CIRRELT

Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport

Interuniversity Research Centre
on Enterprise Networks, Logistics and Transportation

A Hybrid Metaheuristic for the Vehicle Routing Problem with Stochastic Demands and Duration Constraints

Jorge E. Mendoza
Louis-Martin Rousseau
Juan G. Villegas

December 2013

CIRRELT-2013-75

Bureaux de Montréal
Université de Montréal
Pavillon André-Aisenstadt
C.P. 6128, succursale Centre-ville

Montréal (Québec)
Canada H3C 3J7
Téléphone: 514 343-7575
Télécopie: 514 343-7121

Bureaux de Québec :
Université Laval
Pavillon Palasis-Prince
2325, de la Terrasse, bureau 2642
Québec (Québec)
Canada G1V 0A6
Téléphone: 418 656-2073
Télécopie : 418 656-2624

A Hybrid Metaheuristic for the Vehicle Routing Problem with Stochastic Demands and Duration Constraints

Jorge E. Mendoza ${ }^{1}$, Louis-Martin Rousseau ${ }^{2, *}$, Juan G. Villegas ${ }^{3}$
1 Université Catholique de l'Ouest, 3 Place André Leroy, 49008 Angers, France
2 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT) and Department of Mathematics and Industrial Engineering, École Polytechnique de Montréal, P.O. Box 6079, Station Centre-ville, Montréal, Canada H3C 3A7
3 Departamento de Ingenieria Industrial, Universidad de Antioquia, Calle 67 Número 53, 108 Medellín, Antioquia, Colombie

Abstract. The vehicle routing problem with stochastic demands (VRPSD) consists in designing routes with a minimal expected travel time to satisfy a set of customers with random demands following known probability distributions. We present two strategies to deal with route-duration constraints in the VRPSD. In the first, the duration constraints are handled as chance constraints, meaning that for each route, the probability of exceeding the maximum duration must be lower than a given threshold. In the second, expected violations to the duration constraint are penalized in the objective function. To solve the resulting problem, we propose a greedy randomized adaptive search procedure (GRASP) enhanced with heuristic concentration (HC). The GRASP component uses a set of randomized route-first, cluster-second heuristics to generate starting solutions and a variable-neighborhood descent procedure for the local search phase. The HC component assembles the final solution from the set of all routes found in the local optima reached by the GRASP. For each strategy, we discuss extensive computational experiments that analyze the impact of route-duration constraints on the VRPSD. In addition, we report state-of-the-art solutions for an established set of benchmarks for the classical VRPSD.

Keywords: Distance-constrained vehicle routing problem, vehicle routing problem with stochastic demands, GRASP.

Acknowledgements. This research was partially funded by: the Region Pays de la Loire (France) through project LigéRO; Universidad de Antioquia (Colombia) through project CODI MDC11-01-09; and Polytechnique Montréal (Canada).

[^0][^1]
1 Introduction

In the vehicle routing problem with stochastic demands (VRPSD) a set of geographically spread customers demand (or supply) a product that must be delivered (or collected) using a fleet of limited-capacity vehicles located at a central depot. The particular characteristic of the problem is that the exact quantities demanded (supplied) by each customer are only known upon the vehicle's arrival at the customer location (i.e., they are stochastic). It is assumed, however, that each customer's demand follows a known probability distribution. The main impact of stochastic demands is that they introduce uncertainty into the feasibility of the routes; depending on the demand realizations (i.e., the actual values), a vehicle may arrive at a customer without enough capacity to satisfy its demand.

To deal with uncertain demands in the VRPSD, researchers have explored models based on various solution frameworks including chance-constraint programming, stochastic programming with recourse, dynamic programming, Markov decision models, and the multi-scenario approach. Each of these frameworks takes into accounts factors such as instance size, assumptions about available technology (e.g., realtime communication between vehicles and decision-makers), and assumptions about managerial policies (e.g., whether or not routes can be modified during their execution). For a complete discussion of the characteristics of each framework the reader is referred to [27] and [22].

The most widely studied models in the literature are those based on two-stage stochastic programming [7]. As the name suggests, in this framework the problem is solved in two phases. In the first phase a set of a priori routes is planned, and in the second phase the routes are executed. If there is a capacity constraint violation, or route failure, a corrective action, known as recourse, is taken to recover feasibility. In general, the recourse actions generate an extra cost known only after the second phase. Thus, the objective is to design during the first phase a set of routes that minimizes the sum of the cost of the a priori routes and the expected cost of the recourse actions.

The most traditional recourse action, known as detour-to-depot, involves traveling back to the depot to restore the vehicle capacity, returning to the customer to complete the service, and then continuing the route as initially planned [26]. However, more sophisticated approaches have recently been reported in the literature. These include performing preemptive trips to the depot in an attempt to avoid route failures [35, 4], assigning each vehicle a partner to provide back-up in the event of a failure [1], and reassigning the customers of a failing route to the planned route of a vehicle with spare capacity [21]. All recourse actions add travel time to the planned routes. Since the exact number of recourses and the extra time they add to each route is not known when the routes are planned, the total duration of a route is itself a random variable. As pointed out by [8], this may lead to a problem in practice because the routes may be subject to an additional feasibility criterion: duration constraints (DCs).

DCs prevent the duration of a route from exceeding an upper bound. Therefore, they can model a number of industry practices such as shift duration limits and depot opening hours [8]. Despite their practical relevance, DCs have been studied only rarely in the context of the VRPSD. To the best of our knowledge, the body of work in this domain is limited to about ten references, most of them focusing on approaches based on two-stage stochastic programming. For the sake of brevity, in the remainder of this section we focus on these approaches; however, we refer the reader to the excellent papers by Bent and Van Hentenryck $[2,3]$ and Goodson et al $[12,13]$ for research based on other frameworks.

Yang et al [35] is probably the first reference to DCs in the VRPSD literature. The authors handle these constraints by imposing a limit on the expected duration of the a priori routes. Mendoza et al $[18,19]$ applied the same strategy in the context of the multi-compartment VRPSD (MC-VRPSD), a problem in which each customer demands several incompatible products that are transported in different vehicle compartments. The main advantage of this constrained expected duration approach is its computational convenience. Indeed, since the expected duration of a route is usually computed as part of the objective function, the DC feasibility check requires no additional effort. On the other hand, although this strategy may be adequate for practical situations where DCs are rather soft constraints, it does not provide decision-makers with an explicit mechanism to express their preferences about violations of these constraints.

Tan et al [31] and [29] propose an alternative approach, based on penalizing violations of the DCs in the objective function. Tan et al [31] use the penalties as part of a cost function called drivers' remuneration that they optimize, along with the total traveled distance and the number of vehicles, using a multi-objective optimization approach. [29] include the penalties directly in the total-duration objective function and use an established mono-objective approach [28] to solve the problem. In both cases, the authors use Monte Carlo simulation to generate multiple scenarios of the demand realizations that are used to estimate the total expected duration of the routes and the penalties for DC violations. [17] propose a different strategy to address DCs in the context of a bi-objective MC-VRPSD: they minimize simultaneously the total expected cost of a set of routes and its coefficient of variation. In their approach,

DCs are imposed on planned routes as chance constraints ensuring that the probability of completing a route in less than its maximum duration is greater than a given threshold. To perform the feasibility check of the chance constraints, the authors use Monte Carlo simulation.

From the conceptual point of view, both the penalty and chance-constraint approaches overcome the shortcomings of the constrained expected-duration approach. However, the implementations based on Monte Carlo simulation may be unnecessarily expensive from a computational point of view because one may need to generate a large number of scenarios to achieve statistical significance. Haugland et al [15] and Erera et al [8] propose approaches for applications in which the DCs are hard constraints. In [15] the authors solve a VRPSD with DCs as part of the evaluation of the solution to a districting problem. To check the DC feasibility the authors use an upper bound on the total duration of a route. Erera et al [8] propose an algorithm to estimate the maximum duration of a route for any realization of the customer demands. They use its result as an input to check the DCs.

