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1. Introduction

Vehicle routing problems (VRPs) involve designing a set of minimal-cost routes to meet customer demands under

a group of operational constraints [see, e.g., 1, 2, 3]. In classical VRPs, the demands are assumed to be known

with certainty, and all the relevant information to compute the routes is available in advance. However, in practice,

customer demands and several other aspects are often stochastic. Solving the problem deterministically by replacing

the stochastic parameters with their expected values does not give good solutions [4]. This justifies the development

of stochastic models that can construct solutions with regard to the observed informational flow (i.e., when and how

the values associated with the stochastic parameters become known).

In this paper, we consider the VRP with stochastic demands (VRPSD) in which the demand is known only when

the vehicle arrives at the customer location. It has many real-world applications, such as local-deposit delivery and

collection from bank branches [5], home oil delivery [6], beer distribution, and garbage collection [7].

In the VRPSD, a vehicle may reach a customer location without sufficient residual capacity to fulfill the demand,

leading to a route failure, in which case a recourse action is necessary. Various recourse actions are possible: (i)

replenishing the vehicle at the depot; (ii) scheduling a different vehicle to visit the customer where the failure occurred;

or (iii) skipping the customer altogether (in this case a penalty is incurred). We consider (i), i.e., a driver performs a

replenishment trip to the depot when a failure occurs.

Different modeling approaches have been developed to deal with the uncertain demands. These modeling ap-

proaches depend on the way both the routing and replenishment decisions are made, either static or dynamic [8]. For

static approaches, stochastic programming with recourse (SPR) is often used [9]. It is a two-stage approach that min-

imizes the total cost of the planned routes and the expected recourse actions [e.g., 10]. Dynamic approaches, which

apply a reoptimization policy [11], use a Markov decision process (MDP) to model the real-time decisions, given the

available vehicle capacity and the set of unvisited customers [e.g., 9, 12, 13, 14, 8, 15].

Given the recent technological advances, reoptimization policies are now a viable strategy to decrease routing

costs in the VRPSD context. However, efficiently solving the MDP models is challenging given the large numbers of

actions, stages, and states involved. Therefore, most studies assume that a single vehicle is available.

Secomandi and Margot [8] observe that the existing literature on the VRPSD with reoptimization is scant, focusing

on heuristic methods for the single-vehicle situation [e.g., 16, 17, 18, 13, 14, 8]. To the best of our knowledge, only

one study considers the multivehicle case: Goodson et al. [15] propose a roll-out algorithm, real-time information is

used, and the customers are dynamically assigned to different vehicles when the demands are revealed.

The solution of the MDP model for the VRPSD in the multivehicle context is challenging. Dynamic routing and

replenishment decisions are necessary, and the assignment of customers to vehicles should also be performed dynam-

ically. We propose the use of two general concepts that have proved efficient for the VRPSD: partial reoptimization

of the routes and paired-vehicle cooperation.

The partial reoptimization technique was proposed by Secomandi and Margot [8] for the single-vehicle VRPSD.

Paired Cooperative Reoptimization Strategy for the Vehicle Routing Problem with Stochastic Demands

CIRRELT-2013-73 1



It computes optimal policies locally for subsets of states, to be used for the dynamic routing and replenishment when

the demand is revealed. The paired-vehicle cooperation is based on the paired locally coordinated (PLC) scheme [19].

The PLC forms pairs of vehicles and shares customers within each pair, giving a solution in which each customer is

dynamically served by a vehicle or its partner.

We focus on developing a cooperation strategy, the paired cooperative reoptimization (PCR) strategy, for a single

pair of vehicles. We can then solve the multivehicle problem by clustering the customers into groups and serving the

customers in each group with a pair of vehicles, as suggested by Ak and Erera [19]. The PCR strategy is based on

the partial reoptimization technique and adds communication between the two vehicles. Via effective communication,

the customers are dynamically chosen to be served by one of the two vehicles when the updated information becomes

available.

This paper makes three primary contributions. First, we develop the PCR recourse strategy, which is formulated as

a bilevel MDP. This strategy enables a pair of vehicles to dynamically serve a set of customers under a reoptimization

policy. Second, we propose a heuristic that relies on both partial reoptimization and real-time communication to

dynamically construct the routes performed by the pair of vehicles. Third, we conduct a numerical study that shows

the benefits, in terms of the total travel cost, of our strategy compared to other recourse strategies.

The remainder of this paper is organized as follows. In Section 2, we present our assumptions and discuss the

general paired reoptimization problem. In Section 3, we give the definition of the PCR, and in Section 4 we discuss

the bilevel MDP. In Section 5, we present our heuristic. Finally, in Section 6, we give the results of the computational

study. We compare our algorithm with the PLC approach and describe two experiments that illustrate the cooperation

of the PCR.

2. Problem definition

2.1. Notation and assumptions

In this paper, a single pair of vehicles cooperate to serve a set of customer demands. We use notation similar

to that of Secomandi and Margot [8]. Given a complete network, let the set of nodes be {0, 1, . . . ,N}, with N a

positive integer. Node 0 denotes the depot and C = {1, . . . ,N} is the set of customers. The distances d(i, j) between

any two nodes i and j are known, symmetric, and satisfy the triangle inequality: d(i, j) ≤ d(i, l) + d(l, j), with l an

additional node. Two vehicles with the same capacity Q, denoted t1 and t2, are initially located at the depot and must

eventually return there. Let ξi, i = 1, 2, . . . ,N be the discrete random variable that describes the demand of customer

i. Its probability mass function is pi(e) = Pr{ξi = e}, e = 0, 1, . . . , E ≤ Q, and pi(e) = 0, e = E + 1, . . . ,Q, with

E a nonnegative integer. The customer demands ξi are independent of the vehicle routing/replenishment policy. The

realization of ξi becomes known when the vehicle arrives at customer location i. The total depot capacity is at least

N · E, so that all the customers can be served.
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We assume that each customer can be served by only one vehicle. Moreover, split deliveries are allowed, i.e.,

when a failure occurs, the vehicle delivers its existing load to the customer, then returns to the depot to reload, and

subsequently completes the interrupted delivery.

The vehicles can communicate to dynamically modify their routes, and the locations, available capacities, and

unvisited customers are visible to both of the vehicles. The information is shared under three assumptions. First, we

ignore the time spent on loading and unloading and on planning (the vehicle assignments and the next customer to

visit). Second, the vehicles are not permitted to have idle time. Third, the vehicles travel at the same speed. Therefore,

at any given time, each vehicle’s location and status (e.g., en route or replenishing) can be found by calculating the

total distance traveled.

2.2. Formulation of general paired reoptimization problem

We describe the general problem with reference to the MDP formulations for the single-vehicle situation [20, 8]

and the multivehicle case [15].

The paired-vehicle problem is a special case of the multivehicle problem, and it can be stated as follows. When a

vehicle finishes serving its current customer, a new customer will be assigned, and the vehicle must decide whether to

visit the new customer directly or via the depot. The new customer is chosen from the set of unassigned customers.

The vehicles must coordinate their efforts by considering the influence of each decision on the other vehicle and on

the future cost.

The decisions occur when a vehicle completes an assignment, not when it arrives at a new customer and observes

the demand. The next location is always a customer location and not the depot.

We formulate the problem as an MDP with stages in the set Ω′ = {0, 1, 2, . . . ,K′}. Each stage k ∈ Ω′ \ {0}

starts as a vehicle finishes its current assignment, and the two vehicles may complete their assignments simultane-

ously and trigger the next stage together. K′ is the final stage that occurs when no customer is unassigned. Let the

state space for the process be Ψ′. For each stage k ∈ {0, 1, 2, . . . ,K′}, we characterize the corresponding state as

xk = (l1, l2, q1, q2,Rk(l1, l2)). Here, l1 and l2 are the customer locations where the two vehicles completed their last

assignments, q1 and q2 are the available capacities after those assignments, and Rk(l1, l2) is the set of remaining cus-

tomers at stage k. The initial system state is x0 = (0, 0,Q,Q,C) and the final system state is xK′ = (l1, l2, q1, q2, φ).

For example, suppose the current state is xk = (l1, l2, q1, q2,Rk(l1, l2)), and the vehicles will next serve customers

j1 and j2. Suppose that vehicle t1 finishes serving customer j1 and triggers the next stage k + 1, while vehicle

t2 is either en route to customer j2 or replenishing so as to meet j2’s demand. In this case, the state updates to

xk+1 = ( j1, l2, q
′
1
, q2,Rk+1( j1, l2)).

Given state xk, action (ak
1
, ak

2
) assigns the two vehicles to the next customer locations. Let t ∈ {1, 2} represent the

vehicles t1 and t2, and zk ⊆ {1, 2} be the set of vehicles that trigger stage k by completing their current assignments.

Clearly, zk , φ, and z0 = {1, 2} indicates that both vehicles start to serve new assignments at the beginning. In addition,

let the vehicles in {{1, 2} \ zk}, which have not completed their assignments, continue on their planned routes. The set
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of actions available for state xk is then

A(xk) = {(ak
1, a

k
2)|ak

t = j (1) or j (0) ∀t ∈ zk; ak
t = ak−1

t (k ≥ 1)∀t ∈ {{1, 2} \ zk}; ak
1 , ak

2} k ∈ Ω′. (1)

Here, j (1) indicates a direct visit to customer j, and j (0) indicates a visit to customer j that is preceded by replenish-

ment. Moreover, j ∈ Rk−1(l1, l2) \ {ak−1
1
, ak−1

2
} (k ≥ 1), indicating that the next customer should be selected from those

currently unassigned, so ak−1
1

and ak−1
2

should be excluded; we have j ∈ C when k = 0. The equality ak
t = ak−1

t (k ≥ 1)

indicates that the vehicles en route, denoted t ∈ {{1, 2} \ zk}, still follow their planned routes, and ak
1
, ak

2
indicates that

the two vehicles cannot be assigned to the same customer.

