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the maximum duration must be lower than a given threshold. In the second, expected 
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resulting problem, we propose a greedy randomized adaptive search procedure (GRASP) 

enhanced with heuristic concentration (HC). The GRASP component uses a set of 

randomized route-first, cluster-second heuristics to generate starting solutions and a 

variable-neighborhood descent procedure for the local search phase. The HC component 

assembles the final solution from the set of all routes found in the local optima reached by 

the GRASP. For each strategy, we discuss extensive computational experiments that 

analyze the impact of route-duration constraints on the VRPSD. In addition, we report 

state-of-the-art solutions for an established set of benchmarks for the classical VRPSD. 
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1 Introduction

In the vehicle routing problem with stochastic demands (VRPSD) a set of geographically spread customers
demand (or supply) a product that must be delivered (or collected) using a fleet of limited-capacity vehi-
cles located at a central depot. The particular characteristic of the problem is that the exact quantities
demanded (supplied) by each customer are only known upon the vehicle’s arrival at the customer loca-
tion (i.e., they are stochastic). It is assumed, however, that each customer’s demand follows a known
probability distribution. The main impact of stochastic demands is that they introduce uncertainty into
the feasibility of the routes; depending on the demand realizations (i.e., the actual values), a vehicle may
arrive at a customer without enough capacity to satisfy its demand.

To deal with uncertain demands in the VRPSD, researchers have explored models based on various
solution frameworks including chance-constraint programming, stochastic programming with recourse,
dynamic programming, Markov decision models, and the multi-scenario approach. Each of these frame-
works takes into accounts factors such as instance size, assumptions about available technology (e.g., real-
time communication between vehicles and decision-makers), and assumptions about managerial policies
(e.g., whether or not routes can be modified during their execution). For a complete discussion of the
characteristics of each framework the reader is referred to [27] and [22].

The most widely studied models in the literature are those based on two-stage stochastic programming
[7]. As the name suggests, in this framework the problem is solved in two phases. In the first phase a
set of a priori routes is planned, and in the second phase the routes are executed. If there is a capacity
constraint violation, or route failure, a corrective action, known as recourse, is taken to recover feasibility.
In general, the recourse actions generate an extra cost known only after the second phase. Thus, the
objective is to design during the first phase a set of routes that minimizes the sum of the cost of the a
priori routes and the expected cost of the recourse actions.

The most traditional recourse action, known as detour-to-depot, involves traveling back to the depot
to restore the vehicle capacity, returning to the customer to complete the service, and then continuing
the route as initially planned [26]. However, more sophisticated approaches have recently been reported
in the literature. These include performing preemptive trips to the depot in an attempt to avoid route
failures [35, 4], assigning each vehicle a partner to provide back-up in the event of a failure [1], and
reassigning the customers of a failing route to the planned route of a vehicle with spare capacity [21].
All recourse actions add travel time to the planned routes. Since the exact number of recourses and the
extra time they add to each route is not known when the routes are planned, the total duration of a
route is itself a random variable. As pointed out by [8], this may lead to a problem in practice because
the routes may be subject to an additional feasibility criterion: duration constraints (DCs).

DCs prevent the duration of a route from exceeding an upper bound. Therefore, they can model a
number of industry practices such as shift duration limits and depot opening hours [8]. Despite their
practical relevance, DCs have been studied only rarely in the context of the VRPSD. To the best of our
knowledge, the body of work in this domain is limited to about ten references, most of them focusing on
approaches based on two-stage stochastic programming. For the sake of brevity, in the remainder of this
section we focus on these approaches; however, we refer the reader to the excellent papers by Bent and
Van Hentenryck [2, 3] and Goodson et al [12, 13] for research based on other frameworks.

Yang et al [35] is probably the first reference to DCs in the VRPSD literature. The authors handle
these constraints by imposing a limit on the expected duration of the a priori routes. Mendoza et al
[18, 19] applied the same strategy in the context of the multi-compartment VRPSD (MC-VRPSD), a
problem in which each customer demands several incompatible products that are transported in different
vehicle compartments. The main advantage of this constrained expected duration approach is its compu-
tational convenience. Indeed, since the expected duration of a route is usually computed as part of the
objective function, the DC feasibility check requires no additional effort. On the other hand, although
this strategy may be adequate for practical situations where DCs are rather soft constraints, it does not
provide decision-makers with an explicit mechanism to express their preferences about violations of these
constraints.

Tan et al [31] and [29] propose an alternative approach, based on penalizing violations of the DCs
in the objective function. Tan et al [31] use the penalties as part of a cost function called drivers’
remuneration that they optimize, along with the total traveled distance and the number of vehicles, using
a multi-objective optimization approach. [29] include the penalties directly in the total-duration objective
function and use an established mono-objective approach [28] to solve the problem. In both cases, the
authors use Monte Carlo simulation to generate multiple scenarios of the demand realizations that are
used to estimate the total expected duration of the routes and the penalties for DC violations. [17]
propose a different strategy to address DCs in the context of a bi-objective MC-VRPSD: they minimize
simultaneously the total expected cost of a set of routes and its coefficient of variation. In their approach,
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DCs are imposed on planned routes as chance constraints ensuring that the probability of completing a
route in less than its maximum duration is greater than a given threshold. To perform the feasibility
check of the chance constraints, the authors use Monte Carlo simulation.

From the conceptual point of view, both the penalty and chance-constraint approaches overcome the
shortcomings of the constrained expected-duration approach. However, the implementations based on
Monte Carlo simulation may be unnecessarily expensive from a computational point of view because one
may need to generate a large number of scenarios to achieve statistical significance. Haugland et al [15]
and Erera et al [8] propose approaches for applications in which the DCs are hard constraints. In [15] the
authors solve a VRPSD with DCs as part of the evaluation of the solution to a districting problem. To
check the DC feasibility the authors use an upper bound on the total duration of a route. Erera et al [8]
propose an algorithm to estimate the maximum duration of a route for any realization of the customer
demands. They use its result as an input to check the DCs.

In this paper we revisit the penalty and chance-constraint strategies to deal with DCs in the VRPSD.
In contrast to previous approaches, we do not use Monte Carlo simulation. We instead explicitly build
the probability distribution of the duration of a route. We develop a hybrid metaheuristic that, with
minor modifications, is able to solve both versions of the problem. Our method is a greedy randomized
adaptive search procedure (GRASP) with heuristic concentration (HC). The GRASP component uses
a set of randomized route-first, cluster-second heuristics to generate starting solutions and a variable-
neighborhood descent (VND) procedure for the local search phase. The HC component assembles the final
solution from the set of all routes found in the local optima reached by the GRASP. We present and discuss
the results obtained by our method for both classical VRPSD instances and instances adapted to fit the
definition of the VRPSD with DCs. For the latter case, we analyze the advantages and disadvantages of
using the penalty and chance-constraint strategies rather than a more classical approach: the constrained
expected duration.

The remainder of the paper is organized as follows. Section 2 defines the problem, introduces the
relevant notation, and presents our two problem formulations. Section 3 presents our hybrid metaheuris-
tic, and Section 4 discusses the computational experiments. Section 5 concludes the paper and outlines
future research.

2 Problem formulation

The vehicle routing problem with stochastic demands and DCs (VRPSD-DC) can be defined on a complete
and undirected graph G = (V, E), where V = {0, . . . , n} is the vertex set and E = {(v, u) : v, u ∈ V, v ̸= u}
is the edge set. Vertices v = 1, . . . , n represent the customers and vertex v = 0 represents the depot.
A weight te is associated with edge e = (v, u) = (u, v) ∈ E , and it represents the travel time between
vertices v and u. Each customer v has a random demand ξ̃v for a given product. We assume that each
customer’s demand follows an independent and known probability distribution. The customers are served
using an unlimited fleet of homogeneous vehicles with capacity Q and maximum travel time T located at
the depot. We assume that the demand realizations ξ⃗ are nonnegative and less than the capacity of the
vehicle. We also assume that each customer’s demand realization is not known until the vehicle arrives
at the customer location.

