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Abstract. This paper deals with online resource allocation problems (online auctions) 

whereby buyers with a limited budget want to purchase items which arrive one at a time 

and which consume some limited amount of resources upon allocation. There have been 

two main recent algorithmic approaches to address such online problems. One seeking 

algorithms with performance guarantee against worst case input; another with 

performance guarantee against specific probabilistic assumptions on the input. We 

propose in this paper an innovative practical method that combines the strengths of these 

two approaches, and that requires only a limited amount of information about how the 

future can unfold. We provide extensive numerical comparisons about our proposed 

computational scheme. 
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1. Introduction

As mentioned in Bloomberg Businessweek [2006], “Google didn’t make money until it started

auctioning ads that appear alongside the search results. Advertising today accounts for 99%

of the revenue”. Google’s advertisement generated more than 20 billions of dollars in 2010.

Online optimization techniques are essential for Google and each improvement can lead

to significant benefits. For such optimization problems, information (e.g., about clients,

advertisements, etc.) is typically revealed step by step, and irrevocable decisions must be

taken along the way. The so-called AdWords problem, introduced in [22, 23] is a typical

example: search engines must choose which advertisement is the best to display for each

new keyword search request in order to maximize their revenue.

In this paper, we consider a specific class of resource-constrained allocation problems where

items arrive one by one and must be allocated among a set of buyers upon arrival. More

formally, the problem, hereafter called the bipartite resource allocation problem, can be

described as follows:

• a set of N buyers, each interested in purchasing one or more items in a set {1 . . .M};

• buyer i ∈ {1 . . . N} is willing to pay cik for each item k ∈ {1 . . .M} and has a limited

total budget Bi;

• quantities Fk ∈ RL
+ of L distinct resources are available for all requests of type k ∈

{1 . . .M};

• each item k ∈ {1 . . .M} consumes amounts (dl
ik)L

l=1 of resources Fk and provides a

revenue cik to the operator when allocated to buyer i ∈ {1 . . . N}.

The objective is to maximize the revenue of the operator under all the previous problem

features. In the online case, the rate at which requests arrive and the type kj of the jth

request are unknown and, in some cases, can be described by a stochastic process. The

challenge is to match each request to a buyer without knowing the overall sequence.
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1.1. Applications

A wide range of applications can be modeled by this bipartite resource allocation problem.

In addition to the ad display example introduced above, the following examples are of inter-

ests in routing, revenue management or scheduling.

Recently, Google has published two anonymous sets of real-data of their compute clusters

[25]. Tasks from different services are arriving continuously; the resources allocated to each

service has to be precisely estimated in order to avoid under or over-provisioning. New tasks

must be placed in the workload while respecting priorities and constraints. There are two

types of constraints; first, hardware constraints dealing with disk space, memory space and

the number of cpu. Second, software constraints ensures the right configuration of virtual

machines. Ali-Eldin et al. [1] present the problem and its different challenges. The algorithm

which manages the cloud has to be fast, robust and adaptive. Balancing resources among

services and inferring future resource needs are difficult under uncertainty.

Seat allocation problems are also very interesting, and appear in hospitality, rail and airline

industries. Clients purchase a ticket or a room and the company must choose a fare for this

service according to the current availability. The capacity of an hotel, a train or a plane must

be respected as companies try to maximize their revenue. The uncertainty of the demand

make decisions difficult.

A last application is the patient booking problem. Patients with different priorities arrive

one by one and ask for an appointment in hospitals or clinics. On one hand, resources should

be kept available for future high priority patients and, on the other hand, low priority pa-

tients has to also access to an appointment. Legrain et al. [20] introduce a practical problem

in a radiotherapy center. The resources management is challenging because of the random

arrival of patients.

All those examples have motivated our research. We are confident that the use of stochas-

tic optimization techniques combined to an analysis of historical data can lead to great

improvements of current techniques in online optimization.
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1.2. Our Techniques and Results

We present different improvements on current approaches for solving online bipartite re-

source allocation problems, making use of available stochastic information. Our work builds

upon the primal-dual algorithm presented by Buchbinder et al. [7]. Our main contributions

are as follows:

A Stochastic Online Algorithm: We assume that an underlying stochastic process de-

scribes the arrival of requests. Our algorithm takes into account future requests in order

to infer the expected revenue of an allocation. We make the best decision for the current

request by maximizing this revenue. This procedure, although providing high quality solu-

tions, remains however computationally very demanding.

A Re-optimized Primal-dual Algorithm: The previous algorithm is modified to esti-

mate the dual variables in the primal-dual procedure. Deterministic algorithms can take

poor decisions which lead to a significant deterioration of the solution. We aim to correct

these mistakes by performing updates of the dual variables during the process.

An Estimation of the Future: We assume here that the stochastic process of the demand

is unknown. We first use machine learning tools to infer the probability distribution of the

M items based on historical data. Then, upon each arrival of a request, we use an optimiza-

tion problem to estimate the number of remaining future requests. The quality of this last

inference is crucial to obtain an overall good solution.

Computational Experiments: We conduct numerical tests over different scenarios to

compare four algorithms. We also analyze the sensitivity of our scheme to different parame-

ters. Results shows that our procedure performs very well for most scenarios: its competitive

ratio is always above 0.9.

