Go to the termination check.

20: end if
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• Number of vehicles K: 1 for n = 10; 2 for n = 20 and 30; 3 for n = 40 and 50;

• Maximum age of the products s: 2 for H = 3; 3 for H = 6; 5 for H = 10;

• Demand dti: randomly selected from the interval [30, 210];

• Position (x, y) of the supplier and customers: randomly selected from the interval

[0, 1000];

• Customers inventory capacity Ci: R×maxt{dti}, where R is randomly selected from

the set {2, 3};

• Initial inventory I0i of fresh products: equal to Ci − d1i ;

• Revenue ug
i : equal to R1 − (R1 −R2) g/s, where R1 and R2 are randomly selected

from the intervals [10, 20] and [4, 7], respectively;

• Inventory holding cost hg
i : equal to (R1 + gR2/ (1 + g)) /100, where R1 and R2 are

randomly selected from the intervals [0, 100] and [0, 70], respectively;

• Vehicle capacities Qk: equal to b1.25
∑
i∈V ′

∑
t∈T

dti/(HK)c.

For each combination of the n, s, K and H parameters we have generated five instances,

yielding a total of 60 instances.

In what follows we provide average statistics over five instances per combination. Detailed

results are presented in Appendix A. These results along with the instances are also

available for download from http://www.leandro- coelho.com.

5.2 Solutions for an OP policy

We provide in Table 1 average computational results for these instances under the OP

policy. We have allowed the algorithm to run for a maximum of two hours. When the time

limit is reached, we report the best available lower and upper bound (solution value) and
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the optimality gap. We report the instance sizes as (n-s-K-H), where n is the number of

customers, s is the maximum age of the product, K is the number of vehicles, and H is the

length of the planning horizon. The next columns report the average best solution value

obtained, the average best bound, the average optimality gap, the number of instances

out of the five that were solved to optimality, and the average running time in seconds.

Table 1: Summary of the computational results for the PIRP under the OP policy

Instance size Best known Best known
Gap (%) # solved Time (s)

(n-s-K-H ) solution value upper bound

PIRP-10-2-1-3 31529.90 31529.90 0.00 5/5 0.4

PIRP-10-3-1-6 61684.44 61684.44 0.00 5/5 2.4

PIRP-10-5-1-10 81094.96 81094.96 0.00 5/5 210.2

PIRP-20-2-2-3 62936.24 62936.24 0.00 5/5 27.8

PIRP-20-3-2-6 126736.20 128894.4 0 1.75 0/5 7200.6

PIRP-20-5-2-10 180919.00 186553.20 3.30 0/5 7201.4

PIRP-30-2-2-3 97580.90 97580.90 0.00 5/5 322.0

PIRP-30-3-2-6 192817.80 196322.20 1.79 0/5 7201 .0

PIRP-30-5-2-10 294582.2 0 300742.00 2.17 0/5 7201.4

PIRP-40-2-3-3 127961.6 0 129832.00 1.45 0/5 7201.4

PIRP-40-3-3-6 250435.8 0 258103.4 0 3.10 0/5 7201.2

PIRP-50-2-3-3 177157.4 0 179724.40 1.46 0/5 7201.8

These results clearly indicate that the performance of the algorithm is directly related

to the number n of customers and to the length H of the planning horizon. For the

instances with shorter planning horizons (H = 3), the algorithm is always able to find

optimal solutions within a few seconds of computational time. This remains true even

when the number of customers and vehicles increases, e.g., all five instances with 30

customers and three periods were solved to optimality, taking on average five minutes.

Larger instances with up to 40 and 50 customers also with three periods were solved with

a gap of less than 1.50% on average.
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5.3 Solutions for an FF and an OF policy

We also compare the solution cost of the optimized policy with respect to the age of the

products sold with the cost of the alternative FF and OF policies. We first consider the

FF policy which maximizes the revenue by always selling fresher items. This policy, on the

other hand, leads to more spoilage, which in turn increases the need for more deliveries,

thus increasing distributions costs. The results are shown in Table 2 as percentages

representing the profit decrease of the FF policy with respect to the OP policy. We also

report the optimality gap, the number of instances solved optimally, and the running

time in seconds. We note that the difficulty of solving the PIRP under an FF policy is

similar to that observed for the OP policy, and the profit is only slightly lower. Finally,

we provide the same comparison with respect to the OF policy. The summary of the

results are shown in Table 3.

