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Abstract. We consider tactical planning for a particular class of multi-period vehicle 
routing problems (MPVRP). This problem involves optimizing product collection and 
distribution from several production locations to a set of processing plants over a planning 
horizon. Each horizon consists of several days, and the collection-distribution are 
performed on a repeating daily basis. In this context, a single routing plan must be 
prepared for the whole horizon, taking into account the seasonal variations in the supply. 
We model the problem using a sequence of periods, each corresponding to a season, and 
intra-season variations are neglected. We propose an adaptive large neighborhood search 
with several special operators and features. To evaluate the performance of the algorithm 
we performed an extensive series of numerical tests. The results show the excellent 
performance of the algorithm in terms of solution quality and computational efficiency. 
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1. Introduction

The vehicle routing problem (VRP) is a difficult combinatorial optimiza-
tion problem that is used in many practical applications relating to the design
and management of distribution systems. Studies of the classical VRP and
its many variants and extensions, starting with the seminal work of Dantzig
and Ramser (1959), represent a significant portion of the operations research
literature (Toth and Vigo, 2002). The classical VRP, referred to as the ca-
pacitated vehicle routing problem (CVRP), concerns the determination of
routes for a fleet of homogeneous vehicles, stationed at a central depot, that
must serve a set of customers with known demands (supplies). The goal is to
design a collection of least-cost routes such that: 1) each route, performed by
a single vehicle, begins at a depot, 2) each customer is visited once by exactly
one vehicle, and 3) the quantity of goods delivered (collected) on each route
does not exceed the vehicle capacity (Golden et al., 2008).

In the classical VRP, the routing plan is executed repeatedly over the
planning horizon. The parameters of the problem, such as the quantities to
be delivered (collected) at each customer location, are assumed fixed over
the horizon and known a priori. However, in many real-life applications, this
assumption may result in poor-quality routing plans. Our problem setting
requires routing over relatively long horizons, in environments with signifi-
cant seasonal fluctuations. This setting, milk collection and redistribution in
the dairy industry of Quebec, initially introduced by Dayarian et al. (2013b),
has several problem-specific attributes and characteristics. The routing cor-
responds to the collection of milk from producers’ farms followed by the
distribution of the product to a set of processing plants. The routes must be
designed in such a way that the plant demands are completely satisfied, while
every producer is visited by exactly one vehicle and each vehicle delivers to
just one plant per day. We assume that the daily quantity of milk produced
satisfies the total plant demand.

The first studies of this problem were performed by Lahrichi et al. (2012b)
and Dayarian et al. (2013a); both studies assumed that the annual produc-
tion is fixed. Dayarian et al. (2013b) addressed a variant of the problem that
accounted for seasonal variations in the supply. Because of contractual and
service-consistency requirements, a single routing plan must be prepared for
a given horizon. The contractual negotiations between the different stake-
holders (producers, carriers, and plants) are based on a single routing plan.
For service consistency, each producer should always be included in the same
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route and served by the same vehicle. The drivers to plan their daily opera-
tions also use this routing plan.

Dayarian et al. (2013b) proposed an exact methodology based on a branch-
and-price approach and a multi-period model. They divided the horizon into
a series of periods, each a cluster of days with similar seasonal characteristics.
The horizon can then be represented as a sequence of periods. The need to
design a single plan for changing contexts recalls the a priori optimization
framework for stochastic optimization problems. In stochastic programming,
a two-stage model is often considered. The solution from the first stage is
updated at the second stage as the values of the stochastic parameters are
revealed.

The solution approach proposed by Dayarian et al. (2013b) provides op-
timal solutions for instances with up to twenty producers. However, real-life
problems may have several hundred producers. Therefore, we need solution
approaches that can find good but not necessarily optimal solutions to larger
problems. The main goal of this paper is to find such solutions using an
effective adaptive large-neighborhood search (ALNS) framework (Pisinger
and Ropke, 2007; Ropke and Pisinger, 2006). Our main contributions are as
follows:

• We design a new metaheuristic based on the ALNS for our problem
setting, which is described in more detail in Section 2.

• We design several new operators based on the special structure of the
problem. We also adapt some existing operators in the literature.

• We propose a new adaptive layer for the ALNS in which destruction
and construction heuristics are coupled to form the operators, rather
than being treated independently.

• We propose a new diversity management system for the ALNS, which
is based on extracting information from a list of diverse solutions and
restarting the search from a diverse solution when it seems to be trapped
in a local optimum.

• To evaluate the quality of the solution, we compute a series of lower and
upper bounds on the value of the multi-period solution. We compare
the solutions obtained through the ALNS with these bounds.
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• We perform a series of extensive numerical tests for a large set of ran-
domly generated instances, to illustrate the performance of the algo-
rithm in terms of computational time and solution quality.

The remainder of this paper is organized as follows. In Section 2, we
describe the problem and the notation that we will use. Section 3 discusses
the state-of-the-art of work in this field. In Section 4, we present the classical
ALNS for the VRP, and in Section 5 we present our approach to the prob-
lem. In Section 6, we propose a series of bounds that allow us to evaluate
the performance of the algorithm. The experimental results are reported in
Section 7, and Section 8 provides concluding remarks.

2. Problem Statement and Notation

In this section, we introduce the problem; it is inspired by a dairy problem
in Quebec. For a detailed description of the dairy transportation problem
in Quebec (DTPQ), the reader is referred to Lahrichi et al. (2012b) and
Dayarian et al. (2013b,a).

The problem can be formally described as follows: We wish to design a
single tactical routing plan for a given horizon T . A plan consists of a set
of routes, each performed by a single vehicle on every collection day of T .
An unlimited fleet of identical vehicles is assumed to be available in multiple
depots. On every collection day, each vehicle departs from a depot, collects a
single product type from a subset of producers, delivers the collected product
to a single plant, and then returns to its depot. This can be seen as an
extension of the VRP with additional deliveries to multiple plants, and it is
therefore NP-hard (Lenstra and Kan, 1981).

The producers’ supply over the horizon may vary seasonally. The sea-
sonal variations are often significant and may have a major impact on the
routing. We assume that a year can be divided into several periods, each
representing a seasonal production level. We take inter-period production
variations into account; the potential intra-period fluctuations are neglected.
Intra-period fluctuations can often be handled by leaving a spare capacity of
5%–10% on each vehicle when designing the routes. The producers’ seasonal
fluctuations are assumed to be perfectly positively correlated. This correla-
tion arises because almost all the producers in a given geographical region
are exposed to similar seasonal cycles. The plants must adjust their seasonal
demands according to the supply so that the total supply always meets the
total demand.
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The proposed multi-period model has some similarities to an a priori
optimization framework in the context of the vehicle routing problem with
stochastic demand (VRPSD). In a two-stage formulation of a stochastic prob-
lem, the solution from the first stage is updated at the second stage as the
exact values of the stochastic parameters are revealed. We seek a solution
that minimizes the total expected cost of the original plan and the potential
adjustments in the second stage. Similarly to algorithms for the VRPSD, in
the context of our multi-period problem at the first stage we design a single
plan for the planning horizon, taking into account possible supply changes
between periods. At the second stage, the plan is adjusted based on the
specificities of each period. In seasons with higher supply levels, at a given
producer location a vehicle may have insufficient residual capacity to collect
the supply. We refer to this as a failure. Following a failure, the vehicle
usually travels to a plant to empty its tank and then proceeds to visit the
remaining producers of the planned route. We refer to this extra travel as a
recourse action.

Under our recourse policy, the vehicle always visits the producers in the
order of the planned route; when a failure occurs, it travels to its assigned
plant. Consequently, the total distance traveled corresponds to the fixed
length of the planned route plus the length of the return trip to the plant.

The goal is to design a single least-cost collection-delivery plan for a given
horizon, providing a certain level of service consistency and service quality,
and taking into account the existence of several periods. We define a feasible
plan to be one that is executable over the horizon with at most one failure
per operation per route.

A single plan is necessary because 1) the contractual arrangements be-
tween the FPLQ and the carriers require a single plan that can be used for
cost estimation for the whole horizon; and 2) there is a consistent driver-
producer relationship when the producer is always served via the same route
operated by the same vehicle. The second point leads to a familiar environ-
ment for the producer and the driver and avoids potential incompatibilities
between the vehicles and the producer’s facilities.

We control the desired service quality over a given horizon by setting
a service reliability threshold (SRT), indicating the minimum percentage of
days over the horizon T that the planned routes should be executable with
no failures. The magnitude of the SRT has a major impact on the design
of the plan. Clearly, if SRT = 100%, no failure occurs in any period of the
horizon. However, this strategy is not cost-efficient, because it often requires
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many vehicles.
Let Ξ be the set of all periods in a given horizon T . We associate with

each period ξ ∈ Ξ a weight Wξ, representing the share of period ξ in horizon
T . It is calculated by dividing the length of period ξ by the length of horizon
T . We also associate with each period ξ a production coefficient, Pξ, which
is defined to be the ratio of the production level in period ξ to a chosen
reference production level Pref . The choice of the reference production level
is discussed in detail in Dayarian et al. (2013b).

The model is defined on a directed graph G = (V ,A), where V and A
are the node and arc sets, respectively. The node set contains the depots,
producers, and plants; V = D ∪N ∪ P . The arc set A ⊂ V × V defines fea-
sible movements between different locations in V . For each pair of locations
ni, nj ∈ V , ni 6= nj, there exists an arc (i, j) ∈ A. Each arc (i, j) ∈ A has
an associated nonnegative travel cost that is proportional to the length of
the arc distij. An unlimited fleet of vehicles K, with identical capacity Q,
is available at each depot. However, employing vehicle k ∈ K incurs a fixed
cost of ck.

In each period, each producer nj ∈ N produces a limited product quantity
on a daily basis. The supply levels in period ξ ∈ Ξ are given by a vector
in which the jth parameter, denoted oξj , is the supply (offer) of producer j.
Moreover, the supply of each producer nj in the reference period is given by

orefj . Therefore, the supply of producer nj in period ξ is

oξj = Pξ.o
ref
j (j ∈ N , ξ ∈ Ξ), (1)

where Pξ represents the production in period ξ. Each plant p ∈ P receives,
on a daily basis, the collected product. The demand of each plant p in period
ξ is given by Dξ

p. The routes are designed to have no failures in the reference
periods and at most one failure in the other periods. In other words, for each
route r, the following inequalities hold:∑

j∈r

oξj ≤ 2Q, s ∈ S (2)

and ∑
j∈r

orefj ≤ Q. (3)

The cost of the solution has three components: 1) the fixed vehicle costs; 2)
the first-stage routing costs, which are the costs of the planned routes; and
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3) the second-stage routing costs, which are the expected recourse costs in
different periods of the horizon.