Action (ak
1
, ak

2
) ∈ A(xk) will generate a cost, denoted g(xk, a

k
1
, ak

2
), associated with travel to the new destinations. If

vehicle t ∈ {{1, 2}\zk}, the destination does not change, so d(ak−1
t , a

k
t ) = 0 and there is no cost. If t ∈ zk, and the current

location is l, the cost is d(l, j) for j (1) and d(l, 0) + d(0, j) for j (0). The transition probabilities, denoted pxk xk+1
(ak

1
, ak

2
),

are given by the demand probability distributions and the action selected. Let Jk(xk) denote the optimal cost-to-go or

value function in stage k; then the optimal action (ak
1
, ak

2
)∗ for a given state xk is determined by the following Bellman

equation:

(ak
1, a

k
2)∗ = arg min

(ak
1
,ak

2
)∈A(xk)

{g(xk, a
k
1, a

k
2) +

∑

xk+1∈Ψ
′

pxk xk+1
(ak

1, a
k
2) · Jk+1(xk+1)|xk} ∀xk ∈ Ψ

′. (2)

For reoptimization under the paired-vehicle condition, each movement of each vehicle will trigger a sharing of

information for a total of K′ interruptions. Usually K′ equals the number of customers, N. It will be lower if the

vehicles sometimes complete their assignments simultaneously, but the minimal value is K′ = ⌈N
2
⌉.

For each interruption k ∈ {1, 2, . . . ,K′}, the calculation of Jk(xk) is more complicated than in the single-vehicle

case, since the two vehicles share customers and make decisions that influence each other. To ease the computational

burden, we must reduce the number of interruptions. Our PCR strategy reduces the number of interruptions and

indicates how to schedule the vehicles to reoptimize the solution.

3. A paired cooperative reoptimization strategy for VRPSD

In the general scheme described in Section 2, only one customer can be assigned to a vehicle at the completion of

the current assignment. In our PCR strategy, multiple customers can be assigned, and we allow the vehicles to operate

independently until the next sharing of information. This reduces the number of interruptions.

The multiple customers will not necessarily be served by the assigned vehicle; some may subsequently be switched

to the other vehicle. The overall process is as follows. We first divide the customers into two groups and assign each

group to one of the vehicles. Each vehicle then serves its group of customers. When one completes its assignment it

triggers a sharing of information. We then divide the remaining customers (currently assigned to the other vehicle)

into two groups and assign each group to one of the vehicles. We repeat this procedure until all the customers have

been served; the vehicles then return to the depot. This procedure is equivalent to dynamic vehicle assignment in the
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multivehicle case. When each new group of customers is formed, we use partial reoptimization [8] to determine the

sequence of visits.

We use the term communication to refer to the time when a vehicle finishes its assignment and triggers a sharing

of information. After each communication, the paired-vehicle problem is decomposed into a single-vehicle problem

(i.e., the vehicles operate independently until the next communication), and this reduces the number of states in the

problem. We now present the bilevel MDP formulation of our PCR strategy.

4. Bilevel MDP

The bilevel MDP has a higher level and a lower level. At the higher level, the state transitions occur at the

communications, when the vehicle assignments are updated. At the lower level, the state transition is similar to

that of Secomandi and Margot [8]. We must decide if the vehicle should visit its next customer directly or after

replenishment.

In Section 4.1, we introduce the stages and states involved in the higher and lower levels. In Section 4.2, we

explain the state transitions in the bilevel MDP. Section 4.2.1 explains the transitions from the higher to the lower

level, and Section 4.2.2 explains the transitions from the lower to the higher level. Section 4.2.3 discusses transitions

within the lower level, and Figure 1 in Section 4.2.4 summarizes the bilevel MDP. In Section 4.3, we introduce the

initial state and the absorbing state and define the cost-to-go value at the final absorbing state. We apply dynamic-

programming backward recursion to calculate the expected cost-to-go value at each stage. Finally, in Section 4.4, we

describe two kinds of actions resulting from the hierarchical structure of the bilevel MDP.

4.1. Stage and state in bilevel MDP

4.1.1. Stage and state at higher level

At the higher level, at each stage the remaining customers are divided into two groups. LetΩ = {0, 1, 2, . . . ,K∗} be

the set of stages at this level, where stage k = 0 (k ∈ Ω) indicates the initial partitioning, and stage k ∈ {1, 2, . . . ,K∗}

represents the kth partitioning of the remaining customers, where K∗ is the final communication. Further, assume that

uk (k = 1, 2, . . . ,K∗) is the set of remaining customers at the start of the kth communication, with u0 = C (at stage

k=0) because initially all the customers are unvisited. Let αk and uk \ αk, with αk ∩ (uk \ αk) = φ, represent the two

customer sets after each communication (partitioning) k (αk ⊆ uk,αk can equal φ). Let nk
1
=| αk | and nk

2
=| uk \ αk | be

the number of customers in the newly assigned customer sets. Therefore, the state for the higher-level stage k can be

denoted Xk = (αk, uk \ αk), and the corresponding cost-to-go value is Vk(αk, uk \ αk).

4.1.2. Stage and state at lower level

At the lower level, the vehicles serve their customer sets αk and uk \ αk independently. The stage k ∈ Ω is

transferred from the higher level, and the sets of stages are denoted ωk
1

for vehicle t1 and ωk
2

for vehicle t2. The
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vehicles operate independently until the next communication (the start of higher-level stage k + 1), and we formulate

the problem as an MDP similar to that of Secomandi and Margot [8].

For vehicle t1, the lower level stage set ωk
1

is {nk
1
, nk

1
− 1, nk

1
− 2, . . . ,mk

1
} in descending order, where sk

1
∈ ωk

1
is

the number of unvisited customers in the current customer set αk. The final stage mk
1

(0 ≤ mk
1
≤ nk

1
) indicates that mk

1

customers are unvisited at the start of higher-level stage k+1. Similarly,ωk
2
= {nk

2
, nk

2
−1, nk

2
−2, . . . ,mk

2
} (0 ≤ mk

2
≤ nk

2
)

is the lower level stage set for vehicle t2, with sk
2
∈ ωk

2
the number of unvisited customers in uk \ αk. Note that either

mk
1

or mk
2

is 0, indicating that a vehicle has completed its current assignment. The new unvisited customer set is uk+1,

and it will be partitioned into αk+1 and uk+1 \ αk+1 at the higher level.

Because αk and uk \ αk are served independently, the problem reduces to the single-vehicle situation discussed

in [8], and we use similar definitions. The states for the lower level stages sk
1

(sk
1
, nk

1
) and sk

2
(sk

2
, nk

2
) are xsk

1
=

(lk
1
, qk

1
,Rsk

1
(lk

1
)) and xsk

2
= (lk

2
, qk

2
,Rsk

2
(lk

2
)), where lk

1
∈ αk and lk

2
∈ uk \ αk are the current customers, and qk

1
and

qk
2
∈ {0, 1, . . . ,Q} are the available capacities after the demands of customers lk

1
and lk

2
have been satisfied. Rsk

1
(lk

1
) ⊂ αk

and Rsk
2
(lk

2
) ⊂ uk \ αk are the remaining customers when the vehicles are at the location of customers lk

1
and lk

2
in lower

level stages sk
1

and sk
2
. Further, νsk

1
(lk

1
, qk

1
,Rsk

1
(lk

1
)) and νsk

2
(lk

2
, qk

2
,Rsk

2
(lk

2
)) are the cost-to-go values at states xsk

1
and xsk

2
;

we will sometimes simplify this notation to νsk
1
(l1, q1,Rsk

1
(l1)) and νsk

2
(l2, q2,Rsk

2
(l2)).

Note that the initial and final states are different from those in [8]. When the higher-level stage k = 0, the initial

states can be denoted xn0
1
=|α0 |
= (0,Q, α0) and xn0

2
=|C\α0 |

= (0,Q,C \ α0), similarly to the definitions in [8]. But, when

k ≥ 1, the states are represented by xnk
1
=|αk |
= (lk−1

1
, qk−1

1
, αk) and xnk

2
=|uk\αk |

= (lk−1
2
, qk−1

2
, uk \ αk). Before serving

customers αk and uk \ αk (k ≥ 1), the vehicles are approaching customers lk−1
1

and lk−1
2

, which are the customers at

the final states of the previous higher level stage k − 1, customers lk−1
1

and lk−1
2

are not included in αk and uk \ αk so

they can be treated as exterior points, as the depot is when k = 0 (0 < α0 and 0 < C \ α0). Moreover, when k = 0 the

vehicles are initially fully loaded, but when k ≥ 1 the initial capacity is the available capacity after the final customer

at higher-level stage k − 1 has been served; we denote these capacities qk−1
1

and qk−1
2

.

The states at the final stages, mk
1

and mk
2

(0 ≤ k ≤ K∗), are xmk
1
= (lk

1
, qk

1
,Rmk

1
(lk

1
)) and xmk

2
= (lk

2
, qk

2
,Rmk

2
(lk

2
)). Both

Rmk
1
(lk

1
) and Rmk

2
(lk

2
) will be φ only if the vehicles finish their assignments simultaneously. Moreover, the final action

of the last stages mk
1

and mk
2

may not be a return to the depot if there are unvisited customers.