Outline: In the next paragraph, we provide a literature review of relevant work, placing

these contributions in the context of on online bipartite allocation problems. In Section 2,

we introduce our procedure built on a stochastic optimization problem. In Section 3, we

show different modifications on our algorithm to solve more realistic problems. In Section 4,

we provide extensive numerical comparisons about our computational scheme. Finally, we
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conclude with some final remarks and ideas of future developments.

1.3. Related Work

It is difficult to design algorithms operating under uncertainty which perform well in all

situations. There are different ways to handle uncertainty. On one hand, we have stochastic

optimization techniques, which are based on probabilistic models of the future: dynamic

programming [5], Markov decision processes [24], robust optimization [4] are some examples.

These approaches can provide good results if the probability distribution governing the data

is well known.

On the other hand, online optimization approaches e.g., see [15], can insure a certain quality

without knowledge about the future. The competitive ratio is a frequently used measure of

quality. The competitive ratio of an online algorithm on an instance I is defined as follow:

c(I) =
Objonline(I)

Objoptimal(I)

Objonline is the value of the objective for the solution given by the online algorithm and

Objoptimal is the value of the objective for the offline solution. For a maximization problem,

the competitive ratio c is defined as the infimum of c(I) over all instances. We then say that

the online algorithm is c-competitive.

The offline version of the bipartite resource allocation problems of interest in our paper can

be formulated as the following integer linear program (1):

max
N∑

i=1

T∑
j=1

cikj
xij (1a)

subject to: (1b)

N∑
i=1

xij ≤ 1 ∀j = 1 . . . T (1c)

T∑
j=1

cikj
xij ≤ Bi ∀i = 1 . . . N (1d)

N∑
i=1

T∑
j=1
kj=k

dikxij ≤ Fk ∀k = 1 . . .M (1e)

xij ∈ {0, 1} ∀i = 1 . . . N, ∀j = 1 . . . T (1f)
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The variables xij is equal to 1 if the buyer i purchases the jth request, 0 otherwise. The

objective (1a) represents the revenue of the operator. Constraint (1c) ensures that a request

can be bought only once. Constraint (1d) limits the total budget of the buyer i. Finally,

constraint (1e) verifies that the items k do not consume more than the available resources.

Different versions of the bipartite resource allocation problems have been studied in an online

fashion. Karp et al. [19] deals with a simple form of the bipartite matching (i.e. model (1)

without constraints (1d) and (1e) and with cik = 1). The goal is thus to maximize the number

of requests matched. The authors proposed a best possible (1− 1
e
)-competitive randomized

algorithm (RANKING). For the b-matching problem where each buyer cannot be matched

more than b times (i.e. model (1) without constraint (1e) and with Bi = b, cik = 1),

Kalyanasundaram and Pruhs [16] provide a (1 − 1
e
)-competitive algorithm (BALANCE).

They also prove that this competitive ratio is the best.

For the more complex Adwords problem (i.e. model (1) without constraint (1e)), the most

intuitive algorithm is the greedy algorithm (Algorithm 1). For the jth request, the algorithm

chooses the buyer i with the higher price cikj
, as long as there is enough budget Bi left. This

algorithm is (1
2
)-competitive [23].

Algorithm 1 Greedy Algorithm
xij = 0

for all jth request do

FIND a buyer i such that

MAXIMIZE cikj
AND there is enough budget Bi left

SET xij = 1

end for

Mehta et al. [23] introduce an algorithm with a better competitive ratio of 1− 1
e
. Buchbinder

et al. [7] shows that a primal-dual algorithm (see Algorithm 2 below) can be designed for

this problem with the same competitive ratio. The mathematical formulation is presented in

Table 1. The primal problem is just the linear programming relaxation of the general model

(1) without the resource constraints (1e).

Please note that the primal-dual algorithm (Algorithm 2) has a simple interpretation us-

ing reduced costs associated with the simplex algorithm as applied to the primal prob-
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Packing Problem P Covering Problem D

max
N∑

i=1

T∑
j=1

cikj
xij min

N∑
i=1

Biri +
T∑

j=1

zj

subject to: subject to:
N∑

i=1

xij ≤ 1 ∀j = 1 . . . T cikj
ri + zj ≥ cikj

∀i = 1 . . . N, ∀j = 1 . . . T

T∑
j=1

cikj
xij ≤ Bi ∀i = 1 . . . N

xij ≥ 0 ∀i = 1 . . . N, ∀j = 1 . . . T ri, zj ≥ 0 ∀i = 1 . . . N, ∀j = 1 . . . T

Table 1: Formulations primal-dual of the LP relaxation of the AdWords Problem

Algorithm 2 Primal-dual Algorithm
xij = 0, ri = 0, zj = 0

for all jth request do

FIND a buyer i who MAXIMIZES cikj
(1− ri)

REQUIRE ri < 1 AND there is enough budget Bi left

SET xij = 1, zj = cikj
(1− ri) and ri = ri(1 +

cikj

Bi
) +

cikj

(c−1)Bi

end for

lem. Indeed, the current solution before the arrival of the jth request (i.e. ∀l ≥ j, ∀i ∈

{1 . . . N}, xij = 0) is a basis of the primal problem. To apply the next step of the simplex

algorithm from this basis, the variable with the highest reduced cost has to enter the basis.

The reduced cost is cikj
(1−ri)−zj. Algorithm 2 just applies the same idea than the simplex

algorithm by choosing a variable (xij) which maximizes the reduced costs for the jth request.

Jaillet and Lu [12] use those ideas for a more general case, including resource constraints of

type (1e), but assuming a special homogeneous case (cik = dik). They obtain a 1
2
-competitive

algorithm.