3. Literature Review

In this section, we review metaheuristic methods for VRPs with a similar
structure to our problem.

Our problem setting has some special features:

1. The need to satisfy the plant demands; our problem can be seen as a
many-to-one pickup and delivery problem (PDP).

2. The need to account for the production variations, while planning over
a horizon.

Lahrichi et al. (2012b), investigating the same dairy application, con-
sidered a variant of the VRP with features similar to those of our problem.
They used a generalized version of unified tabu search (Cordeau et al., 2001).
They simultaneously considered the plant deliveries, different vehicle capac-
ities, different numbers of vehicles at each depot, and multiple depots and
periods. Dayarian et al. (2013a) proposed a branch-and-price algorithm for
a variant of the DTPQ in which a time window is associated with each pro-
ducer, and the production levels over the horizon are assumed to be fixed.

The VRP that is the most similar to our problem is the multi-period
or periodic MDVRP. In most studies of the multi-period vehicle routing
problem (MPVRP), customers request a service that could be done over
a multi-period horizon (see Tricoire, 2006; Angelelli et al., 2007; Wen et al.,
2010; Athanasopoulos, 2011). The classical MPVRP is closely related to the
periodic vehicle routing problem (PVRP) in which the customers specify a
service frequency and allowable combinations of visit days. A complete sur-
vey of the PVRP and its extensions can be found in Francis et al. (2008).
The best-known algorithms for the PVRP are those of Cordeau et al. (1997),
Hemmelmayr et al. (2009), Vidal et al. (2012), and Rahimi-Vahed et al.
(2013). In our problem, all the producers need to be served every period on
a daily basis. Moreover, the definition of the periods is based on the seasonal
variations.

A single plan for a horizon of several periods has been investigated in the
context of telecommunication network design (Kouassi et al., 2009; Gendreau
et al., 2006). However, apart from the work of Dayarian et al. (2013b),
we are not aware of any previous study of the VRP with the multi-period
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configuration considered in this paper. Dayarian et al. (2013b) used a branch-
and-price approach to solve the problem that we investigate. However, their
algorithm is able to solve instances with only up to twenty producers.

There are certain similarities between our problem and the consistent
vehicle routing problem (ConVRP) introduced by Groër et al. (2009). In
the ConVRP, customers with known demands receive service either once or
with a predefined frequency over a multiple-day horizon. Frequent customers
must receive consistent service, which is defined as visits from the same driver
at approximately the same time throughout the planning horizon (Tarantilis
et al., 2012).

Complete surveys of metaheuristics for the VRP can be found in Gen-
dreau et al. (2008) and Vidal et al. (2013). They include neighborhood
searches (Gendreau et al., 1994; Cordeau et al., 2001; Rousseau et al., 2002;
Bräysy, 2003), population-based methods such as evolutionary and genetic
algorithms (Berger et al., 2003; Bräysy and Gendreau, 2005; Vidal et al.,
2012), hybrid metaheuristics (Gehring and Homberger, 1999; Bent and Van Hen-
tenryck, 2004; Homberger and Gehring, 2005) and parallel and cooperative
metaheuristics (Crainic and Toulouse, 2008; Crainic et al., 2009; Lahrichi
et al., 2012a). Of the neighborhood search methods, the large neighborhood
search (LNS) algorithms (Shaw, 1998) have proven to be successful for sev-
eral classes of the VRP. The ALNS (Ropke and Pisinger, 2006; Pisinger and
Ropke, 2007), an extension of the LNS, is also related to the ruin-and-recreate
approach of Schrimpf (2000). Recently, ALNS has provided good solutions
for a wide variety of vehicle routing problems; see for instance Ropke and
Pisinger (2006), Pisinger and Ropke (2010), Azi et al. (2010), and Pepin et al.
(2009).

The MPVRP, as considered in this paper, has to date received limited
attention. Based on the success of the ALNS, we propose an ALNS for our
problem. This algorithm is outlined in the next section.

4. Classical ALNS for the VRP

The ALNS algorithm is an iterative process, in which at every iteration
part of the current solution is destroyed using a destruction heuristic and
then reconstructed using a construction heuristic in the hope of finding a
better solution. The destruction heuristic usually disconnects a number q ∈
[qmin, qmax] of the nodes from their current routes and places them into the
unassigned node pool, Φ. Note that qmin and qmax are parameters whose
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values are to be tuned. The construction heuristic then inserts the nodes
from Φ into the routes of the solution. The main components of the ALNS
(Ropke and Pisinger, 2006; Pisinger and Ropke, 2007) are:

Adaptive search engine: At each iteration of the ALNS, one indepen-
dently selects a destruction and a construction heuristic via a biased
random mechanism, referred to as the roulette-wheel. It favors the
heuristics that have been successful according to certain criteria in re-
cent iterations. The adaptive layer of the ALNS procedure controls the
functionality of the roulette-wheel. One associates with each heuristic
a weight that is incremented during the search based on a scoring mech-
anism that measures the performance of the heuristic. The probability
of selecting a given heuristic is proportional to the ratio of its weight
to the sum of the weights of the other heuristics.

Adaptive weight adjustment: One divides the search into a number of
fixed-length segments of consecutive iterations. In the first segment,
all the heuristics have the same weight. At the end of each segment,
the weights used to select the heuristics are updated.

Acceptance and stopping criteria: The new solution obtained via the
destruction-construction procedure is usually accepted or rejected based
on some criterion. This criterion is usually defined by the search
paradigm applied at the master level, e.g., simulated annealing (SA)
(see Kirkpatrick et al., 1983). The new solution s′ replaces the current
solution s if f(s′) < f(s), where f(s) represents the value of solution s.
In SA, with ∆f = f(s′)− f(s), solution s′ is accepted with probability

exp(
−∆f

T
), (4)

where T > 0 is the temperature parameter. The temperature is initial-
ized to T init and at the end of each iteration it is lowered by a cooling
rate c ∈ (0, 1): T ← c.T . The probability of accepting worse solutions
reduces as T decreases. This allows the algorithm to progressively find
better local optima. The stopping criterion is based either on a prede-
termined number of iterations or a predefined final temperature T fin.
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4.1. Selected destruction/construction heuristics

Several destruction and construction heuristics have been proposed, and
some can be adapted to the VRP context. We focus on the destruction
heuristics outlined below.

Random Removal: This heuristic (Ropke and Pisinger, 2006) randomly
selects q nodes, removes them from their current position, and places
them into Φ. The random nature of this heuristic diversifies the search.

Worst Removal: This heuristic, initially proposed by Rousseau et al. (2002)
and later used by Ropke and Pisinger (2006), removes the q worst
placed nodes and places them into Φ.

Route Removal: This heuristic removes a randomly selected route and
places the corresponding nodes in Φ.

Cluster Removal: This heuristic (Pisinger and Ropke, 2007) removes a
cluster of nodes from a route, based on their geographical region. It
randomly selects a route from the current solution. It then applies
the well-known Kruskal algorithm to find a minimum spanning tree for
the nodes of this route, based on the arc length. When two forests
have been generated, one of them is randomly chosen and its nodes are
removed and placed in Φ.

Smart Removal: This heuristic (Rousseau et al., 2002) randomly selects a
pivot node and removes portions of different routes around the pivot,
based on a reference distance and a proximity measure.

We consider the following construction heuristics:

Sequential Insertion: This heuristic inserts the nodes from Φ in order.
Each node is placed in the position that incurs the minimal local cost.

Best-First Insertion: This heuristic inserts each node in the cheapest po-
sition. At each step it selects the node with the lowest insertion cost.

Regret Insertion: This heuristic (Ropke and Pisinger, 2006), orders the
nodes in Φ by decreasing regret values. The regret value is the cost dif-
ference between the best insertion position and the second best. More
generally, the k-regret heuristic defines the regret value with respect to
the k best routes.
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5. Proposed Solution Framework

Our algorithm is based on a general ALNS but incorporates a number
of intensification and diversification strategies that improve its performance;
an outline is presented in Algorithm 1.

Similarly to the classical ALNS, the search is divided into several seg-
ments, each a series of consecutive iterations. However, we dynamically
adjust the length of each segment based on a criterion that will be described
in Section 5.4. At each iteration, we explore the neighborhood of the current
solution, generating potentially ϕ new solutions. We obtain the new solu-
tions by applying a randomly selected destruction-construction operator to
the current solution. At the end of each iteration, we apply an acceptance
criterion to the best solution among the ϕ solutions found. If the solution
satisfies the criterion, it replaces the current solution. Our acceptance crite-
rion, which is based on a probabilistic threshold inspired by SA, is discussed
in Section 5.4.

At the end of each segment, we apply a series of local search (LS) opera-
tors to the best solution found in the segment. If this gives an improvement,
we update the current solution. To help the algorithm escape from local
minima, we implement a diversity management mechanism; see Section 5.6.

We also propose the use of an enhanced central memory. It stores both
high-quality solutions and a set of diverse solutions. We design several new
destruction heuristics that use information extracted from the central mem-
ory; see Section 5.7. Moreover, we design new operators for our specific
problem setting. The main components of our algorithm are described be-
low.

5.1. Search Space

It is well known in the metaheuristic literature that allowing the search
into infeasible regions may lead to good solutions. We therefore permit
infeasible solutions in which the plant demands are not completely satis-
fied. We evaluate the moves and solutions using a penalty function f(s) =
C(s) + ηD−(s), where C(s) is the total operating cost of the solution (i.e.,
fixed, routing, and recourse costs) and D−(s) is the unsatisfied plant demand.
The parameter η is initially set to 1. After each block of Iteradj iterations,
we multiply η by 2 if the number of infeasible solutions in the last Iterhis

iterations is greater than δmax, and we divide it by 2 if the number of such
solutions is less than δmin.
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This penalty function is similar to that used in Taburoute (Gendreau
et al., 1994) and the unified tabu search (Cordeau et al., 2001). Our penalty
strategy favors removal from routes serving plants with an oversupply and
insertion into routes serving plants with an undersupply.

Our penalty function adds a penalty ρ to the local cost of removal or
insertion in a given position, where

ρ = ηD−(s). (5)

5.2. Destruction-construction operators

The new solutions are obtained by applying an operator opr ∈ Ω, to the
current solution, where Ω is the set of all operators. In the classical ALNS
algorithm, the destruction and construction heuristics are selected indepen-
dently, but we form opr by coupling a pair of heuristics. The main advantage
is that we can weight the performance of each (destruction-construction) pair.
We use two main types of heuristics:

1. Generic heuristics: A generic destruction heuristic can be coupled with
any generic construction heuristic. The heuristics presented in Sections
4, 5.7, and 5.8 are all considered generic heuristics.