A planned route r is a sequence of vertices r = (0, v1, . . . , vi, . . . , vnr , 0), where vi ∈ V \ {0} and nr is
the number of customers served by the route. Depending on the context, we may refer to route r as an
ordered set of edges r = {(0, v1), . . . , (vi−1, vi), . . . , (vnr , 0)}. During the execution of a planned route,
if a route failure occurs, that is, the capacity of the vehicle is exceeded, the detour-to-depot recourse is
applied to recover the feasibility of the route. We denote by Pr(vi) the probability of a route failure
occurring while serving customer vi ∈ r. This failure probability is given by

Pr(vi) =

nr∑
i=2

i−1∑
f=1

Pr

i−1∑
j=2

ξ̃vj ≤ f ·Q <
i∑

j=2

ξ̃vj

 (1)

where the probability term represents the probability of the f th failure occurring while serving customer
vi. For the details of the derivation of (1) see [32]. Note that since all the demand realizations are less
than the capacity of the vehicle, the maximum number of failures in a route is nr−1, and the first failure
cannot occur while serving the first customer. Consequently, the total duration of a route T̃r follows
a discrete distribution with 2nr−1 possible outcomes; we refer to each of these outcomes as a duration
profile. Let P(r) be the set of all possible duration profiles for route r. Let Pr(p) be the probability of
observing duration profile p ∈ P(r), and let Tr(p) be the total duration of route r if profile p is observed.
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Figure 1: Duration profiles for a given route and their attributes

We have Tr(p) = tr + φr(p), where tr =
∑

(u,v)∈r t(u,v) is the total planned travel time and φr(p) is the
total additional travel time added by the recourse actions. Figure 1 illustrates the concept of duration
profiles.

2.1 Chance-constraint formulation

In our first formulation we extend the classical two-stage stochastic programming formulation for the
VRPSD to include the DCs as chance constraints. The resulting problem involves finding a set R of
planned routes that minimizes

E [C1(R)] =
∑
r∈R

E
[
T̃r

]
(2)

s.t. ∑
r∈R

Pr
(
T̃r > T

)
≤ β ∀ r ∈ R (3)

∑
i∈r

E
[
ξ̃vi

]
≤ Q ∀ r ∈ R (4)

r
∩

r′ = {0} ∀ r, r′ ∈ R, r ̸= r′ (5)∪
r∈R

= V (6)

The objective (2) minimizes the total expected duration of the set of routes R. Constraint (3) ensures
that the probability that a route violates the duration limit is lower than a given threshold β. Using the
duration profiles of route r as an input, the first term in (3) can be computed as

Pr
(
T̃r > T

)
=

∑
p∈P(r)|Tr(p)>T

Pr(p). (7)

Constraint (4) ensures that each planned route is designed so that the total expected load does not exceed
the capacity of the vehicle. Although it can be argued that this constraint is not critical in practical
settings, it is a standard constraint in the VRPSD literature [see for instance 16, 5, 11, 20]. Therefore,
we decided to retain it to allow a more direct comparison with previously published results. Constraints
(5) and (6) guarantee that each customer is included in one and only one planned route.
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2.2 Penalty formulation

In our second formulation we follow a completely different approach. To account for the DCs, we extend
the classical VRPSD objective to include the expected cost of overtime, i.e., the time that each route
travels above the limit T . In this formulation the problem involves finding a set of planned routes R
verifying constraints (4)–(6) and minimizing

E [C2(R)] =
∑
r∈R

E
[
T̃r

]
+ E

[
ϕ
(
Õr

)]
(8)

where

E
[
ϕ
(
Õr

)]
=

∑
p∈P(r)|Tr(p)>T

ϕ (Tr(p)− T )× Pr(p) (9)

is the expected overtime cost.
In the remainder of the paper, we refer to our chance-constraint and penalty formulations as CC and

PF.

3 GRASP with HC approach

To solve our two formulations for the VRPSD-DC, namely CC and PF, we developed a GRASP with HC.
Algorithm 1 describes the proposed approach. At the kth GRASP iteration (lines 3–14) we greedily
construct a starting solution (lines 5–6) and then try to improve it using a local search procedure (line
7). To construct the starting solution, we select a randomized TSP heuristic h from a predefined set H
and use it to build a giant TSP tour tspk visiting all the customers (line 5). We then use an adaptation
of the s-split procedure for the VRPSD [19] to optimally partition tspk into a set of feasible routes that
forms a starting solution sk (line 6). We next launch a VND procedure from the starting solution sk

(line 7). At the end of iteration k, we update the best solution s∗ (line 8) and add the routes of the local
optimum (i.e., sk) to a set Ω (lines 9–11). After K iterations the GRASP stops and we carry out the
HC. In this phase, our method solves a set partitioning problem (SPP) over the set of routes Ω (line 15).
Note that the specific implementations of split(·) and vnd(·) vary depending on the formulation (i.e.,
CC or PF) being solved, whereas the implementations of tsp(·), update(·), and setPartitioning(·) are
unchanged. In the remainder of this section we present a detailed description of the main algorithmic
components of our method.

Algorithm 1 GRASP+HC: General structure

1: function GRASPHC(H,K,mode) ◃ mode={CC, PF}
2: Ω← ∅, k ← 1
3: while k ≤ K do
4: for h ∈ H do
5: tpsk ←tsp(h)
6: sk ←split(tspk,mode)
7: sk ←vnd(sk,mode)
8: s∗ ←update(sk, s∗)
9: for r ∈ sk do

10: Ω← Ω ∪ r
11: end for
12: k ← k + 1
13: end for
14: end while
15: R← setPartitioning(Ω, s∗)
16: return R
17: end function

3.1 Greedy randomized construction

Mendoza and Villegas [20] observed that using multiple sampling procedures instead of just one, as is
traditional, may improve the performance of vehicle routing heuristics that are based on drawing samples
from the solution space. Given this observation, we decided to embed in our method four versions of a
randomized route-first, cluster-second heuristic.
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3.1.1 Routing phase

For the routing phase, our approach uses randomized versions of four TSP constructive heuristics: ran-
domized nearest neighbor (RNN), randomized nearest insertion (RNI), randomized best insertion (RBI),
and randomized farthest insertion (RFI). Although the strategies we used to generate the randomized
versions of the four heuristics are directly borrowed from [20], for the sake of completeness we briefly
describe them here.

Let tspk be an ordered set representing the TSP tour being built at iteration k, W the set of vertices
visited by tspk, and Z = V \ W an ordered set of non-routed vertices. For the sake of simplicity, we
assume that the sets W and Z are updated every time a customer is added to tspk. Let us also define
three metrics for every customer v ∈ Z, namely, tmin(v) = min{t(v,u)|u ∈ W}, tmax(v) = max{t(v,u)|u ∈
W}, and ∆min(v) = min{t(u,v) + t(v,w) − t(u,w)|(u,w) ∈ tspk}. Finally, let l be a random integer in
{1, . . . ,min{Lh, |Z|}}, where parameter Lh denotes the randomization factor of each heuristic. The four
sampling heuristics are as follows:

• RNN: Set tspk = (0) and u = 0. At each iteration identify the vertex v that is the lth nearest
vertex to u, append v to tspk, and set u = v. Stop when |Z| = 0 and append 0 to tspk to complete
the tour.