In this paper we revisit the penalty and chance-constraint strategies to deal with DCs in the VRPSD. In contrast to previous approaches, we do not use Monte Carlo simulation. We instead explicitly build the probability distribution of the duration of a route. We develop a hybrid metaheuristic that, with minor modifications, is able to solve both versions of the problem. Our method is a greedy randomized adaptive search procedure (GRASP) with heuristic concentration (HC). The GRASP component uses a set of randomized route-first, cluster-second heuristics to generate starting solutions and a variableneighborhood descent (VND) procedure for the local search phase. The HC component assembles the final solution from the set of all routes found in the local optima reached by the GRASP. We present and discuss the results obtained by our method for both classical VRPSD instances and instances adapted to fit the definition of the VRPSD with DCs. For the latter case, we analyze the advantages and disadvantages of using the penalty and chance-constraint strategies rather than a more classical approach: the constrained expected duration.

The remainder of the paper is organized as follows. Section 2 defines the problem, introduces the relevant notation, and presents our two problem formulations. Section 3 presents our hybrid metaheuristic, and Section 4 discusses the computational experiments. Section 5 concludes the paper and outlines future research.

2 Problem formulation

The vehicle routing problem with stochastic demands and DCs (VRPSD-DC) can be defined on a complete and undirected graph $G=(\mathcal{V}, \mathcal{E})$, where $\mathcal{V}=\{0, \ldots, n\}$ is the vertex set and $\mathcal{E}=\{(v, u): v, u \in \mathcal{V}, v \neq u\}$ is the edge set. Vertices $v=1, \ldots, n$ represent the customers and vertex $v=0$ represents the depot. A weight t_{e} is associated with edge $e=(v, u)=(u, v) \in \mathcal{E}$, and it represents the travel time between vertices v and u. Each customer v has a random demand ξ_{v} for a given product. We assume that each customer's demand follows an independent and known probability distribution. The customers are served using an unlimited fleet of homogeneous vehicles with capacity Q and maximum travel time T located at the depot. We assume that the demand realizations $\vec{\xi}$ are nonnegative and less than the capacity of the vehicle. We also assume that each customer's demand realization is not known until the vehicle arrives at the customer location.

A planned route r is a sequence of vertices $r=\left(0, v_{1}, \ldots, v_{i}, \ldots, v_{n_{r}}, 0\right)$, where $v_{i} \in \mathcal{V} \backslash\{0\}$ and n_{r} is the number of customers served by the route. Depending on the context, we may refer to route r as an ordered set of edges $r=\left\{\left(0, v_{1}\right), \ldots,\left(v_{i-1}, v_{i}\right), \ldots,\left(v_{n_{r}}, 0\right)\right\}$. During the execution of a planned route, if a route failure occurs, that is, the capacity of the vehicle is exceeded, the detour-to-depot recourse is applied to recover the feasibility of the route. We denote by $\operatorname{Pr}\left(v_{i}\right)$ the probability of a route failure occurring while serving customer $v_{i} \in r$. This failure probability is given by

$$
\begin{equation*}
\operatorname{Pr}\left(v_{i}\right)=\sum_{i=2}^{n_{r}} \sum_{f=1}^{i-1} \operatorname{Pr}\left(\sum_{j=2}^{i-1} \tilde{\xi}_{v_{j}} \leq f \cdot Q<\sum_{j=2}^{i} \tilde{\xi}_{v_{j}}\right) \tag{1}
\end{equation*}
$$

where the probability term represents the probability of the $f^{t h}$ failure occurring while serving customer v_{i}. For the details of the derivation of (1) see [32]. Note that since all the demand realizations are less than the capacity of the vehicle, the maximum number of failures in a route is $n_{r}-1$, and the first failure cannot occur while serving the first customer. Consequently, the total duration of a route \tilde{T}_{r} follows a discrete distribution with $2^{n_{r}-1}$ possible outcomes; we refer to each of these outcomes as a duration profile. Let $\mathcal{P}(r)$ be the set of all possible duration profiles for route r. Let $\operatorname{Pr}(p)$ be the probability of observing duration profile $p \in \mathcal{P}(r)$, and let $T_{r}(p)$ be the total duration of route r if profile p is observed.

Figure 1: Duration profiles for a given route and their attributes

We have $T_{r}(p)=t_{r}+\varphi_{r}(p)$, where $t_{r}=\sum_{(u, v) \in r} t_{(u, v)}$ is the total planned travel time and $\varphi_{r}(p)$ is the total additional travel time added by the recourse actions. Figure 1 illustrates the concept of duration profiles.

2.1 Chance-constraint formulation

In our first formulation we extend the classical two-stage stochastic programming formulation for the VRPSD to include the DCs as chance constraints. The resulting problem involves finding a set \mathcal{R} of planned routes that minimizes

$$
\begin{equation*}
E\left[C_{1}(\mathcal{R})\right]=\sum_{r \in \mathcal{R}} E\left[\tilde{T}_{r}\right] \tag{2}
\end{equation*}
$$

s.t.

$$
\begin{align*}
\sum_{r \in \mathcal{R}} \operatorname{Pr}\left(\tilde{T}_{r}>T\right) & \leq \beta & & \forall r \in \mathcal{R} \tag{3}\\
\sum_{i \in r} E\left[\tilde{\xi}_{v_{i}}\right] & \leq Q & & \forall r \in \mathcal{R} \tag{4}\\
r \bigcap r^{\prime} & =\{0\} & & \forall r, r^{\prime} \in \mathcal{R}, r \neq r^{\prime} \tag{5}\\
\bigcup_{r \in \mathcal{R}} & =\mathcal{V} & & \tag{6}
\end{align*}
$$

The objective (2) minimizes the total expected duration of the set of routes \mathcal{R}. Constraint (3) ensures that the probability that a route violates the duration limit is lower than a given threshold β. Using the duration profiles of route r as an input, the first term in (3) can be computed as

$$
\begin{equation*}
\operatorname{Pr}\left(\tilde{T}_{r}>T\right)=\sum_{p \in \mathcal{P}(r) \mid T_{r}(p)>T} \operatorname{Pr}(p) . \tag{7}
\end{equation*}
$$

Constraint (4) ensures that each planned route is designed so that the total expected load does not exceed the capacity of the vehicle. Although it can be argued that this constraint is not critical in practical settings, it is a standard constraint in the VRPSD literature [see for instance $16,5,11,20$]. Therefore, we decided to retain it to allow a more direct comparison with previously published results. Constraints (5) and (6) guarantee that each customer is included in one and only one planned route.

2.2 Penalty formulation

In our second formulation we follow a completely different approach. To account for the DCs, we extend the classical VRPSD objective to include the expected cost of overtime, i.e., the time that each route travels above the limit T. In this formulation the problem involves finding a set of planned routes \mathcal{R} verifying constraints (4)-(6) and minimizing

$$
\begin{equation*}
E\left[C_{2}(\mathcal{R})\right]=\sum_{r \in \mathcal{R}} E\left[\tilde{T}_{r}\right]+E\left[\phi\left(\tilde{O}_{r}\right)\right] \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
E\left[\phi\left(\tilde{O}_{r}\right)\right]=\sum_{p \in \mathcal{P}(r) \mid T_{r}(p)>T} \phi\left(T_{r}(p)-T\right) \times \operatorname{Pr}(p) \tag{9}
\end{equation*}
$$

is the expected overtime cost.
In the remainder of the paper, we refer to our chance-constraint and penalty formulations as CC and PF.