2. Specialized heuristics: For each specialized destruction heuristic, we
develop a specialized construction heuristic. The resulting operator
has a specific goal such as the generation of solutions with a certain
level of diversity. We present our specialized heuristics in Section 5.9.

5.3. Central Memory

We consider a central memory, denoted Ψ, with a limited number of solu-
tions. We extract from it different types of information for use in destruction
heuristics. There is clearly a trade-off between search quality on the one
hand and computational efficiency and memory requirements on the other.
We use the extracted information to determine the relatedness between dif-
ferent nodes of the graph with respect to different criteria. We design a
destruction heuristic based on each criterion (see Section 5.7). The central
memory contains three lists of solutions:

- Best Feasible Solutions (ΨFS): A list of the β1 best feasible solutions
generated so far.

- Best Infeasible Solutions (ΨNFS): A list of the β2 best infeasible solu-
tions generated so far.
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- Diverse Solutions (ΨDIV ): A list of β3 solutions, selected according to
the quality-diversity criterion discussed in Section 5.6.1.

5.4. Acceptance criterion

Our acceptance criterion is inspired by SA, but we do not perform the
cooling procedure at the end of every iteration. We perform the procedure
when no global best feasible solution has been found in the last δ iterations.
This can be seen as a dynamic repetition schedule that dynamically defines
the number of iterations executed at a given temperature.

We divide the search into several segments. The length of each segment
corresponds to the repetition schedule for a given temperature and therefore
has a minimum length of δ iterations. If a new global best feasible solution
is found in the current segment, the length of the segment is extended.

5.5. Adaptive Mechanism

At every iteration of the ALNS, we choose the operator to apply to the
current solution via a roulette-wheel mechanism. Each operator opr is as-
signed a weight ωopr according to its performance history. Given Ω, the
operator set, the probability of selecting opr is ωopr/

∑
k∈Ω ωk.

To evaluate the performance of the operators, we implement an adaptive
weight adjustment procedure. After each block of γ segments, referred to
as a mega-segment, we update the operator weights based on their long-
and short-term performance history. The short-term history covers the last
mega-segment, and the long-term history covers the entire search. Each
operator is also assigned a score, which is reset to zero at the end of each
mega-segment. Initially, all the weights are set to one and all the scores to
zero. At each iteration, we update the scores. We do this by adding a bonus
factor σi, i ∈ {1, . . . , 4}, where σi ≤ σi+1, i ∈ {1, 2, 3}, to the current score as
follows:

I. We add σ4 if a new global best feasible solution has been found.

II. We add σ3 if the new solution improves the current solution but not
the global best feasible solution.

III. We add σ2 if the new solution satisfies the acceptance criterion and is
inserted into ΨFS.
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IV. We add σ1 if the new solution satisifes the acceptance criterion but is
not inserted into ΨFS.

In all other cases, the bonus factor is zero. Moreover, suppose that πopr
is the total score of opr obtained from νopr applications of opr in the last
mega-segment. We control the influence of the short- and long-term history
using a parameter α ∈ [0, 1], called the reaction factor, through the formula

ωopr,ι+1 = ωopr,ι(1− α) + α
πopr
νopr

. (6)

Here ωopr,ι represents the weight of operator opr in mega-segment ι. A value
of α close to zero increases the impact of the long-term history; a value close
to one increases the impact of the short-term history.

5.6. Diversity Management

The diversity of the search is governed by the two mechanisms discussed
below.

5.6.1. Diverse Solutions (ΨDIV )

The decisions taken in some destruction heuristics use the information
extracted from the central memory Ψ. Recall that this central memory is
divided into lists of best feasible solutions, best infeasible solutions, and
diverse solutions. Several strategies have been proposed for determining a
set of diverse solutions (Vidal et al., 2012; Rahimi-Vahed et al., 2013).

We consider a new utility function that evaluates the solution based on
g(s) = C(s)−υDIV (s), where C(s) is the quality and DIV (s) is the diversity
measure:

DIV (s) =
∑

s′∈ΨFS∪ΨNFS

χ(s, s′). (7)

Parameter υ is self-adjusting: if during the last nbSegmDIV segments no
improved solution has been found, υ is doubled.

In Equation (7), χ(s, s′) is the distance between solutions s and s′:

χ(s, s′) =
∑
i∈N

(1(succsni
6= succs

′

ni
) + 2(nsdi 6= ns

′

di
) + 2(nspi 6= ns

′

pi
)). (8)

Here succsni
, nsdi , and nspi are the successor, depot, and plant of node ni in

solution s.
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We compare two solutions based on their node sequencing and their as-
signments to depots and plants. The weight of each sequencing difference is
set to one, and the weight of each assignment difference is set to two. We first
attempt to insert every new solution into ΨFS or ΨNFS. When a solution
cannot be inserted or a solution currently in one of these lists is replaced, we
must decide whether or not to add it to ΨDIV . If the number of solutions in
ΨDIV is less than β3, we add the new solution. Otherwise, we consider the
current members of ΨDIV and the incoming solution, and we retain the β3

best solutions as measured by g(s) values.

5.6.2. Diversity Segment

If after nbSegmDIV segments, no new best global solution is found, we
devote a complete segment to the generation of diverse solutions. In this
diversity segment, at each iteration, we randomly select one operator from
the specialized operators (Section 5.9). Similarly to the regular segments,
at each iteration, we generate ϕ solutions. We take the most diverse one
according to DIV (s) that is within a radius of r of the best-known solution
and apply an acceptance criterion. In this criterion, the new solution s′

replaces the current solution s if g(s′) < g(s).

5.7. Generic Destruction Heuristics

We now describe the generic destruction heuristics. Some are new, while
others are adapted from existing heuristics proposed by Pisinger and Ropke
(2007), which primarily differ in the way that the relatedness are weighted.
We use the six heuristics below.

Solution-Cost-Based Related Removal

The solution-cost-based related removal heuristic, based on the histori-
cal node-pair removal (Pisinger and Ropke, 2007), associates with each arc
(u, v) ∈ A a weight f ∗(u, v). This weight indicates the value of the best-
known solution that contains arc (u, v). Whenever a new solution is inserted
in the central memory, we update the f ∗(u, v) value of all the arcs (u, v) in
the solution.

Following a call to this heuristic, we perform a worst removal procedure
in which the weight f ∗(u, v) replaces the cost of each arc (u, v) ∈ A. We
repeat this process until q nodes have been removed and placed in Φ.

An Adaptive Large Neighborhood Search Heuristic for a Multi-Period Vehicle Routing Problem
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Algorithm 1 ALNS
1: s← InitialSolution;
2: Initialize the weights π;
3: Set the temperature T ;
4: iter ← 0;
5: segmentIter ← 0;
6: seg ← 0;
7: sseg ← s;
8: repeat
9: repeat

10: siter ← s;
11: qiter ← Number of nodes to be removed;
12: Opriter ← Select an operator;
13: s′ ← Opriter(s, qiter);
14: if f(s′) < f(siter) then
15: siter ← s′;
16: end if
17: until iter/ϕ == 0
18: if f(siter) < f(s∗) and siter feasible then
19: s∗ ← siter;
20: sseg ← siter;
21: segmentIter ← 0;
22: else
23: if ACCEPT(siter, s) then
24: s← siter;
25: end if
26: end if
27: if f(siter) < f(sseg) then
28: sseg ← siter;
29: end if
30: Update the score of opr;
31: if segmentIter == δ then
32: s′ ← LOCAL SEARCH(sseg);
33: if f(s′) < f(s∗) then
34: s∗ ← s′;
35: segmentIter ← 0;
36: end if
37: else
38: if f(s) < f(s) then
39: s← s′;
40: end if
41: T ← c.T ;
42: sseg ← s;
43: seg ← seg + 1;
44: end if
45: if seg/γ == 0 then
46: Update the weights;
47: end if
48: iter ← iter + 1;
49: segmentIter ← segmentIter + 1;
50: until Stopping Criterion
51: return s∗
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Route-Cost-Based Related Removal

The route-cost-based related removal heuristic, which is similar to the
heuristic above, associates with each arc (u, v) ∈ A a weight r∗(u, v), in-
dicating the value of the minimal-cost route found so far that contains arc
(u, v). We perform a worst removal based on the r∗(u, v) weights.

Paired-Related Removal

This heuristic investigates adjacent producer nodes. We give each arc
(i, j) a weight $(i,j), initially set to 0. The heuristic starts by adding a
weight hs to the weights of all the arcs used in the solutions of the central
memory. When an arc (i, j) is used by solution s, we add the weight hs to
both (i, j) and (j, i). We compute hs via hs = List.size()−posinList(s), where
List represents the list to which solution s belongs, List.size() is the length
of that list, and posinList(s) is the position of solution s in that list. This
procedure favors the solutions at the start of the lists. When a new solution
is inserted into any of the lists, we update the weights hs. We use the arc
weights $(i,j) to identify the q producer nodes that seem to be related to each
other. An initial node ni is randomly selected, removed, and placed in Φ.
Then, while |Φ| < q, we randomly select a node nj from Φ and identify the
node nk in Φ that is the most closely related to node nj (it has the highest
$(j,k)). We then remove the node nk and place it in Φ.

Route-Related Removal

This heuristic, similarly to the previous heuristic, adds a weight hs to all
pairs of nodes served by the same route in solution s. We assign weights
as for the previous heuristic. We remove nodes from their current position
following a similar procedure to that for the previous heuristic.

Depot-Producer-Related Removal

This heuristic attempts to identify the nodes that may be mis-assigned
to a depot. Each depot-node pair (nd, ni), for d ∈ D and i ∈ N , is assigned
a weight. The weight increases by hs if, in solution s, producer i is assigned
to a route departing from depot d. We calculate the value of hs as for the
paired-related removal heuristic. We select a node to remove via the following
steps:

Step 1: We sort the producer-depot assignments in the current solution s
according to the historical pair weights obtained as described above in
Listi,d(s).
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Step 2: Starting from the producer-depot pair with the lowest weight, we
remove nodes from their current position with probability

Prni,ndi
(s) =

rank(ni)

Listi,d(s).size()
(9)

where rank(ni) is the position of the pair (ndi , ni) in Listi,d(s). More-
over, Listi,d(s).size() is the length of the node-depot list, which is the
number of producer nodes. Accordingly, we remove the node with the
lowest weight from its current position with probability 1.

Step 3: If the list is traversed to the end, but the number of removed nodes
is less than q, we update the length of the list to Listi,d(s).size()− |Φ|
and make the corresponding updates to the pair ranking. We then
return to Step 2.

Plant-Producer-Related Removal

This heuristic follows the three steps above. It attempts to remove pro-
ducer nodes based on the node-plant pair weights calculated from the histor-
ical information.

