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Abstract. In this paper, we consider a deterministic multi-attribute vehicle routing problem 

derived from a real-life milk collection system. This problem is characterized by the 

presence of a heterogeneous fleet of vehicles, multiple depots, and several resource 

constraints. A branch-and-price methodology is proposed to tackle the problem.  In this 

methodology, different branching strategies, adapted to the special structure of the 

problem, are implemented and compared. The computational results show that the 

branch-and-price algorithm performs well in terms of solution quality and computational 

efficiency. 
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1. Introduction

The vehicle routing problem (VRP) lies at the center of logistics and
distribution management and is one of the most studied problems in the
field of operations research. Numerous variants have been studied since the
problem was first introduced by Dantzig and Ramser (1959). The simplest
problem in this domain is the capacitated vehicle routing problem (CVRP).
In the CVRP, all the customers correspond to deliveries. The customers’
demands are deterministic, known in advance, and may not be split. The
vehicles are identical and based at a single central depot. Each vehicle can
perform only one route, and the quantity supplied cannot exceed the vehicle
capacity. The objective most commonly used is to minimize the total cost
(i.e., a weighted function of the number of routes and their length or travel
time) of serving all the customers (Toth and Vigo, 2002).

In recent decades, there has been a tremendous improvement in algo-
rithms that find good solutions to practical variants of the VRP in a rea-
sonable time. This is due not only to the general increase in computing
power, but also to significant advances in both exact and heuristic methods.
However, VRP research has often been criticized for being too focused on
nonrealistic models, and simplifying assumptions reduce the practical appli-
cations.

Many real-world combinatorial optimization problems, including logis-
tics applications and transportation problems, have several complicating at-
tributes. Theses attributes lead to the characteristics, constraints, and objec-
tives that define the problem. When there are many attributes the problem
becomes complex and challenging. In the combinatorial optimization liter-
ature, such problems are called “multi-attribute problems.” Recently, the
research community has focused on simultaneously considering multiple at-
tributes, to provide more representative models of real-world situations. In
particular, VRP researchers have recently concentrated on multi-attribute ve-
hicle routing problems (MAVRP) (see Hartl et al., 2006). They have explored
several variations of the MAVRP, each representing a specialized extension
of the classical VRP and reflecting a real-world application. However, not
all variants have received the same attention. Furthermore, most of the con-
tributions have developed heuristics and metaheuristics, and there are few
efficient exact algorithms for the variants of the MAVRP.

We introduce a new MAVRP variant that incorporates some common
real-world features. It is inspired by collection-redistribution activities in the
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raw-milk industry of Quebec. This problem consists of route planning for a
heterogeneous fleet of vehicles departing from different depots. The vehicles
must visit a set of producers in specific time windows, and the collected prod-
uct is then delivered to processing plants. Finally, the vehicles return to their
home depots. The most similar model in the literature is the multi-depot
heterogeneous vehicle routing problem with time windows (MDHVRPTW).

The main goal of this paper is to investigate the challenges of complex
problems with features such as collection-redistribution activities. We for-
mulate a multi-attribute VRP with certain special features that takes the
form of an MDHVRPTW with deliveries to plants. The main contributions
of this paper are summarized as follows:

• We introduce a variant of the MAVRP. It differs from well-studied
variants such as VRPTW and MDVRPTW because there is an extra
level of difficulty associated with the assignment of routes to plants.

• We propose a set partitioning formulation for this problem.

• We develop a branch-and-price algorithm. It includes a number of
structural exploration and exploitation features that improve the com-
putational efficiency of the solution strategy.

• We perform an extensive analysis using a large set of randomly gener-
ated instances, to illustrate the efficiency of the algorithm and investi-
gate the characteristics of the problem.

The remainder of the paper is organized as follows. In Section 2, we de-
scribe in detail the problem class and its different variants. In Section 3, we
give a brief literature review to better position the present study. In Section
4, we choose a special case of the problem class and present the set parti-
tioning model. In Section 5, we present the proposed solution methodology,
and experimental results are given in Section 6. Finally, Section 7 provides
concluding remarks.

2. Problem Class

In this section, we introduce a new MAVRP variant inspired by the dairy
problem in Quebec (see Lahrichi et al., 2012). This problem represents many
real-world transportation activities. Basically, it consists of constructing col-
lection routes that are then assigned to plants that receive the collected
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products. It is usually encountered in the collection and redistribution of
perishable products. There are three types of stakeholders, as described be-
low:

• The producers, which periodically produce a limited quantity of one or
more products.

• The plants, which periodically receive the products. They transform
these raw materials into consumable goods.

• The carriers, which collect the products from the producers and deliver
them to the plants. Each carrier has one or more depots where the
vehicles are located. The vehicles usually have different capacities,
fixed costs, and variable costs. The fixed costs are the expenses that
are not related to the distance traveled and have to be paid when the
vehicle is used; the variable costs depend on the distance traveled.

In most applications, each producer has an associated time window indi-
cating the earliest and latest collection times. Each plant has an associated
demand window indicating the minimum and maximum quantities that can
be delivered.

A route is a path that starts and ends at a depot and visits producers and
plants; it may contain one or more pick-up and delivery phases. A route is
feasible if the pick-ups do not exceed the vehicle capacity and the associated
time windows are respected. The cost of a route is the sum of the costs of the
arcs on the path plus the sum of the vehicle’s fixed and variable costs. We
assume throughout this paper that the triangle inequality holds for the costs
and travel times. Also, the service times are considered to be independent
of the quantities collected or delivered.

There may be some preassignments based on contractual restrictions,
strategic/tactical planning decisions, or equipment compatibility. We intro-
duce three: (1) producer-depot preassignments, which assign a producer to a
specific depot; (2) producer-plant preassignments, which specify which plant
receives the products of a given producer; (3) producer-depot-plant preas-
signments, which assign a producer to a depot and a plant. The most general
variant of the problem has no preassignments.

A vehicle can perform one or more circuits per day. We define three route
types as follows:
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Simple route: Each vehicle visits several producers and collects their prod-
ucts. It then delivers its entire load to one plant and returns to its
depot.

Figure 1: General configuration of simple route

Multi-drop route: A vehicle delivers its load to more than one plant before
returning to its depot.