3 GRASP with HC approach

To solve our two formulations for the VRPSD-DC, namely CC and PF, we developed a GRASP with HC. Algorithm 1 describes the proposed approach. At the k th GRASP iteration (lines 3-14) we greedily construct a starting solution (lines $5-6$) and then try to improve it using a local search procedure (line 7). To construct the starting solution, we select a randomized TSP heuristic h from a predefined set \mathcal{H} and use it to build a giant TSP tour $t s p^{k}$ visiting all the customers (line 5). We then use an adaptation of the s-split procedure for the VRPSD [19] to optimally partition $t s p^{k}$ into a set of feasible routes that forms a starting solution s^{k} (line 6). We next launch a VND procedure from the starting solution s^{k} (line 7). At the end of iteration k, we update the best solution s^{*} (line 8) and add the routes of the local optimum (i.e., s^{k}) to a set Ω (lines $9-11$). After K iterations the GRASP stops and we carry out the HC. In this phase, our method solves a set partitioning problem (SPP) over the set of routes Ω (line 15). Note that the specific implementations of $\operatorname{split}(\cdot)$ and $\operatorname{vnd}(\cdot)$ vary depending on the formulation (i.e., CC or PF) being solved, whereas the implementations of $\operatorname{tsp}(\cdot)$, update (\cdot), and setPartitioning (\cdot) are unchanged. In the remainder of this section we present a detailed description of the main algorithmic components of our method.

```
Algorithm 1 GRASP+HC: General structure
    function GRASPHC( \(\mathcal{H}, K\),mode \()\)
        \(\Omega \leftarrow \emptyset, k \leftarrow 1\)
        while \(k \leq K\) do
            for \(h \in \mathcal{H}\) do
                \(t p s^{k} \leftarrow \mathrm{tsp}(h)\)
                \(s^{k} \leftarrow \operatorname{split}\left(t s p^{k}\right.\), mode)
                \(s^{k} \leftarrow \operatorname{vnd}\left(s^{k}\right.\), mode)
                \(s^{*} \leftarrow \operatorname{update}\left(s^{k}, s^{*}\right)\)
                for \(r \in s^{k}\) do
                \(\Omega \leftarrow \Omega \cup r\)
                end for
                \(k \leftarrow k+1\)
            end for
        end while
        \(\mathcal{R} \leftarrow \operatorname{setPartitioning}\left(\Omega, s^{*}\right)\)
        return \(\mathcal{R}\)
    end function
```


3.1 Greedy randomized construction

Mendoza and Villegas [20] observed that using multiple sampling procedures instead of just one, as is traditional, may improve the performance of vehicle routing heuristics that are based on drawing samples from the solution space. Given this observation, we decided to embed in our method four versions of a randomized route-first, cluster-second heuristic.

3.1.1 Routing phase

For the routing phase, our approach uses randomized versions of four TSP constructive heuristics: randomized nearest neighbor (RNN), randomized nearest insertion (RNI), randomized best insertion (RBI), and randomized farthest insertion (RFI). Although the strategies we used to generate the randomized versions of the four heuristics are directly borrowed from [20], for the sake of completeness we briefly describe them here.

Let $t s p^{k}$ be an ordered set representing the TSP tour being built at iteration k, \mathcal{W} the set of vertices visited by $t s p^{k}$, and $\mathcal{Z}=\mathcal{V} \backslash \mathcal{W}$ an ordered set of non-routed vertices. For the sake of simplicity, we assume that the sets \mathcal{W} and \mathcal{Z} are updated every time a customer is added to $t s p^{k}$. Let us also define three metrics for every customer $v \in \mathcal{Z}$, namely, $t_{\text {min }}(v)=\min \left\{t_{(v, u)} \mid u \in \mathcal{W}\right\}, t_{\text {max }}(v)=\max \left\{t_{(v, u)} \mid u \in\right.$ $\mathcal{W}\}$, and $\Delta_{\min }(v)=\min \left\{t_{(u, v)}+t_{(v, w)}-t_{(u, w)} \mid(u, w) \in t s p^{k}\right\}$. Finally, let l be a random integer in $\left\{1, \ldots, \min \left\{L_{h},|\mathcal{Z}|\right\}\right\}$, where parameter L_{h} denotes the randomization factor of each heuristic. The four sampling heuristics are as follows:

- RNN: Set $t s p^{k}=(0)$ and $u=0$. At each iteration identify the vertex v that is the l th nearest vertex to u, append v to $t s p^{k}$, and set $u=v$. Stop when $|\mathcal{Z}|=0$ and append 0 to tsp ${ }^{k}$ to complete the tour.
- RNI: Initialize $t s p^{k}$ as a tour starting at the depot and performing a round trip to a randomly selected customer (henceforth we will refer to this procedure simply as initialize $t s p^{k}$). At each iteration sort \mathcal{Z} in non-decreasing order of $t_{\min }(v)$. Insert $v=\mathcal{Z}_{l}$ (i.e., the l th element in the ordered set \mathcal{Z}) in the best possible position in the tour $t s p^{k}$ (i.e., the position generating the smallest increment in the travel time of the tour). Stop when $|\mathcal{Z}|=0$.
- RFI: Initialize $t s p^{k}$. At each iteration sort \mathcal{Z} in nondecreasing order of $t_{\max }(v)$ and insert $v=\mathcal{Z}_{l}$ in the best possible position in the tour $t s p^{k}$. Stop when $|\mathcal{Z}|=0$.
- RBI: Initialize $t s p^{k}$. At each iteration sort \mathcal{Z} in nondecreasing order of $\Delta_{\text {min }}(v)$ and insert $v=\mathcal{Z}_{l}$ in the best possible position in the tour $t s p^{k}$. Stop when $|\mathcal{Z}|=0$.

3.1.2 Clustering phase

To extract a feasible solution s^{k} from $t s p^{k}$, our approach uses an adaptation of the s-split procedure for the VRPSD proposed in [19]. S-split builds a directed and acyclic graph $G^{\prime}=\left(\mathcal{V}^{\prime}, \mathcal{A}\right)$ composed of the ordered vertex set $\mathcal{V}^{\prime}=\left(v_{0}, v_{1}, \ldots, v_{i}, \ldots, v_{n}\right)$ and the arc set \mathcal{A}. Vertex $v_{0}=0$ is an auxiliary vertex, while vertices $v_{1}, \ldots, v_{n} \in t s p^{k} \backslash\{0\}$. The vertices in \mathcal{V}^{\prime} are arranged in the order in which they appear in $t s p^{k}$. $\operatorname{Arc}\left(v_{i}, v_{i+n_{r}}\right) \in \mathcal{A}$ represents a feasible route $r_{\left(v_{i}, v_{i+n_{r}}\right)}$ with evaluation $\mathbf{e}_{r_{\left(v_{i}, v_{\left.i+n_{r}\right)}\right)}}$ starting and ending at the depot and traversing the sequence of customers from v_{i+1} to $v_{i+n_{r}}$. The evaluation of route $r_{\left(v_{i}, v_{i+n_{r}}\right)}$ is the contribution of the route to objective function (2) or (8) depending on the formulation being solved. To retrieve s^{t}, the procedure finds the set of arcs (i.e., routes) along the shortest path connecting 0 and v_{n} in G^{\prime}. Figure 2 illustrates the splitting procedure.