5.8. Generic Construction Heuristics

After the destruction heuristic, the nodes that have been removed and
placed in Φ are considered for reinsertion into routes.

Sequential Insertion with Plant Satisfaction

This heuristic is identical to sequential insertion except that insertions are
not penalized with the parameter ρ. To overcome possible infeasibilities, we
use the following two-phase insertion heuristic. In the first phase we insert
nodes only for routes serving plants with an unsatisfied demand. When all the
plant demands are met we move to the second phase. The remaining nodes
may now be inserted in any route, as in normal sequential insertion. This
procedure does not necessarily guarantee the feasibility of the new solution,
because it depends on the infeasibility level of the original solution and the
nodes in Φ.
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Minimum-Loss Insertion

This heuristic is based on the regret insertion heuristic but does not use
ρ. It inserts nodes into the routes while attempting to maintain the feasi-
bility of the solution at the minimal cost. This heuristic is based on the
regret associated with the insertion of a node in a route serving a plant with
unsatisfied demand rather than in the best possible route. Clearly, the best
candidate is a node for which the best possible position is in a route serving
a plant with unsatisfied demand. The best insertion candidate is determined
using the following criterion:

ni := argmin
ni∈Φ

( min
r∈RDP

s

(∆fr+ni
(s))− min

r∈Rs

(∆fr+ni
(s))), (10)

where Rs is the set of routes for solution s, and RDP
s is the set of routes

serving plants with unsatisfied demand. If all the plant demands are met,
the insertion order of the remaining nodes in Φ is defined as for the regret
insertion operator.

5.9. Specialized Operators

We also design specialized operators for our problem setting. Each con-
sists of a pair of destruction and construction heuristics that work together;
they are not coupled with any other heuristics. The destruction and con-
struction heuristics cooperate to achieve diverse solutions (recall that these
operators are only used in the diversity segments). We use the three opera-
tors below.

5.9.1. Depot-Exchange Operator

This operator changes the depot of a subset of the nodes to enhance the
diversification.

Depot-Exchange Removal

This heuristic selects the nodes to be removed via the following steps:

Step 1: Randomly select a pair of depots, nd1 and nd2 .

Step 2: Sort the nodes ni, i ∈ N in Listreg(nd1 , nd2) according to the regret
of assigning them to nd1 or nd2 using the following formula:

regret(ni)d1,d2 = |distd1,ni
− distd2, ni|. (11)
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Step 3: Starting from the node with the lowest regret value, remove nodes
from their current positions with probability

Prni
=

rank(ni)

Listreg(nd1 , nd2).size()
, (12)

where rank(ni) is the position of node ni in Listreg(nd1 , nd2), so the po-
sition of the node with the smallest regret value is Listreg(nd1 , nd2).size().

Step 4: If the Listreg(nd1 , nd2) is completely traversed but still |Φ| < q,
replace Listreg(nd1 , nd2).size() by Listreg(nd1 , nd2).size()− |Φ|, update
rank(ni), and go to Step 3.

Depot-Exchange Insertion

Following a call to the above heuristic, we reinsert nodes from Φ into
routes using this heuristic. It is based on the regret insertion heuristic, while
nodes are preassigned to the depots. This preassignment uses the depots nd1
and nd2 selected for the removal heuristic. Each node ni ∈ Φ is assigned to
nd1 with probability

Prni,d1 = 1− distd1,ni

distd1,ni
+ distd2,ni

, (13)

and to nd2 with probability 1− Prni,d1 .

5.9.2. Plant-Exchange Operator

Similarly to the depot-exchange operator, this operator changes a subset
of the producer-plant assignments.

Plant-Exchange Removal

We randomly select two plants, np1 and np2 . We then sort the nodes
based on the regret value regret(ni)p1,p2 = |distp1,ni

− distp2,ni
|. Starting

from the node with the lowest regret value, we remove nodes from their
current positions with probability

Prni
=

rank(ni)

Listreg(np1 , np2).size()
. (14)
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Plant-Exchange Insertion

This is a regret insertion heuristic that restricts the insertion of each
node ni ∈ Φ to a preassigned producer-plant pair. The preassignments use
the plants np1 and np2 selected for the removal heuristic. The probability
function is

Prni,pj = 1−
distpj ,ni

distp1,ni
+ distp2,ni

, j ∈ {1, 2}. (15)

5.9.3. Tabu-Based Operator

This operator pairs the most random removal and one of the most suc-
cessful insertion heuristics, i.e., the random removal heuristic and the regret
insertion heuristic. To diversify the search, it attempts to avoid generating
the same solutions by prohibiting the reassignment of removed nodes to their
previous routes. The removal heuristic records a list of the routes to which
the removed nodes were previously assigned. The regret insertion heuristic
is as described in Section 4 except that it avoids reinserting a node into its
previous route. The removal heuristic has a high level of diversity, and the
insertion heuristic is designed to insert removed nodes into the best routes
(provided they are different from the previous routes).

5.10. Local Search

At the end of each segment, LS procedures are performed on the best
solution found during the segment. Our LS procedures are inspired by the
education phase of a genetic algorithm proposed by Vidal et al. (2012). The
procedures are restricted to the feasible region. We build each node’s neigh-
borhood using a granularity threshold ϑ, initially proposed by Toth and Vigo
(2003), which is computed as follows:

ϑ = λ
Z(s)

nbArc(s)
, (16)

where Z(s) and nbArc(s) are the sum of the arc costs and the number of arcs
used in solution s, and λ is a suitable sparsification factor. In our implemen-
tation, Z(s) and nbArc(s) are limited to the arcs between producer nodes;

the recourse costs and the corresponding arcs are omitted. The value Z(s)
nbArc(s)

is the average length of the arcs between the producer nodes in solution s.
The neighbour set of each node ni contains all nodes nj such that distij ≤ ϑ.
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Suppose that nu, assigned to route ru, is a neighbor of nv, assigned to
route rv. Moreover, suppose that nx and ny are immediate successors of nu
and nv in ru and rv, respectively. For every node nu and all of its neighbors
nv, we perform the LS operators in a random order. When a better solution
is found, the new solution replaces the current solution. The LS stops when
no operator generates an improved solution. The LS operators are as follows:

Insertion 1: Remove nu and reinsert it as the successor of nv.

Insertion 2: Remove nu and nx; reinsert nu after nv and nx after nu.

Insertion 3: Remove nu and nx; reinsert nx after nv and nu after nx.

Swap 1: Swap the positions of nu and nv.

Swap 2: Swap the position of the pair (nu, nx) with nv.

Swap 3: Swap the position of (nu, nx) with (nv, ny).

2-opt: If ru = rv, replace (nu, nx) and (nv, ny) with (nu, nv) and (nx, ny).

2-opt* 1: If ru 6= rv, replace (nu, nx) and (nv, ny) with (nu, nv) and (nx,
ny).

2-opt* 2: If ru 6= rv, replace (nu, nx) and (nv, ny) with (nu, ny) and (nx,
nv).

6. Bounds on the Multi-Period Solution

To evaluate the performance of our algorithm, we compute lower and
upper bounds on the objective function value. This calculation is based
on the set partitioning formulation of the problem (Dayarian et al., 2013b).
Let the single-period problem that considers only the production levels in
the reference period be P ref , with optimal solution xref . Let Pmp be the
multi-period problem, with optimal solution x∗.

The route cost has three components: 1) fixed vehicle costs, 2) first-
stage routing costs, and 3) second-stage routing costs (recourse costs). These
components are denoted cf (x), c(x), and F(x), respectively. For any feasible
solution x to Pmp, the following inequality provides an upper bound on the
value of the multi-period solution:

cf (x
∗) + c(x∗) + F(x∗) ≤ cf (x) + c(x) + F(x). (17)
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Moreover, since the fixed vehicle costs are significantly large compared to the
total routing costs, the number of vehicles used in the multi-period solution
is the minimum number of vehicles needed during the reference period, so
the fixed vehicle costs are the same:

cf (x
∗) = cf (x

ref ). (18)

Since x∗ is also a feasible solution to P ref , we have

c(xref ) ≤ c(x∗). (19)

We combine (18) and (19) to obtain a lower bound on the value of the multi-
period solution:

cf (x
ref ) + c(xref ) ≤ cf (x

∗) + c(x∗) + F(x∗). (20)

We also consider a lower bound on the value of F(x∗). Let F (r, ξ) be the
recourse cost in period ξ ∈ Ξ for route r ∈ Rs, where Rs is the set of routes
in solution s. We have

F(x) =
∑
ξ∈Ξ

∑
r∈Rs

F (r, ξ). (21)

Let the set of producer nodes visited by route r be Nr, the plant to which r
is assigned be pr, and the set of all routes serving plant p ∈ P be Rp

s ⊆ Rs.
Then

F (r, ξ) ≥ 2 min
i∈Nr

disti,pr .t
ξ
r (22)

⇒ F(x∗) ≥ 2
∑
r∈Rs

tξr min
i∈Nr

disti,pr (23)

= 2
∑
p∈P

∑
r∈Rp

s

tξr min
i∈Nr

disti,pr , (24)

where F (r, ξ) is the recourse cost on route r in period ξ, and tξr is a binary
parameter, which is equal to 1 if a failure occurs on route r in period ξ and
0, otherwise.

The minimal failure cost for a given instance can then be computed by
first determining the minimum number of vehicles needed to serve the plants
and producers. We then assign the producers to vehicles (routes) while at-
tempting to minimize the total failure cost. To do this, we assign failure
points to the routes so that the total failure cost is minimized. We perform
this two-step procedure by solving the bin-packing models discussed below.
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6.1. Minimum Number of Vehicles

We first present the model that allows us to determine the minimum
number of vehicles to cover the plant demands. Table 1 gives the notation,
and the constraints are as follows:

1. Each producer is assigned to one vehicle and each vehicle to one plant;

2. The vehicle capacities are respected;

3. The plant demands are satisfied.

Table 1: Bin-packing notation for minimum number of vehicles

Notation Description
xikp 1 if producer i is assigned to vehicle k and plant p.
ykp 1 if vehicle k serves plant p.
oi supply of producer i ∈ N .
Dp demand of plant p ∈ P .