• RNI: Initialize tspk as a tour starting at the depot and performing a round trip to a randomly
selected customer (henceforth we will refer to this procedure simply as initialize tspk). At each
iteration sort Z in non-decreasing order of tmin(v). Insert v = Zl (i.e., the lth element in the
ordered set Z) in the best possible position in the tour tspk (i.e., the position generating the
smallest increment in the travel time of the tour). Stop when |Z| = 0.

• RFI: Initialize tspk. At each iteration sort Z in nondecreasing order of tmax(v) and insert v = Zl

in the best possible position in the tour tspk. Stop when |Z| = 0.

• RBI: Initialize tspk. At each iteration sort Z in nondecreasing order of ∆min(v) and insert v = Zl

in the best possible position in the tour tspk. Stop when |Z| = 0.

3.1.2 Clustering phase

To extract a feasible solution sk from tspk, our approach uses an adaptation of the s-split procedure for
the VRPSD proposed in [19]. S-split builds a directed and acyclic graph G′ = (V ′,A) composed of the
ordered vertex set V ′ = (v0, v1, . . . , vi, . . . , vn) and the arc set A. Vertex v0 = 0 is an auxiliary vertex,
while vertices v1, . . . , vn ∈ tspk \ {0}. The vertices in V ′ are arranged in the order in which they appear
in tspk. Arc (vi, vi+nr

) ∈ A represents a feasible route r(vi,vi+nr )
with evaluation er(vi,vi+nr

)
starting and

ending at the depot and traversing the sequence of customers from vi+1 to vi+nr . The evaluation of route
r(vi,vi+nr )

is the contribution of the route to objective function (2) or (8) depending on the formulation
being solved. To retrieve st, the procedure finds the set of arcs (i.e., routes) along the shortest path
connecting 0 and vn in G′. Figure 2 illustrates the splitting procedure.

Figure 2: Splitting procedure: Graphical example

It is worth noting that since G′ is directed and acyclic, building the graph and finding the shortest path
can be done simultaneously. To accomplish this goal, our method uses an algorithm based on the splitting
procedure proposed by [24] for the classical capacitated VRP. Algorithm 2 outlines the procedure. After
initializing the shortest path labels (lines 2–5) we enter the outer loop (lines 6–22). Each pass through
the outer loop sets the tail of an arc. Then we use the inner loop (lines 9–21) to build all the arcs sharing
the same tail node. At the start of each inner-loop iteration, we build a new arc by simply extending
the last generated arc. In the next step, we evaluate the weight of the arc and whether or not it should
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be added to the auxiliary graph. These tasks are accomplished by evaluating the route corresponding
to the arc in terms of both its contribution to the objective function er and its feasibility fr (line 12).
If the arc is added to the graph, we update the shortest path and predecessor labels (lines 14–17) and
move to the next inner-loop iteration; otherwise, we exit the loop. After completing the outer loop we
retrieve the solution using the incoming TSP tour and the vector of predecessor labels (for an algorithm
that retrieves the solution we refer the reader to Prins [24]).

Algorithm 2 Splitting procedure: Pseudocode

1: function split(tsp,mode)
2: c0 ← 0 ◃ c: shortest path labels
3: for i = 1 to n do
4: ci ←∞
5: end for
6: for i = 1 to n do
7: j ← i+ 1
8: P ← ∅ ◃ P : duration profile tree
9: repeat

10: r ← r(i,j)
11: continue← false
12: ⟨er, fr,P⟩ ← evaluate(r,P, mode) ◃ er: evaluation, fr: feasibility
13: if fr = true then
14: if ci−1 + er ≤ cj then
15: cj ← ci−1 + er
16: pj ← i− 1 ◃ p: predecessor labels
17: end if
18: continue← true
19: j ← j + 1
20: end if
21: until j > n or ¬continue
22: end for
23: s← retrieveSolution(tsp, p)
24: return s
25: end function

The route evaluation procedure (line 12) differs slightly depending on the formulation being solved.
In both cases, however, the evaluation starts by checking the expected load constraint (which can be
checked in constant time). If the route fails the expected load check, the evaluation is truncated to avoid
unnecessary computation. In the next step, we compute the duration profiles of the route. To accomplish
this task efficiently we maintain a profile tree P, storing the duration profiles of all the routes previously
evaluated during the current outer-loop iteration. Since the route r evaluated at a given point is just a
one-customer extension of the route evaluated in the previous iteration, its duration profiles P(r) can be
built by adding a new level to P instead of building a whole new tree for the route. Figure 3 illustrates
this operation. As they are built, the duration profiles are used to compute the contribution of the route
to the objective function er, i.e., Equation (8) for PF and Equation (2) for CC. In the latter case, the
duration profiles are also used to check the route’s feasibility fr in terms of the DC (3).

Note that as a result of the expected load constraint the number of customers served by the largest
route generated during an inner-loop iteration can be approximated by

n̄r =
∑
vi∈r

⌈
E [ξvi ]

Q

⌉
. (10)

Note also that with the tree-extension procedure the total number of operations needed to compute the
duration profiles of all the routes generated during a single outer-loop iteration is O(2n̄r ). Since there
are n iterations in the outer loop, our split algorithm runs in O(n · 2n̄r ). Although the execution time
of the procedure grows exponentially with n̄r, in practical settings the average number of customers per
route tends to be rather low [33].

3.2 Local search procedure

To improve the solutions generated by the constructive phase we use a VND [14] with two neighbor-
hoods: re-locate and 2-opt. For both neighborhoods we use intra-route and inter-route versions with
first-improvement selection. In general, performing local search in stochastic vehicle routing problems
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Figure 3: Route evaluation procedure: Building route-duration profiles

is particularly demanding from a computational point of view, because move evaluations require the
computation of complex objective functions and constraints. To overcome these difficulties, authors have
proposed various strategies. For instance, [10] develop quick proxies to evaluate the impact of moves
in the objective function of a solution to the VRPSD with stochastic customers. Using the proxies,
the authors build an efficient tabu search that needs to compute the actual objective function of the
search solution only every few iterations. [12] propose a different approach in the context of the classical
VRPSD: their approach is a hybrid of simulated annealing and local search. It focuses exclusively on
the deterministic part of the objective function (i.e., the total planned duration of the routes) during
the first iterations, and it starts considering the stochastic part (i.e., the expected travel time added by
recourses) only toward the end of the process. We propose an alternative strategy based on evaluating
moves according to a three-step hierarchical procedure.

Let s be a search solution, f(s) the objective function of s, and t(s) =
∑

r∈s tr the total planned
duration of the routes in s. Let m be a candidate move. Let r and r′ be the two routes and s′ the
solution that results from applying m to s. The move evaluation procedure is as follows. In the first step,
we check the feasibility of r and r′ in terms of the expected load constraint. If either route is infeasible,
the move is discarded and the evaluation aborted. In the second step, we test the condition t(s′) ≤ f(s).
Using this deterministic filter, we can rapidly discard moves that cannot improve the solution; however,
not every move that satisfies the filter is necessarily an improving move. In the third step we complete
the evaluation of f(s′) and use the result to determine whether or not the move is improving. In the case
of CC the move undergoes an additional evaluation step in which we check the feasibility of r and r′ in
terms of the duration constraint. Table 1 summarizes the complexity of each step of the move-evaluation
procedure.