Figure 2: Splitting procedure: Graphical example

It is worth noting that since G^{\prime} is directed and acyclic, building the graph and finding the shortest path can be done simultaneously. To accomplish this goal, our method uses an algorithm based on the splitting procedure proposed by [24] for the classical capacitated VRP. Algorithm 2 outlines the procedure. After initializing the shortest path labels (lines 2-5) we enter the outer loop (lines 6-22). Each pass through the outer loop sets the tail of an arc. Then we use the inner loop (lines $9-21$) to build all the arcs sharing the same tail node. At the start of each inner-loop iteration, we build a new arc by simply extending the last generated arc. In the next step, we evaluate the weight of the arc and whether or not it should
be added to the auxiliary graph. These tasks are accomplished by evaluating the route corresponding to the arc in terms of both its contribution to the objective function e_{r} and its feasibility f_{r} (line 12). If the arc is added to the graph, we update the shortest path and predecessor labels (lines 14-17) and move to the next inner-loop iteration; otherwise, we exit the loop. After completing the outer loop we retrieve the solution using the incoming TSP tour and the vector of predecessor labels (for an algorithm that retrieves the solution we refer the reader to Prins [24]).

```
Algorithm 2 Splitting procedure: Pseudocode
    function \(\operatorname{SPLIT}(t s p\),mode)
        \(c_{0} \leftarrow 0 \quad \triangleright c\) : shortest path labels
        for \(i=1\) to \(n\) do
            \(c_{i} \leftarrow \infty\)
        end for
        for \(i=1\) to \(n\) do
            \(j \leftarrow i+1\)
            \(\mathcal{P} \leftarrow \emptyset \quad \triangleright \mathcal{P}:\) duration profile tree
            repeat
                \(r \leftarrow r_{(i, j)}\)
                    continue \(\leftarrow\) false
                    \(\left\langle\mathbf{e}_{r}, \mathbf{f}_{r}, \mathcal{P}\right\rangle \leftarrow\) evaluate \((r, \mathcal{P}\), mode \() \quad \triangleright \mathbf{e}_{r}\) : evaluation, \(\mathbf{f}_{r}:\) feasibility
                    if \(\mathbf{f}_{r}=\) true then
                    if \(c_{i-1}+\mathbf{e}_{r} \leq c_{j}\) then
                        \(c_{j} \leftarrow c_{i-1}+\mathbf{e}_{r}\)
                            \(p_{j} \leftarrow i-1 \quad \triangleright p\) : predecessor labels
                    end if
                    continue \(\leftarrow\) true
                    \(j \leftarrow j+1\)
                    end if
            until \(j>n\) or \(\neg\) continue
        end for
        \(s \leftarrow\) retrieveSolution \((t s p, p)\)
        return \(s\)
    end function
```

The route evaluation procedure (line 12) differs slightly depending on the formulation being solved. In both cases, however, the evaluation starts by checking the expected load constraint (which can be checked in constant time). If the route fails the expected load check, the evaluation is truncated to avoid unnecessary computation. In the next step, we compute the duration profiles of the route. To accomplish this task efficiently we maintain a profile tree \mathcal{P}, storing the duration profiles of all the routes previously evaluated during the current outer-loop iteration. Since the route r evaluated at a given point is just a one-customer extension of the route evaluated in the previous iteration, its duration profiles $\mathcal{P}(r)$ can be built by adding a new level to \mathcal{P} instead of building a whole new tree for the route. Figure 3 illustrates this operation. As they are built, the duration profiles are used to compute the contribution of the route to the objective function e_{r}, i.e., Equation (8) for PF and Equation (2) for CC. In the latter case, the duration profiles are also used to check the route's feasibility f_{r} in terms of the $\mathrm{DC}(3)$.

Note that as a result of the expected load constraint the number of customers served by the largest route generated during an inner-loop iteration can be approximated by

$$
\begin{equation*}
\bar{n}_{r}=\sum_{v_{i} \in r}\left\lceil\frac{E\left[\xi_{v_{i}}\right]}{Q}\right\rceil . \tag{10}
\end{equation*}
$$

Note also that with the tree-extension procedure the total number of operations needed to compute the duration profiles of all the routes generated during a single outer-loop iteration is $O\left(2^{\bar{n}_{r}}\right)$. Since there are n iterations in the outer loop, our split algorithm runs in $O\left(n \cdot 2^{\bar{n}_{r}}\right)$. Although the execution time of the procedure grows exponentially with \bar{n}_{r}, in practical settings the average number of customers per route tends to be rather low [33].

3.2 Local search procedure

To improve the solutions generated by the constructive phase we use a VND [14] with two neighborhoods: re-locate and 2-opt. For both neighborhoods we use intra-route and inter-route versions with first-improvement selection. In general, performing local search in stochastic vehicle routing problems

Figure 3: Route evaluation procedure: Building route-duration profiles
is particularly demanding from a computational point of view, because move evaluations require the computation of complex objective functions and constraints. To overcome these difficulties, authors have proposed various strategies. For instance, [10] develop quick proxies to evaluate the impact of moves in the objective function of a solution to the VRPSD with stochastic customers. Using the proxies, the authors build an efficient tabu search that needs to compute the actual objective function of the search solution only every few iterations. [12] propose a different approach in the context of the classical VRPSD: their approach is a hybrid of simulated annealing and local search. It focuses exclusively on the deterministic part of the objective function (i.e., the total planned duration of the routes) during the first iterations, and it starts considering the stochastic part (i.e., the expected travel time added by recourses) only toward the end of the process. We propose an alternative strategy based on evaluating moves according to a three-step hierarchical procedure.

Let s be a search solution, $f(s)$ the objective function of s, and $t(s)=\sum_{r \in s} t_{r}$ the total planned duration of the routes in s. Let m be a candidate move. Let r and r^{\prime} be the two routes and s^{\prime} the solution that results from applying m to s. The move evaluation procedure is as follows. In the first step, we check the feasibility of r and r^{\prime} in terms of the expected load constraint. If either route is infeasible, the move is discarded and the evaluation aborted. In the second step, we test the condition $t\left(s^{\prime}\right) \leq f(s)$. Using this deterministic filter, we can rapidly discard moves that cannot improve the solution; however, not every move that satisfies the filter is necessarily an improving move. In the third step we complete the evaluation of $f\left(s^{\prime}\right)$ and use the result to determine whether or not the move is improving. In the case of CC the move undergoes an additional evaluation step in which we check the feasibility of r and r^{\prime} in terms of the duration constraint. Table 1 summarizes the complexity of each step of the move-evaluation procedure.

Step	CC		PF	
	$O(1)$	$O(1)$	$O(1)$	$O(1)$
Check expected load	$O(1)$	$O(1)$	$O(1)$	$O(1)$
Check deterministic filter	$O\left(r^{\prime}\right.$			
Check improvement	$O\left(n_{r}^{2}\right)$	$O\left(n_{r}^{2}+n_{r^{\prime}}^{2}\right)$	$O\left(2^{n_{r}}\right)$	$O\left(2^{n_{r}}+2^{n_{r^{\prime}}}\right)$
Check DCs	$O\left(2^{n_{r}}\right)$	$O\left(2^{n_{r}}+2^{n_{r^{\prime}}}\right)$	N / A	N / A

Table 1: Move-evaluation procedure: Complexity summary

3.3 Heuristic concentration

The idea behind HC is to try to build a global optimum using parts of the local optima found during a heuristic search procedure. To the best of our knowledge, the term was coined by Rosing and Revelle [25] in the context of the facility location problem ${ }^{1}$. In the field of vehicle routing, HC has become an important component of metaheuristic-based approaches [see for instance 20, 34, 23, 30, 6].

In the HC phase we use a commercial optimizer to solve an SPP formulation of the VRPSD-DC where the columns correspond to the routes stored in Ω. Since all the routes in Ω satisfy the expected load

[^2]constraint (and the DC in the case of CC), the SPP needs to handle only constraints (5) and (6). The cost $c(r)$ of each column is the evaluation of the associated route depending on the formulation being used (CC or PF). The resulting SPP is $\min _{\mathcal{R} \subseteq \Omega}\left\{\sum_{r \in \mathcal{R}} c(r): \bigcup_{r \in \mathcal{R}}=\mathcal{V} ; r_{i} \bigcap r_{j}=\{0\} \forall r_{i}, r_{j} \in \mathcal{R}\right\}$. To speed up the HC phase, we use the objective function of the best solution found by the GRASP as an initial upper bound for the SPP.