Figure 2: General configuration of multi-drop route

Interlaced multi-drop routes: Vehicles perform several circuits per day.
A vehicle may visit other producers after completing its first visit to a
plant. One or more plants are visited.

Figure 3: General configuration of interlaced multi-drop route

We consider simple routes, and Section 4 gives the details of this subclass
of the problem.
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3. Literature review

In this section, we review research into different variants of the MAVRP.
We focus on exact algorithms rather than heuristic methods and consider
variants of the VRP with attributes similar to those of our problem.

Among the variants of the VRP, the VRPTW has received the most at-
tention, and numerous researchers have applied column generation methodol-
ogy. For the VRPTW, column generation was first used by Desrochers et al.
(1992) in a Dantzig–Wolfe decomposition framework. They devised a branch-
and-bound algorithm to solve a number of original time-window constrained
problems from Solomon (1986) to optimality or near optimality. Kohl et al.
(1999) improved the method by adding 2-path inequalities to the LP relax-
ation of the set partitioning formulation. Kohl and Madsen (1997) proposed
a branch-and-bound algorithm in which subgradient and bundle methods
were employed to compute the lower bounds. These methods were based
on 2-cycle elimination algorithms. Irnich and Villeneuve (2006) proposed a
branch-and-price algorithm in which the subproblem is solved using a k-cycle
elimination procedure. Branch-and-price has been the leading methodology
for the VRPTW since the beginning of the 1990s.

Feillet et al. (2004) improved the extension of the Ford–Bellman algo-
rithm proposed by Desrochers (1988). More precisely, they improved the
labeling procedure for the elementary shortest path problem with resource
constraints (ESPPRC), which is the backbone of a number of solution proce-
dures based on column generation, by proposing new labels and dominance
rules. Righini and Salani (2004) proposed an improved bounded bidirectional
label-correcting algorithm in which two sequential labeling processes starting
from the depot and a copy of the depot (considered the sink node) cooperate
to accelerate the solution of the ESPPRC.

The most efficient algorithms for the ESPPRC are based on a partial
or complete relaxation of the elementarity condition. Boland et al. (2006)
and Righini and Salani (2009) embedded a decremental state space relaxation
(DSSR) scheme into the labeling procedure. In this method, the elementarity
condition on the generated routes is initially relaxed, transforming the prob-
lem into a shortest path problem with resource constraints (SPPRC). After
each iteration, using an augmentation strategy, restrictions are added to the
problem to prevent the formation of cycles. Several state-space augmenta-
tion strategies were evaluated by Boland et al. (2006). Later, Desaulniers
et al. (2008) used heuristic dynamic programming and a tabu search (TS)
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heuristic to rapidly generate routes with negative reduced costs. The dy-
namic heuristic is based on making the graph more sparse by eliminating
arcs that do not seem promising and applying aggressive dominance rules
(relaxed conditions). Their method outperformed all previous algorithms in
terms of the computational time. Moreover, they successfully solved 5 of 10
Solomon instances not previously solved.

Baldacci et al. (2011a) introduced a new state-space relaxation, called
the ng-path relaxation, to compute lower bounds for routing problems such
as the CVRP and the VRPTW. This relaxation partitions the set of all pos-
sible paths ending at a generic vertex. This is done according to prespecified
neighborhoods of graph vertices, and a mapping function associates with
each path a subset of the vertices that depends on the order in which these
vertices are visited. These subsets of vertices are used to impose partial el-
ementarity. This relaxation proved particularly effective in computing lower
bounds for the CVRP, the VRPTW, and the traveling salesman problem
with time windows (TSPTW). Baldacci et al. (2011b) proposed a new dy-
namic programming method to improve the ng-path relaxation. It iteratively
defines the mapping function of the ng-path relaxation using the results from
the previous iteration. This method is analogous to cutting plane methods,
where the cuts violated by the ng-paths at a given iteration are incorporated
into the new ng-path relaxation at the next iteration.

Martinelli (2012) proposed an efficient ng-route pricing in which a DSSR
technique is embedded into the ng-route relaxation. It consists of an ng-
route relaxation procedure in which resources associated with the vertices’
neighbors are initially deactivated. These neighborhoods are iteratively aug-
mented using a DSSR scheme to ensure the ng-feasibility of all the columns.

A unified exact method capable of solving different classes of the VRP, in-
cluding the multi-depot heterogeneous vehicle routing problem (MDHVRP),
was proposed by Baldacci and Mingozzi (2009). It is based on the solution of
an integer linear programming problem and on dual heuristics. It can solve
instances with up to 100 customers to optimality; this takes several hours.
Finally, Bettinelli et al. (2011) proposed a branch-and-cut-and-price algo-
rithm for the MDHVRPTW. The method allows for different combinations
of cutting and pricing strategies, and both heuristic and exact approaches
are proposed for the subproblems.

To summarize, we make the following observations:

• Our literature review supports our claim about the novelty of the prob-
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lem considered in this paper. To the best of our knowledge, this variant
has not been previously studied. The plant-assignment phase is more
complex than in other variants.

• Many efficient techniques have been developed for classes of the VRP
with features similar to those of our variant. Our algorithm is based
on a specialization of a cutting-edge branch-and-price algorithm, and
it incorporates techniques from the literature.

• We evaluate the efficiency and relevance of these techniques in the
context of our problem.

4. Milk collection problem

We consider a deterministic subclass of the general problem, which is a
real-world tactical planning problem in the context of milk collection. We
consider two variants:

1. The depot associated with each producer is preassigned based on con-
tractual agreements.

2. We remove the preassignments; this is a logical extension of the first
variant. We claim that slight modifications in the data set can reduce
variant 2 to variant 1.

We first consider variant 1 and in Section 5 we show how to adapt the
approach for variant 2. We assume that the vehicles perform simple routes
as described in Section 2, and collections and deliveries are made once a day.
The problem is therefore a multi-depot vehicle routing problem with time
windows, heterogeneous vehicle fleets, plant deliveries, and producer-depot
preassignments.