Step CC PF

r = r′ r ̸= r′ r = r r ̸= r′

Check expected load O(1) O(1) O(1) O(1)

Check deterministic filter O(1) O(1) O(1) O(1)

Check improvement O(n2
r) O(n2

r + n2
r′) O(2nr ) O(2nr + 2nr′ )

Check DCs O(2nr ) O(2nr + 2nr′ ) N/A N/A

Table 1: Move-evaluation procedure: Complexity summary

3.3 Heuristic concentration

The idea behind HC is to try to build a global optimum using parts of the local optima found during a
heuristic search procedure. To the best of our knowledge, the term was coined by Rosing and Revelle
[25] in the context of the facility location problem1. In the field of vehicle routing, HC has become an
important component of metaheuristic-based approaches [see for instance 20, 34, 23, 30, 6].

In the HC phase we use a commercial optimizer to solve an SPP formulation of the VRPSD-DC where
the columns correspond to the routes stored in Ω. Since all the routes in Ω satisfy the expected load

1The mechanism has been given different names, but we believe the term heuristic concentration best encapsulates the
spirit of the idea.
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constraint (and the DC in the case of CC), the SPP needs to handle only constraints (5) and (6). The cost
c(r) of each column is the evaluation of the associated route depending on the formulation being used
(CC or PF). The resulting SPP is minR⊆Ω

{∑
r∈R c(r) :

∪
r∈R = V; ri

∩
rj = {0} ∀ri, rj ∈ R

}
. To speed

up the HC phase, we use the objective function of the best solution found by the GRASP as an initial
upper bound for the SPP.

4 Computational experiments

We implemented our GRASP+HC in Java (jre V.1.7.0 02-b13 64 bit) and used the Gurobi Optimizer (ver-
sion 5.5.0) to solve the SPP. In the remainder of this section we refer to our method as GRASP+HC(CC) or
GRASP+HC(PF) depending on the formulation used. All the gaps reported in this section are computed
as

gap =
f(s)− f(s0)

f(s0)
(11)

where f(s0) is the objective function of a reference solution and f(s) is the objective function of the
solution being tested. All the experiments were performed on a PC with a Pentium Dual-Core 3.20GHz
and 8Gb of RAM, running Windows 7 Professional 64 bit.

4.1 Results for standard VRPSD instances

For validation purposes, we first tested our approach on the classical VRPSD. Note that solving the
classical VRPSD is equivalent to solving CC with β = 1 (i.e., the DC becomes redundant). However, to
avoid expensive verifications of the DC we deactivated it in both the split and move-evaluation procedures.
We ran our GRASP+HC on the 40-instance testbed of Christiansen and Lysgaard [5]. These instances
range from 16 to 60 customers and assume Poisson-distributed demands. To assess the effectiveness of
our method, we compared our results to the best known solutions (BKSs) for the testbed: 38 optimal
solutions reported by [9] and 2 heuristic solutions reported by [11] and [20]. For each instance, we executed
10 runs with K = 500, LRNN = 3, and LRNI = LRBI = LRFI = 6. Table 2 summarizes our results (the
solutions for each instance are reported in Appendix A).

Metric Method
GRASP+HC MSH SA

Avg. Gap 0.02% 0.18% 0.35%
Max. Gap 0.19% 1.16% 1.89%
Avg. CV 0.02% 0.08% 0.32%
Avg. Best Gap 0.00% 0.07% 0.04%
NBKS 40/40 27/40 33/40
Max. CPU (s) 102.43 782.77 603.80
Min. CPU (s) 1.69 5.91 9.00
Avg. CPU (s) 36.09 180.78 268.66

Table 2: Summary of results for VRPSD instances. Avg. Gap: average gap over the 400 runs; Max.
Gap: maximum gap over the 400 runs; Avg. CV: average coefficient of variation of the objective function
over the 40 instances; Avg. Best Gap: average gap if only the best solution found for each instance is
considered; NBKS: number of best-known solutions matched; Max. CPU (s): maximum running time
over the 400 runs; Min. CPU (s): minimum running time over the 400 runs; Avg. CPU (s): average
running time over the 400 runs. MSH: multi-space sampling heuristic of Mendoza and Villegas [20] in its
best-but-slowest configuration; SA: simulated annealing algorithm of [11].

The results show that in terms of solution quality our approach outperforms the two state-of-the-art
metaheuristics. Our algorithm matched the 40 BKSs for the set, whereas MSH achieves 27/40 and SA
achieves 33/40. Moreover, the results for the average and worst-case behavior over multiple runs (i.e.,
Avg. Gap and Max. Gap) and the coefficient of variation suggest that our method is more stable than
MSH and SA (i.e., finds close-to-BKS solutions more often). Although it is difficult to make a precise
comparison of the computational performance because of slight differences in the testing environments
(programming language, operating system, processing power, etc.), the data suggest that our approach
also outperforms the two other methods on this measure. In conclusion our GRASP+HC is a valid method
for the classical VRPSD, and it can be expected to perform well on the closely related VRPSD-DC.

A Hybrid Metaheuristic for the Vehicle Routing Problem with Stochastic Demands and Duration Constraints

8 CIRRELT-2013-75



4.2 Results for VRPSD-DC instances

4.2.1 Instance generation

To the best of our knowledge, there are no publicly available instances for the VRPSD-DC. Therefore,
we built a new benchmark set by adding DCs to the VRPSD instances of [5]. For each instance, we set

the maximum duration limit to T =
⌈
maxr∈R E

[
T̃r

]⌉
, where R is the set of routes in the best solution

s∗ found for the instance in the experiments reported in Section 4.1. Note that by construction s∗ is
the best known solution for the modified instance, if it is solved using the constrained expected duration
formulation as in Yang et al [35] and Mendoza et al [18, 19]. In the remainder of this section, we refer
to this alternative formulation as ED. From the adapted instance set, we excluded instance P-n16-k8

because when solved using CC it is infeasible for the most interesting values of β (i.e., β < 0.15)2. To
allow future comparisons with our results, we include in Appendix B the maximum duration limit T for
each instance.

4.2.2 Chance-constraint formulation

In this section we discuss the results of GRASP+HC(CC) for the 39 instances of the adapted set. The
main objective of this experiment is to analyze how solutions built using the chance-constraint paradigm
compare with those built under the more classical constrained expected duration approach. We first
set β to 0.05, a value that we consider plausible from a managerial perspective. Next, we conducted a
post-hoc analysis of each of the best-known ED solutions. This analysis involves evaluating Pr(T̃r > T )
for each route r in the solution and finding how many routes become infeasible if the chance constraint
is imposed. We then performed 10 GRASP+HC(CC) runs with β = 0.05, K = 500, LRNN = 3, and
LRNI = LRBI = LRFI = 6. For the best solution found for each instance we computed the total increase
in the objective function ∆OF , with respect to the corresponding best-known ED solution using Equation
(11). As expected from the results for the VRPSD instances (Section 4.1) our method exhibited stable
performance on the adapted set: the minimum, average, and maximum average coefficients of variation
among the 39 instances were 0.00%, 0.09%, and 0.48%, respectively. Therefore, we feel confident that
the conclusions drawn by analyzing the best solutions are valid for the general case. Table 3 presents the
results.

Not surprisingly, the ED solutions are poor when the chance constraint is added: only 3 out of the 39
solutions remain feasible. The results for the percentages of infeasible routes show that the infeasibilities
increase because of multiple failing routes rather than isolated cases. More interestingly, the data also
show that the routes in the ED solutions tend to have high probabilities of violating the maximum duration
limit. Moreover, a close look at the results reveals that the behavior of the routes with respect to this
probability is rather unstable. For example, in instance P-n50-k10 the probability of violating the DC
ranges from 0.00% to 31.67% in the 11 routes of the solution. As mentioned earlier, these results are
expected, because the ED formulation does not provide a mechanism to control the probability of routes
violating the DC. Nonetheless, the results of our ad-hoc analysis shed some light on the inconvenience of
using the ED formulation in practice. The results of GRASP+HC(CC) suggest that the chance-constraint
approach may be better suited for practical situations. Clearly, every route in a CC solution has a
probability of violating the DC that is lower than 5.00%. As the data show, this improvement in the
reliability comes with a moderate increase in the total expected travel time of the solutions (2.10% on
average). With the notable exception of instance A-n39-k5, the largest increases in the expected travel
time are observed in solutions in which an extra route is needed to achieve reliability (10/39 cases).
Note that in practical situations where using an extra route is not possible, the decision-makers can
obtain tradeoffs between reliability, the expected travel time, and (indirectly) the number of routes by
performing a sensitivity analysis for the value of β.