4.2. State transition in bilevel MDP

We now consider transitions between the levels of the MDP and within the lower level. As the higher level moves

from stage k to k + 1, k = 0, 1, . . . ,K∗ − 1, the cost-to-go value changes from Vk(αk, uk \ αk) to Vk+1(αk+1, uk+1 \

αk+1). As the lower level moves from stage sk
1

to sk
1
− 1 and from stage sk

2
to sk

2
− 1, the cost-to-go values change

from νsk
1
(l1, q1,Rsk

1
(l1)) to νsk

1
−1( j1, q

′
1
,Rsk

1
−1( j1; l1)) and from νsk

2
(l2, q2,Rsk

2
(l2)) to νsk

2
−1( j2, q

′
2
,Rsk

2
−1( j2; l2)), where j1 ∈

Rsk
1
(l1), j2 ∈ Rsk

2
(l2), Rsk

1
−1( j1; l1) = Rsk

1
(l1) \ { j1}, and Rsk

2
−1( j2; l2) = Rsk

2
(l2) \ { j2}.
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4.2.1. Transition from higher level to lower level

This transition occurs after uk has been divided into two sets αk and uk \αk, and the vehicle assignments have been

updated accordingly. We transition from higher level state Xk = (αk, uk \ αk) to lower level states xnk
1
= (lk−1

1
, qk−1

1
, αk)

and xnk
2
= (lk−1

2
, qk−1

2
, uk \ αk), (nk

1
=| αk |, nk

2
=| uk \ αk |). This transition does not involve any vehicle movements,

so there is no associated cost. The higher level state Xk = (αk, uk \ αk) has corresponding lower level states xnk
1
=

(lk−1
1
, qk−1

1
, αk) and xnk

2
= (lk−1

2
, qk−1

2
, uk \ αk) with

Vk(αk, uk \ αk) = νnk
1
(l1, q1, αk) + νnk

2
(l2, q2, uk \ αk). (3)

4.2.2. Transition from lower level to higher level

At the end of a lower level stage a communication is triggered. We transition from higher level state Xk =

(αk, uk \ αk) to Xk+1 = (αk+1, uk+1 \ αk+1).

Assume that at stage k (0 ≤ k ≤ K∗−1), vehicle t1 finishes its task αk and triggers the communication, and the final

stages are mk
1

and mk
2
. Vehicle t1 is located at its final customer, and its state is xmk

1
=0 = (l1, q1, φ) (l1 ∈ αk). However,

vehicle t2 may be at customer i2 (i2 ∈ uk \ αk) if ξi2 ≤ q2, on a replenishment trip if ξi2 > q2, or en route to the next

customer j2 ( j2 ∈ uk \ αk, j2 , i2). If t2 is serving customer i2, the final state is xs̄k
2
= (i2, q2,Rs̄k

2
(i2)) (nk

2
≥ s̄k

2
≥ 0).

If it is en route to customer j2, the final state is xs̄k
2
−1 = ( j2, q

′
2
,Rs̄k

2
−1( j2))=( j2, q

′
2
,Rs̄k

2
−1( j2; i2)) =( j2, q

′
2
,Rs̄k

2
(i2) \ { j2}),

which indicates that it should complete the service of j2 before updating its assignment.

Thus, the final states are as follows. If t2 is serving i2, (xmk
1
=0, xs̄k

2
)=((l1, q1, φ), (i2, q2,Rs̄k

2
(i2))) with mk

2
= s̄k

2
and

uk+1 = φ ∪ Rs̄k
2
(i2) = Rs̄k

2
(i2). There is no cost associated with the partitioning of uk+1 into αk+1 ∪ (uk+1 \ αk+1), so the

cost-to-go value is

νmk
1
=0(l1, q1, φ) + νmk

2
=s̄k

2
(i2, q2,Rs̄k

2
(i2)) = Vk+1(αk+1, uk+1 \ αk+1). (4)

If t2 is en route to j2, (xmk
1
=0, xs̄k

2
−1)=((l1, q1, φ), ( j2, q

′
2
,Rs̄k

2
−1( j2; i2))) with mk

2
= s̄k

2
− 1, uk+1 = φ ∪ Rs̄k

2
−1( j2; i2) =

Rs̄k
2
−1( j2; i2) = Rs̄k

2
(i2) \ { j2}. The cost-to-go value is

νmk
1
=0(l1, q1, φ) + νmk

2
=s̄k

2
−1( j2, q

′
2,Rs̄k

2
−1( j2; i2)) = Vk+1(αk+1, uk+1 \ αk+1). (5)

4.2.3. Transition within lower level

At the lower level there are transitions for xsk
1
= (l1, q1,Rsk

1
(l1)), from the initial stage sk

1
= nk

1
to the final stage

sk
1
= mk

1
and xsk

2
= (l2, q2,Rsk

2
(l2)), from the initial stage sk

2
= nk

2
to the final stage sk

2
= mk

2
. The transitions for the

two vehicles can be treated separately, following the single-vehicle situation in [8]. For example, for vehicle t1, the

cost-to-go value depends on whether the next customer is visited directly or after replenishment. The optimal state

transition should satisfy the Bellman equations below.

For each stage, nk
1
− 1 ≥ sk

1
≥ mk

1
+ 1, the optimal cost-to-go function for each state xsk

1
= (l1, q1,Rsk

1
(l1)) is

νsk
1
(l1, q1,Rsk

1
(l1)) = min{νD

sk
1

(l1, q1,Rsk
1
(l1)), νR

sk
1

(l1, q1,Rsk
1
(l1))} (6)
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where νD
sk

1

(l1, q1,Rsk
1
(l1)) and νR

sk
1

(l1, q1,Rsk
1
(l1)) are the cost-to-go values at stage sk

1
, corresponding to visiting the next

customer directly or after replenishment:

νD
sk

1

(l1, q1,Rsk
1
(l1)) = min

j∈R
sk
1
(l1)
{d(l1, j) +

q1
∑

e=0

p j(e)νsk
1
−1( j, q1 − e,Rsk

1
−1( j; l1))+

E
∑

e=q1+1

p j(e)[νsk
1
−1( j, q1 + Q − e,Rsk

1
−1( j; l1)) + 2d( j, 0)]},

νR
sk

1

(l1, q1,Rsk
1
(l1)) = min

j∈R
sk
1
(l1)
{d(l1, 0) + d(0, j) +

E
∑

e=0

p j(e)νsk
1
−1( j,Q − e,Rsk

1
−1( j; l1))}. (7)

For the final state xmk
1
= (lk

1
, qk

1
,Rmk

1
(lk

1
)) and the initial state xnk

1
= (lk−1

1
, qk−1

1
, αk), the rule differs from that in [8].

For the final state, the cost-to-go value νmk
1
(l1, q1,Rmk

1
(l1)) is determined by (4) or (5) depending on the status of the

vehicle. For the initial state, since the vehicle departs from customer lk−1
1

(lk−1
1
< αk) not the depot 0, the function

νnk
1
(lk−1

1
, qk−1

1
, αk) is found from (6) and (7), since the vehicle may visit the next customer directly νD

nk
1

(lk−1
1
, qk−1

1
, αk) or

after replenishment νR
nk

1

(lk−1
1
, qk−1

1
, αk).

4.2.4. Overall bilevel MDP

The overall process, from higher level stage k (0 ≤ k < K∗ − 1) to lower level stages nk
1

to mk
1

and nk
2

to mk
2
, and on

to higher level stage k + 1 is illustrated in Figure 1.

1 2

1 1 1 1
1 1 2 2( , \ )= ( , , ) ( , , \ )k k
k k k k

k k k k k k kn n
V u v l q v l q u− − − −+α α α α

1 1
1 1 11 1

( , , ( ))k k
k k k

n n
v l q R l

− − 2 2
2 2 21 1

( , , ( ))k k
k k k

n n
v l q R l

− −

1 2
( )kn

v
−

⋅
2 2

( )kn
v

−
⋅

⋮ ⋮

1 1
1 1 1( , , ( ))k k
k k k

m m
v l q R l

2 2
2 2 2( , , ( ))k k
k k k

m m
v l q R l

1 1 2 2
1 1 1 2 2 2 +1 +1 +1 +1( , , ( ))+ ( , , ( ))= ( , \ )k k k k
k k k k k k

k k k km m m m
v l q R l v l q R l V uα α

vehicle  
1t

vehicle  

2t

communication

vehicle

assignment

1 2
1 1 2( ( ) ( ))k k

k k
k m m
u R l R l+ = ∪

independent 

routing

Fig. 1 State transitions of bilevel MDP

The transition from higher level stage k to k + 1 is carried out as shown in the figure, and then the process is repeated

for stage k + 1, and so on to the final stage k = K∗.
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4.3. Initial and final states

At the initial state the vehicles leave the depot to carry out their first tasks α0 and C \ α0. The cost-to-go function

is similar to that in (3):

Vk=0(α0,C \ α0) = νn0
1
=|α0 |

(0,Q, α0) + νn0
2
=|C\α0 |

(0,Q,C \ α0). (8)

At the final state the final communication K∗ is triggered, and for this communication RmK∗−1
1
=0(l1) = RmK∗−1

2
=0(l2) =

φ indicating that all the customers have been visited. The vehicles then return to the depot. The cost-to-go value is

νmK∗−1
1
=0(l1, q1, φ) + νmK∗−1

2
=0(l2, q2, φ) = VK∗ (φ, φ)

where



















νmK∗−1
1
=0(l1, q1, φ) = d(l1, 0),

νmK∗−1
2
=0(l2, q2, φ) = d(l2, 0),

∀ l1 ∈ αK∗−1, l2 ∈ uK∗−1 \ αK∗−1;∀ q1, q2 ≤ Q. (9)

The bilevel MDP can be solved by dynamic-programming backward recursion, and at each stage the expected cost-to-

go values can all be calculated. The optimal policy under the PCR strategy is now determined by defining the actions

that can occur when transitioning from state to state for each stage and each level. This is the subject of the following

subsection.

4.4. Action definitions

There are two types of actions. The first is the lower level decision (see [8]) to replenish or to visit the next

customer directly. The second occurs when a communication is triggered and the remaining customers must be

divided into two groups.

For the first action, we take vehicle t1 as an example. For state xsk
1
= (l1, q1,Rsk

1
(l1)), the optimal action is

ask
1
(l1, q1,Rsk

1
(l1)) =























jD
sk

1

(l1, q1,Rsk
1
(l1),D) if νD

sk
1

(l1, q1,Rsk
1
(l1)) ≤ νR

sk
1

(l1, q1,Rsk
1
(l1)),

jR
sk

1

(l1, q1,Rsk
1
(l1),R) if νD

sk
1

(l1, q1,Rsk
1
(l1)) > νR

sk
1

(l1, q1,Rsk
1
(l1)).