Other authors such as Feldman et al. [10], Manshadi et al. [21], Jaillet and Lu [13], Karande

et al. [17] mix online and stochastic ideas. They study the online matching problem and

improve the bounds on the competitive ratios up to 0.706 [13] by using offline strategies.

They assume that the requests are drawn independent and identically distributed from a

known probability distribution.

Stochastic Online Bipartite Resource Allocation Problems
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Bent and Van Hentenryck [3] show different kinds of architecture to use stochastic informa-

tion during the online procedure. They present three different architectures: Expectation,

Consensus and Regret. All these architectures use the same kind of ideas: the future has

to be sampled and an offline algorithm is used to solve the problem with the sample events.

Recent papers present algorithms for solving the resource allocation problems with stochas-

tic information. They use an offline LP problem to build their future strategy. Ciocan and

Farias [8] have proved a worst case guarantee on average (i.e. the expected competitive ratio

is 0.342 under mild assumptions). Their algorithm computes a strategy based on statistics at

the beginning which gives a percentage of item k allocated to buyer i. Then, primal problems

are solved during the allocation process to update this strategy with the new information

available. Contrary, Feldman et al. [11], Jaillet and Lu [14] use the dual solution as a base of

their strategy. Furthermore, Jaillet and Lu [14] do not require the total number of requests

at the beginning, this is the first paper of this kind.

We present an hybrid algorithm which mixes online and stochastic optimization techniques

and solves bipartite resource allocation problems. Our stochastic procedure and the primal-

dual algorithm are related, the main difference being the dual variables ri’s updates. Our

algorithm is using available stochastic information during the online procedure to compute

these dual variables with a linear program. It also deals with an unknown total number of

requests. We will compare our procedure with the algorithm of Ciocan and Farias [8].

2. Stochastic Algorithm

In this section, we present a stochastic optimization formulation and an algorithm to solve

the bipartite resource allocation problem (1). The proposed algorithm tries to infer the

future and use the information in order to improve the current primal-dual algorithm. We

assume here that the number of requests is known and the demand (i.e. the type of each

request) is described by a stochastic process (Xk
j ): Xk

j = 1 if the jth request is an item of

type k, 0 otherwise. So we suppose that we have the following information:

• T the total number of requests;

• the distribution of the stochastic process (Xk
j )T

j=1.

Stochastic Online Bipartite Resource Allocation Problems
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From this information, those next parameters can be computed:

• Tj the number of requests left after the jth request. So Tj = T − j;

• Ωj the set of the future sample events, the set of the future scenarios. Each event ω

has the same number of items Tj;

• pω is the probability of the event ω ∈ Ωj;

• T ω
jk is the number of items k in the event ω. So Tj =

M∑
k=1

T ω
jk.

2.1. Stochastic optimization formulation

We present here a classical stochastic optimization formulation for solving online decisions

for our problem. We suppose that the jth request has just arrived and that we have to make

a decision. The objective is to maximize the expected revenue over all the events ω ∈ Ωj.

Define the following new variables:

• Bleft
i is the budget left of the buyer i;

• xi is equal to 1 if the jth request is allocated to the buyer i, 0 otherwise

• yω
ik is the number of item k allocated to the buyer i for the event ω.

At the time of the jth request, we obtain the following formulation:

max
N∑

i=1

cikj
xi+

∑
ω∈Ωj

pω

N∑
i=1

M∑
k=1

ciky
ω
ik (2a)

subject to:

N∑
i=1

xi ≤ 1 (2b)

N∑
i=1

yω
ik ≤ T ω

jk ∀ω ∈ Ωj,∀k = 1 . . .M (2c)

cikj
xi +

M∑
k=1

ciky
ω
ik ≤ Bleft

i ∀ω ∈ Ωj,∀i = 1 . . . N (2d)

xi ∈ {0, 1}, yω
ik ∈ N ∀ω ∈ Ωj,∀i = 1 . . . N, ∀k = 1 . . .M (2e)

Stochastic Online Bipartite Resource Allocation Problems
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The objective (2a) maximizes the revenue for the jth request and the expected revenue of

remaining future requests. The constraint (2b) insures that the jth request is allocated to

a maximum of one buyer. The constraints (2c) bound by T ω
jk the number of items of type

k matched with a buyer for the event ω. Finally, the constraints (2d) prevent exceeding the

budget for each buyer and each event. The formulation (2) is the most simple that we can

consider to describe the local best decisions to be made upon the arrival of a new request,

but this is a very large and difficult problem to solve. The relaxation of the integer constraint

(2e) on yω
ik is a first good idea to simplify the model. The L-Shaped method, presented in

the next Section 2.2, is a second way to improve the computational time.

2.2. L-Shaped Method

In their book, Birge and Louveaux [5] study different stochastic problems and show how

to use the L-Shaped method in order to solve them. This technique is based on a Benders

decomposition [2]. Concentrating on our specific problem, the idea is to decompose the

optimization problem (2) in a master problem and slave problems and then approximate the

objective of each slave problems using some cuts.

For the master problem, we replace in (2a) the part of this objective dealing with scenarios

by a recourse function Q which becomes the objective function in the slave problems. Then,

we obtain the problems presented in Table 2.