Several carriers, based in different depots, collect milk from farms in a
specific geographical region and deliver it to milk-processing plants. The
model is defined on a directed graph G = (V ,A), where V and A are the
node and arc sets, respectively. The node set contains the depots, producers,
and plants: V = D ∪ N ∪ U where D = (1, . . . , d) represents the depot set,
N = (1, . . . , n) the producer set, and U = (1, . . . , u) the plant set. The arc
set A ⊂ V × V defines feasible movements between different locations in V .
Associated with each arc (i, j) is a transportation cost cij that is proportional
to the travel time between locations i and j. Each carrier has one or more
vehicle types, and K = (1, . . . , k) is the set of vehicle types. The capacity,
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the fixed cost, and the variable cost coefficient of the kth vehicle type are Qk,
ck, and vk, respectively. More precisely, vk is the cost for vehicle type k ∈ K
to travel one unit of distance. Associated with each plant is a daily demand,
Du, and we assume that there is sufficient supply to meet the demand.

We introduce a path-based formulation that yields a set partitioning
model. Let Pk

du be the set of feasible routes from depot d ∈ D to plant
u ∈ U operated by vehicle type k ∈ Kd. Each route p ∈ Pk

du can serve only
the producers assigned to depot d, and Cd is this set of producers. Let yp be a
binary variable such that yp is 1 if route p is selected in the optimal solution
and 0 otherwise. The quantity collected on route p, gp, cannot exceed the
capacity of the vehicle; gp is 0 for all plants not visited on route p. Parameter
aip is 1 if producer i is visited on route p and 0 otherwise. The variable cost
of each route p ∈ Pk

du is cp; it is the sum of the arc costs of the route. The
path-based model is as follows:

min
∑
u∈U

∑
d∈D

∑
k∈Kd

∑
p∈Pk

du

(cp + ck)yp (1)

subject to ∑
u∈U

∑
d∈D

∑
k∈Kd

∑
p∈Pk

du

aipyp = 1 (i ∈ N ); (2)

∑
d∈D

∑
k∈Kd

∑
p∈Pk

du

gpyp ≥ Du (u ∈ U); (3)

yp ∈ {1, 0} (d ∈ D; k ∈ Kd;u ∈ U ; p ∈ Pk
du). (4)

Constraint (2) ensures that each producer is visited exactly once by exactly
one route, and constraint (3) guarantees that the plant demands are satisfied.
In the following sections, we describe our algorithm in detail.

5. Solution method

In this section, we present our algorithm. In the path-based integer model
(1)–(4), the number of paths is so large that it is not practical to solve the
model directly using an MIP solver. Thus, the usual solution method is
based on the branch-and-price algorithm. This is a branch-and-bound algo-
rithm where the lower bounds are computed using column generation (for a
complete survey of column generation methods, see Lübbecke and Desrosiers
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(2005)). Column generation is often successful when the associated integer
programs are set partitioning (or set covering) problems. In the VRP, each
variable of the set partitioning formulation represents a feasible route. How-
ever, most successful decomposition approaches for the VRP formulate the
pricing problem as an ESPPRC. At each iteration of the column generation,
a restricted linear master problem (RLMP) is solved rather than the master
problem itself. The columns in the RLMP are limited to those that have
already been generated in the pricing problem.

The search tree is initialized at the root node. Initialization involves
adding to the RLMP sufficient columns to obtain a feasible solution. At
each node of the search tree, the RLMP contains a subset of the feasible
columns, already priced out by the subproblem, which are in compliance
with the branching decisions. It is solved by column generation. If the
solution is integer, it is a valid solution to the original master problem, and
it is compared to the incumbent solution. Otherwise, branching occurs to
eliminate the current fractional point. In other words, when no column
is available to enter the basis but the solution of the linear relaxation is
not integer, branching occurs. A valid branching scheme will eliminate the
current fractional solution, produce a balanced search tree, and keep the
structure of the problem unchanged. At the end of the search process, the
best integer solution found is the optimal solution for the original problem.

As mentioned in Section 4, variant 2 has no preassignments. The decision
about the depot associated with each producer is made during the solution
process. A slight modification allows our algorithm to solve this more general
problem: we set Cd = N for each depot d ∈ D. Variant 2 may be useful for
proposing a first set of assignments or revising an existing set in a strategic
planning phase.

In Sections 5.1–5.4, we describe the branch-and-price algorithm.

5.1. Master problem

A relaxation of constraints (2) converts the set partitioning model into a
set covering model and yields the linear master problem. The RLMP, which
is restricted to a subset of columns P ′kdu ⊂ Pk

du, takes the following form:
(RLMP)

min
∑
u∈U

∑
d∈D

∑
k∈Kd

∑
p∈P ′k

du

(cp + ck)yp (5)
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subject to ∑
u∈U

∑
d∈D

∑
k∈Kd

∑
p∈P ′k

du

aipyp ≥ 1 (i ∈ N ); (6)

∑
d∈D

∑
k∈Kd

∑
p∈P ′k

du

gpyp ≥ Du (u ∈ U); (7)

0 ≤ yp ≤ 1 (d ∈ D; k ∈ Kd;u ∈ U ; p ∈ P ′kdu) (8)

where constraint (6) ensures at least one visit to each producer, and con-
straint (7) guarantees that the plant demands are satisfied.

5.2. Initialization

To obtain the first set of dual variables of the master problem, we add
two sets of initial columns. The first set consists of routes that start and
end at a given depot and visit one producer and one plant for all possible
combinations of depots, producers, and plants. The second set is generated
using the classical savings heuristic of Clarke and Wright (1964). For each
depot-vehicle pair, the method starts with |Cd| routes, each serving a single
producer and starting and ending at the depot. It then computes the cost
reduction achieved by combining two routes (by connecting the end point of
one to the end point of the other) via the following equation:

savingij = c0i + c0j − cij (9)

where i and j represent the two connected end points. Here, the end point
is defined to be the first or last producer in the route. The heuristic greedily
selects the maximum saving and combines the associated routes provided the
constraints on time windows and vehicle capacities are not violated. When
no routes can be merged, the algorithm terminates by assigning the routes
obtained to the members of the plant set.