4.2.3 Penalty formulation

In contrast to CC, the penalty formulation PF does not control the probability of violating the DC but
rather the magnitude of the violations. To simulate different profiles of aversion toward overtime, we ran
experiments with three different ϕ(·) cost functions: linear, piecewise linear, and quadratic. The exact

2In fact, customer 2 violates one of the basic assumptions of the problem since Pr(ξ̃2 > Q) = 0.1573. Because of the
high failure probability and the travel time to the depot, it is impossible to include customer 2 in a route, even the trivial
route (0, 2, 0), without violating the DC for β < 0.1573.
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BKS - ED GRASP+HC(CC)

Instance
OF |R| |I| |I|/|R| Pr

(
T̃r > T

)
OF ∆OF |R|

Max. Min. Avg.

A-n32-k5 853.60 5 1 20.00 15.94 0.00 3.59 866.77 1.54 5

A-n33-k5 704.20 5 3 60.00 9.34 0.00 4.63 735.00 4.37 6

A-n33-k6 793.90 6 0 0.00 3.87 0.00 1.42 793.90 0.00 6

A-n34-k5 826.80 6 3 50.00 18.18 0.00 7.52 839.01 1.48 6

A-n36-k5 858.70 5 1 20.00 39.43 0.00 7.89 861.74 0.35 5

A-n37-k5 708.30 5 2 40.00 29.47 0.00 7.86 713.99 0.80 5

A-n37-k6 1030.70 7 1 14.29 18.67 0.00 3.25 1032.96 0.22 7

A-n38-k5 775.10 6 2 33.33 9.26 0.00 2.57 777.59 0.32 6

A-n39-k5 869.10 6 3 50.00 12.93 0.00 4.83 942.45 8.44 6

A-n39-k6 876.60 6 2 33.33 29.45 0.00 7.80 889.40 1.46 6

A-n44-k6 1025.40 7 1 14.29 9.26 0.00 2.04 1032.70 0.71 7

A-n45-k6 1026.70 7 3 42.86 17.82 0.00 5.57 1045.71 1.85 7

A-n45-k7 1264.80 7 4 57.14 28.92 0.00 8.80 1298.71 2.68 8

A-n46-k7 1002.20 7 2 28.57 13.17 0.00 3.63 1007.11 0.49 7

A-n48-k7 1187.10 7 4 57.14 27.26 0.00 10.15 1210.79 2.00 7

A-n53-k7 1124.20 8 1 12.50 9.13 0.00 2.62 1127.54 0.30 8

A-n54-k7 1287.00 8 2 25.00 36.04 0.00 6.95 1309.13 1.72 8

A-n55-k9 1179.10 10 3 30.00 20.61 0.00 4.39 1203.92 2.10 10

A-n60-k9 1529.82 10 3 30.00 21.62 0.00 3.95 1543.44 0.89 10

E-n22-k4 411.50 4 2 50.00 25.22 0.00 11.16 429.56 4.39 5

E-n33-k4 850.20 4 0 0.00 1.03 0.00 0.33 850.27 0.01 4

E-n51-k5 552.26 6 1 16.67 16.90 0.00 3.51 554.54 0.41 6

P-n19-k2 224.00 3 1 33.33 17.18 0.00 5.73 233.36 4.18 3

P-n20-k2 233.00 2 1 50.00 44.63 0.79 22.71 240.84 3.36 3

P-n21-k2 218.90 2 1 50.00 16.89 0.47 8.68 234.00 6.90 3

P-n22-k2 231.20 2 2 100.00 42.98 16.89 29.93 242.19 4.75 3

P-n22-k8 681.00 9 4 44.44 37.08 0.00 10.16 715.81 5.11 10

P-n23-k8 619.50 9 1 11.11 39.52 0.00 4.98 634.46 2.41 10

P-n40-k5 472.50 5 3 60.00 20.19 0.80 9.68 488.50 3.39 5

P-n45-k5 533.52 5 3 60.00 31.97 0.03 11.05 539.66 1.15 6

P-n50-k10 758.70 11 3 27.27 31.67 0.00 7.90 772.25 1.79 11

P-n50-k7 582.30 7 1 14.29 20.78 0.00 3.09 584.37 0.35 7

P-n50-k8 669.20 9 4 44.44 9.77 0.00 3.91 680.42 1.68 9

P-n51-k10 809.70 11 3 27.27 25.00 0.00 6.59 833.42 2.93 11

P-n55-k10 742.40 10 6 60.00 32.62 0.00 9.25 759.36 2.28 11

P-n55-k15 1068.00 18 4 22.22 24.40 0.00 3.28 1086.44 1.73 17

P-n55-k7 588.50 7 0 0.00 3.45 0.00 0.61 588.56 0.01 7

P-n60-k10 803.60 11 4 36.36 15.83 0.00 4.29 811.44 0.98 11

P-n60-k15 1085.40 16 6 37.50 18.85 0.00 4.90 1110.72 2.33 17

Max. 100.00 44.63 16.89 29.93 8.44

Min. 0.00 1.03 0.00 0.33 0.00

Avg. 34.96 21.70 0.49 6.70 2.10

Std. Dev. 20.78 11.22 2.70 5.52 1.93

Table 3: Results for the VRPSD-DC instances. OF: objective function; |R| number of routes in the
solution; |I| number of infeasible routes in the solution, where I = {r ∈ R|Pr(T̃r > T ) > β}; |I|/|R|: %
of infeasible routes; Pr(T̃r > T ): probability of violating the duration constraint in %; ∆OF increase in
the objective function with respect to the ED solution in %.

expressions used in our experiments are: ϕ1 (Or) = 2×Or; ϕ2 (Or) = λ×Or; and ϕ3 (Or) = O2
r where

λ =


1.5 if Or ≤ 0.05× T,

3.0 if 0.05× T < Or ≤ 0.10× T,

5.0 if Or > 0.10× T.

(12)

To evaluate how the ED solutions perform in situations where the magnitude of the DC violations is
relevant, we computed two metrics for each BKS: the total expected overtime E[O(R)] =

∑
r∈R E[Õr]

and the total expected overtime cost E[ϕ(O(R))] =
∑

r∈R E[ϕ(Õr)]. We then compared the performance
with that of the solutions of GRASP+HC(PF) with the linear, piecewise linear, and quadratic penalties.
Tables 4, 5, and 6 present the results.

The results show that the ED solutions not only tend to have high probabilities of incurring overtime,
as discussed in Section 4.2.2, but they also incur excessive overtime. Measured as a proportion of the
total expected duration (i.e., E[O(R)]/E[T (R)]) the expected overtime accounts on average for 1.65%
of the total expected travel time of the route set and at most 3.4% (instance A-n45-k7). As expected,
the PF solutions are better. Under the softest penalty scheme (linear) the expected overtime of the PF
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solutions as a proportion of the total duration reduces to 0.64%, and with the quadratic scheme the figure
is 0.07%. Another way to look at this is through the reductions in the expected overtime reported in the
column labeled ∆E [O(·)]. For the linear penalty this figure is on average -52.83%, for the piecewise linear
penalty it is -75.51%, and for the quadratic penalty it is -93.52%. This improvement in the overtime
comes with an increase in the expected duration of the routes. The increases are on average 0.79%,
1.89%, and 4.79% for the linear, piecewise linear, and quadratic penalty mechanisms, respectively.