(10)

where

jD
sk

1

(l1, q1,Rsk
1
(l1),D) = arg min

j∈R
sk
1
(l1)
{d(l1, j) +

q1
∑

e=0

p j(e)νsk
1
−1( j, q1 − e,Rsk

1
−1( j; l1))+

E
∑

e=q1+1

p j(e)[νsk
1
−1( j, q1 + Q − e,Rsk

1
−1( j; l1)) + 2d( j, 0)]},

jR
sk

1

(l1, q1,Rsk
1
(l1),R) = arg min

j∈R
sk
1
(l1)
{d(l1, 0) + d(0, j) +

E
∑

e=0

p j(e)νsk
1
−1( j,Q − e,Rsk

1
−1( j; l1))} (11)

Note that jD
sk

1

(l1, q1,Rsk
1
(l1),D) and jR

sk
1

(l1, q1,Rsk
1
(l1),R) denote the optimal customer to visit next for casesD and R.

The optimal action at stage K∗ is obvious: the vehicles must return to the depot (see (9)). The optimal actions for

the two vehicles at their initial states, xn0
1
= (0,Q, α0) and xn0

2
= (0,Q,C \ α0), are

jn0
1
(0,Q, α0) = arg min

j∈α0

{d(0, j) +
E
∑

e=0

p j(e)νn0
1
−1( j,Q − e, α0 \ { j})},

jn0
2
(0,Q,C \ α0) = arg min

j∈C\α0

{d(0, j) +
E
∑

e=0

p j(e)νn0
2
−1( j,Q − e, (C \ α0) \ { j})}. (12)
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For the second action, we determine the new customer groups by minimizing the total cost-to-go value. For

example, for the kth partitioning, the optimal action is

Ak(αk, uk \ αk) = arg min
αk⊆uk

Vk(αk, uk \ αk) = arg min
αk⊆uk

{ν|αk |(l
k−1
1 , q

k−1
1 , αk) + ν|uk\αk |(l

k−1
2 , q

k−1
2 , uk \ αk)} (k ≥ 1) (13)

where ν|αk |(l
k−1
1
, qk−1

1
, αk) and ν|uk\αk |(l

k−1
2
, qk−1

2
, uk \ αk) represent the cost-to-go values when the customer sets αk and

uk \ αk are served independently. Note that αk can be φ; if only one customer j remains, i.e., uk = { j}, the partitioning

will be αk = φ, uk \ αk = { j} or αk = { j}, uk \ αk = φ. For the initial state, the action is

A0(α0,C \ α0) = arg min
α0⊆C

V0(α0,C \ α0) = arg min
α0⊆C
{ν|α0 |(0,Q, α0) + ν|C\α0 |(0,Q,C \ α0)}. (14)

5. Heuristic algorithm for PCR strategy

We now propose a heuristic algorithm for the PCR strategy. The procedure relies on approximation techniques

that compute the cost-to-go values at the different stages of the MDP and on a dynamic scheduling approach that

divides the remaining customers between the vehicles, given the revealed demands.

5.1. Approximate partial reoptimization

We use approximation techniques to measure the cost-to-go values because the state space is extremely large.

Take vehicle t1 as an example. Figure 2 illustrates the transitions from any state in the kth lower-level MDP to the

absorbing state ν0(lK∗−1
1
, qK∗−1

1
, φ) and shows how the approximation is calculated.

=

1

1 1
1 1( , , )k
k k

kn
v l q α− −

1 1
1 1 1-1 -1

( , , ( ))k k
k k k

n n
v l q R l

1 1
1 1 1( , , ( ))k k
k k k

m m
v l q R l

+1
1

1 1 +1( , , )k
k k

kn
v l q α

+1 +1
1 1

+1 +1 +1
1 1 1-1 -1

( , , ( ))k k
k k k

n n
v l q R l

* *1 1
0 1 1( , , )K Kv l q φ− −

+1 +1
1 1

+1 +1 +1
1 1 1( , , ( ))k k
k k k

m m
v l q R l

⋮

1 1
1 1 11 1

( , , ( ))k k
k k k

m m
v l q R l

− −
ɶ

⋮ ⋮

1 1
1 1 12 2

( , , ( ))k k
k k k

m m
v l q R l

− −
ɶ 0 1 1( , , )k kv l q φɶ⋯

kth Lower-Level 

MDP

(k+1)th Lower-

Level MDP

(k+2)th Lower-

Level MDP

(   -1)th Lower-

Level MDP

*K

⋮

⋯

* 1
1( ,0)Kd l −

1( ,0)kd l=

Fig. 2 Approximation of cost-to-go value in bilevel MDP

The approximate cost-to-go values are denoted ν̃sk
1
(l1, q1,Rsk

1
(l1)) and ν̃sk

2
(l2, q2,Rsk

2
(l2)), nk

1
≥ sk

1
≥ mk

1
, nk

2
≥ sk

2
≥

mk
2
, 0 ≤ k ≤ K∗ − 1. They replace the exact values νsk

1
(l1, q1,Rsk

1
(l1)) and νsk

2
(l2, q2,Rsk

2
(l2)) in the calculations of the

optimal actions. As Fig. 2 shows, when the kth communication is triggered, uk is observed and αk is immediately

assigned to vehicle t1. Although mk
1

customers will remain at the next communication k + 1, we assume that the
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customers in αk are all served. Let the cost-to-go value when all the customers in αk have been served be d(lk
1
, 0) (lk

1
is

the last customer in αk to be visited). Then

ν̃0(lk1, q
k
1, φ) = d(lk1, 0), ∀lk1 ∈ αk,∀qk

1 ≤ Q. (15)

By backward recursion, we can find ν̃1(lk
1
, qk

1
,R1(lk

1
)), . . . , ν̃mk

1
−1(lk

1
, qk

1
,Rmk

1
−1(lk

1
)) and thence ν̃mk

1
(lk

1
, qk

1
,Rmk

1
(lk

1
)), ν̃mk

1
+1(lk

1
,

qk
1
,Rmk

1
+1(lk

1
)), . . ., until we have the initial cost-to-go value ν̃nk

1
(lk−1

1
, qk−1

1
, αk). Then, using (6) and (7), ν̃sk

1
(l1, q1,Rsk

1
(l1)),

0 < sk
1
≤ nk

1
is given by

ν̃sk
1
(l1, q1,Rsk

1
(l1)) = min{ν̃D

sk
1

(l1, q1,Rsk
1
(l1)), ν̃R

sk
1

(l1, q1,Rsk
1
(l1))}, (16)

ν̃D
sk

1

(l1, q1,Rsk
1
(l1)) = min

j∈R
sk
1
(l1)
{d(l1, j) +

q1
∑

e=0

p j(e)ν̃sk
1
−1( j, q1 − e,Rsk

1
−1( j; l1))+

E
∑

e=q1+1

p j(e)[ν̃sk
1
−1( j, q1 + Q − e,Rsk

1
−1( j; l1)) + 2d( j, 0)]},

ν̃R
sk

1

(l1, q1,Rsk
1
(l1)) = min

j∈R
sk
1
(l1)
{d(l1, 0) + d(0, j) +

E
∑

e=0

p j(e)ν̃sk
1
−1( j,Q − e,Rsk

1
−1( j; l1))}. (17)

ν̃D
sk

1

(l1, q1,Rsk
1
(l1)) and ν̃R

sk
1

(l1, q1,Rsk
1
(l1)) are the approximate values of νD

sk
1

(l1, q1,Rsk
1
(l1)) and νR

sk
1

(l1, q1,Rsk
1
(l1)).

We also compute an optimal policy on a restricted state set as in the partial reoptimization method in [8]. We

separate the a priori routes into several blocks, and we use backward dynamic programming in each block to realize

a locally optimal policy for each subset of states. For simplicity, we apply only PH(6) (in which the block size is 6),

one of the partial reoptimization methods in [8].

Our approximate partial reoptimization method is designed to estimate the cost-to-go value at each stage and

state for each vehicle. When αk and uk \ αk (0 ≤ k ≤ K∗ − 1) are assigned to the vehicles, the approximate partial

reoptimization is applied to calculate the cost-to-go values ν̃nk
1
(lk−1

1
, qk−1

1
, αk), ν̃nk

1
−1(lk

1
, qk

1
,Rnk

1
−1(lk

1
)), . . ., ν̃0(lk

1
, qk

1
, φ),

and ν̃nk
2
(lk−1

2
, qk−1

2
, uk \ αk), ν̃nk

2
−1(lk

2
, qk

2
,Rnk

2
−1(lk

2
)), . . . , ν̃0(lk

2
, qk

2
, φ). These cost-to-go values are then used to decide the

optimal actions at each stage sk
1

and sk
2

given the revealed state. For example, for vehicle t1 (∀nk
1
≥ sk

1
≥ 0), the action

is

ask
1
(l1, q1,Rsk

1
(l1)) =























jD
sk

1

(l1, q1,Rsk
1
(l1),D) if ν̃D

sk
1

(l1, q1,Rsk
1
(l1)) ≤ ν̃R

sk
1

(l1, q1,Rsk
1
(l1)),

jR
sk

1

(l1, q1,Rsk
1
(l1),R) if ν̃D

sk
1

(l1, q1,Rsk
1
(l1)) > ν̃R

sk
1

(l1, q1,Rsk
1
(l1)).

(18)

When one of the vehicles reaches the last stage of the kth lower level, either sk
1

or sk
2

is 0, we can find the

new customer set uk+1, and form αk+1 and uk+1 \ αk+1. Then, the new round of calculating the approximate cost-

to-go values ν̃nk+1
1
=|αk+1 |

(lk
1
, qk

1
, αk+1), ν̃nk+1

1
−1(lk+1

1
, qk+1

1
,Rnk+1

1
−1(lk+1

1
)), . . . , ν̃0(lk+1

1
, qk+1

1
, φ) and ν̃nk+1

2
=|uk+1\αk+1 |

(lk
2
, qk

2
, uk+1 \

αk+1),ν̃nk+1
2
−1 (lk+1

2
, qk+1

2
,Rnk+1

2
−1(lk+1

2
)),. . .,ν̃0 (lk+1

2
, qk+1

2
, φ) are executed. Upon the updated values, we proceed as before.