5.3. Pricing problem

The pricing problem aims to find one or more master problem variables
p with a negative reduced cost with respect to a given dual solution of the
linear relaxation of the master problem. In our column generation approach,
the pricing problem is decomposed into several similar subproblems. Each
subproblem is an ESPPRC associated with a specific depot, plant, and vehicle
type, where the set of resource constraints contains time windows and vehicle
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capacities. Consider the following dual variables of the RLMP (5)–(8):
λi: nonnegative dual variable of (6) for producer i ∈ N ;
µu: nonnegative dual variable of (7) for plant u ∈ U .
Let xij be a binary decision variable that is 1 if vertex vj follows vi on the
shortest path, and 0 otherwise. Variable ti is the time at which the service
starts at vertex i if the shortest path visits this node. Binary variable fu is 1
if the shortest path visits plant u, and 0 otherwise. A supply qi is associated
with each producer i. Each producer has a time window [ei, li] during which
the service may occur. The node 0d represents the depot and the node 0′d
represents a copy of the depot that plays the role of a fictitious sink node in
the standard form of the shortest path problem.

Using this notation, the pricing problem for a vehicle type k, which leaves
depot 0d, d ∈ D, and services the producers of the set Cd, is as follows:

min
∑
i∈Cd

∑
j∈Cd

(vkcij − λi)xij −
∑
u∈U

gpµu + ck (10)

subject to ∑
i∈Cd

xih −
∑
j∈Cd

xhj = 0 (h ∈ Cd); (11)∑
j∈Cd

x0dj = 1; (12)

fu −
∑
i∈Cd

xiu = 0 (u ∈ U); (13)∑
u∈U

fu = 1; (14)

fu − xu0′d = 0 (u ∈ U); (15)∑
i∈Cd

∑
u∈U

xui = 0; (16)

xij(ti + si + tij − tj) ≤ 0 (i ∈ Cd; j ∈ Cd ∪ U); (17)

ei ≤ ti ≤ li (i ∈ Cd ∪ U); (18)

gp ≤
∑
i∈Cd

qi
∑
j∈Cd

xij ≤ Qk; (19)

xij ∈ {1, 0} (i, j ∈ Cd); (20)

fu ∈ {1, 0} (u ∈ U). (21)
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Constraints 11–16 are flow constraints that result in a path from the depot
0d to 0′d ensuring that the shortest path visits a plant before returning to the
depot. Constraints 17 and 18 are time-window constraints. Constraint 19 is
the capacity constraint, and Constraints 20 and 21 ensure integrality.

The subproblems above are variants of the ESPPRC and thus are NP-
hard problems in the strong sense (Dror, 1994). To reduce the number of
iterations to solve this complex problem to optimality, one may try to gen-
erate multiple negative-reduced-cost columns using fast heuristics. However,
when the heuristic procedures fail to find a new column, we must perform at
least one iteration of the exact procedure to prove the optimality of the lower
bound. We solve the subproblems with a bilevel column generation proce-
dure. The first level consists of a procedure based on heuristic dynamic pro-
gramming (HDP), and it is followed by exact dynamic programming (EDP).
We describe these modules below. We first summarize the EDP and then
describe the heuristic strategies that speed up the procedure. Finally, the
bilevel procedure is presented in Algorithm 1, which shows how these modules
interact.

5.3.1 Exact Dynamic Programming (EDP)

Classical dynamic programming algorithms start from an initial label
associated with the depot and extend the labels along arcs using extension
functions. To avoid creating too many labels, dominated labels are eliminated
by a dominance procedure. As described in Section 3, much research has
focused on the computational efficiency of the labeling procedure for the
ESPPRC subproblem. DSSR (see Righini and Salani, 2009; Boland et al.,
2006) and the ng-route relaxation (see Baldacci et al., 2011a) have received
the most attention.

DSSR can be considered a special case of the ng-route relaxation. How-
ever, we consider DSSR as a stand-alone procedure and DSSR embedded into
the ng-route relaxation (see Martinelli, 2012) as different strategies for the
pricing problems. In both cases, the elementarity relaxation of the ESPPRC
allows the generation of paths with cycles throughout the labeling proce-
dure. The relaxation is iteratively tightened by considering new resources
that forbid cycles. However, in the ng-route relaxation (but not DSSR), the
ng-feasible columns may still contain cycles. Therefore, the lower bound ob-
tained using the ng-route relaxation can be weaker than the DSSR bound,
representing the optimal lower bound.
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Decremental State-Space Relaxation (DSSR)

This relaxation of the ESPPRC allows the generation of paths with cycles
throughout the labeling procedure. The relaxation is iteratively tightened
by considering some nodes to be critical and forbidding multiple visits to
them. Critical nodes are selected based on an augmentation policy, from
those nodes involved in a cycle in at least one route. If at the end of a
labeling iteration, the paths contain no cycles, the solution is valid for the
ESPPRC. Otherwise, the relaxed state space is augmented by one or more
resources associated with newly recognized critical nodes and the procedure
restarts. At the end of each iteration of the labeling algorithm, the nodes
with visit multiplicity greater than one on the lowest cost path are recognized
as new critical nodes.

In our implementation, each label σ = (C, T, L, Ŝ, φ) has a component C
to represent the reduced cost of the partial path, a resource T for the time,
a resource L for the vehicle load, a resource Ŝ for the number of unreachable
critical nodes, and a set φ ⊆ Φ that contains the critical nodes unreachable
from the current label, where Φ represents the set of all the recognized critical
nodes at a given state of the procedure. At the end of each iteration of the
SPPRC, a state-space augmentation policy defines which nodes should be
added into Φ, and a resource associated with each of the critical nodes is
added into the resource set to prevent cycling on that node.

For σ1 = (C1, T1, L1, Ŝ1, φ1) and σ2 = (C2, T2, L2, Ŝ2, φ2) two labels corre-
sponding to two partial paths from a depot to a given node, we say that σ1
dominates σ2 if the following criteria are met:

(aDSSR) T1 ≤ T2,

(bDSSR) L1 ≤ L2,

(cDSSR) C1 ≤ C2,

(dDSSR) C1 − µu∗(L2 − L1) ≤ C2, where u∗ = argmaxu∈U{µu},

(eDSSR) Ŝ1 ≤ Ŝ2,

(fDSSR) φ1 ⊆ φ2.

Condition (dDSSR) is used to prevent the dominance of partial paths
that appear to be dominated by other paths with respect to the conditions
(aDSSR)–(cDSSR) and (eDSSR)–(fDSSR) in a producer node, but that later
become less costly by delivering more product to a plant.