Table 2: Summary of the computational results for the PIRP under an FF policy

Instance size
% decrease Opt gap (%) # solved Time (s)

(n-s-K-H )

PIRP-10-2-1-3 0.00 0.00 5/5 0.6

PIRP-10-3-1-6 0.17 0.00 5/5 3.2

PIRP-10-5-1-10 0.51 0.64 3/5 3251 .0

PIRP-20-2-2-3 0.01 0.00 5/5 50.6

PIRP-20-3-2-6 0.14 1.97 0/5 7200.4

PIRP-20-5-2-10 0.10 3.42 0/5 7202.4

PIRP-30-2-2-3 0.12 0.33 4/5 1526 .0

PIRP-30-3-2-6 −0.01 1.83 0/5 7201.2

PIRP-30-5-2-10 0.35 2.45 0/5 7202.6

PIRP-40-2-3-3 0.14 1.62 0/5 7201 .0

PIRP-40-3-3-6 0.25 3.38 0/5 7202.8

PIRP-50-2-3-3 0.35 1.89 0/5 7202.6
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Table 3: Summary of the computational results for the PIRP under an OF policy

Instance size
% decrease Opt gap (%) # solved Time (s)

(n-s-K-H )

PIRP-10-2-1-3 13.91 0.00 5/5 0.2

PIRP-10-3-1-6 14.99 0.00 5/5 35.8

PIRP-10-5-1-10 10.43 0.85 3/5 3638.6

PIRP-20-2-2-3 18.84 0.00 5/5 6.0

PIRP-20-3-2-6 11.94 2.10 1/5 6622.0

PIRP-20-5-2-10 8.64 4.91 0/5 7201.6

PIRP-30-2-2-3 18.09 0.00 5/5 40.4

PIRP-30-3-2-6 9.97 1.76 0/5 7201.6

PIRP-30-5-2-10 7.95 3.22 0/5 7202 .0

PIRP-40-2-3-3 16.09 0.60 2/5 6249.4

PIRP-40-3-3-6 9.56 3.36 0/5 7202 .0

PIRP-50-2-3-3 16.53 1.38 0/5 7202.8
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As was the case of the FF policy, the difficulty of obtaining optimal and quasi-optimal

solutions is not affected by the inclusion of the new binary variables and the new con-

straints. However, unlike the previous policy, the effect on cost of selling older items

first, thus deriving lower revenues, has a major effect on the total profit observed, which

decreases substantially over all instances.

5.4 Solutions for alternative revenue functions

In order to assess the trade-off between the OP, FF and OF policies, we have changed

how the product revenue varies linearly as a function of age. We have generated three

variations. In the first mild scenario, the difference in cost between fresh and old products

is reduced. In the second steep scenario, the difference is increased. Finally, we have also

created a flat scenario case in which the revenue of the product is constant as a function

of age. These three scenarios and the base case are depicted in Figure 1. The slopes of

the linear functions in increasing order are equal to −2.4, −1.8 and −1.2.
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Figure 1: Four alternative revenue functions

We have designed the following experiments in order to evaluate the impact of these
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changes in the trade-off between the different policies. We have selected all 30 instances

containing 10 and 20 customers. Each instance was solved under the three policies and

under the three alternative revenue functions. In Table 4 we report the percentage de-

crease in profit with respect to the optimized policy for each of the revenue functions

considered.

Table 4: Percentage decrease in profit when using alternative revenue functions

Instance size FF policy OF policy

(n-s-K-H ) Base case Mild Steep Flat Base case Mild Steep Flat

PIRP-10-2-1-3 0.00 0.00 0.00 0.00 13.91 21.37 10.76 0.01

PIRP-10-3-1-6 0.17 0.00 0.00 0.02 14.99 19.69 10.52 0.46

PIRP-10-5-1-10 0.51 0.00 0.00 0.35 10.43 16.27 9.19 1.59

PIRP-20-2-2-3 0.01 0.00 0.00 0.00 18.84 25.02 14.01 0.11

PIRP-20-3-2-6 0.14 −0.01 −0.11 0.12 11.94 15.83 8.59 0.80

PIRP-20-5-2-10 0.10 0.05 −0.03 0.40 8.64 11.22 7.44 1.58

Finally, to better understand how different revenues for products of different ages affect the

trade-off between each of the three policies, we have conducted the following experiments.

We have selected one instance (PIRP-10-5-1-10-1) and we have solved it using the three

policies for several slopes of the revenue functions. Specifically, we have set the revenue

of a fresh product to 20 and we have set the revenue of the oldest item ranging from zero

to 20, in steps of one unit. We have then plotted the values of the objective functions of

each one in the graph of Figure 2.