This recalculation and replacement of the existing cost-to-go values to guide vehicle decisions repeats, until there is

no customer remaining unserved, the vehicles finally return to the depot.
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5.2. Approximate partition

The higher level transitions divide the remaining customers between the vehicles. The cost-to-go values should be

evaluated based on all possible partitions Xk = (αk, uk\αk) (∀αk ⊆ uk, k ∈ {0, 1, . . . ,K∗−1}), but this is computationally

prohibitive. Therefore, we use an approximate approach.

Our partition is constructed based on the a priori route that traverses all the customers of each uk (0 ≤ k ≤ K∗ − 1).

The expected distance of a fixed route under the classical detour-to-depot policy (e.g., [21]) is applied to approximate

the cost-to-go value in (13) and (14). The expected distance is the fixed route distance plus the total length of the

expected recourse actions. Let rk = {l, ik
1
, ik

2
, . . . , ik

j∗
, ik

j∗+1
, . . . , ikn, l

′} be the sequence of the a priori route, which starts at

l and ends at l′ (l, l′ < uk), and let {ik
1
, ik

2
, . . . , ik

j∗
, ik

j∗+1
, . . . , ikn} be a permutation of the customers in uk. Let dis0(l, ik, jk)

and dis1(l, ik, jk) respectively represent the total expected distances when the permutation is traversed in the given

order or in the opposite direction, where l is the starting point, ik is the first customer, and jk is the last customer. We

use the rollout algorithm (RA) in [22] to generate a good a priori route rk for each customer set uk (0 ≤ k ≤ K∗ − 1).

Our approximate partitioning algorithm is as follows:

Step 1: Use RA to generate the a priori route rk for customer set uk;

this gives the sequence rk = {l, ik
1
, ik

2
, . . . , ik

j∗
, ik

j∗+1
, . . . , ikn, l

′}.

Step 2: Partition uk into αk and uk \ αk by finding a customer ik
j∗

(0 ≤ j∗ ≤ n), that minimizes the gap | dis0(l, ik
1
, ik

j∗
)

−dis1(l′, ikn, i
k
j∗+1

) |, leading to αk = {i
k
1
, ik

2
, . . . , ik

j∗
} and uk \ αk = {i

k
n, i

k
n−1
, . . . , ik

j∗+2
, ik

j∗+1
}.

We use (arg min
0≤ j∗≤n

{| dis0(l, ik
1
, ik

j∗
)−dis1(l′, ikn, i

k
j∗+1

) |}) to approximate (13) and (14). Note that in Step 1 the starting

and ending points depend on the partition. We have r0 = {0, i0
1
, i0

2
, . . . , i0

j∗
, i0

j∗+1
, . . . , i0n, 0} for the initial partition where

u0 = C (l = l′ = 0 indicates that the vehicle starts and ends at the depot), and rk = {lk−1
1
, ik

1
, ik

2
, . . . , ik

j∗
, ik

j∗+1
, . . . , ikn, l

k−1
2
}

for the kth partition, 1 ≤ k ≤ K∗ − 1 (lk−1
1

and lk−1
2

are the last customers visited before the assignments are updated).

In Step 2, we assume that the two vehicles travel in opposite directions. Therefore, dis0(l, ik
1
, ik

j∗
) indicates that vehicle

t1 follows the sequence of the a priori route, traveling from the previous location l to ik
1

and continuing to ik
j∗

; and

dis1(l′, ikn, i
k
j∗+1

) is the expected length of the sequence {l′, ikn, i
k
n−1
, . . . , ik

j∗+2
, ik

j∗+1
}. Here j∗ = 0 and j∗ = n correspond

to the partitions (φ, uk) and (uk, φ) respectively. We have dis0(l, ik
1
, ik

j∗=0
) equal to d(l, 0), the distance to the depot, when

αk = φ, and dis1(l′, ikn, i
k
j∗+1=n+1

) equal to d(l′, 0) when uk \ αk = φ. Finally, the subroutes rk
1
= {lk−1

1
, ik

1
, ik

2
, . . . , ik

j∗
} (or

r0
1
= {0, i0

1
, i0

2
, . . . , i0

j∗
}) and rk

2
= {lk−1

2
, ikn, i

k
n−1
, . . . , ik

j∗+2
, ik

j∗+1
} (or r0

2
= {0, i0n, i

0
n−1
, . . . , i0

j∗+2
, i0

j∗+1
}) are the a priori routes

of vehicles t1 and t2 for αk and uk \αk respectively. We use these in the approximate partial reoptimization to calculate

the cost-to-go values and the customers served.

5.3. Heuristic design for PCR strategy

We now describe the heuristic for the PCR strategy. Assume that begink
1

and begink
2

represent the starting locations

of t1 and t2 at each higher level stage k (k ∈ {0, 1, . . . ,K∗−1}). These locations correspond to lk−1
1

and lk−1
2

in the initial

states xnk
1
=|αk |
= (lk−1

1
, qk−1

1
, αk) and xnk

2
=| uk\αk |

= (lk−1
2
, qk−1

2
, uk \ αk), and in particular for k = 0 we have begin0

1
= 0 and

Paired Cooperative Reoptimization Strategy for the Vehicle Routing Problem with Stochastic Demands
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begin0
2
= 0, indicating departures from the depot. Let total lent∈{1,2} be the cumulative distances traveled by vehicles

t1 and t2, and let ∆lent∈{1,2}(r) indicate the distance that the corresponding vehicle will travel on route r based on the

PCR strategy. Moreover, let subroute(r, i, j) represent the subroute of route r that covers customer i to customer j.

Let r real k
1

and r real k
2

(k ≥ 1) denote the actual routes of the vehicles, starting from lk−1
1

and lk−1
2

and visiting

all the customers in αk and uk \ αk. Note that r real k
1

(r real k
2
) is the actual route determined by the reoptimization

policy, whereas rk
1

(rk
2
) is the a priori route that must be further optimized when the demands are revealed. When we

write r real k
t∈{1,2}

in function ∆len(·) and subroute(·, ·, ·), we mean the length of r real k
t∈{1,2}

and its one subroute. In

addition, let l
k (Final)

t∈{1,2}
be the final customer of route r real k

t∈{1,2}
. The process can be stated as follows:

Paired Cooperative Reoptimization Strategy for the Vehicle Routing Problem with Stochastic Demands
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Step 1: Initialization

Set u0 = C and k = 0.

Set the starting positions begin0
1
= 0 and begin0

2
= 0.

Set the initial cumulative distances traveled to total len1 = 0 and total len2 = 0.

Step 2: Apply the approximate partitioning algorithm to divide uk and generate the a priori routes rk
1

and rk
2
.

We use min
0≤ j∗≤n

{| dis0(l, ik
1
, ik

j∗
) − dis1(l′, ikn, i

k
j∗+1

)|} to partition uk into αk and uk \ αk.

The a priori routes are rk
1
= {lk−1

1
, ik

1
, ik

2
, . . . , ik

j∗
} (or r0

1
= {0, i0

1
, i0

2
, . . . , i0

j∗
}) and rk

2
= {lk−1

2
, ikn, i

k
n−1
, . . . , ik

j∗+2
, ik

j∗+1
}

(or r0
2
= {0, i0n, i

0
n−1
, . . . , i0

j∗+2
, i0

j∗+1
}) for αk and uk \ αk (k ≥ 0), respectively.

if rk
1
, φ & rk

2
, φ (∗ αk , φ & uk \ αk , φ

∗), go to Step 3.

else (∗ the case (φ, uk) or (uk, φ)
∗)

Let t′′ be the vehicle with the empty demand φ and t∗∗ be the vehicle with the new assignment uk. Go to

Step 5.

Step 3: Apply the approximate partial reoptimization for each vehicle.

Step 3.1: Calculate the approximate cost-to-go values ν̃sk
1
(l1, q1,Rsk

1
(l1)) and ν̃sk

2
(l2, q2,Rsk

2
(l2)) by backward

recursion, at each state and for each stage sk
1
∈ {| rk

1
|, | rk

1
− 1 |, . . . , 1, 0} and sk

2
∈ {| rk

2
|, | rk

2
− 1 |

, . . . , 1, 0}.

Step 3.2: Use ν̃sk
1
(l1, q1,Rsk

1
(l1)) and ν̃sk

2
(l2, q2,Rsk

2
(l2)) to guide the reoptimizations for t1 and t2.

Find the actual routes r real k
1

and r real k
2

for αk and uk \ αk, and the corresponding final customers

in these routes, l
k (Final)

1
∈ αk and l

k (Final)

2
∈ uk \ αk.

Step 4: Determine the (k + 1)th communication and update the customer set.

Compare total len1 + ∆len1(r real k
1
) and total len2 + ∆len2(r real k

2
); the shorter length identifies the ve-

hicle that triggers the (k + 1)th communication. Let t∗ = arg min
t∈{1, 2}

{total lent + ∆lent(r real k
t )} and t′ =

arg max
t∈{1, 2}

{total lent + ∆lent(r real k
t )}.

if t∗ = t′

Set uk+1 = φ, total len1 = total len1 + ∆len1(r real k
1
) + d(l

k (Final)

1
, 0), and total len2 = total len2 +

∆len2(r real k
2
) + d(l

k (Final)

2
, 0).

else

(∗ vehicle t∗ performs the full route r real k
t∗
∗)

Set total lent∗ = total lent∗ + ∆lent∗ (r real k
t∗ ) and begink+1

t∗ = l
k (Final)
t∗ .

(∗ vehicle t′ performs the first part of r realkt′
∗)

Determine the customers served during stage k for vehicle t′ by finding the location of t′ when its distance

traveled reaches the shorter length (the updated total lent∗ ).

case 1: t′ is located at customer lkt′ or will serve this customer after replenishing.

Set uk+1 = Rsk
t′
(lk

t′
), total lent′ = total lent′ + ∆lent′ (subroute(r realk

t′
, begink

t′
, lk

t′
)), begink+1

t′
= lk

t′
.

case 2: t′ is en route from customer lkt′ to customer jkt′ .