Instance
ED GRASP+HC(PF)

E[T (·)] E[O(·)] E[ϕ1(·)] |R| E[T (·)] ∆E[T (·)] E[O(·)] ∆E[O(·)] E[ϕ1(·)] |R|
A-n32-k5 853.60 2.21 4.42 5 853.60 0.00 2.21 0.00 4.42 5

A-n33-k5 704.20 9.06 18.11 5 704.20 0.00 9.06 0.00 18.11 5

A-n33-k6 793.90 4.87 9.73 6 794.15 0.03 4.15 -14.81 8.29 6

A-n34-k5 826.87 25.76 51.53 6 839.01 1.47 4.08 -84.16 8.16 6

A-n36-k5 858.71 13.93 27.87 5 861.74 0.35 0.82 -94.11 1.64 5

A-n37-k5 708.34 12.89 25.77 5 715.37 0.99 0.54 -95.81 1.08 5

A-n37-k6 1030.73 6.02 12.05 7 1030.73 0.00 6.02 0.00 12.05 7

A-n38-k5 775.13 4.94 9.89 6 777.59 0.32 1.28 -74.13 2.56 6

A-n39-k5 869.18 18.49 36.97 6 869.18 0.00 18.49 0.00 36.97 6

A-n39-k6 876.60 20.12 40.24 6 895.59 2.17 0.90 -95.55 1.79 6

A-n44-k6 1025.48 11.71 23.42 7 1033.69 0.80 5.26 -55.08 10.52 7

A-n45-k6 1026.73 19.48 38.96 7 1035.48 0.85 4.39 -77.47 8.78 7

A-n45-k7 1264.83 42.99 85.98 7 1308.01 3.41 6.79 -84.20 13.58 8

A-n46-k7 1002.22 14.26 28.53 7 1005.31 0.31 6.14 -56.94 12.28 7

A-n48-k7 1187.14 32.46 64.93 7 1215.41 2.38 5.71 -82.41 11.42 7

A-n53-k7 1124.27 10.99 21.99 8 1128.71 0.40 7.66 -30.28 15.33 8

A-n54-k7 1287.07 30.95 61.90 8 1313.50 2.05 6.45 -79.16 12.90 8

A-n55-k9 1179.11 15.06 30.13 10 1181.58 0.21 9.67 -35.82 19.33 10

A-n60-k9 1529.82 36.10 72.19 10 1543.44 0.89 6.28 -82.61 12.56 10

E-n22-k4 411.57 12.77 25.54 4 419.15 1.84 5.13 -59.84 10.25 5

E-n33-k4 850.27 1.74 3.48 4 850.27 0.00 1.74 0.00 3.48 4

E-n51-k5 552.26 4.11 8.23 6 554.54 0.41 0.39 -90.47 0.78 6

P-n19-k2 224.06 4.05 8.10 3 224.06 0.00 4.05 0.00 8.10 3

P-n20-k2 233.05 6.06 12.12 2 237.06 1.72 2.50 -58.69 5.01 3

P-n21-k2 218.96 3.15 6.30 2 218.96 0.00 3.15 0.00 6.30 2

P-n22-k2 231.26 5.13 10.25 2 231.26 0.00 5.13 0.00 10.25 2

P-n22-k8 681.06 18.51 37.01 9 689.15 1.19 6.99 -62.22 13.98 9

P-n23-k8 619.53 16.51 33.03 9 634.46 2.41 2.16 -86.91 4.32 10

P-n40-k5 472.50 5.63 11.27 5 472.50 0.00 5.63 0.00 11.27 5

P-n45-k5 533.52 6.75 13.50 5 541.65 1.52 0.44 -93.44 0.89 6

P-n50-k10 758.76 15.82 31.63 11 766.17 0.98 3.86 -75.57 7.73 11

P-n50-k7 582.37 4.10 8.19 7 585.05 0.46 0.12 -96.97 0.25 7

P-n50-k8 669.23 8.52 17.04 9 672.22 0.45 2.01 -76.39 4.02 9

P-n51-k10 809.70 15.41 30.81 11 815.52 0.72 6.50 -57.81 13.00 11

P-n55-k10 742.41 8.95 17.91 10 743.90 0.20 4.35 -51.41 8.70 10

P-n55-k15 1068.05 18.36 36.72 18 1071.47 0.32 6.62 -63.92 13.25 18

P-n55-k7 588.56 0.92 1.85 7 588.56 0.00 0.92 0.00 1.85 7

P-n60-k10 803.60 9.91 19.83 11 808.23 0.58 3.52 -64.45 7.05 11

P-n60-k15 1085.49 22.15 44.29 16 1100.94 1.42 4.50 -79.68 9.00 17

Max. 3.41 0.00

Min. 0.00 -96.97

Avg. 0.79 -52.83

Std. Dev 0.85 35.61

Table 4: Results for the VRPSD-DC instances with linear penalty. E[T (R)]: total expected duration;
E[O(R)]: total expected overtime; E[ϕ1(O(R))]: total expected overtime cost; |R|: number of routes;
∆E[T (R)] (%): relative difference in the expected duration with respect to the ED solution; ∆E[O(R)]
(%): relative difference in the expected overtime with respect to the ED solution.
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Instance
ED GRASP+HC(PF)

E[T (·)] E[O(·)] E[ϕ2(·)] |R| E[T (·)] ∆E[T (·)] E[O(·)] ∆E[O(·)] E[ϕ2(·)] |R|
A-n32-k5 853.60 2.21 6.12 5 853.60 0.00 2.21 0.00 6.12 5