These new sets of experiments confirm that on our data set the FF policy provides solution

values that are almost identical to the OP policy. Note how the thin continuous line of

the OP policy is only slightly higher than the dotted line of the FF policy, but visually

indistinguishable from it. This implies that here the optimal policy tends to favor the

sale of fresher products. The OF policy, on the other hand, provides solutions whose cost

is greatly affected by the revenue value of older products. The difference between the

policies is largest when these products are valued very low. When the revenue value for
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Figure 2: Variable revenue functions. The horizontal axis indicate the revenue for one unit of

the oldest item as a fraction of the revenue of a fresh item. Low values on the horizontal axis

indicate a steep revenue function with respect to the age of the products. High values on the

horizontal axis indicate a mild revenue function with respect to the age of the products.
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older products increases, so does increase the profit of applying an OF policy, and the

difference between this policy and the other two tends to vanish.

6 Conclusions

We have introduced the joint replenishment and inventory control of perishable products.

We have modeled the problem under general assumptions as a MILP, and we have solved

it exactly by branch-and-cut. We have also introduced, modeled and solved exactly two

variants of the problem defined by applying the OF and the FF selling priority policies,

in which the retailer sells with higher priority older and fresher items, respectively. Our

model remains linear even when the product revenue decreases in a non-linear or even in

a non-convex fashion over time. It keeps track of the number of items of each age, and

considers different holding costs for products of different ages. The model optimally deter-

mines which items to sell at each period based on the trade-off between cost and revenue.

The algorithm can effectively compute optimal joint replenishment and delivery decisions

for perishable products in an inventory-routing context for medium size instances. We

have also shown that on our testbed, the profit is drastically reduced when an OF policy

is applied, but the decrease is only marginal under an FF policy. Extensive computational

experiments carried out on randomly generated instances support these conclusions.
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Appendix A. Detailed computational results for the

OP, FF and OF policies

We present in Table 5 the detailed computational results for all instances under the OP, the FF

and the OF policies.
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Table 5: Detailed results of the computational experiments for the PIRP

OP policy FF policy OF policy

Instance size Best known Best known
Gap (%) Time (s)

Best known Best known
Gap (%) Time (s)

Best known Best known
Gap (%) Time (s)

(n-s-K-H ) solution value upper bound solution value upper bound solution value upper bound