4 Computational experiments

We implemented our GRASP+HC in Java (jre V.1.7.0_02-b13 64 bit) and used the Gurobi Optimizer (version 5.5.0) to solve the SPP. In the remainder of this section we refer to our method as GRASP $+\mathrm{HC}(\mathrm{CC})$ or $\mathrm{GRASP}+\mathrm{HC}(\mathrm{PF})$ depending on the formulation used. All the gaps reported in this section are computed as

$$
\begin{equation*}
g a p=\frac{f(s)-f\left(s^{0}\right)}{f\left(s^{0}\right)} \tag{11}
\end{equation*}
$$

where $f\left(s^{0}\right)$ is the objective function of a reference solution and $f(s)$ is the objective function of the solution being tested. All the experiments were performed on a PC with a Pentium Dual-Core 3.20 GHz and 8 Gb of RAM, running Windows 7 Professional 64 bit.

4.1 Results for standard VRPSD instances

For validation purposes, we first tested our approach on the classical VRPSD. Note that solving the classical VRPSD is equivalent to solving CC with $\beta=1$ (i.e., the DC becomes redundant). However, to avoid expensive verifications of the DC we deactivated it in both the split and move-evaluation procedures. We ran our GRASP + HC on the 40 -instance testbed of Christiansen and Lysgaard [5]. These instances range from 16 to 60 customers and assume Poisson-distributed demands. To assess the effectiveness of our method, we compared our results to the best known solutions (BKSs) for the testbed: 38 optimal solutions reported by [9] and 2 heuristic solutions reported by [11] and [20]. For each instance, we executed 10 runs with $K=500, L_{R N N}=3$, and $L_{R N I}=L_{R B I}=L_{R F I}=6$. Table 2 summarizes our results (the solutions for each instance are reported in Appendix A).

Metric	Method		
	GRASP+HC	MSH	SA
Avg. Gap	0.02%	0.18%	0.35%
Max. Gap	0.19%	1.16%	1.89%
Avg. CV	0.02%	0.08%	0.32%
Avg. Best Gap	0.00%	0.07%	0.04%
NBKS	$40 / 40$	$27 / 40$	$33 / 40$
Max. CPU (s)	102.43	782.77	603.80
Min. CPU (s)	1.69	5.91	9.00
Avg. CPU (s)	36.09	180.78	268.66

Table 2: Summary of results for VRPSD instances. Avg. Gap: average gap over the 400 runs; Max. Gap: maximum gap over the 400 runs; Avg. CV: average coefficient of variation of the objective function over the 40 instances; Avg. Best Gap: average gap if only the best solution found for each instance is considered; NBKS: number of best-known solutions matched; Max. CPU (s): maximum running time over the 400 runs; Min. CPU (s): minimum running time over the 400 runs; Avg. CPU (s): average running time over the 400 runs. MSH: multi-space sampling heuristic of Mendoza and Villegas [20] in its best-but-slowest configuration; SA: simulated annealing algorithm of [11].

The results show that in terms of solution quality our approach outperforms the two state-of-the-art metaheuristics. Our algorithm matched the 40 BKSs for the set, whereas MSH achieves 27/40 and SA achieves $33 / 40$. Moreover, the results for the average and worst-case behavior over multiple runs (i.e., Avg. Gap and Max. Gap) and the coefficient of variation suggest that our method is more stable than MSH and SA (i.e., finds close-to-BKS solutions more often). Although it is difficult to make a precise comparison of the computational performance because of slight differences in the testing environments (programming language, operating system, processing power, etc.), the data suggest that our approach also outperforms the two other methods on this measure. In conclusion our GRASP +HC is a valid method for the classical VRPSD, and it can be expected to perform well on the closely related VRPSD-DC.

4.2 Results for VRPSD-DC instances

4.2.1 Instance generation

To the best of our knowledge, there are no publicly available instances for the VRPSD-DC. Therefore, we built a new benchmark set by adding DCs to the VRPSD instances of [5]. For each instance, we set the maximum duration limit to $T=\left\lceil\max _{r \in \mathcal{R}} E\left[\tilde{T}_{r}\right]\right\rceil$, where \mathcal{R} is the set of routes in the best solution s^{*} found for the instance in the experiments reported in Section 4.1. Note that by construction s^{*} is the best known solution for the modified instance, if it is solved using the constrained expected duration formulation as in Yang et al [35] and Mendoza et al [18, 19]. In the remainder of this section, we refer to this alternative formulation as ED. From the adapted instance set, we excluded instance P-n16-k8 because when solved using CC it is infeasible for the most interesting values of β (i.e., $\beta<0.15)^{2}$. To allow future comparisons with our results, we include in Appendix B the maximum duration limit T for each instance.

4.2.2 Chance-constraint formulation

In this section we discuss the results of GRASP $+\mathrm{HC}(\mathrm{CC})$ for the 39 instances of the adapted set. The main objective of this experiment is to analyze how solutions built using the chance-constraint paradigm compare with those built under the more classical constrained expected duration approach. We first set β to 0.05 , a value that we consider plausible from a managerial perspective. Next, we conducted a post-hoc analysis of each of the best-known ED solutions. This analysis involves evaluating $\operatorname{Pr}\left(\tilde{T}_{r}>T\right)$ for each route r in the solution and finding how many routes become infeasible if the chance constraint is imposed. We then performed $10 \mathrm{GRASP}+\mathrm{HC}(\mathrm{CC})$ runs with $\beta=0.05, K=500, L_{R N N}=3$, and $L_{R N I}=L_{R B I}=L_{R F I}=6$. For the best solution found for each instance we computed the total increase in the objective function $\triangle O F$, with respect to the corresponding best-known ED solution using Equation (11). As expected from the results for the VRPSD instances (Section 4.1) our method exhibited stable performance on the adapted set: the minimum, average, and maximum average coefficients of variation among the 39 instances were $0.00 \%, 0.09 \%$, and 0.48%, respectively. Therefore, we feel confident that the conclusions drawn by analyzing the best solutions are valid for the general case. Table 3 presents the results.

Not surprisingly, the ED solutions are poor when the chance constraint is added: only 3 out of the 39 solutions remain feasible. The results for the percentages of infeasible routes show that the infeasibilities increase because of multiple failing routes rather than isolated cases. More interestingly, the data also show that the routes in the ED solutions tend to have high probabilities of violating the maximum duration limit. Moreover, a close look at the results reveals that the behavior of the routes with respect to this probability is rather unstable. For example, in instance P-n50-k10 the probability of violating the DC ranges from 0.00% to 31.67% in the 11 routes of the solution. As mentioned earlier, these results are expected, because the ED formulation does not provide a mechanism to control the probability of routes violating the DC. Nonetheless, the results of our ad-hoc analysis shed some light on the inconvenience of using the ED formulation in practice. The results of GRASP $+\mathrm{HC}(\mathrm{CC})$ suggest that the chance-constraint approach may be better suited for practical situations. Clearly, every route in a CC solution has a probability of violating the DC that is lower than 5.00%. As the data show, this improvement in the reliability comes with a moderate increase in the total expected travel time of the solutions $(2.10 \%$ on average). With the notable exception of instance A-n39-k5, the largest increases in the expected travel time are observed in solutions in which an extra route is needed to achieve reliability ($10 / 39$ cases). Note that in practical situations where using an extra route is not possible, the decision-makers can obtain tradeoffs between reliability, the expected travel time, and (indirectly) the number of routes by performing a sensitivity analysis for the value of β.