A-n33-k5 704.20 9.06 45.28 5 727.26 3.28 4.39 -51.48 19.00 5

A-n33-k6 793.90 4.87 24.33 6 803.05 1.15 2.07 -57.51 10.34 7

A-n34-k5 826.87 25.76 128.82 6 839.01 1.47 4.08 -84.16 20.40 6

A-n36-k5 858.71 13.93 67.67 5 861.74 0.35 0.82 -94.11 2.32 5

A-n37-k5 708.34 12.89 56.08 5 715.37 0.99 0.54 -95.81 2.41 5

A-n37-k6 1030.73 6.02 27.50 7 1046.74 1.55 0.73 -87.82 3.65 7

A-n38-k5 775.13 4.94 23.18 6 777.59 0.32 1.28 -74.13 4.83 6

A-n39-k5 869.18 18.49 91.92 6 942.45 8.43 2.14 -88.42 9.93 6

A-n39-k6 876.60 20.12 97.10 6 895.59 2.17 0.90 -95.55 4.39 6

A-n44-k6 1025.48 11.71 58.54 7 1033.69 0.80 5.26 -55.08 18.49 7

A-n45-k6 1026.73 19.48 93.32 7 1048.58 2.13 1.42 -92.69 6.22 7

A-n45-k7 1264.83 42.99 212.01 7 1316.61 4.09 3.45 -91.98 16.57 8

A-n46-k7 1002.22 14.26 71.31 7 1005.31 0.31 6.14 -56.94 27.32 7

A-n48-k7 1187.14 32.46 156.69 7 1229.31 3.55 2.58 -92.04 12.60 7

A-n53-k7 1124.27 10.99 54.96 8 1132.24 0.71 9.57 -12.90 23.48 8

A-n54-k7 1287.07 30.95 152.95 8 1323.15 2.80 3.09 -90.03 15.32 8

A-n55-k9 1179.11 15.06 72.89 10 1196.01 1.43 6.68 -55.65 27.26 10

A-n60-k9 1529.82 36.10 178.01 10 1552.96 1.51 1.80 -95.03 7.34 10

E-n22-k4 411.57 12.77 60.61 4 429.56 4.37 0.81 -93.67 4.02 5

E-n33-k4 850.27 1.74 8.70 4 854.05 0.44 0.46 -73.43 2.29 4

E-n51-k5 552.26 4.11 20.44 6 554.54 0.41 0.39 -90.47 1.59 6

P-n19-k2 224.06 4.05 20.25 3 233.36 4.15 0.19 -95.43 0.93 3

P-n20-k2 233.05 6.06 30.17 2 242.11 3.89 0.22 -96.42 1.00 3

P-n21-k2 218.96 3.15 15.74 2 218.96 0.00 3.15 0.00 15.74 2

P-n22-k2 231.26 5.13 22.93 2 242.19 4.73 0.99 -80.78 4.24 3

P-n22-k8 681.06 18.51 84.82 9 692.06 1.61 5.57 -69.89 25.36 9

P-n23-k8 619.53 16.51 82.33 9 639.29 3.19 0.27 -98.37 0.96 10

P-n40-k5 472.50 5.63 26.62 5 482.75 2.17 2.73 -51.51 9.40 5

P-n45-k5 533.52 6.75 29.28 5 541.65 1.52 0.44 -93.44 2.00 6

P-n50-k10 758.76 15.82 72.90 11 766.17 0.98 3.86 -75.57 13.37 11

P-n50-k7 582.37 4.10 20.40 7 585.05 0.46 0.12 -96.97 0.26 7

P-n50-k8 669.23 8.52 40.88 9 672.22 0.45 2.01 -76.39 6.89 9

P-n51-k10 809.70 15.41 73.98 11 823.75 1.74 4.14 -73.13 20.49 12

P-n55-k10 742.41 8.95 36.80 10 755.84 1.81 2.01 -77.51 6.94 11

P-n55-k15 1068.05 18.36 91.80 18 1083.46 1.44 3.16 -82.78 11.49 17

P-n55-k7 588.56 0.92 4.45 7 591.95 0.57 0.08 -91.03 0.39 7

P-n60-k10 803.60 9.91 48.45 11 812.93 1.16 2.46 -75.22 11.77 11

P-n60-k15 1085.49 22.15 110.60 16 1104.47 1.75 4.06 -81.69 14.98 17

Max. 8.43 0.00

Min. 0.00 -98.37

Avg. 1.89 -75.51

Std. Dev. 1.67 24.83

Table 5: Results for the VRPSD-DC instances with piecewise linear penalty. E[T (R)]: total expected
duration; E[O(R)]: total expected overtime; E[ϕ2(O(R))]: total expected overtime cost; |R|: number
of routes; ∆E[T (R)] (%): relative difference in the expected duration with respect to the ED solution;
∆E[O(R)] (%): relative difference in the expected overtime with respect to the ED solution.
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Instance
ED GRASP+HC(PF)

E[T (·)] E[O(·)] E[ϕ3(·)] |R| E[T (·)] ∆E[T (·)] E[O(·)] ∆E[O(·)] E[ϕ3(·)] |R|
A-n32-k5 853.60 2.21 99.96 5 882.77 3.42 1.30 -40.98 14.33 5

A-n33-k5 704.20 9.06 470.03 5 761.17 8.09 0.09 -99.06 4.84 6

A-n33-k6 793.90 4.87 305.71 6 834.39 5.10 0.39 -91.94 9.89 7

A-n34-k5 826.87 25.76 1776.39 6 904.10 9.34 0.08 -99.69 4.15 6

A-n36-k5 858.71 13.93 1849.25 5 872.13 1.56 0.01 -99.93 0.63 5

A-n37-k5 708.34 12.89 706.81 5 721.03 1.79 0.21 -98.36 1.69 5

A-n37-k6 1030.73 6.02 704.27 7 1071.56 3.96 0.11 -98.21 6.89 7

A-n38-k5 775.13 4.94 254.13 6 791.32 2.09 0.18 -96.35 5.27 6

A-n39-k5 869.18 18.49 1408.24 6 969.53 11.55 0.16 -99.12 4.62 6

A-n39-k6 876.60 20.12 1299.52 6 920.65 5.03 0.39 -98.04 11.78 6

A-n44-k6 1025.48 11.71 1079.56 7 1061.73 3.53 0.49 -95.78 12.06 7

A-n45-k6 1026.73 19.48 1469.72 7 1066.00 3.83 0.00 -99.98 0.48 8

A-n45-k7 1264.83 42.99 4023.41 7 1338.75 5.84 0.77 -98.20 41.24 8

A-n46-k7 1002.22 14.26 1122.64 7 1072.23 6.99 0.25 -98.25 5.78 8

A-n48-k7 1187.14 32.46 2356.65 7 1276.01 7.49 0.52 -98.41 18.27 8

A-n53-k7 1124.27 10.99 859.81 8 1174.12 4.43 1.06 -90.31 23.28 8

A-n54-k7 1287.07 30.95 3412.74 8 1369.11 6.37 0.25 -99.20 8.02 8

A-n55-k9 1179.11 15.06 964.54 10 1269.32 7.65 2.21 -85.34 22.96 10

A-n60-k9 1529.82 36.10 4052.28 10 1576.97 3.08 0.45 -98.76 8.02 10

E-n22-k4 411.57 12.77 610.51 4 447.90 8.83 0.06 -99.50 0.20 5

E-n33-k4 850.27 1.74 230.74 4 869.74 2.29 0.23 -86.52 19.21 4

E-n51-k5 552.26 4.11 104.47 6 554.54 0.41 0.39 -90.47 4.83 6

P-n19-k2 224.06 4.05 98.15 3 233.36 4.15 0.19 -95.42 7.23 3

P-n20-k2 233.05 6.06 88.11 2 242.11 3.89 0.22 -96.42 5.97 3

P-n21-k2 218.96 3.15 64.26 2 249.02 13.73 0.01 -99.54 0.49 3

P-n22-k2 231.26 5.13 108.16 2 254.11 9.88 0.01 -99.72 0.49 3

P-n22-k8 681.06 18.51 915.52 9 750.56 10.20 1.73 -90.68 35.79 10

P-n23-k8 619.53 16.51 630.02 9 639.29 3.19 0.27 -98.37 6.79 10

P-n40-k5 472.50 5.63 83.16 5 490.48 3.81 0.70 -87.51 7.47 6

P-n45-k5 533.52 6.75 165.61 5 543.79 1.92 0.21 -96.86 2.30 6

P-n50-k10 758.76 15.82 405.58 11 786.41 3.64 1.44 -90.87 10.54 11

P-n50-k7 582.37 4.10 88.87 7 585.05 0.46 0.12 -96.97 1.05 7

P-n50-k8 669.23 8.52 240.41 9 680.65 1.71 1.24 -85.49 9.24 9

P-n51-k10 809.70 15.41 524.44 11 854.42 5.52 0.57 -96.31 6.07 12

P-n55-k10 742.41 8.95 163.11 10 760.93 2.49 1.02 -88.58 9.09 11

P-n55-k15 1068.05 18.36 659.15 18 1091.76 2.22 1.54 -91.63 23.57 17

P-n55-k7 588.56 0.92 21.37 7 592.10 0.60 0.11 -87.77 0.92 7

P-n60-k10 803.60 9.91 268.30 11 828.32 3.08 1.28 -87.09 11.69 11

P-n60-k15 1085.49 22.15 721.68 16 1125.52 3.69 0.97 -95.61 11.75 17

Max. 13.73 -40.98

Min. 0.41 -99.98

Avg. 4.79 -93.52

Std. Dev. 3.16 9.72

Table 6: Results for the VRPSD-DC instances with quadratic penalty. E[T (R)]: total expected duration;
E[O(R)]: total expected overtime; E[ϕ3(O(R))]: total expected overtime cost; |R|: number of routes;
∆E[T (R)] (%): relative difference in the expected duration with respect to the ED solution; ∆E[O(R)]
(%): relative difference in the expected overtime with respect to the ED solution.
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4.2.4 A word about execution times