The formulation is
min

∑
k∈K

∑
p∈P

ykp (25)

subject to ∑
k∈K

∑
p∈P

xikp = 1 (i ∈ N ); (26)∑
i∈N

∑
k∈K

oixikp ≥ Dp (p ∈ P); (27)∑
i∈N

oixikp ≤ Q (p ∈ P , k ∈ K); (28)

xikp ≤ ykp (i ∈ N , p ∈ P , k ∈ K); (29)

xikp, ykp ∈ 0, 1 (i ∈ N , p ∈ P , k ∈ K), (30)

where the objective function minimizes the number of vehicles. Constraint
(26) ensures that all the producers are assigned to exactly one route. Con-
straint (27) ensures that the plant demands are satisfied, and Constraint (28)
ensures that the vehicle capacities are respected.
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6.2. Minimum Failure Cost

Given the minimum number of vehicles, we can compute a lower bound
on the total failure cost of Pmp based on inequality (24). Let the minimum
number of vehicles be K∗. We assign nodes to the restricted vehicle set K∗,
assuming that for a given route r, all the failures in different periods occur
on the node that is closest to pr. We assign the nodes by solving an extension
of the first bin-packing formulation that minimizes the failure cost.

Table 2: Bin-packing notation for minimum failure cost

Notation Description
K∗ set of K∗ identical vehicles.

tξk 1 if a failure in period ξ is assigned to vehicle k.

uξikp 1 if a failure in period ξ is assigned to producer i

on vehicle k, serving plant p.
lkp quantity delivered to plant p by vehicle k.

Table 2 gives the notation, and the formulation is

Z = min
∑
ξ∈S

Pr(ξ)
∑
p∈P

∑
i∈N

2.di,pu
ξ
ikp (31)

subject to

lkp =
∑
i∈N

oixikp (p ∈ P , k ∈ K∗); (32)

lkp ≤ Qykp
∑
i∈N

oixikp (p ∈ P , k ∈ K∗); (33)∑
p∈P

ykp = 1 (k ∈ K∗); (34)∑
k∈K∗

lkp ≥ Dp (p ∈ P); (35)∑
k∈K∗

∑
p∈P

xikp = 1 (i ∈ N ); (36)

xikp ≤ ykp (i ∈ N , p ∈ P , k ∈ K∗); (37)

Pt(ξ)
∑
p∈P

lkp ≤ Q(1 + tξk) (ξ ∈ S, k ∈ K∗); (38)
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∑
p∈P

∑
i∈N

uξikp = tξk (ξ ∈ S, k ∈ K∗); (39)

uξikp ≤ xikp (ξ ∈ S, i ∈ N , p ∈ P , k ∈ K∗); (40)

ykp ≤ yk−1p + yk−1p−1 (p ∈ P , k ∈ K∗); (41)

y11 = 1; (42)

xikp, ykp, t
ξ
k, u

ξ
ikp ∈ {0, 1} (ξ ∈ S, i ∈ N , p ∈ P , k ∈ K∗). (43)

Constraints (32) and (33) ensure that the vehicle capacities are satisfied.
Constraint (34) ensures that each vehicle is assigned to a single plant. Con-
straint (35) ensures that the plant demands are satisfied, and Constraint (36)
ensures that each producer is assigned to a single vehicle. Constraint (37)
ensures that producers are assigned only to open routes. For each period ξ,
Constraints (38)–(40) determine the number and location of failures on each
vehicle k. Constraints (41) and (42) break the possible symmetry due to the
set of identical vehicles. The objective function, Z, represents a lower bound
on the total failure cost. We assume that, for a given route, all the failures in
different periods occur in the node that is closest to the assigned plant. The
bound can be tightened if we acknowledge that not all periods have failures
at the same node. Proposition 1 provides a condition determining when two
periods both encounter failure at the same node.

Proposition 1. Two periods ξ1 and ξ2 both encounter a failure at node nj
if the following inequality holds:

Q

Pt2
(1− Pt2

Pt1
) ≤ oj. (44)

Proof. Assume that Pt1 ≥ Pt2 and that in period ξ1 the quantity collected
prior to node nj is Q. The quantity collected in period ξ2 will then be Pt2.

Q
Pt1

.

Moreover, ξ2 has a failure at node nj if Pt2.
Q
Pt1

+ Pt2.oj ≥ Q.

Including this condition in the model (31)–(43) may lead to an increase
in the value of Z by assigning certain failure points to nodes that are farther
from the plant. This occurs when two different periods cannot both encounter
failure on the closest node to the plant.

7. Computational Experiments

We now describe our computational experiments. In Section 7.1, we in-
troduce the set of test problems. We calibrate the parameter values via
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extensive sensitivity analysis; the results of these tests are presented in Sec-
tion 7.2. We also study the impact of different components of the algorithm
based on a series of tests, which are presented in Section 7.3. Finally, the
computational results for the test problems are presented in Section 7.4.

7.1. Test Problems

We consider the test problems proposed by Dayarian et al. (2013b) as
well as extensions of them. The extensions increase the size of the instances.
Dayarian et al. (2013b) generated instances with 15 or 20 producers, 2 or 3
depots, and 2 or 3 plants. Each instance was solved with 4 or 5 periods, to
represent the multi-periodic aspect of the problem. For each case with 4 or 5
periods, 5 different scenarios {T1, . . . , T5} were explored, differing in terms
of the distribution of the period weights and the SRT level. The details of
the instances considered in this paper are presented in Table 3.

Table 3: Specifications of test problems

Number of producers Number of depots Number of plants

15 2, 3 2, 3
20 2, 3 2, 3
40 2, 3 2, 3
100 2, 3, 6 2, 3, 6
200 3, 6 3, 6

The production levels and period weights are the same as in Dayarian
et al. (2013b); Table 4 gives the production levels and weights.

We ran our ALNS algorithm for each of the above test problems and
investigated its performance in terms of solution quality and computational
efficiency. The algorithm was coded in C++ and the tests were run on
computers with a 2.67 GHz processor and 24 GB of RAM.

7.2. Parameter Settings and Sensitivity Analysis

Similarly to most metaheuristics, changing the values of the parameters
may affect the performance (but not the correctness) of the algorithm.

We tune the parameters via a blackbox optimizer to be described later.
One drawback of this optimizer is that as the number of parameters increases,
the accuracy of the algorithm decreases considerably. We therefore apply a
two-phase procedure, based on extensive preliminary tests. It divides the
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Table 4: Weight and production-level distribution of the periods

# periods Type 1 Type 2 Type 3 Type 4 Type 5

4

Ps Ws% Ps Ws% Ps Ws% Ps Ws% Ps Ws%
1.00 60 1.00 50 1.00 40 1.00 30 1.00 20
1.30 20 1.30 25 1.20 35 1.10 30 1.10 40
1.50 10 1.50 15 1.35 20 1.20 25 1.30 30
1.70 10 1.70 10 1.50 15 1.40 15 1.70 10

5

Ps Ws% Ps Ws% Ps Ws% Ps Ws% Ps Ws%
1.00 60 1.00 50 1.00 40 1.00 30 1.00 20
1.30 15 1.30 20 1.20 25 1.10 25 1.10 35
1.50 15 1.50 15 1.35 20 1.20 20 1.20 25
1.70 5 1.70 10 1.50 10 1.40 15 1.40 15
1.90 5 1.90 5 1.65 5 1.70 10 1.70 5

parameters into two subsets. The first subset contains the less sensitive
parameters, and the second subset includes the parameters with a greater
impact on the performance of the algorithm. We tune the parameters in the
first subset by trial-and-error; Table 5 gives the resulting values.

Table 5: Parameter values found by trial and error

Parameter Value

[qmin, qmax] Bounds on number of nodes removed q [min(5, 0.05|N |),min(20, 0.4|N |)]
Iteradj Number of iterations after which η is updated 20
Iterhis History used to update η 100

δmin and δmax Bounds on number of infeasible solutions used to update η 30 and 45
β1, β2, β3 Lengths of lists in central memory 20, 20, 10

λ Sparsification factor in granularity threshold 1
σ1, σ2, σ3, σ4 Bonus factors for adaptive weight adjustment 1, 1, 1, 2

We set the initial temperature to T init = 0.05C(s0)
|N | ln(0.5)

, where C(s0) is the value

of the initial solution. By Eq. ( 4), setting the initial temperature to 0.05C(s0)
ln(0.5)

allows us to accept solutions that are 5% different from the current solution
with a probability of 50%. Our preliminary tests showed that dividing this
value by the number of producers improved the results; similar results were
reported by Pisinger and Ropke (2007). We set the final temperature to
T fin = T init.c25000, allowing a minimum of 25000 iterations.

We tune the parameters in the second subset by first determining a range
for each parameter based on extensive preliminary tests. We then find the
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best value for each parameter using the Opal algorithm (Audet et al., 2012).
Opal takes an algorithm and a parameter vector as input, and it outputs
parameter values based on a user-defined performance measure. Opal models
the problem as a blackbox optimization which is then solved by a state-of-
the-art direct search solver; see Audet et al. (2012).

To define a performance measure for Opal, we selected a restricted set of
training instances. This set included instances ranging from 20 to 200 pro-
ducer nodes, with 2 to 6 depots and plants. For a given vector of parameters,
we ran each instance five times and recorded the average objective function
value. The performance measure is defined to be the geometric mean of the
average values of the training instances. Table 6 gives the values found for
the second subset of parameters.

Table 6: Parameter values found using Opal

Parameter Range Value

δ Default segment length [50, 150] 70
ϕ Inner loop length [3, 7] 6
γ Number of segments to update operator weights [1, 4] 2
α Impact of long-term/short-term memory in weight update [0, 1] 0.25
c Cooling rate for SA [0.9980, 0.9998] 0.9987
r Acceptance radius gap in diversity segments [0.01, 0.07] 0.05

nbSegmDIV Call diversity segment after observing no improvement in this number of segments [25, 100] 45

7.3. Evaluating the Contributions of the Heuristics

Table 7 provides statistics on the removal and insertion heuristics. We
ran each instance five times while excluding one heuristic and keeping the
others. For each instance, we recorded the average result over the five runs.
The values in Table 7 indicate the degradation in the geometric mean of
the values obtained for all the instances in the training set. We use the
geometric mean because the training set includes problems of different sizes
with varying objective values. With the geometric mean the smaller instances
are not dominated by the larger ones.

The plant-producer-related removal is the most efficient removal heuristic,
followed by the route removal and smart removal heuristics. Minimum-loss
insertion is the most useful insertion heuristic, followed by the regret insertion
heuristic. We do not include the specialized operators in this evaluation
because their main goal is to create diversity in the search. However, we
have studied the impact of excluding the diversity segment. Our tests on the
training set show that the solutions found without the diversity segment are
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on average 0.01% better. However, in some cases, particularly for smaller
instances, the diversity segment helps us to escape from local optima. We
have also evaluated the LS operators for the training set. The solutions found
without these operators are on average 0.16% worse.