4.2.3 Penalty formulation

In contrast to CC, the penalty formulation PF does not control the probability of violating the DC but rather the magnitude of the violations. To simulate different profiles of aversion toward overtime, we ran experiments with three different $\phi(\cdot)$ cost functions: linear, piecewise linear, and quadratic. The exact

[^3]| Instance | BKS - ED | | | | | | | $\underline{\text { GRASP+HC(CC) }}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | $\|\mathcal{I}\| / \mid \mathcal{R}$ | Ma | | Avg. | OF | $\Delta O F$ | R\| |
| A-n32-k5 | 853.60 | 5 | 1 | 20.00 | 15.94 | 0.00 | 3.59 | 866.77 | 1.54 | 5 |
| A-n33-k5 | 704.20 | 5 | 3 | 60.00 | 9.34 | 0.00 | 4.63 | 735.00 | 4.37 | 6 |
| A-n33-k6 | 793.90 | 6 | 0 | 0.00 | 3.87 | 0.00 | 1.42 | 793.90 | 0.00 | |
| A-n34-k5 | 826.80 | 6 | 3 | 50.00 | 18.18 | 0.00 | 7.52 | 839.01 | 1.48 | |
| A-n36-k5 | 858.70 | 5 | 1 | 20.00 | 39.43 | 0.00 | 7.89 | 861.74 | 0.35 | |
| A-n37-k5 | 708.30 | 5 | 2 | 40.00 | 29.47 | 0.00 | 7.86 | 713.99 | 0.80 | 5 |
| A-n37-k6 | 1030.70 | 7 | 1 | 14.29 | 18.67 | 0.00 | 3.25 | 1032.96 | 0.22 | 7 |
| A-n38-k5 | 775.10 | 6 | 2 | 33.33 | 9.26 | 0.00 | 2.57 | 777.59 | 0.32 | 6 |
| A-n39-k5 | 869.10 | 6 | 3 | 50.00 | 12.93 | 0.00 | 4.83 | 942.45 | 8.44 | |
| A-n39-k6 | 876.60 | 6 | 2 | 33.33 | 29.45 | 0.00 | 7.80 | 889.40 | 1.46 | 6 |
| A-n44-k6 | 1025.40 | 7 | 1 | 14.29 | 9.26 | 0.00 | 2.04 | 1032.70 | 0.71 | 7 |
| A-n45-k6 | 1026.70 | 7 | 3 | 42.86 | 17.82 | 0.00 | 5.57 | 1045.71 | 1.85 | 7 |
| A-n45-k7 | 1264.80 | 7 | 4 | 57.14 | 28.92 | 0.00 | 8.80 | 1298.71 | 2.68 | |
| A-n46-k7 | 1002.20 | 7 | 2 | 28.57 | 13.17 | 0.00 | 3.63 | 1007.11 | 0.49 | 7 |
| A-n48-k7 | 1187.10 | 7 | 4 | 57.14 | 27.26 | 0.00 | 10.15 | 1210.79 | 2.00 | 7 |
| A-n53-k7 | 1124.20 | 8 | 1 | 12.50 | 9.13 | 0.00 | 2.62 | 1127.54 | 0.30 | |
| A-n54-k7 | 1287.00 | 8 | 2 | 25.00 | 36.04 | 0.00 | 6.95 | 1309.13 | 1.72 | 8 |
| A-n55-k9 | 1179.10 | 10 | 3 | 30.00 | 20.61 | 0.00 | 4.39 | 1203.92 | 2.10 | 10 |
| A-n60-k9 | 1529.82 | 10 | 3 | 30.00 | 21.62 | 0.00 | 3.95 | 1543.44 | 0.89 | 10 |
| E-n22-k4 | 411.50 | 4 | 2 | 50.00 | 25.22 | 0.00 | 11.16 | 429.56 | 4.39 | |
| E-n33-k4 | 850.20 | 4 | 0 | 0.00 | 1.03 | 0.00 | 0.33 | 850.27 | 0.01 | |
| E-n51-k5 | 552.26 | 6 | 1 | 16.67 | 16.90 | 0.00 | 3.51 | 554.54 | 0.41 | |
| P-n19-k2 | 224.00 | 3 | 1 | 33.33 | 17.18 | 0.00 | 5.73 | 233.36 | 4.18 | 3 |
| P-n20-k2 | 233.00 | 2 | 1 | 50.00 | 44.63 | 0.79 | 22.71 | 240.84 | 3.36 | |
| P-n21-k2 | 218.90 | 2 | 1 | 50.00 | 16.89 | 0.47 | 8.68 | 234.00 | 6.90 | 3 |
| P-n22-k2 | 231.20 | 2 | 2 | 100.00 | 42.98 | 16.89 | 29.93 | 242.19 | 4.75 | 3 |
| P-n22-k8 | 681.00 | 9 | 4 | 44.44 | 37.08 | 0.00 | 10.16 | 715.81 | 5.11 | 10 |
| P-n23-k8 | 619.50 | 9 | 1 | 11.11 | 39.52 | 0.00 | 4.98 | 634.46 | 2.41 | 10 |
| P-n40-k5 | 472.50 | 5 | 3 | 60.00 | 20.19 | 0.80 | 9.68 | 88.50 | 3.39 | |
| P-n45-k5 | 533.52 | 5 | 3 | 60.00 | 31.97 | 0.03 | 11.05 | 539.66 | 1.15 | 6 |
| P-n50-k10 | 758.70 | 11 | 3 | 27.27 | 31.67 | 0.00 | 7.90 | 772.25 | 1.79 | 11 |
| P-n50-k7 | 582.30 | 7 | 1 | 14.29 | 20.78 | 0.00 | 3.09 | 584.37 | 0.35 | 7 |
| P-n50-k8 | 669.20 | 9 | 4 | 44.44 | 9.77 | 0.00 | 3.91 | 680.42 | 1.68 | 9 |
| P-n51-k10 | 809.70 | 11 | 3 | 27.27 | 25.00 | 0.00 | 6.59 | 833.42 | 2.93 | 11 |
| P-n55-k10 | 742.40 | 10 | 6 | 60.00 | 32.62 | 0.00 | 9.25 | 759.36 | 2.28 | 11 |
| P-n55-k15 | 1068.00 | 18 | 4 | 22.22 | 24.40 | 0.00 | 3.28 | 1086.44 | 1.73 | 17 |
| P-n55-k7 | 588.50 | 7 | 0 | 0.00 | 3.45 | 0.00 | 0.61 | 588.56 | 0.01 | 7 |
| P-n60-k10 | 803.60 | 11 | 4 | 36.36 | 15.83 | 0.00 | 4.29 | 811.44 | 0.98 | 11 |
| P-n60-k15 | 1085.40 | 16 | 6 | 37.50 | 18.85 | 0.00 | 4.90 | 1110.72 | 2.33 | 17 |
| Max. | | | | 100.00 | 44.63 | 16.89 | 29.93 | | 8.44 | |
| Min. | | | | 0.00 | 1.03 | 0.00 | 0.33 | | 0.00 | |
| Avg. | | | | 34.96 | 21.70 | 0.49 | 6.70 | | 2.10 | |
| Std. Dev. | | | | 20.78 | 11.22 | 2.70 | 5.52 | | 1.93 | |