Paired Cooperative Reoptimization Strategy for the Vehicle Routing Problem with Stochastic Demands
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Set uk+1 = Rsk
t′
(lkt′ ) \ { j

k
t′ } = Rsk

t′
−1( jkt′ ; lkt′ ), total lent′ = total lent′ + ∆lent′(subroute(r realkt′ ,

begink
t′
, jk

t′
)), and begink+1

t′
= jk

t′
.

Go to Step 6.

Step 5: Apply the approximate partial reoptimization to vehicle t∗∗

Find actual route r realkt∗∗ for customer set uk.

Set uk+1 = φ, total lent′′ = total lent′′ + d(l
k−1 (Final)
t′′

, 0),

total lent∗∗ = total lent∗∗ + ∆lent∗∗ (r real k
t∗∗ ) + d(l

k (Final)
t∗∗ , 0).

Go to Step 6.

Step 6: if uk+1 = φ, set k + 1 = K∗ and return total len1 + total len2 as the final travel cost.

else set k = k + 1 and return to Step 2.

After we find r real k
1

and r real k
2

for αk and uk \αk respectively at Step 3.2, the calculation of which vehicle com-

pletes its assignment first should be performed immediately. It is based on the cumulative distance, since the distance

traveled is proportional to the time. The vehicle that finishes first, denoted t∗ (corresponding to arg min
t∈{1,2}
{total lent +

∆(r realkt )}), travels the route r realkt∗ and serves all its current customers before the next communication. The other

vehicle t′ travels the first part of its route r realk
t′
. We need to determine which customers it is able to serve. If it

is serving customer lkt′ , the subroute is subroute(r realkt′ , begink
t′ , l

k
t′); if it is en route to customer jkt′ , the subroute is

subroute(r realkt′ , begink
t′ , jkt′ ). Its remaining customers, Rsk

t′
(lkt′) or Rsk

t′
( jkt′ ), form the customer set uk+1, which will then

be partitioned into αk+1 and uk+1 \ αk+1. Steps 2, 3, and 4 repeat until uk̂+1 = φ, when the heuristic returns the final

cost.

The condition uk̂+1 = φ is satisfied in two situations. If t′ = t∗ (Step 4), i.e., the vehicles complete their assignments

simultaneously and there are no remaining customers, the vehicles return to the depot and we add d(l
k̂ (Final)

1
, 0) and

d(l
k̂ (Final)

2
, 0) to the final distances. If the new partition is (uk̂, φ) or (φ, uk̂) (Steps 2 and 5), the vehicle with an empty

assignment returns to the depot at a cost of d(l
k̂−1 (Final)
t′′ , 0), since it is currently at the final location of stage k̂ − 1. The

other vehicle must first complete its new assignment, and the cost is the sum of ∆lent∗∗(r real k̂
t∗∗) and d(l

k̂ (Final)
t∗∗ , 0).

6. Computational study

To generate the instances, we use a scheme that is common in VRPSD research, e.g., [8]. The customer locations

are randomly generated in a 1,000 by 1,000 square. The depot location is (0, 0) or (500, 500), labeled corner and

midpoint respectively. The customer demands are divided into low, medium, and high, corresponding to three discrete

uniform random variables with ranges {0, . . . , 4}, {5, . . . , 9}, and {10, . . . , 14}. Each customer i ∈ C is assigned to one

of the three demands with equal probability. Thus, the mean customer demand is (2 + 7 + 12)/3 = 7. The value

f̄ =
N
∑

i=1

E[ξ]/(2 × Q) [23] measures the expected capacity in use, where 2 × Q indicates that there are two vehicles.

Given values for f̄ and N, the vehicle capacity Q can be computed by rounding the ratio 7N/(2 × f̄ ) to the nearest

Paired Cooperative Reoptimization Strategy for the Vehicle Routing Problem with Stochastic Demands

CIRRELT-2013-73 15



integer. Ten instances are generated for each combination of (i) number of customers: N = 20, . . . , 200, in increments

of 10; (ii) depot position: (0, 0) or (500, 500); (iii) f̄=1.6 or f̄=1.9. There are 10 × 19 × 2 × 2 = 760 instances.

To analyze the PCR, we conduct three experiments. We first compare the PCR with the PLC cooperation strategy.

We then make two additional comparisons to evaluate the communication and the partitioning.

6.1. Performance of PCR

In this section, we compare the PCR solutions to those obtained using the PLC, a recent cooperation technique,

in which each pair of vehicles serve customers sequentially in opposite directions, following a fixed route, and if one

vehicle fails, the remaining customers are assigned to its partner (see [19]). We set the PLC route to the a priori

route generated by RA when u0 = C (found at Step 1 in Section 5.2). We implement two versions of the PLC. The

Pair-PLC has two vehicles, and the Multi-PLC determines the number of vehicles to use to achieve a given service

quality (specified in [19] as a probability). The results for PCR, Pair-PLC, and Multi-PLC are given in Figure 3 and

Table 1.

Paired Cooperative Reoptimization Strategy for the Vehicle Routing Problem with Stochastic Demands
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(a) Midpoint instances, f̄ = 1.6
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(b) Midpoint instances, f̄ = 1.9
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(c) Corner instances, f̄ = 1.6
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(d) Corner instances, f̄ = 1.9

Fig. 3 Performance of PCR versus Pair-PLC and Multi-PLC

Figure 3 shows the performance of the three approaches for the two depot locations with f̄ = 1.6 or f̄ = 1.9. Each data

point is an average over 10 instances. The PCR clearly outperforms the other two approaches; Table 1 summarizes

the associated cost reductions. It shows that the improvement ranges from 20% to 30%.

Paired Cooperative Reoptimization Strategy for the Vehicle Routing Problem with Stochastic Demands

CIRRELT-2013-73 17



Table 1 Percentage improvement in PCR compared to Pair-PLC and Multi-PLC (cost)

# customers

Midpoint depot Corner depot

f̄ = 1.6 f̄ = 1.9 f̄ = 1.6 f̄ = 1.9

PCR vs.

Pair-PLC

PCR vs.

Multi-PLC

PCR vs.

Pair-PLC

PCR vs.

Multi-PLC

PCR vs.

Pair-PLC

PCR vs.

Multi-PLC

PCR vs.

Pair-PLC

PCR vs.

Multi-PLC

20 13.04% 17.84% 16.37% 22.75% 9.90% 11.34% 15% 19.89%

30 22.43% 24.39% 27.70% 30.57% 21.66% 26.20% 16.99% 23.45%

40 12.59% 21.73% 20.43% 25.04% 16.12% 17.22% 19.85% 22.94%

50 18.17% 22.22% 28.60% 34.20% 21.17% 22.84% 18.64% 19.32%

60 11.98% 17.74% 32.37% 35.48% 27.52% 30.28% 19.69% 22.03%

70 16.18% 22.45% 25.76% 31.44% 24.96% 27.18% 19.73% 21.06%

80 23.76% 25.53% 27.33% 30.38% 23.18% 23.36% 25.67% 28.51%

90 19.89% 21.97% 23.51% 25.22% 18.29% 18.55% 23.41% 29.67%

100 24.72% 26.13% 33.82% 36.56% 33.85% 34.04% 19.42% 23.48%

110 13.92% 14.84% 33.71% 36.02% 30.83% 32.75% 23.94% 28.13%

120 22.01% 23.45% 25.17% 28.24% 27.11% 29.49% 21.50% 23.16%

130 17.78% 20.78% 31.03% 32.40% 16.28% 17.94% 32% 32.88%

140 9.16% 11.59% 27.38% 28.41% 26.76% 29.50% 32.98% 34.32%

150 16.23% 18.52% 32.65% 34.24% 28.15% 31.71% 30.89% 32.03%

160 22.40% 23.18% 33.77% 36.16% 31.48% 33.45% 26.36% 29.16%

170 16.86% 19.21% 32.94% 35.87% 28.53% 30% 20.46% 20.22%

180 19.39% 22.02% 29.19% 33.27% 28.48% 29.56% 27.88% 29.68%

190 18.56% 20.50% 35.89% 37.46% 31.94% 34.44% 27.83% 28.73%

200 12.43% 13.59% 44.90% 45.93% 43.35% 43.60% 24.68% 24.76%

Ave.

Imp.
17.40% 20.40% 30% 33% 26% 28% 23.50% 25.97%

In fact, the PLC is only a cooperation strategy, which relies on a fixed route (the a priori route), that two vehicles

sequentially serve customers in the order or the opposite direction of the a priori route, whatever the demands reveal.

So, the CPU-time is primarily caused by the computation of the a priori-route. But, our strategy, the PCR, will further

improve (re-optimize) the customer visiting sequence. It means that we will use additional time to re-optimize the

initial a priori route.

The time spent in our method will cost more time compared to the PLC. But we explore whether the expense of the

additional time will bring a reward in saving the total distance cost. Table A.1 (in Appendix A) shows the associated

time increments, and Figure 4 indicates the additional time expenditure in performance improvements.
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(a) Time increment of PCR vs. Pair-PLC
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(b) Time increment of PCR vs. Multi-PLC

Fig. 4 CPU-time increment of PCR vs. Pair-PLC and Multi-PLC

Figure 4(a) and 4(b) show the gaps of CPU-time between the PCR versus the Pair-PLC and Multi-PLC get smaller

along with the problem size increase. The gaps decrease from almost 2 times in the smallest size 10 customers to

within 6% around 180 customers. It indicates the PCR is more capable in solving larger problem size, with nearly

equal time efforts but superior performance in cost savings.

6.2. Characteristics of PCR strategy

The advantages of the PCR are its dynamic visiting sequence and the cooperation via communication and parti-

tioning. In the PLC, task division happens only when the first failure occurs, whereas the PCR has more than one

opportunity to update the assignments. We now investigate the performance of the communication and partitioning.