Table 7: Evaluation of contribution of each heuristic

Heuristic Solution degradation without this heuristic (%)

Random Removal -0.03
Worst Removal 0.00
Route Removal 0.05
Cluster Removal 0.02
Smart Removal 0.05
Solution-Cost-Based Related Removal 0.02
Route-Cost-Based Related Removal 0.04
Paired-Related Removal -0.03
Route-Related Removal 0.02
Depot-Producer-Related Removal 0.04
Plant-Producer-Related Removal 0.07

Sequential Insertion -0.01
Sequential Insertion with Plant Satisfaction 0.03
Best-First Insertion 0.02
Regret Insertion 0.04
Minimum-Loss Insertion 0.07

7.4. Computational Results

Table 8 presents the results of applying our algorithm to the instances
described in Section 7.1. In this table,

ALNS best is the average of the best solutions found;

ALNS avg. is the mean value of the average of the solutions found over the
five runs;

% dev. is the average of standard deviation over the five runs;

T (s) is the average computational time.

Detailed results for each instance are given in Tables 9–15. The standard
deviations reported in Table 8 are based on the routing costs; the fixed
vehicle costs have been removed. Tables 9–15 report the deviations based on
both the total cost and the routing costs.
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Table 8: Results for instances of different sizes

Instance size ALNS best ALNS avg. % dev. T (s)

15 5074.80 5074.80 0.00 5
20 5935.33 5935.68 0.05 7
40 11551.42 11552.10 0.04 26
100 31951.60 31976.71 0.48 129
200 53601.86 53654.35 0.51 235

For the smaller instances, optimal solutions reported by Dayarian et al.
(2013b). In Tables 9 and 10, these solutions are given in column BKS DCGR.
For the larger instances, we generate lower and upper bounds as described
in Section 6. The lower bound has two parts: 1) the value of the optimal
solution for the VRP for the reference period, and 2) a lower bound on
the total recourse cost, obtained by solving the bin-packing formulations in
Section 6. We used Cplex 12.2 to solve these problems. We compute the
upper bound by evaluating the cost of the VRP for the reference period,
based on the objective function of the multi-period problem. We adapt the
algorithm proposed by Dayarian et al. (2013a) for a similar problem to solve
the VRP for the reference period. This algorithm can solve problems with
up to 50 producers; we do not report bounds for larger problems.

Table 9 gives the results for the instances with 15 producers. For the
instances with 2 or 3 depots and plants and 4 or 5 periods, our algorithm
was able to find the optimal solutions with a standard deviation of zero. The
computational time is about 1/80th of that required by the branch-and-price
algorithm of Dayarian et al. (2013b).

Table 10 gives the results for the instances with 20 producers for which
the optimal solutions are available. These instances have 2 or 3 depots and
3 plants. Table 11 gives the results for the instances with 20 producers for
which the optimal solutions are unknown. For 18 of the instances in Table
10, every run of the algorithm found the optimal solution. For 19 of the
instances in Table 11, our solution lies between the computed bounds. We
also calculate the value of LB

ALNSbest
. For Table 10, ALNSbest is the optimal

value for each instance; the average value of this ratio is 0.991. For Table
11, the average value is 0.989. This comparative factor between instances in
Tables 10 and 11 indicates the quality of the solutions obtained for instances
with 20 producers, for which the optimal solutions are available.
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For the instances with 40 producers, all the solutions found lie between
the computed bounds. The computational time is less than 2% of the time
needed to solve the single-period VRP using the branch-and-price algorithm.
The results for the instances with 100 and 200 producers show that larger
problems are more difficult. Increasing the number of plants has a greater
impact than increasing the number of depots, on both the computational
time and the deviation from the best solution.

8. Conclusions

We have investigated the design of tactical plans for a transportation
problem inspired by real-world milk collection in Quebec. To take the sea-
sonal variations into account, we modeled the problem as a multi-period
VRP. We developed an ALNS algorithm incorporating several heuristics for
this VRP.

We tested the algorithm on a large set of instances of different sizes.
The results for the smaller instances were compared with the existing exact
solutions in the literature. For the larger instances, where optimal solutions
were not available, we computed lower and upper bounds on the value of the
solution.

Future research will include more attributes and constraints such as soft
time windows on the collection, restrictions on the route length, and het-
erogeneous fleets of vehicles. We also plan to consider the situation where
a vehicle may perform several deliveries to more than one plant per day. It
would also be interesting to take into account the daily variations in the
production levels. This transforms the problem into a VRP with stochastic
demands.
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Table 9: Results for instances with 15 producers

Instance BKS T (s) ALNS best ALNS avg. % dev % dev T (s)
DCGR over 5 total cost routing cost

pr-15-2D2P4S-T1 4353.62 19 4353.62 4353.62 0 0 3
2 depots pr-15-2D2P4S-T2 4395.48 26 4052.82 4052.82 0 0 4
2 plants pr-15-2D2P4S-T3 4478.78 24 5930.40 5930.40 0 0 6
4 periods pr-15-2D2P4S-T4 4434.82 13 4395.48 4395.48 0 0 4

pr-15-2D2P4S-T5 4472.04 7 4090.51 4090.51 0 0 4
pr-15-2D2P5S-T1 4358.84 22 4478.78 4478.78 0 0 3

2 depots pr-15-2D2P5S-T2 4403.64 30 4148.54 4148.54 0 0 4
2 plants pr-15-2D2P5S-T3 4439.31 16 5959.89 5959.89 0 0 6
5 periods pr-15-2D2P5S-T4 4449.81 9 4434.82 4434.82 0 0 3

pr-15-2D2P5S-T5 4476.56 7 4115.57 4115.57 0 0 4
pr-15-2D3P4S-T1 5855.70 1422 5894.16 5894.16 0 0 5

2 depots pr-15-2D3P4S-T2 5860.58 911 4472.04 4472.04 0 0 3
3 plants pr-15-2D3P4S-T3 5831.72 964 4158.00 4158.00 0 0 4
4 periods pr-15-2D3P4S-T4 5821.90 998 5837.27 5837.27 0 0 5

pr-15-2D3P4S-T5 5843.12 947 4358.84 4358.84 0 0 4
pr-15-2D3P5S-T1 5871.89 1103 5898.82 5898.82 0 0 5

2 depots pr-15-2D3P5S-T2 5886.37 928 4055.18 4055.18 0 0 4
3 plants pr-15-2D3P5S-T3 5843.29 972 4403.64 4403.64 0 0 4
5 periods pr-15-2D3P5S-T4 5843.12 980 4098.60 4098.60 0 0 4

pr-15-2D3P5S-T5 5832.51 874 5945.35 5945.35 0 0 6
pr-15-3D2P4S-T1 4052.82 58 4439.31 4439.31 0 0 3

3 depots pr-15-3D2P4S-T2 4090.51 23 4118.45 4118.45 0 0 4
2 plants pr-15-3D2P4S-T3 4148.54 34 5985.97 5985.97 0 0 7
4 periods pr-15-3D2P4S-T4 4115.57 18 4132.68 4132.68 0 0 4

pr-15-3D2P4S-T5 4158.00 34 4449.81 4449.81 0 0 3
pr-15-3D2P5S-T1 4055.18 30 5900.75 5900.75 0 0 5

3 depots pr-15-3D2P5S-T2 4098.60 27 4476.56 4476.56 0 0 3
2 plants pr-15-3D2P5S-T3 4118.45 28 5896.57 5896.57 0 0 6
5 periods pr-15-3D2P5S-T4 4132.68 24 4152.31 4152.31 0 0 4

pr-15-3D2P5S-T5 4152.31 17 5866.92 5866.92 0 0 6
pr-15-3D3P4S-T1 5930.40 759 5843.12 5843.12 0 0 6

3 depots pr-15-3D3P4S-T2 5959.89 838 5871.89 5871.89 0 0 6
3 plants pr-15-3D3P4S-T3 5894.16 600 5843.12 5843.12 0 0 6
4 periods pr-15-3D3P4S-T4 5837.27 447 5855.70 5855.70 0 0 6

pr-15-3D3P4S-T5 5898.82 764 5886.37 5886.37 0 0 6
pr-15-3D3P5S-T1 5945.35 717 5821.90 5821.90 0 0 6

3 depots pr-15-3D3P5S-T2 5985.97 835 5860.58 5860.58 0 0 6
3 plants pr-15-3D3P5S-T3 5900.75 615 5843.29 5843.29 0 0 6
5 periods pr-15-3D3P5S-T4 5896.57 561 5831.72 5831.72 0 0 6

pr-15-3D3P5S-T5 5866.92 473 5832.51 5832.51 0 0 6
Avg. 5074.80 429 5074.80 5074.80 0 0 5
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Table 10: Results for instances with 20 producers with available optimal solutions

Instance LB BKS LB/BKS T (s) ALNS best ALNS avg. % dev % dev T (s)
DCGR over 5 over 5 total cost routing cost

pr-20-2D3P4S-T1 5810.84 5873.92 0.989 3934 5873.92 5873.92 0.00 0.00 6
2 depots pr-20-2D3P4S-T2 5827.34 5907.21 0.986 7338 5907.21 5907.21 0.00 0.00 6
3 plants pr-20-2D3P4S-T3 5851.1 5890.07 0.993 4431 5890.07 5890.07 0.00 0.00 7
4 periods pr-20-2D3P4S-T4 5790.35 5807.1 0.997 4240 5807.1 5807.1 0.00 0.00 7

pr-20-2D3P4S-T5 5789.32 5861.86 0.988 3617 5861.86 5861.86 0.00 0.00 6
pr-20-2D3P5S-T1 5827.04 5883.98 0.990 3371 5883.98 5883.98 0.00 0.00 7

2 depots pr-20-2D3P5S-T2 5848.16 5919.85 0.988 3422 5919.85 5919.85 0.00 0.00 7
3 plants pr-20-2D3P5S-T3 5854.21 5888.36 0.994 4814 5888.36 5888.36 0.00 0.00 7
5 periods pr-20-2D3P5S-T4 5826.85 5856.77 0.995 2239 5856.77 5856.77 0.00 0.00 7

pr-20-2D3P5S-T5 5808.6 5833.37 0.996 2166 5833.37 5833.37 0.00 0.00 7
pr-20-3D3P4S-T1 5951.3 6013.02 0.990 13090 6013.02 6013.02 0.00 0.00 8

3 depots pr-20-3D3P4S-T2 5974.3 6043.07 0.989 9930 6043.07 6043.07 0.00 0.00 8
3 plants pr-20-3D3P4S-T3 5950.7 6026.6 0.987 10404 6026.6 6026.6 0.00 0.00 8
4 periods pr-20-3D3P4S-T4 5898.75 5948.7 0.992 6706 5948.7 5948.7 0.00 0.00 7

pr-20-3D3P4S-T5 5917.5 5980.32 0.989 7072 5980.32 5981.44 0.03 0.12 8
pr-20-3D3P5S-T1 5979.4 6032.42 0.991 13749 6032.42 6032.42 0.00 0.00 8