Table 3: Results for the VRPSD-DC instances. OF: objective function; $|\mathcal{R}|$ number of routes in the solution; $|\mathcal{I}|$ number of infeasible routes in the solution, where $\mathcal{I}=\left\{r \in \mathcal{R} \mid \operatorname{Pr}\left(\tilde{T}_{r}>T\right)>\beta\right\} ;|\mathcal{I}| /|\mathcal{R}|: \%$ of infeasible routes; $\operatorname{Pr}\left(\tilde{T}_{r}>T\right)$: probability of violating the duration constraint in $\% ; \Delta O F$ increase in the objective function with respect to the ED solution in \%.
expressions used in our experiments are: $\phi_{1}\left(O_{r}\right)=2 \times O_{r} ; \phi_{2}\left(O_{r}\right)=\lambda \times O_{r} ;$ and $\phi_{3}\left(O_{r}\right)=O_{r}^{2}$ where

$$
\lambda= \begin{cases}1.5 & \text { if } O_{r} \leq 0.05 \times T \tag{12}\\ 3.0 & \text { if } 0.05 \times T<O_{r} \leq 0.10 \times T \\ 5.0 & \text { if } O_{r}>0.10 \times T\end{cases}
$$

To evaluate how the ED solutions perform in situations where the magnitude of the DC violations is relevant, we computed two metrics for each BKS: the total expected overtime $E[O(\mathcal{R})]=\sum_{r \in \mathcal{R}} E\left[\tilde{O}_{r}\right]$ and the total expected overtime cost $E[\phi(O(\mathcal{R}))]=\sum_{r \in \mathcal{R}} E\left[\phi\left(\tilde{O}_{r}\right)\right]$. We then compared the performance with that of the solutions of GRASP $+\mathrm{HC}(\mathrm{PF})$ with the linear, piecewise linear, and quadratic penalties. Tables 4,5 , and 6 present the results.

The results show that the ED solutions not only tend to have high probabilities of incurring overtime, as discussed in Section 4.2.2, but they also incur excessive overtime. Measured as a proportion of the total expected duration (i.e., $E[O(\mathcal{R})] / E[T(\mathcal{R})]$) the expected overtime accounts on average for 1.65% of the total expected travel time of the route set and at most 3.4% (instance $\mathrm{A}-\mathrm{n} 45-\mathrm{k} 7$). As expected, the PF solutions are better. Under the softest penalty scheme (linear) the expected overtime of the PF
solutions as a proportion of the total duration reduces to 0.64%, and with the quadratic scheme the figure is 0.07%. Another way to look at this is through the reductions in the expected overtime reported in the column labeled $\Delta E[O(\cdot)]$. For the linear penalty this figure is on average -52.83%, for the piecewise linear penalty it is -75.51%, and for the quadratic penalty it is -93.52%. This improvement in the overtime comes with an increase in the expected duration of the routes. The increases are on average 0.79%, 1.89%, and 4.79% for the linear, piecewise linear, and quadratic penalty mechanisms, respectively.

Instance	ED				GRASP + HC(PF)					
	$E[T(\cdot)]$	$E[O(\cdot)]$	$E\left[\phi_{1}(\cdot)\right]$	$\|\mathcal{R}\|$	$E[T(\cdot)]$	$\Delta E[T(\cdot)]$	$E[O(\cdot)]$	$\Delta E[O(\cdot)]$	$E\left[\phi_{1}(\cdot)\right]$	$\mathcal{R} \mid$
A-n32-k5	853.60	2.21	4.42	5	853.60	0.00	2.21	0.00	4.42	5
A-n33-k5	704.20	9.06	18.11	5	704.20	0.00	9.06	0.00	18.11	5
A-n33-k6	793.90	4.87	9.73	6	794.15	0.03	4.15	-14.81	8.29	6
A-n34-k5	826.87	25.76	51.53	6	839.01	1.47	4.08	-84.16	8.16	6
A-n36-k5	858.71	13.93	27.87	5	861.74	0.35	0.82	-94.11	1.64	5
A-n37-k5	708.34	12.89	25.77	5	715.37	0.99	0.54	-95.81	1.08	5
A-n37-k6	1030.73	6.02	12.05	7	1030.73	0.00	6.02	0.00	12.05	7
A-n38-k5	775.13	4.94	9.89	6	777.59	0.32	1.28	-74.13	2.56	6
A-n39-k5	869.18	18.49	36.97	6	869.18	0.00	18.49	0.00	36.97	6
A-n39-k6	876.60	20.12	40.24	6	895.59	2.17	0.90	-95.55	1.79	6
A-n44-k6	1025.48	11.71	23.42	7	1033.69	0.80	5.26	-55.08	10.52	7
A-n45-k6	1026.73	19.48	38.96	7	1035.48	0.85	4.39	-77.47	8.78	7
A-n45-k7	1264.83	42.99	85.98	7	1308.01	3.41	6.79	-84.20	13.58	8
A-n46-k7	1002.22	14.26	28.53	7	1005.31	0.31	6.14	-56.94	12.28	7
A-n48-k7	1187.14	32.46	64.93	7	1215.41	2.38	5.71	-82.41	11.42	7
A-n53-k7	1124.27	10.99	21.99	8	1128.71	0.40	7.66	-30.28	15.33	8
A-n54-k7	1287.07	30.95	61.90	8	1313.50	2.05	6.45	-79.16	12.90	8
A-n55-k9	1179.11	15.06	30.13	10	1181.58	0.21	9.67	-35.82	19.33	10
A-n60-k9	1529.82	36.10	72.19	10	1543.44	0.89	6.28	-82.61	12.56	10
E-n22-k4	411.57	12.77	25.54	4	419.15	1.84	5.13	-59.84	10.25	5
E-n33-k4	850.27	1.74	3.48	4	850.27	0.00	1.74	0.00	3.48	4
E-n51-k5	552.26	4.11	8.23	6	554.54	0.41	0.39	-90.47	0.78	6
P-n19-k2	224.06	4.05	8.10	3	224.06	0.00	4.05	0.00	8.10	3
P-n20-k2	233.05	6.06	12.12	2	237.06	1.72	2.50	-58.69	5.01	3
P-n21-k2	218.96	3.15	6.30	2	218.96	0.00	3.15	0.00	6.30	2
P-n22-k2	231.26	5.13	10.25	2	231.26	0.00	5.13	0.00	10.25	2
P-n22-k8	681.06	18.51	37.01	9	689.15	1.19	6.99	-62.22	13.98	9
P-n23-k8	619.53	16.51	33.03	9	634.46	2.41	2.16	-86.91	4.32	10
P-n40-k5	472.50	5.63	11.27	5	472.50	0.00	5.63	0.00	11.27	5
P-n45-k5	533.52	6.75	13.50	5	541.65	1.52	0.44	-93.44	0.89	6
P-n50-k10	758.76	15.82	31.63	11	766.17	0.98	3.86	-75.57	7.73	11
P-n50-k7	582.37	4.10	8.19	7	585.05	0.46	0.12	-96.97	0.25	7
P-n50-k8	669.23	8.52	17.04	9	672.22	0.45	2.01	-76.39	4.02	9
P-n51-k10	809.70	15.41	30.81	11	815.52	0.72	6.50	-57.81	13.00	11
P-n55-k10	742.41	8.95	17.91	10	743.90	0.20	4.35	-51.41	8.70	10
P-n55-k15	1068.05	18.36	36.72	18	1071.47	0.32	6.62	-63.92	13.25	18
P-n55-k7	588.56	0.92	1.85	7	588.56	0.00	0.92	0.00	1.85	7
P-n60-k10	803.60	9.91	19.83	11	808.23	0.58	3.52	-64.45	7.05	11
P-n60-k15	1085.49	22.15	44.29	16	1100.94	1.42	4.50	-79.68	9.00	17
Max.						3.41		0.00		
Min.						0.00		-96.97		
Avg.						0.79		-52.83		
Std. Dev						0.85		35.61		

Table 4: Results for the VRPSD-DC instances with linear penalty. $E[T(\mathcal{R})]$: total expected duration; $E[O(\mathcal{R})]$: total expected overtime; $E\left[\phi_{1}(O(\mathcal{R}))\right]$: total expected overtime cost; $|\mathcal{R}|$: number of routes; $\Delta E[T(\mathcal{R})](\%)$: relative difference in the expected duration with respect to the ED solution; $\Delta E[O(\mathcal{R})]$ (\%): relative difference in the expected overtime with respect to the ED solution.