13

A Column Generation Approach for a Multi-Attribute Vehicle Routing Problem

CIRRELT-2013-57



ng-Route Decremental State-Space Relaxation (ngR-DSSR)

The ng-route relaxation (Baldacci et al., 2011a), originally proposed for
the CVRP and the VRPTW, provides a good compromise between obtaining
good lower bounds and efficiently pricing routes that are not necessarily
elementary.

The ng-route relaxation can be described as follows. Suppose that Vrd
represents the set of producers visited by partial path r starting from depot
d. Moreover, for each customer i ∈ Cd, let Ni ⊆ Cd, the so-called original
neighborhood of producer i, represent a set (with an a priori fixed size) of
producers, selected according to a neighborhood criterion for producer i. For
label σ, associated with a given partial path r = (d, i1, . . . , in), we define a
set Π(r) ⊆ Vrd, containing all prohibited extensions from producer in. The
set Π(r) is

Π(r) = {ij ∈ Vrd|ij ∈
n⋂

k=j+1

Nik , j = 1, . . . , n− 1} ∪ {in}. (22)

Consequently, each label σ = (C, T, L, Sng,Π) has new members Sng, rep-
resenting the size of the Π set, where Π represents the set of inaccessible
producers according to the ng-rules. Again, to reduce the number of possi-
ble labels, a dominance rule is incorporated into the algorithm.

Given two labels σ1 = (C1, T1, L1, Sng1,Π1) and σ2 = (C2, T2, L2, Sng2,Π2),
representing two partial paths ending at a given producer, label σ1 dominates
label σ2 if and only if any possible extension from σ1 is feasible from label σ2
with a lower reduced cost. This condition is satisfied if the following criteria
are met:

(ang) T1 ≤ T2,

(bng) L1 ≤ L2,

(cng) C1 ≤ C2,

(dng) C1 − µu∗(L2 − L1) ≤ C2, where u∗ = argmaxu∈U{µu},

(eng) Sng1 ≤ Sng2,

(fng) Π1 ⊆ Π2.

14

A Column Generation Approach for a Multi-Attribute Vehicle Routing Problem

CIRRELT-2013-57



ng-route decremental state-space relaxation (ngR-DSSR) consists of an

ng-route relaxation procedure in which initially empty sets N̂i ⊆ Ni, called
applied neighborhoods, are considered rather than the original neighborhoods
Ni. At the end of each iteration, all columns with negative reduced costs
and no cycles as well as those that satisfy the ng-rules with respect to the
original neighborhoods (called ng-feasible columns) are added to the RLMP.
If the best column according to its reduced cost is not ng-feasible, some of
the applied neighborhoods are augmented and the procedure restarts. Two
augmentation strategies are considered:

1. At the end of an iteration, the nodes that violate the ng-rules on the
best columns are recognized as critical. Newly recognized critical node
i is then added into the applied neighborhoods of all other nodes that
consider i as their neighbor, according to their original neighborhoods.

2. Here we augment the applied neighborhoods of only those nodes form-
ing a cycle involving i, when the ng-rules are violated, by adding i into
these neighborhoods.

Our experiments showed that the second strategy is more efficient. The
smaller sets of applied neighborhoods make the dominance easier by more
easily satisfying condition (fng). Note that in our implementation, N̂i is ini-
tialized (set to ∅) at the root node and not elsewhere in the search tree. This
is because of the high likelihood of the recreation of cycles that violate the
ng-rules, if N̂i is reset to ∅ at each node of the tree; this is equivalent to extra
iterations to augment the applied neighborhoods to ensure ng-feasibility.

5.3.2 Heuristic Dynamic Programming (HDP)

To speed up the generation of the negative-reduced-cost columns, we im-
plement a relaxed version of the labeling procedure described above. The re-
laxations are based on weakening the dominance rules (reducing the number
of conditions tested) so that a larger number of labels are discarded. This
may result in the generation of some but not all of the existing negative-
reduced-cost paths, in a shorter computational time. We accelerate the la-
beling procedure by ignoring the dominance conditions corresponding to the
comparison of unreachable nodes. For the DSSR, this is done by relaxing
conditions (eDSSR) and (fDSSR), while for the ngR-DSSR, (eng) and (fng)
are ignored. This harsh dominance accelerates the labeling process by ex-
tending a smaller set of labels from each node and by comparing new labels
to a shorter list of existing labels.
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5.3.3 Description of the bilevel column generation procedure

To schematically show how the column generators cooperate within our
algorithm, we introduce the following notation:

NBCOLHDP : Number of negative-reduced-cost columns generated by HDP.

NBCOLEDP : Number of negative-reduced-cost columns generated by EDP.

We now present the procedure which, at each iteration, finds the non-
dominated paths and adds them to the RLMP.

Algorithm 1 Solution of bilevel subproblem
repeat
repeat
NBCOLHDP = 0
HEURISTIC DYNAMIC PROGRAMMING()
Update NBCOLHDP

Update and Solve the RLMP
until NBCOLHDP == 0
NBCOLEDP = 0
EXACT DYNAMIC PROGRAMMING( )
Update NBCOLEDP

Update and Solve the RLMP
until NBCOLEDP == 0.

Clearly, the difficulty of this algorithm depends on the size of the problem:
the number of depots, plants, producers, and vehicle types. The difficulty
is also affected by the tightness of the time window and vehicle capacity
constraints.

As mentioned in Section 4, variant 2 has no preassignments. The following
modification to the algorithm for variant 1 makes it applicable to variant 2:
we solve the ESPPRC for a depot, a specific vehicle type, and for the entire
set of producers instead of a preassigned subset.

5.4. Branching strategy

As mentioned in Section 5, we find an integer solution via a branch-and-
price algorithm. In the literature, binary branching strategies, which divide
a problem into two more restricted problems, have been proposed for the
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VRPTW. Branching must be performed at each node where the optimal so-
lution to the linear relaxation includes fractional path variables. The classical
branching strategy is branching on the flow variables, i.e.,

∑
k x

k
ij, where xkij

represents the flow on arc (i, j) for vehicle k. This results in two new nodes
in the tree, one with the new constraint

∑
k x

k
ij = 0 and the other with∑

k x
k
ij = 1. The advantage of this strategy is that the added constraints

are easily integrated into both the master and pricing problems. Moreover,
it finds an optimal integer solution if such a solution exists. However, this
approach is not efficient enough to obtain integer solutions rapidly. In other
words, the elimination of one arc from the graph via the branching constraint
(especially the constraint

∑
k x

k
ij = 0) may have little effect on the solution

and does not necessarily decrease the complexity of the problem (see Gélinas
et al., 1995).