3 depots pr-20-3D3P5S-T2 6002.4 6067.63 0.989 14925 6067.63 6067.63 0.00 0.00 8
3 plants pr-20-3D3P5S-T3 5962.9 6037.43 0.988 9448 6037.43 6038.69 0.03 0.11 8
5 periods pr-20-3D3P5S-T4 5950.56 6016.16 0.989 7633 6016.16 6016.16 0.00 0.00 8

pr-20-3D3P5S-T5 5924.85 5982.43 0.990 5735 5982.43 5982.43 0.00 0.00 8
Avg. 5887.324 5943.514 0.991 6913 5943.5135 5943.63 0.00 0.01 7

Table 11: Results for instances with 20 producers without available optimal solutions

Instance LB UB ALNS best LB/ALNS ALNS avg. % dev % dev T (s)
over 5 best over 5 total cost routing cost

pr-20-2D2P4S-T1 6162.22 6301 6237.18 0.988 6237.18 0.00 0.00 7
2 depots pr-20-2D2P4S-T2 6186.47 6366.29 6266.92 0.987 6266.92 0.00 0.00 7
2 plants pr-20-2D2P4S-T3 6158.79 6499.43 6226.73 0.989 6226.73 0.00 0.00 7
4 periods pr-20-2D2P4S-T4 6121.98 6481.62 6178.21 0.991 6178.21 0.00 0.00 6

pr-20-2D2P4S-T5 6185.52 6539.06 6246.02 0.990 6246.02 0.00 0.00 7
pr-20-2D2P5S-T1 6182.71 6302.52 6259.28 0.988 6259.28 0.00 0.00 7

2 depots pr-20-2D2P5S-T2 6220.79 6367.63 6301.07 0.987 6301.07 0.00 0.00 8
2 plants pr-20-2D2P5S-T3 6160.79 6431.58 6218.3 0.991 6218.3 0.00 0.00 7
5 periods pr-20-2D2P5S-T4 6172.34 6484.31 6258.85 0.986 6258.85 0.00 0.00 7

pr-20-2D2P5S-T5 6158.74 6543.94 6230.57 0.988 6230.57 0.00 0.00 7
pr-20-3D2P4S-T1 5552.08 5602.42 5588.46 0.993 5588.46 0.00 0.00 6

3 depots pr-20-3D2P4S-T2 5578.15 5640.67 5604.2 0.995 5604.2 0.00 0.00 6
2 plants pr-20-3D2P4S-T3 5542.82 5639.71 5627.18 0.985 5627.86 0.03 0.13 6
4 periods pr-20-3D2P4S-T4 5520.98 5597.4 5597.4 0.986 5600.46 0.12 0.62 6

pr-20-3D2P4S-T5 5550.18 5623.64 5623.64 0.987 5623.64 0.00 0.00 7
pr-20-3D2P5S-T1 5553.98 5614.93 5597.81 0.992 5597.81 0.00 0.00 7

3 depots pr-20-3D2P5S-T2 5565.85 5639.79 5616.21 0.991 5616.21 0.00 0.00 6
2 plants pr-20-3D2P5S-T3 5548.67 5626.75 5620.96 0.987 5620.96 0.00 0.00 7
5 periods pr-20-3D2P5S-T4 5543.6 5622.43 5622.43 0.986 5624.03 0.04 0.18 7

pr-20-3D2P5S-T5 5532.29 5621.31 5621.31 0.984 5627.81 0.15 0.75 7
Avg. 5927.14 0.989 5927.73 0.02 0.08 7
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Table 12: Results for instances with 40 producers

Instance Bounds on T (s) ALNS best ALNS avg. % dev % dev T (s)
opt. sol. over 5 total cost routing cost

pr-40-2D2P4S-T1 [12229.2, 12405.5] 5441 12389.5 12389.5 0.00 0.00 19
2 depots pr-40-2D2P4S-T2 [12336, 12558.3] 5337 12535.1 12535.1 0.00 0.00 20
2 plants pr-40-2D2P4S-T3 [12556.2, 12780.2] 5342 12752.5 12754.4 0.02 0.08 19
4 periods pr-40-2D2P4S-T4 [12569.8, 12700.3] 5386 12679.6 12679.6 0.00 0.00 19

pr-40-2D2P4S-T5 [12700.4, 12881.6] 5416 12856.6 12860.2 0.04 0.15 21
pr-40-2D2P5S-T1 [12241.8, 12415.4] 5344 12398.7 12398.7 0.00 0.00 22

2 depots pr-40-2D2P5S-T2 [12359.1, 12574.4] 5374 12555 12555 0.00 0.00 21
2 plants pr-40-2D2P5S-T3 [12463.5, 12652] 5358 12632.8 12632.8 0.00 0.00 22
5 periods pr-40-2D2P5S-T4 [12609.8, 12742.5] 5344 12730.4 12730.4 0.00 0.00 22

pr-40-2D2P5S-T5 [12693.3, 12844.1] 5352 12825.6 12825.6 0.00 0.00 22
pr-40-2D3P4S-T1 [11826.5, 12019.5] 1540 11956.1 11959.6 0.04 0.15 27

2 depots pr-40-2D3P4S-T2 [11893.3, 12135.6] 1536 12039.1 12040 0.02 0.06 26
3 plants pr-40-2D3P4S-T3 [11933.6, 12188.6] 1540 12093.4 12093.4 0.00 0.00 26
4 periods pr-40-2D3P4S-T4 [11838.9, 12033.8] 1532 11965.4 11965.4 0.00 0.00 26

pr-40-2D3P4S-T5 [11902.4, 12191.2] 1540 12072.3 12073.6 0.02 0.07 28
pr-40-2D3P5S-T1 [11846.3, 12040.4] 1525 11984.5 11986.5 0.02 0.08 29

2 depots pr-40-2D3P5S-T2 [11916.4, 12157.7] 1535 12074.6 12075.9 0.02 0.07 28
3 plants pr-40-2D3P5S-T3 [11899.8, 12120.9] 1725 12045.8 12045.8 0.00 0.00 28
5 periods pr-40-2D3P5S-T4 [11911.8, 12110.6] 1515 12068.7 12068.7 0.00 0.00 29

pr-40-2D3P5S-T5 [11895.3, 12128.5] 1534 12046.8 12046.8 0.00 0.00 28
pr-40-3D2P4S-T1 [9681.72, 9862.4] 640 9794.28 9794.28 0.00 0.00 27

3 depots pr-40-3D2P4S-T2 [9725.53, 9955.19] 640 9860.69 9860.69 0.00 0.00 27
2 plants pr-40-3D2P4S-T3 [9770.77, 10051] 634 9916.4 9917.29 0.02 0.08 26
4 periods pr-40-3D2P4S-T4 [9655.76, 9937.56] 650 9763.42 9768.03 0.07 0.29 26

pr-40-3D2P4S-T5 [9726.14, 10051.9] 648 9824.06 9824.06 0.00 0.00 25
pr-40-3D2P5S-T1 [9688.24, 9873.74] 641 9812.15 9812.64 0.01 0.05 29

3 depots pr-40-3D2P5S-T2 [9748.89, 9974.3] 648 9888.96 9888.96 0.00 0.00 30
2 plants pr-40-3D2P5S-T3 [9749.21, 9990.35] 635 9892.71 9893.51 0.01 0.04 29
5 periods pr-40-3D2P5S-T4 [9728.32, 9990.4] 638 9863.89 9863.89 0.00 0.00 30

pr-40-3D2P5S-T5 [9704.04, 10017.8] 644 9829.02 9830.13 0.02 0.11 30
pr-40-3D3P4S-T1 [11525.3, 11697.1] 229 11642.8 11642.8 0.00 0.00 24

3 depots pr-40-3D3P4S-T2 [11569.3, 11788.6] 233 11709.7 11709.7 0.00 0.00 24
3 plants pr-40-3D3P4S-T3 [11618, 11833.3] 228 11718.2 11718.2 0.00 0.00 25
4 periods pr-40-3D3P4S-T4 [11525.5, 11675.7] 233 11624.6 11629.1 0.06 0.27 26

pr-40-3D3P4S-T5 [11570.5, 11807.1] 228 11727.6 11727.8 0.00 0.02 27
pr-40-3D3P5S-T1 [11530.4, 11701.8] 233 11654 11654 0.00 0.00 25

3 depots pr-40-3D3P5S-T2 [11592.2, 11802.1] 221 11736 11736 0.00 0.00 28
3 plants pr-40-3D3P5S-T3 [11595, 11779.8] 229 11688.2 11688.2 0.00 0.00 27
5 periods pr-40-3D3P5S-T4 [11593.8, 11742.4] 252 11718.6 11718.6 0.00 0.00 28

pr-40-3D3P5S-T5 [11576.9, 11743.8] 231 11688.9 11688.9 0.00 0.00 30
Avg. [11412.5, 11623.9] 1949 11551.417 11552.1 0.01 0.04 26
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Table 13: Results for instances with 100 producers (1)

Instance ALNS best ALNS avg. % dev % dev T (s)
over 5 total cost routing cost

pr-100-2D2P4S-T1 29519.2 29532.1 0.05 0.21 72
2 depots pr-100-2D2P4S-T2 29831.6 29838.2 0.03 0.14 71
2 plants pr-100-2D2P4S-T3 30193.8 30204.8 0.05 0.18 73
4 periods pr-100-2D2P4S-T4 29968.2 29988.2 0.09 0.35 74

pr-100-2D2P4S-T5 30251.3 30268 0.07 0.28 77
pr-100-2D2P5S-T1 29580.4 29591.2 0.04 0.18 79

2 depots pr-100-2D2P5S-T2 29892.1 29910.4 0.07 0.29 78
2 plants pr-100-2D2P5S-T3 29965 29988.7 0.09 0.37 77
5 periods pr-100-2D2P5S-T4 30100.9 30119 0.07 0.29 83

pr-100-2D2P5S-T5 30228.9 30248.8 0.08 0.33 85
pr-100-2D3P4S-T1 26407.4 26416.5 0.04 0.22 57

2 depots pr-100-2D3P4S-T2 26585.5 26609.1 0.10 0.48 56
3 plants pr-100-2D3P4S-T3 26830.6 26857.3 0.12 0.56 60
4 periods pr-100-2D3P4S-T4 26666.9 26710.9 0.19 0.92 60

pr-100-2D3P4S-T5 26925.1 26939.5 0.07 0.32 57
pr-100-2D3P5S-T1 26415.1 26430.8 0.07 0.36 61