Table 7 summarizes the computational performance of GRASP+HC(·) for each formulation (detailed
results are given in Appendix C). As expected, dealing with duration-profile computations in CC and
PF increases the time needed to solve the problem with respect to the classical VRPSD. The data show
similar average running times for ED and CC, but the Max. CPU and Std. Dev. metrics tip the balance
toward the former in terms of the computational performance. On the other hand, the CPU times for PF
are consistently double those for ED, independent of the penalty function. There are two reasons for the
difference between CC and PF. First, under PF the split procedure in Algorithm 2 tends to perform more
inner-loop iterations (lines 6–22), since the expected load constraint is the only condition that can stop
arc extensions (line 13). Second, as Table 1 shows, the most computationally expensive part of a move
evaluation under CC comes at the last step, which is reached by only a few moves.

Metric ED CC
PF

Linear Piecewise Quadratic
Avg. CPU 36.09 34.73 88.46 88.90 83.45
Min. CPU 1.69 1.71 2.96 2.69 2.64
Max. CPU 102.43 242.00 434.90 450.93 475.19
Std. Dev. CPU 27.08 46.78 100.15 102.42 102.26

Table 7: Execution time summary. CPU: execution time in seconds. All metrics are computed over 390
runs for each approach.

5 Conclusions

We have studied a problem that has received little attention in the literature: the vehicle routing problem
with stochastic demands and DCs (VRPSD-DC). We have discussed two different formulations for the
problem, namely CC and PF. In CC the DCs are handled as chance constraints, meaning that for each
route, the probability of exceeding the maximum duration must be lower than a given threshold. In
PF, violations to the DC are penalized in the objective function. To solve the problem, we introduce a
hybrid metaheuristic (GRASP+HC). In the GRASP phase, our method uses a set of randomized route-
first, cluster-second heuristics to generate initial solutions and a VND with two move types for the local
search. To accelerate the local search procedure, we use a three-step move-evaluation procedure that
allows a quick rejection of unpromising moves. In the HC phase, we use a commercial optimizer to solve
an SPP formulation of the problem over the set of routes found in the local optima. In contrast to the
few solution approaches previously reported, our method does not use Monte Carlo simulation to verify
the chance constraints or to compute the penalties for violations of the maximum duration. These tasks
are accomplished by explicitly building the probability distribution of the total duration of the routes.
We have discussed in detail the computational implications of our approach.

For validation purposes, we tested our method on a 40-instance standard testbed for the classi-
cal VRPSD. Our algorithm matched all 40 BKSs (38 of which are optimal); the two state-of-the-art
metaheuristics for the problem cannot match this result. For experiments on the VRPSD-DC, we have
proposed a set of 39 instances that we have made publicly available. Our experiments have focused
on analyzing how solutions built using the most classical approach in the literature, i.e., enforcing DCs
over the expected travel time of the routes (ED), differ from those built using the chance-constraint and
penalty paradigms. Our results show that under CC and PF our GRASP+HC provides solutions with a
good tradeoff between reliability, measured in terms of violations to the DCs, and increases in the total
expected travel time.

Research currently underway includes extensions of our method to solve the VRPSD with a hetero-
geneous fleet and the VRP with stochastic and correlated demands.
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B Duration constraints for the adapted instance set

Instance T
A-n32-k5 239
A-n33-k5 172
A-n33-k6 192
A-n34-k5 190
A-n36-k5 315
A-n37-k5 213
A-n37-k6 254
A-n38-k5 190
A-n39-k5 216
A-n39-k6 226
A-n44-k6 252
A-n45-k6 225
A-n45-k7 249
A-n46-k7 208
A-n48-k7 220
A-n53-k7 211
A-n54-k7 245
A-n55-k9 176
A-n60-k9 266
E-n22-k4 129
E-n33-k4 268
E-n51-k5 112
P-n19-k2 120
P-n20-k2 129
P-n21-k2 121
P-n22-k2 121
P-n22-k8 128
P-n23-k8 117
P-n40-k5 106
P-n45-k5 120
P-n50-k10 93
P-n50-k7 135
P-n50-k8 100
P-n51-k10 104
P-n55-k10 96
P-n55-k15 99
P-n55-k7 122
P-n60-k10 98
P-n60-k15 101

A Hybrid Metaheuristic for the Vehicle Routing Problem with Stochastic Demands and Duration Constraints

18 CIRRELT-2013-75



C Detailed CPU times

Instance CC
PF

Linear Piecewise Quadratic
A-n32-k5 11.05 31.31 29.17 21.99
A-n33-k5 7.31 25.77 21.87 19.07
A-n33-k6 10.70 19.41 20.81 19.22
A-n34-k5 8.56 31.40 27.01 18.36
A-n36-k5 33.02 50.21 52.78 52.95
A-n37-k5 17.04 35.70 37.85 30.53
A-n37-k6 26.26 46.72 49.28 51.37
A-n38-k5 9.38 33.95 32.17 26.26
A-n39-k5 29.29 99.62 91.97 87.85
A-n39-k6 18.16 51.02 47.76 37.40
A-n44-k6 43.61 95.73 98.86 98.33
A-n45-k6 26.71 71.64 65.41 60.96
A-n45-k7 68.84 142.19 149.32 158.15
A-n46-k7 52.53 136.61 120.42 113.33
A-n48-k7 63.15 204.34 198.16 154.70
A-n53-k7 90.51 295.03 304.99 272.95
A-n54-k7 176.46 404.58 407.43 407.06
A-n55-k9 55.70 198.37 203.08 166.30
E-n22-k4 2.75 5.02 4.59 4.43
E-n33-k4 10.76 61.38 61.58 40.08
P-n19-k2 1.71 2.96 2.69 2.64
P-n20-k2 2.02 3.32 3.20 3.18
P-n21-k2 2.44 6.95 6.81 4.33
P-n22-k2 2.55 5.79 5.83 4.90
P-n22-k8 4.13 5.36 5.64 7.06
P-n23-k8 4.59 5.01 5.60 5.66
P-n40-k5 6.63 34.67 31.23 22.94
P-n45-k5 10.62 46.28 48.18 35.00
P-n50-k10 18.35 52.66 55.02 57.11
P-n50-k7 35.07 59.36 61.75 58.80
P-n50-k8 18.89 60.40 58.93 52.95
P-n51-k10 38.57 102.66 107.08 100.33
P-n55-k10 28.46 90.43 90.77 88.16
P-n55-k15 38.49 60.02 68.64 83.48
P-n55-k7 37.54 100.26 101.89 87.59
P-n60-k10 36.96 146.07 145.99 133.03
P-n60-k15 48.40 94.63 101.03 117.48
A-n60-k9 242.00 434.90 450.93 475.19
E-n51-k5 15.17 98.34 91.31 73.37
Max. 242.00 434.90 450.93 475.19
Min. 1.71 2.96 2.69 2.64
Avg. 34.73 88.46 88.90 83.45
Std. Dev. 46.78 100.15 102.42 102.26

Table 9: Average running times (in seconds) over ten runs of GRASP+HC for the different VRPSD-DC formulations.
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