Master Problem Slave Problems

max
N∑

i=1

cikj
xi +

∑
ω∈Ωj

pωQ(x, ω) Q(x, ω) = max
N∑

i=1

M∑
k=1

ciky
ω
ik

subject to: subject to:
N∑

i=1

xi ≤ 1
N∑

i=1

yω
ik ≤ T ω

jk ∀k = 1 . . .M

M∑
k=1

ciky
ω
ik ≤ Bleft

i − cikj
xi ∀i = 1 . . . N

xi ∈ {0, 1} ∀i = 1 . . . N yω
ik ∈ N ∀i = 1 . . . N, ∀k = 1 . . .M

Table 2: Decomposition in sub-problems
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The recourse function Q has to be computed for each value of the variable x and for each

event ω. In order to have an approximation of Q, we use the dual of the slave problems. In

our case, the solution of this problem gives a cut. Table 3 presents a new master problem

where the cuts approximate the recourse function Q.

Master Problem Dual Slave Problems

max
N∑

i=1

cikj
xi +

∑
ω∈Ωj

pωθω min
M∑

k=1

T ω
jkα

ω
k +

N∑
i=1

(Bleft
i − cikj

xi)β
ω
i

subject to: subject to:
N∑

i=1

xi ≤ 1 αω
k + cikβ

ω
i ≥ cik ∀i = 1 . . . N, ∀k = 1 . . .M

θω ≤
M∑

k=1

T ω
jkα

ω
k +

N∑
i=1

(Bleft
i − cikj

xi)β
ω
i ∀ω ∈ Ωj

xi ∈ {0, 1} ∀i = 1 . . . N αω
k , β

ω
i ≥ 0 ∀i = 1 . . . N, ∀k = 1 . . .M

Table 3: Benders decomposition

It can be noted that the weak duality theorem justifies those approximations:

∀x ∈ [0, 1], ω ∈ Ωj, Q(x, ω) ≤
M∑

k=1

T ω
jkα

ω
k +

N∑
i=1

(Bleft
i − cikj

xi)β
ω
i (3)

1. Set x = 0

2. Solve all the dual slave problems and add every cuts to the master problem

3. Solve the master problem:

• if the solution x remains the same, STOP.

• otherwise GO TO 2.

Figure 1: The L-Shaped procedure

The L-Shaped algorithm, presented Figure 1, stops as soon as the optimum is reached,

otherwise some cuts continue to be generated. We make a simplification: we solve the

master problem only once. Indeed, that allows to decrease the computational time and to

make an easy link with the primal-dual Algorithm 2, as explained in Section 2.3.

Algorithm 3 chooses the best buyer at the beginning, and, if the master problem gives the

same solution, this is the optimum, otherwise the solution of the master problem should be

Stochastic Online Bipartite Resource Allocation Problems
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Algorithm 3 Stochastic primal-dual Algorithm
xij = 0

for all jth request do

USE the greedy Algorithm 1 to set x

Solve all the dual slave problems and add every cuts to the master problem

Solve the master problem and keep this solution x

end for

better for the future. This algorithm seems to have promising results. Our computational

tests will confirm this later.

2.3. Links with the Primal-dual

The constraints (3) become equalities in the stochastic primal-dual algorithm ; indeed, as

this is a maximization problem, each variable θω reaches, for every events, the minimum of

the constraint (3) associated to this variable. With this new formulation, we are able to

write:

∀x ∈ [0, 1], ω ∈ Ωj θ
ω =

∑
k

T ω
jkα

ω
k +

∑
i

(Bleft
i − cikj

xi)β
ω
i

With all those equalities, the variables θω are no longer needed, the updated cuts can be

integrated in the objective:

N∑
i=1

cikj
xi +

∑
ω∈Ωj

pω[
M∑

k=1

T ω
jkα

ω
k +

N∑
i=1

(Bleft
i − cikj

xi)β
ω
i ]

All the constants are taken off the objective to obtain
N∑

i=1

cikj
xi(1− [

∑
ω∈Ωj

pωβω
i ]). The cost of

the variable xi in this objective is exactly the same than its reduced cost in the primal-dual

algorithm (cikj
(1 − ri)); the only difference is the way to compute the dual variables ri. In

our case, we use stochastic information to build the dual variables ri =
∑
ω∈Ωj

pωβω
i . The cost

cikj
− cikj

ri can be interpreted as the difference between two revenues:

• cikj
is the benefit that the operator earns immediately if the jth request is matched to

the buyer i;

Stochastic Online Bipartite Resource Allocation Problems
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• cikj
ri is the expected loss in the future if such an allocation is chosen (the future budget

Bleft
i will be reduced of cikj

).

The stochastic primal-dual algorithm is just seeking an equilibrium between the instant

revenue cikj
and the expected loss.

2.4. Generalized Problems

We apply those techniques to the problem (1) seen in the Section 1.2. This leads to the

following stochastic optimization where F left
k is the resources left of the item k. This is the

new master problem:

max
N∑

i=1

{cikj
− [

∑
ω∈Ωj

pω(cikj
βω

i + dikj
γω

kj
)]}xi

subject to:

N∑
i=1

xi ≤ 1

xi ∈ {0, 1} ∀i = 1 . . . N

with the dual slave problems:

min
M∑

k=1

T ω
jkα

ω
k +

N∑
i=1

[(Bleft
i − cikj

xi)β
ω
i − dikj

xiγ
ω
kj

] +
M∑

k=1

F left
k γω

k

subject to:

αω
k + cikβ

ω
i ≥ cik + dikγ

ω
k ≥ cik ∀i = 1 . . . N, ∀k = 1 . . .M

αω
k , β

ω
i , γ

ω
k ≥ 0 ∀i = 1 . . . N, ∀k = 1 . . .M

The slave problems have more variables and the new dual variables ri are equal to
∑
ω∈Ωj

pω(βω
i +

dikj

cikj

γω
kj

). This new algorithm follows the same procedure as before.