6.2.1. Performance of communication

We first compare a PCR strategy (called Com) with communication to update the initial partition (α0,C \ α0)

and a strategy (called NonCom) without such communication. Table 2 presents the average costs and percentage

improvements for Com vs. NonCom, where the average is over 10 instances. The better performance in each case is

shown in bold. On average, Com dominates NonCom, e.g., 15845.39 versus 16098.9 for Midpoint with f̄ = 1.6. Com

has a lower cost for 15 of the 19 problems for Midpoint with f̄ = 1.6. The average improvements are 1.41%, 0.93%,

0.84%, and 1.7% for the four cases, with Com on average about 1.22% better than NonCom.
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Table 2 Comparison of cooperation with communication and without communication (cost)

#

customers

Midpoint f̄ = 1.6 (cost) Midpoint f̄ = 1.9 (cost) Corner f̄ = 1.6 (cost) Corner f̄ = 1.9 (cost)

Com NonCom Imp. Com NonCom Imp. Com NonCom Imp. Com NonCom Imp.

20 5313.95 5203.27 -2.13% 6023.69 6408.94 6.01% 9306.39 9416.63 1.17% 9992.34 10356.33 3.51%

30 6475.15 6581.35 1.61% 7691.39 7786.35 1.22% 10178.95 9755.30 -4.34% 10405.47 11113.72 6.37%

40 8796.19 9062.48 2.94% 11026.59 10987.38 -0.36% 13287.59 12772.51 -4.03% 12009.07 12422.78 3.33%

50 11190.91 11118.24 -0.65% 11231.17 11458.98 1.99% 12701.51 12128.77 -4.72% 13404.95 12686.04 -5.67%

60 12259.69 11735.63 -4.47% 12248.20 12503.51 2.04% 13492.57 13892.67 2.88% 13869.27 15134.16 8.36%

70 11196.91 11522.48 2.83% 13419.68 13363.64 -0.42% 13918.06 15168.49 8.24% 14254.41 14806.35 3.73%

80 11945.53 12362.21 3.37% 13637.48 13708.71 0.52% 15093.68 15389.79 1.92% 14890.82 15295.85 2.65%

90 13328.09 13689.56 2.64% 15845.28 15339.38 -3.30% 17662.64 17359.34 -1.75% 17082 17233.32 0.88%

100 12807.86 13595.97 5.80% 17118.53 16788.52 -1.97% 17256.84 18181.44 5.09% 19534.95 19429.73 -0.54%

110 17740.52 18125.46 2.12% 17888.56 18434.66 2.96% 18982.55 19458.37 2.45% 20283.95 21497.23 5.64%

120 17021.77 17122.23 0.59% 21994.80 21569.19 -1.97% 21870.30 22876.08 4.40% 21082.75 21388.18 1.43%

130 18973.7 19095.02 0.64% 20463.13 21143.62 3.22% 24183.17 22979.58 -5.24% 22080.12 22256.77 0.79%

140 21371.28 21443.07 0.33% 20506.99 20597.13 0.44% 21198.19 22579.51 6.12% 22745.28 22657.4 -0.39%

150 21041.67 21422.22 1.78% 23269.29 23396.54 0.54% 25287.67 24484.08 -3.28% 24055.08 23994.12 -0.25%

160 19325.54 20270.03 4.66% 22568.07 23091.12 2.27% 23676.75 24320.66 2.65% 26552 25797.23 -2.92%

170 21761.76 21043.65 -3.41% 21251.34 21909.98 3.01% 22622.37 23069.55 1.94% 24449.59 24350.7 -0.41%

180 23147.37 23602.99 1.93% 23662.68 23027.62 -2.76% 24351.51 24494.95 0.59% 25173.61 26604.55 5.38%

190 23236.91 23912.79 2.83% 24396.97 25220.36 3.26% 26190.33 26351.81 0.61% 27803.02 28148.02 1.23%

200 24127.6 24970.51 3.38% 26778.41 27015.6 0.88% 27894.02 28276.91 1.35% 26527.89 26326.72 -0.77%

Ave. 15845.39 16098.9 1.41% 17422.22 17565.85 0.93% 18902.9 19102.97 0.84% 19273.50 19552.59 1.70%

Superior 15 vs. 4 \ 13 vs. 6 \ 13 vs. 6 \ 12 vs. 7 \

NonCom is the method without following communications to adjust vehicle assignment, the time will be saved for

lack of recalculation of the cost-to-go values and adjustment of guidance for vehicle services after each communication

interrupts. Table B.1 (in Appendix B) shows the more time spent by Com versus NonCom. On average, the CPU-time

increment is 1
4
× (0.2%+0.28%+0.96%+0.66%) = 0.53%, but Com dominates NonCom with average 1.22% in cost

saving, so, we can see that the additional time spent in vehicle adjustment by triggering communications will result a

valuable improvement in cost reduction.

6.2.2. Performance of partitioning

To evaluate our partitioning (called App-Par), we compare it with another approach (called Sim-Par) in which we

divide each a priori route rk = {l, ik
1
, ik

2
, . . . , ik

j∗
, ik

j∗+1
, . . . , ikn, l

′} (Step 1 of Section 5.2) at the point

j∗ = ⌊
| uk |

2
⌋, 0 ≤ k ≤ K∗ − 1. (19)

Thus, each vehicle is assigned half of the customers: rk
1
= {l, ik

1
, ik

2
, . . . , ik

⌊
|uk |

2
⌋
} and rk

2
= {l′, ikn, i

k
n − 1, . . . , ik

⌊
|uk |

2
⌋+1
}.
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Table 3 Comparison of App-Par and Sim-Par (cost)

#

customers

Midpoint f̄ = 1.6 (cost) Midpoint f̄ = 1.9 (cost) Corner f̄ = 1.6 (cost) Corner f̄ = 1.9 (cost)

App-

Par

Sim-

Par
Imp.

App-

Par

Sim-

Par
Imp.

App-

Par

Sim-

Par
Imp.

App-

Par

Sim-

Par
Imp.

20 5313.95 6748.76 21.26% 6023.69 6098.52 1.23% 9306.4 11971.7 22.26% 9992.34 9487.95 -5.32%

30 6475.15 6802.22 4.81% 7691.39 8337.12 7.75% 10178.95 10413.96 2.26% 10405.47 12149.79 14.36%

40 8796.19 9747.64 9.76% 11026.6 11775.44 6.36% 13287.59 13138.43 -1.14% 12009.07 13430.3 10.58%

50 11190.91 11843.38 5.51% 11231.17 11817.75 4.96% 12701.51 16813.28 24.46% 13404.95 12775.45 -4.93%

60 12259.7 12189.71 -0.57% 12248.2 11703.99 -4.65% 13492.57 16553.05 18.49% 13869.27 14947.96 7.22%

70 11196.91 11385.48 1.66% 13419.68 13272.79 -1.10% 13918.06 15535.06 10.41% 14254.41 14941.35 4.60%

80 11945.53 12129.55 1.52% 13637.48 14015.17 2.69% 15093.68 17364.9 13.08% 14890.82 20445.42 27.17%

90 13328.09 12916.39 -3.19% 15845.28 15290.83 -3.63% 17662.64 17156.03 -2.95% 17082 17150.64 0.40%

100 12807.86 14744.04 13.13% 17118.53 16768.14 -2.09% 17256.84 19185.6 10.05% 19534.95 18455.34 -5.85%

110 17740.52 19168.21 7.45% 17888.56 16503.32 -8.39% 18982.55 19764.67 3.96% 20283.95 20665.6 1.85%

120 17021.77 18480.11 7.89% 21994.8 20421.8 -7.70% 21870.30 23852.88 8.31% 21082.75 20512.68 -2.78%

130 18973.7 18225.78 -4.10% 20463.13 19712.13 -3.81% 24183.17 23470.77 -3.04% 22080.12 24786.06 10.92%

140 21371.29 21850.31 2.19% 20506.99 21151.39 3.05% 21198.19 25166.74 15.77% 22745.28 22588.61 -0.69%

150 21041.67 21154.30 0.53% 23269.29 22523.59 -3.31% 25287.67 25138.98 -0.59% 24055.08 23294.44 -3.27%

160 19325.54 20998.81 7.97% 22568.07 24104.95 6.38% 23676.75 24872.27 4.81% 26552 28230.64 5.95%

170 21761.76 22733.84 4.28% 21251.34 20528.98 -3.52% 22622.37 22356.04 -1.19% 24449.59 24226.22 -0.92%

180 23147.37 25573.77 9.49% 23662.68 23580.37 -0.35% 24351.51 23454.27 -3.83% 25173.61 27221.38 7.52%

190 23236.91 24710.15 5.96% 24396.97 24177.62 -0.91% 26190.33 29282.02 11% 27803.02 26933.46 -3.23%

200 24127.59 25268.65 4.52% 26778.41 26994.61 0.80% 27894.02 29917.73 6.76% 26527.89 25924.11 -2.33%

Ave. 15845.39 16666.9 4.93% 17422.22 17304.13 -0.33% 18902.9 20284.65 7.29% 19273.5 19903.55 3.17%

Superior 16 vs. 3 \ 8 vs. 11 \ 13 vs. 6 \ 10 vs. 9 \

Table 3 gives the results. App-Par generally performs better, with average improvements of 4.93%, 7.29%, and 3.17%

in three cases, but a worse (−0.33%) performance for Midpoint with f̄ = 1.9. The total average cost reduction is

1
4
× (4.93% + 7.29% + 3.17% − 0.33%) = 3.96%.

Table C.1 (in Appendix C) shows the comparison of CPU-time between App-Par and Sim-Par. The table reveals

that the two methods have almost equal performance in time cost. In average 10 of each 19 problems, more than

half number of problems, the App-Par saves more time, with average 4.9% (= 1
4
× (9.1%− 0.01%+ 5.33% + 5.17%))

better than Sim-Par. In addition, App-Par also performs better in cost saving with 3.96% improvement. In general,

the App-Par reveals a good performance in both cost saving and time expenditure.

7. Conclusions

We have proposed the PCR strategy, an effective cooperation approach for vehicle routing with stochastic de-

mands. It performs better than the PLC cooperation scheme. We have also extended partial reoptimization [8] to
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the multivehicle case. In the single-vehicle case, partial reoptimization has been shown to perform better than other

reoptimization methods such as the roll-out algorithm and approximate dynamic programming.