To overcome this weakness, we study two bilevel branching procedures.
In each case, the procedure is followed by branching on flow variables. We
describe these procedures below.

Branching by Plant Assignment (BPA)

The special structure of our problem allows us to derive efficient new
constraints through a branching scheme. Since there are multiple plants to
which the products of a specific producer can be delivered, we can assign
producers to plants via the branching procedure. Since producers are preas-
signed to depots, this strategy attempts to divide the problem into several
smaller problems, each containing one depot, one plant, and a limited num-
ber of producers. We branch on the flow variables when there are no more
producer-plant candidates for branching. The producers that are not per-
mitted to serve a plant because of branching decisions are removed from
the subgraph associated with the plant. We branch on the producer-plant
candidate with flow closest to 0.5. This flow is obtained by summing the
basic variables of the master problem associated with the routes containing
a given producer and a given plant. The removal of a producer from the sub-
graph associated with a plant is much more restrictive than the elimination
of a single arc. Therefore, we expect this strategy to be more effective than
branching on the flow variables.

Branching on Time Windows (BTW)

This binary branching strategy, originally proposed by Gélinas et al.
(1995) for the VRPTW, splits the time window of a node into two new subin-
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tervals; each branch corresponds to one of the subintervals. Some routes
become infeasible following a split in a producer’s time window. Gélinas
et al. (1995) claimed that this strategy is stronger than branching on flow
variables since constraints such as time and capacity have a major impact
on the difficulty of the VRPTW.

6. Computational results

We have proposed different options for column generation and two branch-
ing strategies. To evaluate the performance of these approaches, we carried
out a series of computational experiments, and we report the results in this
section. First, we describe the creation of a large set of randomly gener-
ated instances for our tests. Then, we discuss the efficiency of DSSR and
ngR-DSSR. Next, we compare the two branching strategies, BPA and BTW.

We ran the experiments on a computer with a 2.67 GHz processor and
24 GB of RAM. The algorithms were implemented in C++ and the linear
models were solved using Cplex 12.2.

6.1. Test problems

Since, to the best of our knowledge, there is no prior study of the multi-
depot vehicle routing problem with time windows and deliveries to plants, we
generated new test problems. We considered narrow and wide time windows,
where the wide windows are on average twice as wide as the narrow windows.
We also considered different plant locations on the graph.

In the case that we call inside plants, the depots and plants are randomly
located in a (−50, 50)2 square, according to a continuous uniform distribu-
tion. The producers are randomly located in a (−100, 100)2 square; they are
placed one by one via a generation-validation procedure. Suppose that vi is
the current producer, mind is the distance from vi to its closest depot, and
z is a number in the interval [0, 1] chosen according to a continuous uniform
distribution. This producer is retained if z < exp(−h.mind) where h = 0.05,
and otherwise is dropped. The application of this probabilistic function, in-
spired by Cordeau et al. (1997), increases the likelihood of producer clusters
around the depots.

In the case that we call outside plants, the plant locations are randomly
generated in the area beyond the region containing the producers: (−150, 150)2−
(−100, 100)2, where the producers are located randomly in a (−100, 100)2
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square via a new generation-validation procedure. We retain producers sat-
isfying z < exp(−h(mind.α + minp(1 − α))) where mind and minp are the
distances from the newly generated producer to the closest depot and the
closest plant, respectively. Moreover, z and α are two uniform random num-
bers that are respectively generated in [0, 1] and [0.3, 0.7]. Once again, this
probabilistic function leads to clusters of producer nodes in the region be-
tween the plants and the depots. Figure 4 shows an example of an instance
with three depots, three outside plants, and 100 producers.

Figure 4: Producer locations in case with three outside plants

We use the Euclidean distance between two nodes. The preassignments
of producers to depots for variant 1 are done one by one in numerical order:
we greedily assign each producer to its closest depot while trying to ensure
that each depot has the same number of producers.

The service duration and the quantity supplied by each producer are ran-
domly and independently chosen according to a discrete uniform distribution
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on [1, 25]. To increase the probability of feasible instances, we set the sum
of the plant demands to 90% of the total supply available.

Table 1 shows the characteristics of the four problem classes. The size of
each instance is determined by the number of depots, producers, and plants;
the values that we considered are presented in Table 2. Instances with the
same number of depots and plants have those facilities in the same positions.
We generated five instances for each size combination of each problem class.
For example, instance pr04-50-2D3P-5 represents the fifth instance of the
fourth class with fifty producers, two depots, and three plants.

Table 1: Four problem classes

Class Number Plant Location Time Windows

pr01 inside narrow
pr02 inside wide
pr03 outside narrow
pr04 outside wide

Table 2: Specifications of test problems

Number of depots Number of producers Number of plants

2 30, 40, 50 2, 3
3 30, 40, 50 2, 3

6.2. Linear relaxation

To evaluate the efficiency of our column generation, we ran a group of
tests for a set of problems with fifty producers, representing the most difficult
instances. We considered one instance from each group of five for a given size
combination of each class, forming a group of sixteen instances. We solved
the root linear relaxation using either DSSR or ngR-DSSR with two different
neighborhood sizes, |Ni| = 5 and |Ni| = 8 for each producer i ∈ N . Table
3 gives the results both with and without HDP. The pairs in the “nb. Iter.”
column give the number of heuristic and exact column-generation iterations.
Column “T” gives the computational time (in seconds) to solve the linear
relaxation.