2.5. Re-optimized Primal-dual

Algorithm 3 should be better than the primal-dual algorithm, because the updates of the

dual variables ri use stochastic information. However, this algorithm is too slow in a real time
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environment: solving a linear problem at each arrival of a request is much more demanding

in computational time. Consequently, we are proposing a re-optimized algorithm, the linear

problem will be solve only each ∆ requests.

Algorithm 4 Re-optimized primal-dual Algorithm
xij = 0, ri = 0

for all jth request do

if j ≡ 0 (mod ∆) then

USE stochastic primal-dual Algorithm 3

UPDATE ri = ρri + (1− ρ)[
∑

ω∈Ωj
pωβω

i ], ∀i = 1 . . . N

end if

USE primal-dual Algorithm 2 without update, if a re-optimization has been made

end for

Algorithm 4 will use, most of the time, the same updates than the primal-dual algorithm,

because this algorithm is (1− 1
e
)-competitive. Each ∆ requests, Algorithm 4 uses stochastic

information to fix errors which may have been made during the latter steps by updating

the dual variables with Algorithm 3. Furthermore, the parameter ρ allows us to smooth the

value of the dual variables at each re-optimization. Results are shown in the last Section 4.

In the next Section 3, we make some modifications to use this algorithm in a more realistic

world.

3. Practical Modifications

In this section, we show some ideas to transform Algorithm 4 to a realistic procedure. To

compare the quality of an improvement, we use the competitive ratio.

3.1. Improvement of the Solving Time

The set of the sample events Ωj is huge, it is impossible to compute the slave problems for all

events ω. The Table 4 presents the competitive ratio for different size of Ωj. Those tests have

been made with 300 requests which were independently and identically distributed (i.i.d.)

and each competitive ratio is an average over 500 draws.

Stochastic Online Bipartite Resource Allocation Problems
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|Ωj| = 1 2 3 5 10

Competitive ratio 0.995 0.995 0.996 0.996 0.996

Table 4: Competitive ratio as a function of |Ωj| for the stochastic primal-dual algorithm

As the competitive ratio does not really increase with the size of Ωj, we will solve only

one random event ω0 for the dual slave problems (Table 3). First, as the constraints of

the dual slave problems are independent of the events, the dual variables αω0
k , βω0

i and γω0
k

remains feasible for every events. Then, the cut (3) for the event ω0 becomes a good ap-

proximation of Q(x, ω) for all events ω. Second, the use of one random scenario instead of

a determinist scenario leads to a randomized algorithm. Randomization is usually a way to

eliminate worst-case behavior within a deterministic algorithm [18]. The new objective is:
N∑

i=1

{cikj
− [

∑
ω∈Ωj

pω(cikj
βω0

i + dikj
γω0

kj
)]}xi =

N∑
i=1

{cikj
− (cikj

βω0
i + dikj

γω0
kj

)}xi. This idea allows

to decrease dramatically the computational time.

3.2. Bayesian Inference

In practice, it is rare to know the distribution of the stochastic process (Xk
j )T

j=1. That is

why we are going to use Bayesian Statistics (Bolstad [6]) to infer this distribution from the

current historical data. We first focus on one type of item: we forget the index k of the

process. Let us consider that (Xj)
T
j=1 is a Bernoulli process: the stochastic process (Xj)

T
j=1

is i.i.d. and each Xj follows a Bernoulli distribution of mean µ which is in [0, 1].

Xj =

1 with probability µ

0 otherwise

This stochastic variable µ corresponds to the probability that we want infer. µ follows

a prior distribution P[µ|α]. Then, it is well-known that ∀j ∈ {1 . . . T}, P[µ|(Xl)
j
l=1, α]

is a beta distribution β(at, bt), if the prior distribution P[µ|α] is also a beta distribution

β(a, b). Furthermore, aj = a +
∑j

l=1Xl and bj = b +
∑j

l=1(1 − Xl). We can now estimate
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µ̂j+1 = P[Xj+1 = 1|(Xl)
j
l=1, a, b]:

µ̂j+1 = E[µ|(Xl)
j
l=1, a, b] =

aj

aj + bj
=
a+

∑j
l=1 Xj

a+ b+ j

We obtain the probability pk that an item of type k has to arrive on the (j + 1)th request.

We must infer all the probabilities pk at the same time. Let us now consider that (Xk
j )T

j=1

follows a Bernoulli process for each item k:

Xk
j =

1 if k = kj

0 otherwise

∀j ∈ 1 . . . T, ∀k = 1 . . .M

We can note that
M∑

k=1

Xk
j = 1, ∀j = 1 . . . T .

With the same notations as before, we obtain that ∀j = 1 . . . T,∀k = 1 . . .M, Xk
j follows a

beta distribution β(ak
j , b

k
j ) and that µ̂k

j =
ak+

Pj
l=1 Xk

l

ak+bk+j
. As we have not any piece of information

before the first request, we suppose that all requests are equiprobable (E[β(ak, bk)] = 1
C

) and

i.d. (ak = a, bk = b). So ak + bk = Cak = Ca. We also remark that:

M∑
k=1

µ̂k
j =

M∑
k=1

a+
∑j

l=1 X
k
l

Ca+ j
=
Ca+

∑j
l=1

∑M
k=1X

k
l

Ca+ j
=
Ca+ j

Ca+ j
= 1 ∀j = 1 . . . T

Consequently, µ̂k
j can be interpreted as the probability that the (j + 1)th request is an item

of type k. We use this method to infer every pk. Even if the stochastic process (Xj)
T
j=1 is

not independent or does not follow a Bernoulli distribution, the procedure remains generally

efficient.