Compared with the PLC, the PCR reduces the cost by 20% to 30%. When we compare Com and NonCom we find

that the use of communication reduces the cost by an average of 1.22%. When we compare App-Par and Sim-Par we

find that our partitioning reduces the cost by an average of 3.96%.

Future research could explore other partitioning methods. For instance, the cost-to-go values of (13) and (14)

could be approximated by ν̃(l, ik
1
, ik

j∗
) and ν̃(l′, ikn, i

k
j∗+1

) instead of the simplified dis0(l, ik
1
, ik

j∗
) and dis1(l′, ikn, i

k
j∗+1

), but

at the expense of computational efficiency. Future work should also focus on clustering the customers, so that the

PCR can solve the multivehicle problem one cluster at a time. Partial reoptimization [8] could thus be extended to the

multivehicle VRPSD.
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Appendix A.

Table A.1 CPU-time increment in PCR Versus Pair-PLC and Multi-PLC

# customers

Midpoint depot Corner depot

f̄ = 1.6 f̄ = 1.9 f̄ = 1.6 f̄ = 1.9

PCR vs.

Pair-PLC

PCR vs.

Multi-PLC

PCR vs.

Pair-PLC

PCR vs.

Multi-PLC

PCR vs.

Pair-PLC

PCR vs.

Multi-PLC

PCR vs.

Pair-PLC

PCR vs.

Multi-PLC

20 203% 198.80% 130% 126.60% 173.82% 169.68% 123.56% 121.57%

30 96.39% 95.68% 99.12% 97.68% 119.02% 117.43% 121.58% 119.52%

40 64.84% 64.42% 57.00% 56.28% 74.29% 73.50% 52.53% 51.85%

50 44.68% 44.39% 39.02% 38.38% 54% 53.28% 39.30% 39.14%

60 35.26% 35.11% 28.97% 28.53% 38.05% 37.58% 31.15% 31.03%

70 28.66% 28.50% 23.43% 23.23% 29.64% 29.43% 22.95% 22.85%

80 24.19% 24.11% 19.10% 18.99% 24.71% 24.60% 19.79% 19.66%

90 20.36% 20.31% 9.91% 9.86% 20.28% 20.22% 16.16% 16.12%

100 27.78% 27.76% 16.83% 16.68% 18.22% 18.10% 14.05% 13.95%

110 14.76% 14.68% 13.03% 12.90% 17.59% 17.46% 12.11% 12.06%

120 14.74% 14.70% 11.10% 11.02% 14.41% 14.33% 11.49% 11.40%

130 13.24% 13.21% 10.26% 10.18% 13.45% 13.38% 12.23% 12.10%

140 11.92% 11.89% 7.88% 7.83% 11.74% 11.69% 10.03% 9.96%

150 10.21% 10.17% 10.65% 10.59% 14.47% 14.41% 9.71% 9.63%

160 10.28% 10.24% 8.71% 8.64% 11.43% 11.35% 2.35% 2.34%

170 9.96% 9.92% 7.72% 7.66% 10.48% 10.42% 7.88% 7.83%

180 8.95% 8.92% 6.51% 6.45% 11.50% 11.44% 6.67% 6.66%

190 12.56% 12.55% 4.87% 4.83% 6.96% 6.92% 7.33% 7.30%

200 8.27% 8.23% 8.87% 8.79% 9.42% 9.34% 5.82% 5.78%
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Appendix B.

Table B.1 CPU-time increment of cooperation with communication versus without communication

#

customers

Midpoint f̄ = 1.6 (second) Midpoint f̄ = 1.9 (second) Corner f̄ = 1.6 (second) Corner f̄ = 1.9 (second)

Com NonCom
Time-

Incre.
Com NonCom

Time-

Incre.
Com NonCom

Time-

Incre.
Com NonCom

Time-

Incre.

20 1.68 1.65 1.86% 1.35 1.35 0 1.42 1.41 1.09% 1.3 1.29 0.44%

30 4.42 4.42 0.16% 4.52 4.52 0.04% 4.98 4.94 0.67% 5.38 5.15 4.46%

40 19.47 19.47 0 18.29 18.15 0.76% 20.3 19.69 3.09% 19.57 19.55 0.12%

50 41.33 41.33 0.01% 37.97 37.96 0.04% 42.06 40.23 4.54% 40.35 40.21 0.35%

60 76.86 76.86 0 71.01 70.83 0.25% 76 74.72 1.72% 76.12 76.12 0

70 131.27 131.26 0 124.98 124.98 0 131.27 131.27 0 128.07 128.06 0

80 211.27 210.98 0.14% 204.65 204.64 0 214.29 214.28 0 207.34 207.26 0.04%

90 322.41 322.39 0 299.03 298.51 0.18% 327.22 326.55 0.21% 255.81 254.78 0.40%

100 566.65 566.65 0 309.19 309.18 0 312.87 312.6 0.08% 371.27 371.27 0

110 531.53 531.52 0 523.78 520.48 0.63% 544.92 537.39 1.40% 531.79 531.76 0

120 747.16 743.34 0.51% 724.05 724 0 745.64 745.41 0.03% 740.58 736.73 0.52%

130 1010.42 1007.75 0.26% 984.38 980.98 0.35% 1012.92 1007.89 0.50% 1020.64 998.92 2.17%

140 1333.61 1333.42 0.01% 1286.06 1285.17 0.07% 1332.09 1332.04 0 1334.38 1324.14 0.77%

150 1750.69 1750.5 0.01% 1671.49 1664.35 0.43% 1729.23 1714.48 0.86% 2023.85 2002.03 1.09%

160 2548.04 2540.91 0.28% 2743.7 2723.77 0.73% 2812.15 2785.81 0.95% 6896.25 6893.3 0.04%

170 3463.02 3453.28 0.28% 3383.07 3364.22 0.56% 3469.79 3438.36 0.91% 3438.4 3413.99 0.72%

180 4268.89 4267.5 0.03% 4239.83 4208.07 0.75% 4438.82 4392.97 1.04% 4012.5 4012.26 0

190 5542.74 5533.48 0.17% 7302.9 7273.9 0.40% 7448.65 7404.71 0.59% 3633.48 3605.53 0.78%

200 4319.16 4318.85 0 5307.41 5305.33 0.04% 5334.41 5306.76 0.52% 7689.34 7645.02 0.58%

Ave. \ \ 0.20% \ \ 0.28% \ \ 0.96% \ \ 0.66%
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Appendix C.

Table C.1 CPU-time increment of App-Par versus Sim-Par

#

customers

Midpoint f̄ = 1.6 (second) Midpoint f̄ = 1.9 (second) Corner f̄ = 1.6 (second) Corner f̄ = 1.9 (second)

App-

Par

Sim-

Par

Time-

Incre.

App-

Par

Sim-

Par

Time-

Incre.

App-

Par

Sim-

Par

Time-

Incre.

App-

Par

Sim-

Par

Time-

Incre.

20 1.68 1.31 -28.24% 1.35 1.2 13.04% 1.42 1.24 14.35% 1.3 1.2 8.13%

30 4.42 4.14 -6.78% 4.52 4.05 11.84% 4.98 4.16 19.55% 5.38 4.48 20.20%

40 19.47 12.65 -53.94% 18.29 15.96 14.57% 20.3 12.64 60.57% 19.57 14.94 31%

50 41.33 32.22 -28.31% 37.97 36.56 3.86% 42.06 34.48 21.97% 40.35 31.66 27.43%

60 76.86 66.9 -14.89% 71 70.64 0.52% 76 67.72 12.23% 76.12 66.77 14%

70 131.27 128.67 -2.02% 124.98 125.3 -0.25% 131.27 132.06 -0.60% 128.07 132.12 -3.06%

80 211.27 242.17 12.76% 204.65 203.97 0.34% 214.3 205.53 4.26% 207.34 205.71 0.80%

90 322.41 316.54 -1.86% 299.03 314.97 -5.06% 327.22 318.66 2.68% 255.81 310.95 -17.73%

100 566.65 331.99 -70.69% 309.19 321.4 -3.80% 312.87 461.55 -32.20% 371.27 453.74 -18.17%

110 531.53 665.34 20.11% 523.78 604.59 -13.37% 544.92 663.68 -17.89% 531.79 650.5 -18.25%

120 747.16 911.85 18.06% 724.05 749.72 -3.42% 745.64 913.49 -18.37% 740.58 894.6 -17.21%

130 1010.42 1337.29 24.44% 984.38 1044.34 -5.74% 1012.92 1372.43 -26.20% 1020.64 2010.8 -49.24%

140 1333.61 1960.84 31.99% 1286.06 1455.86 -11.66% 1332.09 2515.86 -47.05% 1334.38 3194.54 -58.23%

150 1750.69 4204.13 58.36% 1671.49 1689.8 -1.08% 1729.23 4199.3 -58.82% 2023.85 1801.12 12.37%

160 2548.04 2743.16 7.11% 2743.7 2722.03 0.80% 2812.15 3222.36 -12.73% 3121.25 2732.66 14.22%

170 3463.02 3651.73 5.17% 3383.07 3370.42 0.38% 3469.79 4522.42 -23.28% 3438.4 3813.89 -9.85%

180 4268.89 3775.11 -13.08% 4239.83 4250.87 -0.26% 4438.82 4227.52 5% 4012.5 4212.92 -4.76%

190 5542.74 5203.03 -6.5% 7302.9 7313.06 -0.14% 7448.65 5971.73 24.73% 3633.48 5728.79 -36.58%

200 4319.16 6266.84 31.08% 5307.41 5322.26 -0.28% 5334.41 7553.98 -29.38% 7689.34 7200.24 6.79%

Ave. \ \ -9.10% \ \ 0.01% \ \ -5.33% \ \ -5.17%

Superior 9 vs. 10 \ 11 vs. 8 \ 10 vs. 9 \ 10 vs. 9 \
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