PIRP-10-2-1-3-1 28863.4 28863.4 0.00 1 28863.4 28863.4 0.00 1 26221.0 26221.0 0.00 1

PIRP-10-2-1-3-2 34368.0 34368.0 0.00 1 34368.0 34368.0 0.00 1 29637.7 29637.7 0.00 0

PIRP-10-2-1-3-3 27895.7 27895.7 0.00 0 27895.7 27895.7 0.00 1 23062.5 23062.5 0.00 0

PIRP-10-2-1-3-4 33688.1 33688.1 0.00 0 33688.1 33688.1 0.00 0 30923.3 30923.3 0.00 0

PIRP-10-2-1-3-5 32834.3 32834.3 0.00 0 32834.3 32834.3 0.00 0 25874.1 25874.1 0.00 0

PIRP-10-3-1-6-1 67552.8 67552.8 0.00 1 67542.2 67542.2 0.00 1 60057.5 60057.5 0.00 5

PIRP-10-3-1-6-2 53367.7 53367.7 0.00 1 53330.5 53330.5 0.00 2 43119.8 43119.8 0.00 1

PIRP-10-3-1-6-3 67946.0 67946.0 0.00 3 67908.3 67908.3 0.00 4 59064.9 59064.9 0.00 7

PIRP-10-3-1-6-4 65375.6 65375.6 0.00 2 64918.2 64918.2 0.00 5 55391.3 55391.3 0.00 8

PIRP-10-3-1-6-5 54180.1 54180.1 0.00 5 54176.5 54176.5 0.00 4 44555.6 44555.6 0.00 158

PIRP-10-5-1-10-1 80471.9 80471.9 0.00 30 79740.7 79740.7 0.00 641 69734.9 69734.9 0.00 2000

PIRP-10-5-1-10-2 72194.8 72194.8 0.00 205 72149.4 72149.4 0.00 1018 66685.6 67738.8 1.57 7201

PIRP-10-5-1-10-3 101043.0 101043.0 0.00 427 100508.0 102792.0 2.27 7200 96025.7 96025.7 0.00 687

PIRP-10-5-1-10-4 82829.4 82829.4 0.00 28 82336.3 82336.3 0.00 196 73296.0 73296.0 0.00 1104

PIRP-10-5-1-10-5 68935.7 68935.7 0.00 361 68657.0 69301.6 0.93 7200 57416.6 58956.7 2.68 7201

PIRP-20-2-2-3-1 61780.2 61780.2 0.00 24 61780.2 61780.2 0.00 136 50548.4 50548.4 0.00 16

PIRP-20-2-2-3-2 75757.3 75757.3 0.00 1 75753.0 75753.0 0.00 2 64271.6 64271.6 0.00 2

PIRP-20-2-2-3-3 72546.5 72546.5 0.00 97 72546.5 72546.5 0.00 76 62656.7 62656.7 0.00 7

PIRP-20-2-2-3-4 52850.8 52850.8 0.00 14 52842.2 52842.2 0.00 36 42008.2 42008.2 0.00 4

PIRP-20-2-2-3-5 51746.4 51746.4 0.00 3 51746.4 51746.4 0.00 3 35895.6 35895.6 0.00 1

PIRP-20-3-2-6-1 110437.0 112517.0 1.88 7200 110343.0 112340.0 1.81 7200 87287.3 90277.8 3.42 7200

PIRP-20-3-2-6-2 133377.0 136382.0 2.25 7200 133126.0 136980.0 2.89 7201 117342.0 120768.0 2.91 7200

PIRP-20-3-2-6-3 106120.0 108651.0 2.38 7202 106033.0 108735.0 2.54 7200 91104.1 94204.4 3.40 7202

PIRP-20-3-2-6-4 135267.0 137210.0 1.43 7200 134850.0 137238.0 1.77 7201 122779.0 122779.0 0.00 4306

PIRP-20-3-2-6-5 148480.0 149712.0 0.83 7201 148395.0 149662.0 0.85 7200 139502.0 140613.0 0.79 7202

PIRP-20-5-2-10-1 200786.0 206053.0 2.62 7202 200646.0 206351.0 2.84 7201 183235.0 191178.0 4.33 7202

PIRP-20-5-2-10-2 152951.0 161040.0 5.28 7201 153008.0 160525.0 4.91 7201 132874.0 141960.0 6.83 7202

PIRP-20-5-2-10-3 182710.0 188156.0 2.98 7200 182683.0 188459.0 3.16 7202 172490.0 179249.0 3.91 7201

PIRP-20-5-2-10-4 146990.0 153093.0 4.15 7202 146316.0 153154.0 4.67 7204 133093.0 141996.0 6.68 7201

PIRP-20-5-2-10-5 221158.0 224424.0 1.47 7202 221003.0 224387.0 1.53 7204 204667.0 210435.0 2.81 7202

PIRP-30-2-2-3-1 85251.9 85251.9 0.00 1101 84740.0 86178.2 1.69 7202 71288.4 71288.4 0.00 137

PIRP-30-2-2-3-2 94711.4 94711.4 0.00 114 94633.3 94633.3 0.00 118 75580.3 75580.3 0.00 13

PIRP-30-2-2-3-3 99037.0 99037.0 0.00 46 99037.0 99037.0 0.00 41 77017.0 77017.0 0.00 24

PIRP-30-2-2-3-4 113737.0 113737.0 0.00 12 113737.0 113737.0 0.00 80 91090.1 91090.1 0.00 13

PIRP-30-2-2-3-5 95167.2 95167.2 0.00 337 95140.5 95140.5 0.00 189 84626.6 84626.6 0.00 15

PIRP-30-3-2-6-1 190666.0 196082.0 2.84 7201 190788.0 196539.0 3.01 7201 176515.0 181188.0 2.64 7202

PIRP-30-3-2-6-2 195358.0 196565.0 0.61 7200 195318.0 196563.0 0.63 7201 177796.0 179130.0 0.75 7201

PIRP-30-3-2-6-3 185507.0 188220.0 1.46 7200 185153.0 188306.0 1.70 7201 166860.0 169568.0 1.62 7202

PIRP-30-3-2-6-4 174064.0 176545.0 1.42 7201 174029.0 176540.0 1.44 7202 147141.0 149654.0 1.70 7201

PIRP-30-3-2-6-5 218494.0 224199.0 2.61 7203 218991.0 224188.0 2.37 7201 199631.0 203846.0 2.11 7202

PIRP-30-5-2-10-1 232289.0 238098.0 2.50 7201 230669.0 237852.0 3.11 7202 210635.0 219618.0 4.26 7201

PIRP-30-5-2-10-2 257061.0 263149.0 2.36 7201 256029.0 262717.0 2.61 7204 237088.0 245671.0 3.62 7202

PIRP-30-5-2-10-3 321116.0 325615.0 1.40 7202 320413.0 326010.0 1.74 7203 294469.0 300721.0 2.12 7202
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