On average the use of HDP improves the computational time by decreas-
ing the number of calls to EDP. We also studied the use of metaheuristics to
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Table 3: Results for solution of linear relaxation for instances with fifty producers
EDPDSSR HDPDSSR + EDPDSSR EDPng5 EDPng8 HDPng5 + EDPng5 HDPng8 + EDPng8

Class Number T nb. iter. T nb. iter. T nb. iter. T nb. iter. T nb. iter. T nb. iter.
pr01-50-2D2P 5.5 (0, 18) 2.4 (21, 1) 7.2 (0, 18) 7.0 (0, 18) 2.7 (17, 1) 2.5 (17, 1)
pr01-50-2D3P 9.1 (0, 14) 6.3 (19, 5) 10.7 (0, 14) 10.6 (0, 14) 7.0 (16, 5) 6.8 (16, 5)
pr01-50-3D2P 6.3 (0, 26) 2.3 (29, 1) 10.9 (0, 28) 10.1 (0, 28) 3.9 (33, 1) 3.9 (33, 1)
pr01-50-3D3P 12.2 (0, 16) 5.3 (17, 1) 16.1 (0, 15) 17.2 (0, 15) 6.6 (15, 1) 6.1 (16, 1)
pr02-50-2D2P 23.2 (0, 30) 9.4 (31, 3) 39.5 (0, 36) 45.8 (0, 26) 15.6 (33, 7) 18.4 (29, 6)
pr02-50-2D3P 95.8 (0, 15) 73.9 (24, 5) 119.8 (0, 16) 147.6 (0, 18) 101.7 (16, 6) 98.1 (17, 6)
pr02-50-3D2P 118.5 (0, 18) 65.3 (28, 4) 240.3 (0, 20) 225.8 (0, 23) 103.5 (21, 4) 88.7 (23, 5)
pr02-50-3D3P 394.8 (0, 13) 269.2 (16, 3) 570.2 (0, 13) 643.1 (0, 14) 386.1 (15, 4) 317 (15, 3)
pr03-50-2D2P 1.4 (0, 17) 0.9 (16, 1) 2.5 (0, 18) 2.1 (0, 18) 1.2 (15, 1) 1.1 (15, 1)
pr03-50-2D3P 2.0 (0, 15) 1.2 (18, 1) 2.8 (0, 14) 2.5 (0, 14) 1.3 (15, 1) 1.2 (15, 1)
pr03-50-3D2P 1.6 (0, 15) 1.0 (21, 1) 2.8 (0, 18) 2.4 (0, 17) 1.3 (17, 1) 1.4 (17, 1)
pr03-50-3D3P 1.0 (0, 14) 0.8 (15, 1) 2.0 (0, 13) 1.6 (0, 13) 1.0 (15, 1) 0.9 (15, 1)
pr04-50-2D2P 23.2 (0, 20) 23.8 (34, 8) 38.0 (0, 23) 30.7 (0, 21) 22.2 (26, 7) 26 (27, 9)
pr04-50-2D3P 3.6 (0, 11) 3.1 (13, 2) 6.6 (0, 14) 6.6 (0, 14) 5.0 (15, 4) 5.3 (15, 4)
pr04-50-3D2P 23.1 (0, 18) 13.8 (23, 3) 40.8 (0, 23) 38.1 (0, 21) 21.2 (23, 5) 22.7 (24, 6)
pr04-50-3D3P 21.1 (0, 13) 21.1 (20, 5) 30.5 (0, 14) 29.6 (0, 14) 23.3 (13, 6) 23 (13, 5)

Average 46.4 (0, 17) 31.2 (22, 3) 71.3 (0, 19) 76.3 (0, 18) 44.0 (19, 3) 38.9 (19, 4)

generate columns; we implemented a method based on TS. This approach,
inspired by the procedure of Desaulniers et al. (2008), attempts to generate
new negative-reduced-cost columns from the set of existing columns. How-
ever, our experiments showed that it did not improve the computational
time. Our results support those reported by Desaulniers et al. (2008). How-
ever, our results for instances with 100 and 200 nodes show that TS is more
efficient for larger instances and longer routes.

6.3. Branching and integer solution

As mentioned in Section 5, a branching scheme is often necessary. We
now evaluate the performance of the two branching strategies introduced
in Section 5.4. We present the results for three approaches. All three use
EDP and HDP, because they decrease the average computational time. The
first method uses DSSR, the second uses ngR-DSSR with |Ni| = 5, and
the third uses ngR-DSSR with |Ni| = 8. Our experiments have shown that
|Ni| > 8 increases the computational time and therefore reduces the number
of instances solved to optimality within the time limit.

As previously noted, in variant 1 the producers are preassigned to the
depots; we consider both variant 1 and variant 2 in this section. We set
the maximum computational time for each instance to five hours. There are
three possibilities:

(a) The optimal solution is attained.

(b) The optimal solution is not attained, but one or more integer solutions
are found during the branching process.
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(c) No integer solutions are found.

Tables .8–.11 present the results for variant 1, and Tables .12–.15 present
the results for variant 2. The branching strategies BPA and BTW are com-
pared using the following metrics:

1. Computational time (CPU): This is reported for the problems that
achieved optimality (case (a)) and represents the time to obtain the
optimal solution. The CPU is set to 18000 (s) when the optimal solution
is not found within five hours (cases (b) and (c)).

2. Root gap: This is calculated via (optimal solution - root solution)/root
solution. For cases (b) and (c), the root gap is set to ∞.

3. Optimality gap: This is obtained via (best upper bound - best lower
bound)/best lower bound. For case (a), the gap is zero and for case (c)
it is infinity and therefore not reported.

4. Lower bound (LB) improvement: This is obtained via (best lower bound
- root solution)/root solution, and it is presented for case (c). In a
best-first branching strategy, this value represents the improvement in
the lower bound; it allows us to compare the performance of different
branching strategies for problems with no integer solution. Recall that
in a best-first branching strategy the node with the best LB is treated
first.

T1 is the mean time to solve the five instances in a class, and T2 is the
mean time for the instances that achieved optimality. Moreover, # Opt. Sol.
and # Int. Sol. are the number of instances corresponding to case (a) and
case (b), respectively. The root gap, Opt. gap, and LB Imp. columns give the
mean percentages for the root gaps, optimality gaps, and LB improvements
when relevant. Note that, because of the significant ratio of fixed costs to
variable costs, the gaps are generally small.

6.3.1. Variant 1: Preassignment

Generally the performance of the algorithm decreases as the number of
producers increases, for both branching strategies. However, given a fixed
number of producers, increasing the number of depots generally reduces the
difficulty. This is because of a decrease in the producer-depot ratio when the
producers are preassigned.

We now group the instances from classes pr01–pr04 according to the
number of producers; this gives three groups of 30, 40, and 50 producers
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with 80 instances in each group. Table 4 presents the percentage of instances
solved to optimality by each branching strategy; the percentage of instances
in which at least one integer solution was found; T1; and T2.