3.3. Adaptive Horizon

Most papers suppose that the total number of requests is known. However, in practice, this

number is unknown (see also a discussion and theoretical treatment of this issue in [14]). In

our case, we will present to ways to deal with this issue. First, we will infer the number of

requests left Tj with a liner program. Second, we will assume as Jaillet and Lu [14] that the

distribution governing the arrival times of requests is known.

The Table 5 shows different competitive ratios. Those tests have been made with 300 requests

which were i.i.d and the competitive ratios are an average computed over 500 draws.
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greedy primal-dual
stochastic primal-dual

real Tj Tj = 50

mean of the
0.9011 0.9569

0.9901 0.9332 real probability

competitive ratio 0.9877 0.9294 inferred probability

Table 5: Comparison of competitive ratios

This Table 5 proves that the inference of the probabilities is good comparing to the choice

of the value Tj. If the number of requests left Tj is not estimated correctly, the stochastic

primal-dual algorithm is worse than the primal-dual procedure. That is why it is very

important to estimate Tj accurately. The optimization problem (4) seems to work well in

order to infer Tj, but the estimation of Tj can be changed according to the reality of the

environment.

min Tj (4a)

subject to:

N∑
i=1

[

j−1∑
l=1

cikl
xil +

M∑
k=1

cikyik] ≥
N∑

i=1

Bi (4b)

N∑
i=1

yik ≤ pkTj ∀k = 1 . . .M (4c)

yik ≥ 0 ∀i = 1 . . . N, ∀k = 1 . . .M (4d)

The idea is to take the minimum Tj such that there are enough requests to fill the budget

left. Constraints (4b) force the optimization problem to fill the whole budget. At the same

time, constraints (4c) insure that the expected number pkTj of items k is just enough to

cover every items k needed by constraint (4b). Then, we solve the optimization problem (4)

in order to evaluate the number Tj of requests left. It remains one practical issue, instead

of optimizing one linear problem, we have two solve two of them. Consequently, the com-

putational time of the re-optimized primal-dual algorithm is double (tests have been made).

This is necessary to obtain good results. Furthermore, if we make few re-optimizations, dou-

bling the computational time should not affect a lot the algorithm. Results and a sensitivity

analysis will be presented in Section 4.1.4.
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The second method to estimate the number of requests left Tj is to change our way to model

the problem. Instead of defining a problem by its number of requests T , we can define a

time window in which requests arrive. In this case, the number of requests left depends of

the event; the arrival of request is modeling by a stochastic process (Xk
t )t∈[0,T ]. T represents

now the end of the process, is known and, consequently, does not need to be inferred. For

the Google Adwords problem, if T = 24 hours, the algorithm maximizes Google’s revenue

over one day and Bi is the daily budget of buyer i. We will present some results later where

the stochastic process follows an exponential distribution. We call this problem the daily

Adwords problem.

4. Numerical Results

All these next tests have been done on the following computer: Intel(R) Xeon(TM) CPU

2.66GHz with 1 Gb of Memory. The software CPLEX 12.4 is used to solve the linear

problems (Table 3) and (4). The sequences of requests (kj)j=1...L follow a Multinomial

distribution. They are non-trivial, i.e. the number of requests is big enough to spend an

important part of the whole budget. If this number is small, the greedy Algorithm 1 is the

best, because it is always possible to chose the best bid without breaking any constraint.

4.1. Sensitivity analysis

The same instance is used for the following tests. It has 3 buyers (N =3), 8 items (M =8)

and 350 requests (T =300). As the sequence of requests follows a Multinomial law, the

number of each items is different from one instance to another one. At the same time, we

keep the same probabilities for the arrivals of items. We have run 500 times this instance in

order to have a good average for each output. We have also supposed that the probabilities

(pk) and the number of request T was known.

4.1.1. Analysis of parameters

We will study the comportment of the competitive ratios for different values of the couple

(∆, ρ). The tests have been done for the re-optimized primal-dual Algorithm 4.
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∆

1 3 6 15 30 60 150 300

ρ

0 0.991 0.989 0.989 0.983 0.978 0.972 0.971 0.965

0.01 0.996 0.994 0.99 0.982 0.977 0.972 0.969 0.966

0.1 0.996 0.994 0.99 0.984 0.98 0.972 0.969 0.966

0.2 0.996 0.994 0.991 0.986 0.981 0.974 0.968 0.964

0.413 0.996 0.994 0.991 0.985 0.981 0.973 0.968 0.964

0.6 0.996 0.995 0.992 0.986 0.98 0.972 0.966 0.961

Table 6: Tuning of the parameters ∆ and ρ

The Table 6 shows that the competitive ratio results is very sensible to the number of

re-optimization made. The parameter ρ is less important for the quality of the competitive

ratio: ρ = 0.2 seems to be a good value according those results. We will keep this value

for ρ in the next sections and we will continue to study the behavior of the re-optimized

primal-dual algorithm as a function of the number of re-optimization.