2 depots pr-100-2D3P5S-T2 26626.5 26648.8 0.09 0.45 63
3 plants pr-100-2D3P5S-T3 26671.8 26691.4 0.09 0.43 61
5 periods pr-100-2D3P5S-T4 26786 26832.1 0.22 1.00 63

pr-100-2D3P5S-T5 26859.8 26920 0.27 1.26 66
pr-100-2D6P4S-T1 26940.4 26964.9 0.10 0.47 98

2 depots pr-100-2D6P4S-T2 27148.6 27179.1 0.14 0.60 99
6 plants pr-100-2D6P4S-T3 27418.9 27462.9 0.19 0.81 113
4 periods pr-100-2D6P4S-T4 27164.5 27178.7 0.08 0.35 119

pr-100-2D6P4S-T5 27413.6 27464.6 0.25 1.05 114
pr-100-2D6P5S-T1 26946.5 26980.7 0.15 0.67 114

2 depots pr-100-2D6P5S-T2 27171.6 27218.3 0.20 0.87 116
6 plants pr-100-2D6P5S-T3 27225.8 27248.9 0.11 0.47 121
5 periods pr-100-2D6P5S-T4 27338.8 27347.6 0.04 0.18 130

pr-100-2D6P5S-T5 27430.4 27451.9 0.10 0.44 131
pr-100-3D2P4S-T1 23774.1 23791.6 0.11 0.43 89

3 depots pr-100-3D2P4S-T2 24038.8 24049.3 0.05 0.20 86
2 plants pr-100-3D2P4S-T3 24269.8 24296.2 0.14 0.52 92
4 periods pr-100-3D2P4S-T4 24070.5 24084.5 0.08 0.33 83

pr-100-3D2P4S-T5 24289.4 24300.6 0.06 0.24 85
pr-100-3D2P5S-T1 23808.4 23811 0.02 0.07 86

3 depots pr-100-3D2P5S-T2 24062.1 24073.7 0.06 0.22 97
2 plants pr-100-3D2P5S-T3 24110.6 24127.9 0.10 0.38 97
5 periods pr-100-3D2P5S-T4 24204.8 24233.4 0.14 0.53 106

pr-100-3D2P5S-T5 24311 24315.2 0.03 0.11 107
pr-100-6D2P4S-T1 26283.4 26289.4 0.03 0.15 95

6 depots pr-100-6D2P4S-T2 26482.9 26487.5 0.02 0.10 94
2 plants pr-100-6D2P4S-T3 26721.2 26724.1 0.01 0.06 110
4 periods pr-100-6D2P4S-T4 26557 26572 0.07 0.34 89

pr-100-6D2P4S-T5 26790.2 26812.8 0.10 0.45 116
pr-100-6D2P5S-T1 26319.1 26324.4 0.03 0.12 100

6 depots pr-100-6D2P5S-T2 26533.7 26541.4 0.03 0.17 121
2 plants pr-100-6D2P5S-T3 26592 26598.1 0.03 0.13 116
5 periods pr-100-6D2P5S-T4 26710.7 26729.7 0.08 0.39 122

pr-100-6D2P5S-T5 26793.7 26801.2 0.04 0.16 113
Avg. 33630.72 33655.19 0.11 0.49 113
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Table 14: Results for instances with 100 producers (2)

Instance ALNS best ALNS avg. % dev % dev T (s)
over 5 total cost routing cost

pr-100-3D3P4S-T1 27704.8 27740 0.14 0.59 101
3 depots pr-100-3D3P4S-T2 27904.7 27927.7 0.11 0.45 102
3 plants pr-100-3D3P4S-T3 28143.9 28163.3 0.09 0.35 101
4 periods pr-100-3D3P4S-T4 27803.8 27852.6 0.20 0.82 107

pr-100-3D3P4S-T5 28037.4 28081.3 0.18 0.70 110
pr-100-3D3P5S-T1 27768.7 27779.1 0.05 0.19 107

3 depots pr-100-3D3P5S-T2 27990.1 28015.9 0.10 0.42 107
3 plants pr-100-3D3P5S-T3 28006.1 28023.4 0.07 0.28 111
5 periods pr-100-3D3P5S-T4 28038 28067.5 0.14 0.54 119

pr-100-3D3P5S-T5 28067.9 28076.4 0.04 0.15 121
pr-100-3D6P4S-T1 33482.8 33489.6 0.03 0.14 134

3 depots pr-100-3D6P4S-T2 33605.1 33652.9 0.16 0.81 136
6 plants pr-100-3D6P4S-T3 33501.3 33534.9 0.11 0.59 148
4 periods pr-100-3D6P4S-T4 33185.2 33195.4 0.04 0.22 150

pr-100-3D6P4S-T5 33413.7 33435.1 0.08 0.42 157
pr-100-3D6P5S-T1 33531.2 33560.7 0.10 0.52 139

3 depots pr-100-3D6P5S-T2 33751.2 33760.5 0.04 0.19 141
6 plants pr-100-3D6P5S-T3 33512.3 33540.2 0.09 0.48 154
5 periods pr-100-3D6P5S-T4 33500.2 33519.6 0.07 0.35 163

pr-100-3D6P5S-T5 33345.4 33362.3 0.06 0.30 162
pr-100-6D3P4S-T1 26829.5 26838.3 0.04 0.18 109

6 depots pr-100-6D3P4S-T2 27056.5 27069 0.05 0.24 112
3 plants pr-100-6D3P4S-T3 27256.4 27289.8 0.14 0.60 115
4 periods pr-100-6D3P4S-T4 26980.3 26994.1 0.06 0.27 122

pr-100-6D3P4S-T5 27225.3 27239.1 0.07 0.30 125
pr-100-6D3P5S-T1 26852.4 26858.2 0.03 0.13 114

6 depots pr-100-6D3P5S-T2 27089.7 27110.9 0.09 0.40 117
3 plants pr-100-6D3P5S-T3 27140.4 27152.4 0.05 0.23 120
5 periods pr-100-6D3P5S-T4 27147.4 27177.6 0.13 0.57 129

pr-100-6D3P5S-T5 27176.4 27190.5 0.06 0.28 132
pr-100-6D6P4S-T1 30673 30705.2 0.15 0.68 210

6 depots pr-100-6D6P4S-T2 30878.8 30919.7 0.16 0.70 208
6 plants pr-100-6D6P4S-T3 31076 31109.8 0.15 0.66 218
4 periods pr-100-6D6P4S-T4 30795.9 30824.8 0.12 0.53 226

pr-100-6D6P4S-T5 31072.9 31099.1 0.10 0.46 231
pr-100-6D6P5S-T1 30729 30754.4 0.10 0.47 215

6 depots pr-100-6D6P5S-T2 30929.2 30974.6 0.19 0.83 216
6 plants pr-100-6D6P5S-T3 30995.4 31027.9 0.13 0.58 223
5 periods pr-100-6D6P5S-T4 30964.4 31026.3 0.24 1.07 233

pr-100-6D6P5S-T5 30943.6 31002.7 0.27 1.19 240
Avg. 29852.7 29878.6 0.11 0.47 150
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Table 15: Results for instances with 200 producers

Instance ALNS best ALNS avg. % dev % dev T (s)
over 5 total cost routing cost

pr-200-3D3P4S-T1 53888 53915.7 0.06 0.26 167
3 depots pr-200-3D3P4S-T2 54490.3 54514.3 0.06 0.22 165
3 plants pr-200-3D3P4S-T3 55283.6 55326.7 0.10 0.36 172
4 periods pr-200-3D3P4S-T4 54907 54985.3 0.17 0.63 186

pr-200-3D3P4S-T5 55642 55682.7 0.09 0.33 192
pr-200-3D3P5S-T1 53968.6 53995.9 0.06 0.24 174

3 depots pr-200-3D3P5S-T2 54525.8 54564.7 0.08 0.33 176
3 plants pr-200-3D3P5S-T3 54817.5 54860.6 0.09 0.35 182
5 periods pr-200-3D3P5S-T4 55176.1 55210.7 0.08 0.30 184

pr-200-3D3P5S-T5 55519.3 55551.3 0.08 0.29 195
pr-200-3D6P4S-T1 49392.1 49440.8 0.11 0.54 207

3 depots pr-200-3D6P4S-T2 49871.4 49977.6 0.26 1.20 202
6 plants pr-200-3D6P4S-T3 50415.7 50505.7 0.21 0.95 194
4 periods pr-200-3D6P4S-T4 50163.1 50193.6 0.08 0.36 202

pr-200-3D6P4S-T5 50753.3 50767.6 0.04 0.17 204
pr-200-3D6P5S-T1 49435.4 49509.5 0.17 0.82 217

3 depots pr-200-3D6P5S-T2 49913.3 50014.5 0.23 1.06 215
6 plants pr-200-3D6P5S-T3 50124.4 50178.7 0.12 0.56 213
5 periods pr-200-3D6P5S-T4 50382.9 50439.2 0.13 0.56 212

pr-200-3D6P5S-T5 50668.5 50700.9 0.08 0.35 218
pr-200-6D3P4S-T1 50071.9 50118 0.10 0.47 189

6 depots pr-200-6D3P4S-T2 50576.1 50606.9 0.08 0.33 194
3 plants pr-200-6D3P4S-T3 51270.7 51318.6 0.11 0.46 200
4 periods pr-200-6D3P4S-T4 50913.8 50987.5 0.16 0.69 216

pr-200-6D3P4S-T5 51526.7 51605.9 0.18 0.75 211
pr-200-6D3P5S-T1 50113 50152.8 0.10 0.46 188

6 depots pr-200-6D3P5S-T2 50644.7 50688.8 0.11 0.46 198
3 plants pr-200-6D3P5S-T3 50942.2 50967.5 0.07 0.29 202
5 periods pr-200-6D3P5S-T4 51235.6 51311.9 0.18 0.74 217

pr-200-6D3P5S-T5 51426.1 51537 0.26 1.06 224
pr-200-6D6P4S-T1 57968.5 58008.4 0.08 0.37 318

6 depots pr-200-6D6P4S-T2 58522.4 58565.8 0.09 0.38 329
6 plants pr-200-6D6P4S-T3 58977.3 59060.3 0.16 0.69 351
4 periods pr-200-6D6P4S-T4 58463.3 58536 0.15 0.65 359

pr-200-6D6P4S-T5 59006.3 59039.8 0.07 0.29 369
pr-200-6D6P5S-T1 58006.9 58058.9 0.11 0.49 331

6 depots pr-200-6D6P5S-T2 58597.2 58654.8 0.12 0.50 330
6 plants pr-200-6D6P5S-T3 58701.8 58742.1 0.09 0.36 344
5 periods pr-200-6D6P5S-T4 58880.1 58907.4 0.05 0.23 363

pr-200-6D6P5S-T5 58891.3 58969.3 0.17 0.72 379
Avg. 53601.855 53654.3425 0.12 0.51 235
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