It can be seen that BTW is more successful for larger instances. Table 5
shows that both branching strategies weaken in terms of the number of prob-
lems solved to optimality and the mean CPU time when the time windows
are wider, i.e., pr02 and pr04. BTW weakens more significantly because al-
though we split the time windows during the branching, the new windows are
still wide enough that numerous routes with similar costs may be feasible.

Using DSSR with BTW gives the best results. When BTW is used, DSSR
almost always outperforms ngR-DSSR in terms of the percentage of solved
problems. DSSR also has a smaller T1.

Table 4: Comparison of BPA and BTW for 30 to 50 producers (Variant 1)
BPA BTW

No. producers Optimal solution Integer solution T1 T2 Optimal solution Integer solution T1 T2

DSSR
30 73% 28% 6664 3480 90% 5% 2889 1217
40 45% 40% 11860 5725 76% 10% 5577 11748
50 28% 41% 13290 2661 65% 8% 8267 4288

ng5
30 68% 33% 7024 1987 89% 5% 3008 1074
40 44% 31% 11993 5570 74% 10% 5805 2031
50 33% 18% 13129 8663 63% 14% 8257 3737

ng8
30 73% 26% 6713 3483 89% 5% 2904 1023
40 44% 41% 11901 6097 76% 9% 5717 2474
50 31% 39% 13291 3318 64% 10% 8216 4033

Table 5: Comparison of BPA and BTW (Variant 1)
BPA BTW

Problem class Optimal solution Integer solution T1 T2 Optimal solution Integer solution T1 T2

DSSR

pr01 53% 40% 9363 1530 95% 2% 1590 786
pr02 38% 30% 12711 6569 43% 20% 10881 2583
pr03 57% 40% 8749 2952 97% 3% 1590 992
pr04 45% 35% 11595 4770 73% 5% 8250 5309

ng5

pr01 48% 45% 9989 1158 95% 3% 1493 665
pr02 30% 20% 13564 9600 48% 13% 10968 4209
pr03 70% 22% 7181 2634 97% 3% 1695 1096
pr04 43% 22% 12127 8234 60% 18% 8602 3154

ng8

pr01 55% 40% 9423 2039 95% 3% 1616 819
pr02 45% 23% 12772 7989 48% 13% 10821 4177
pr03 55% 42% 8753 2585 97% 3% 1525 926
pr04 42% 37% 11593 4583 65% 12% 8487 4119

6.3.2. Variant 2: No preassignment

We solved the same instances using the algorithm adapted for variant 2.
The performance of our algorithm depends on the producer-depot ratio, and
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variant 2 is therefore more difficult to solve. We used the same two branching
strategies. Tables .12–.15 report the results for pr01–pr04 with 30, 40, and
50 producers.

We again group the instances according to the number of producers. Ta-
bles 6 and 7 compare the performance of BPA and BTW in terms of the
instances solved to optimality and those with at least one integer solution.
BTW generally outperforms BPA in terms of the number of instances solved.
However, BPA is competitive with BTW when the time windows are wider
(pr02 and pr04).

Table 6 shows that the combination of BTW and ng5 definitely outper-
forms the other combinations. A comparison of pr01 and pr03 with pr02
and pr04 shows the higher difficulty of the instances with wider time win-
dows. The results indicate that the plant location (inside or outside) has no
significant impact on the difficulty of the problem.

Table 6: Comparison of BPA and BTW for 30 to 50 producers (Variant 2)
BPA BTW

No. producers Optimal solution Integer solution T1 T2 Optimal solution Integer solution T1 T2

DSSR
30 66% 34% 6937 1465 85% 8% 4527 2610
40 43% 38% 11670 4342 59% 9% 9358 5300
50 33% 19% 13313 8566 45% 9% 11239 7785

ng5
30 68% 33% 7020 2047 88% 6% 3008 905
40 43% 33% 11999 5021 71% 13% 5805 1307
50 33% 18% 13126 8661 65% 11% 8256 4080

ng8
30 66% 34% 6945 1361 84% 6% 4564 2288
40 44% 34% 11731 4638 58% 9% 9662 5099
50 33% 16% 13575 8655 45% 9% 11059 7731

Table 7: Comparison of BPA and BTW (Variant 2)
BPA BTW

Problem class Optimal solution Integer solution T1 T2 Optimal solution Integer solution T1 T2

DSSR

pr01 48% 43% 9971 1127 83% 15% 4679 2415
pr02 28% 27% 13761 8244 33% 3% 13672 9118
pr03 68% 25% 7155 1852 92% 5% 3462 2450
pr04 43% 25% 11673 7942 43% 10% 11685 6945

ng5

pr01 48% 45% 9983 1149 85% 13% 4970 2958
pr02 28% 23% 13813 8288 30% 2% 13694 8039
pr03 68% 23% 7181 1885 90% 8% 3498 2196
pr04 45% 20% 11999 8367 43% 10% 11657 7511

ng8

pr01 48% 45% 9983 1149 85% 13% 4970 2958
pr02 28% 23% 13813 8288 30% 2% 13694 8039
pr03 68% 23% 7181 1885 90% 8% 3498 2196
pr04 45% 20% 12024 8216 43% 8% 11551 6966
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7. Conclusions

We have considered a new variant of the vehicle routing problem with at-
tributes such as multiple depots, heterogeneous fleets of vehicles, time win-
dows, and deliveries to plants. Its main novelty is the need to satisfy the
plant demands by delivering the supplies collected earlier. We introduced
a new set covering model for this problem, and we proposed a specialized
cutting-edge column generation procedure to solve its linear relaxation. We
also presented a new branching strategy based on the special structure of the
problem and compared its performance with the well-known BTW.

To evaluate our algorithm, we developed randomly generated test prob-
lems with and without producer-depot preassignments. We obtained promis-
ing results in terms of solution quality and computational time, especially
for problems with up to 50 producers.

Future research will focus on developing more intelligent branching strate-
gies and considering the more complex route structures presented in Section
2. Our long-term goal is the effective solution of the given problem in the
presence of stochastic parameters, which would make the model more realis-
tic.
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recherche du Québec through infrastructure grants and the support of Cal-
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