4.1.2. Trade-off between computational time and competitive ratio

The computational time is very important in online optimization. The greedy and primal-

dual algorithms need about one millisecond (ms) to solve 300 requests. The stochastic

primal-dual procedure (Algorithm 3) need in average 1400 ms for the 300 requests. We can

note that this last algorithm is a special case of the re-optimized primal-dual where ∆ = 1

and ρ = 0.

The Figure 2 shows first the evolution of the computational time as a function of the

number of re-optimizations (= b T
∆
c). The results are intuitive, the computational time

depends linearly on the number of re-optimizations. As the same time, the second figure

shows that the competitive ratio increases fast with the number of re-optimizations. It

proves that the re-optimized primal-dual algorithm performs well with a small number of

re-optimizations. We will use ∆ = 30 (10 re-optimizations), because the re-optimized primal-

dual procedures keeps a good competitive ratio (0.981) while the computational time stays

at 50 ms on average. The parameter ∆ has to be chosen according to the time and the
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Figure 2: Trade-off between computational time and competitive ratio

computing resources available in reality.

4.1.3. Comparison beetwen the re-optimized primal-dual and Ciocan’s algo-

rithms

We compare our algorithm to Ciocan’s algorithm [8]. We can note, before any comparison

between those two algorithms, that they approximately have the same computational time

as a function of the number of re-optimizations. We evaluate the competitive ratio under

two different policies.

Number of re-optimizations 1 3 6 15 30 60 150 300 Policy

Competitive
ratio

Re-optimized primal 0.964 0.968 0.974 0.981 0.986 0.991 0.994 0.996 Tj pk

Ciocan’s method 0.977 0.984 0.99 0.993 0.994 0.995 0.994 0.996 known known

Re-optimized primal 0.971 0.974 0.978 0.978 0.979 0.981 0.982 0.983 Tj pk

Ciocan’s method 0.962 0.948 0.957 0.966 0.972 0.976 0.977 0.977 inferred inferred

Table 7: Comparison between two algorithms

The Table 7 compares two policies: one ideal when parameters are known and one more

realistic where parameters are inferred. These two algorithms react approximately in the

same when the number of re-optimizations change: both decrease around the same rate.

Furthermore, it is clear that Ciocan’s algorithm is better for the first policy and that the

re-optimized primal-dual algorithm is better for the second policy. It proves that Ciocan’s

procedure needs to know the probabilities pk as well as the number of request T . The strength

of the re-optimized primal-dual algorithm is to work well without these parameters. That is
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why the estimation of Tj is a key problem. We will study the sensitivity of the optimization

problem (4) in the next Section. Finally, ∆ = 30 seems to still be a good parameter for

further tests.

4.1.4. Competitive ratios as a function of the number Tj of requests left

We study the influence of having a good inference for Tj. Let us consider that the probabilities

pk and the number of requests are unknown now. Bayesian inference, as shown in Section

3.2, is used to estimate pk and Tj is inferred by the optimization problem (4). We change

a little the constraint (4b):
∑N

i=1[
∑j−1

l=1 cikl
xil +

∑M
k=1 cikyik] ≥

∑N
i=1Bi in order to analyze

the consequences of the inferred value Tj. This constraint is replaced by
∑N

i=1[
∑j−1

l=1 cikl
xil +∑M

k=1 cikyik] ≥ ε
∑N

i=1 Bi, where ε is a parameter.

Figure 3: Evolution of the competitive ratio

The Figure 3 represents the evolution of the competitive ratio as a function of ε for the

same instance as before. This graphic seems intuitive. First, for ε close to 0, the stochastic

primal-dual algorithm has the same behavior as the greedy. Indeed, with ε = 0, Tj is also

equal to 0 ; so the dual variables ri are null and our algorithm is the same than the greedy.

Second, if ε is too big, the algorithm gives a weight that is too important to the future. The
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procedure is always hoping to obtain some better requests in the future. The algorithm is

waiting to maximize the revenue with the future requests, that is why its performance is

decreasing. In this case, the dual variables ri are close to 1. We can remark that it is better

to underestimate the number of request left on the beginning and overestimate it at the end.

On the beginning, we can choose important bids (underestimate Tj), but later, we have to

be more careful (overestimate Tj), because a bad decision can cost a lot. The optimization

problem (4) follows this evolution. Finally, we set the parameter ε on 0.8. The parameter ε

is linked to the instance, it has to be chosen depending the environment.

4.2. Average competitive ratio

We keep using a Multinomial distribution to draw the sequences of items. The following tests

shows the expected competitive ratios ; they still have been built on a sample of 500 draws.

The instances have been sorted according to different criteria: the number of buyers, items

and requests, the variance of the distribution, the gap between the bids cik. We generate

six instances thanks to different criteria. They all have a reasonable gap for the capacity

amounts dik. The following Table 8 describes them. Furthermore, we define the parameters

δ in order to have the same behavior of the re-optimized primal-dual over the difference

instance: δ = ∆
T

. Then, ρ = 0.2, ε = 0.8. The probabilities and the number of requests left

are inferred. Finally, we compare the greedy Algorithm 1, the primal-dual Algorithm 2, the

re-optimized primal-dual Algorithm 4 and Ciocan’s algorithm [8]. For all these next tests,

we suppose that the probabilities pk and the number of request T are unknown.

4.2.1. In the AdWords Problem case

The Table 9 shows the average competitive ratio of our procedure and compares it with the

other algorithms. The “Gain against greedy” is computed according to this formula:

cre−opt − cgreedy

cgreedy

where cre−opt and cgreedy are the competitive ratios of the re-optimized primal-dual and greedy

algorithms. “Gain against primal-dual” and “Gain against Ciocan” are defined as the same

way.
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number of
N M T variance of distribution gap of bids

the instance

1 3 8 300 small reasonable

2 3 8 500 small reasonable

3 4 10 400 small reasonable

4 3 8 300 small small

5 3 8 450 huge reasonable

6 3 8 300 huge reasonable

Table 8: Description of the instances

Instance 1 2 3 4 5 6

Average competitive ratio 0.978 0.986 0.977 0.999 0.962 0.994

Gain against greedy (%) 8.3 2.8 2.6 0.7 0.5 1.2

Gain against primal-dual (%) 2.3 0.0 0.1 0.2 0.5 0.3

Gain against Ciocan (%) 1.3 3.5 1.3 1.3 -0.2 1.8

Table 9: Results for the Adwords Problem

Our procedure is most of the time the best. As we said before in Section 4.1.3, the re-

optimized primal-dual algorithm has a better behavior than Ciocan’s algorithm, when pa-

rameters pk and T are unknown. This can be explained by the fact that our procedure is an

hybrid method using the primal-dual algorithm and stochastic information. The primal-dual

algorithm is (1 − 1
e
)-competitive, it insures that the competitive ratio will be in any cases

better than (1 − 1
e
). At the same time, the stochastic information allows to improve this

ratio and can sometimes worsen it.

4.2.2. In the General Problem Case

The gains are really important when the resources constraints are added. The results remain

good in this general case, even if our algorithm is not always the best. When the gains are

negative, the percentage is very close to zero. It can be noted that the method of Jaillet and

Lu [12] is used for the primal-dual and for the re-optimized primal-dual algorithms.
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Instance 1 2 3 4 5 6

Average competitive ratio 0.985 0.889 0.968 0.977 0.992 0.994

Gain against greedy (%) 10.2 11.3 5.9 9.5 -0.4 -0.5

Gain against primal-dual (%) 3.4 6.0 4.4 8.7 0.8 0.2

Gain against Ciocan (%) 0.2 -1.7 -0.8 1.9 1.4 0.7

Table 10: Results for the general problem

In this case, there are big gains against the greedy and the primal-dual algorithms. On the

other side, Ciocan’s algorithm and our procedure have on average the same results. It can

be noted that the instance 2 is difficult to solve.

4.2.3. The daily AdWords Problem case

We are also using the re-optimized primal-dual procedure on this problem. Instead of re-

optimizing every ∆ requests, we are re-optimizing every two hours (12 re-optimizations).

The number of request left Tj is inferred by an exponential distribution. In order to stabilize

this inferred number, we have computed the mean of the result of the exponential law and

the estimation of Tj by the optimization model (4).

Instance 1 2 3 4 5 6

Average number of requests 359 480 394 313 456 311

Average competitive ratio 0.984 0.994 0.989 0.999 0.969 0.994

Gain against greedy (%) 8.7 3.4 3.9 0.8 1.4 1.2

Gain against primal-dual (%) 0.8 1.1 1.4 0.2 1.3 0.3

Gain against Ciocan (%) 1.0 0.6 0.4 1.2 2.8 3.4

Table 11: Results for the daily Adwords problem

The Table 11 shows that the re-optimized primal-dual have the best results when probabilities

pk and the number of requests left Tj are unknown. The average competitive ratios are very

high.
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4.2.4. The daily General Problem case

In this section, we are computing the same kind of results than the previous Section, but we

are adding the resource constraints (1e) as in the general optimization problem (1).

Instance 1 2 3 4 5 6

Average number of requests 360 480 396 312 456 312

Average competitive ratio 0.982 0.921 0.977 0.974 0.987 0.991

Gain against greedy (%) 9.7 15.0 6.5 9.9 -0.9 -0.8

Gain against primal-dual (%) 3.3 8.2 5.2 9.1 0.4 -0.1

Gain against Ciocan (%) 0.2 0.3 -0.1 1.7 0.9 0.7

Table 12: Results for the daily general problem

Gains remains big for most of the instances. The behavior of the re-optimized primal-

dual algorithm is not as good as the greedy algorithm for the instance 5 and 6, bur the

average competitive ratio remains high. Another time, our procedure is a little better than

Ciocan’s algorithm.

5. Conclusions

In this paper, we consider a general bipartite allocation problem with budget and resource

constraints in an online fashion. The main goal is to improve current online algorithms with

the information available during the procedure. We propose a modification of the primal-

dual algorithm to take into account this information. The new formulation of the problem

uses stochastic programming and especially the L-Shaped method. We build stochastic sub-

problems to update the dual variables. This new algorithm gives very good results. It

outperforms the greedy and the primal-dual algorithms on the Adwords and the general bi-

partite resource allocation problems. Results show that our procedure is also generally better

than Ciocan’s algorithm. Furthermore, the practical modifications allow us to be very appli-

cable: the computational time is reasonable, the learning process from information is useful,

the inference of the number of requests left is efficient and can be easily changed.
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One may raise the issue of computing the competitive ratio. As it is a stochastic algorithm,

this bound is very difficult to compute. Furthermore, we aim to developed practical algo-

rithms. Finally, it will be really good to test this algorithm on real sets of data as those that

Google should have.
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