Instance	ED				GRASP + HC(PF)					
	$E[T(\cdot)]$	$E[O(\cdot)]$	$E\left[\phi_{2}(\cdot)\right]$	$\|\mathcal{R}\|$	$E[T(\cdot)]$	$\Delta E[T(\cdot)]$	$E[O(\cdot)]$	$\Delta E[O(\cdot)]$	$E\left[\phi_{2}(\cdot)\right]$	$\|\mathcal{R}\|$
A-n32-k5	853.60	2.21	6.12	5	853.60	0.00	2.21	0.00	6.12	5
A-n33-k5	704.20	9.06	45.28	5	727.26	3.28	4.39	-51.48	19.00	5
A-n33-k6	793.90	4.87	24.33	6	803.05	1.15	2.07	-57.51	10.34	7
A-n34-k5	826.87	25.76	128.82	6	839.01	1.47	4.08	-84.16	20.40	6
A-n36-k5	858.71	13.93	67.67	5	861.74	0.35	0.82	-94.11	2.32	5
A-n37-k5	708.34	12.89	56.08	5	715.37	0.99	0.54	-95.81	2.41	5
A-n37-k6	1030.73	6.02	27.50	7	1046.74	1.55	0.73	-87.82	3.65	7
A-n38-k5	775.13	4.94	23.18	6	777.59	0.32	1.28	-74.13	4.83	6
A-n39-k5	869.18	18.49	91.92	6	942.45	8.43	2.14	-88.42	9.93	6
A-n39-k6	876.60	20.12	97.10	6	895.59	2.17	0.90	-95.55	4.39	6
A-n44-k6	1025.48	11.71	58.54	7	1033.69	0.80	5.26	-55.08	18.49	7
A-n45-k6	1026.73	19.48	93.32	7	1048.58	2.13	1.42	-92.69	6.22	7
A-n45-k7	1264.83	42.99	212.01	7	1316.61	4.09	3.45	-91.98	16.57	8
A-n46-k7	1002.22	14.26	71.31	7	1005.31	0.31	6.14	-56.94	27.32	7
A-n48-k7	1187.14	32.46	156.69	7	1229.31	3.55	2.58	-92.04	12.60	7
A-n53-k7	1124.27	10.99	54.96	8	1132.24	0.71	9.57	-12.90	23.48	8
A-n54-k7	1287.07	30.95	152.95	8	1323.15	2.80	3.09	-90.03	15.32	8
A-n55-k9	1179.11	15.06	72.89	10	1196.01	1.43	6.68	-55.65	27.26	10
A-n60-k9	1529.82	36.10	178.01	10	1552.96	1.51	1.80	-95.03	7.34	10
E-n22-k4	411.57	12.77	60.61	4	429.56	4.37	0.81	-93.67	4.02	5
E-n33-k4	850.27	1.74	8.70	4	854.05	0.44	0.46	-73.43	2.29	4
E-n51-k5	552.26	4.11	20.44	6	554.54	0.41	0.39	-90.47	1.59	6
P-n19-k2	224.06	4.05	20.25	3	233.36	4.15	0.19	-95.43	0.93	3
P-n20-k2	233.05	6.06	30.17	2	242.11	3.89	0.22	-96.42	1.00	3
P-n21-k2	218.96	3.15	15.74	2	218.96	0.00	3.15	0.00	15.74	2
P-n22-k2	231.26	5.13	22.93	2	242.19	4.73	0.99	-80.78	4.24	3
P-n22-k8	681.06	18.51	84.82	9	692.06	1.61	5.57	-69.89	25.36	9
P-n23-k8	619.53	16.51	82.33	9	639.29	3.19	0.27	-98.37	0.96	10
P-n40-k5	472.50	5.63	26.62	5	482.75	2.17	2.73	-51.51	9.40	5
P-n45-k5	533.52	6.75	29.28	5	541.65	1.52	0.44	-93.44	2.00	6
P-n50-k10	758.76	15.82	72.90	11	766.17	0.98	3.86	-75.57	13.37	11
P-n50-k7	582.37	4.10	20.40	7	585.05	0.46	0.12	-96.97	0.26	7
P-n50-k8	669.23	8.52	40.88	9	672.22	0.45	2.01	-76.39	6.89	9
P-n51-k10	809.70	15.41	73.98	11	823.75	1.74	4.14	-73.13	20.49	12
P-n55-k10	742.41	8.95	36.80	10	755.84	1.81	2.01	-77.51	6.94	11
P-n55-k15	1068.05	18.36	91.80	18	1083.46	1.44	3.16	-82.78	11.49	17
P-n55-k7	588.56	0.92	4.45	7	591.95	0.57	0.08	-91.03	0.39	7
P-n60-k10	803.60	9.91	48.45	11	812.93	1.16	2.46	-75.22	11.77	11
P-n60-k15	1085.49	22.15	110.60	16	1104.47	1.75	4.06	-81.69	14.98	17
Max.						8.43		0.00		
Min.						0.00		-98.37		
Avg.						1.89		-75.51		
Std. Dev.						1.67		24.83		

Table 5: Results for the VRPSD-DC instances with piecewise linear penalty. $E[T(\mathcal{R})]$: total expected duration; $E[O(\mathcal{R})]$: total expected overtime; $E\left[\phi_{2}(O(\mathcal{R}))\right]$: total expected overtime cost; $|\mathcal{R}|$: number of routes; $\Delta E[T(\mathcal{R})]$ (\%): relative difference in the expected duration with respect to the ED solution; $\Delta E[O(\mathcal{R})](\%)$: relative difference in the expected overtime with respect to the ED solution.

Instance	ED				GRASP + HC(PF)					
	$E[T(\cdot)]$	$E[O(\cdot)]$	$E\left[\phi_{3}(\cdot)\right]$	$\|\mathcal{R}\|$	$E[T(\cdot)]$	$\Delta E[T(\cdot)]$	$E[O(\cdot)]$	$\Delta E[O(\cdot)]$	$E\left[\phi_{3}(\cdot)\right]$	$\|\mathcal{R}\|$
A-n32-k5	853.60	2.21	99.96	5	882.77	3.42	1.30	-40.98	14.33	5
A-n33-k5	704.20	9.06	470.03	5	761.17	8.09	0.09	-99.06	4.84	6
A-n33-k6	793.90	4.87	305.71	6	834.39	5.10	0.39	-91.94	9.89	7
A-n34-k5	826.87	25.76	1776.39	6	904.10	9.34	0.08	-99.69	4.15	6
A-n36-k5	858.71	13.93	1849.25	5	872.13	1.56	0.01	-99.93	0.63	5
A-n37-k5	708.34	12.89	706.81	5	721.03	1.79	0.21	-98.36	1.69	5
A-n37-k6	1030.73	6.02	704.27	7	1071.56	3.96	0.11	-98.21	6.89	7
A-n38-k5	775.13	4.94	254.13	6	791.32	2.09	0.18	-96.35	5.27	6
A-n39-k5	869.18	18.49	1408.24	6	969.53	11.55	0.16	-99.12	4.62	6
A-n39-k6	876.60	20.12	1299.52	6	920.65	5.03	0.39	-98.04	11.78	6
A-n44-k6	1025.48	11.71	1079.56	7	1061.73	3.53	0.49	-95.78	12.06	7
A-n45-k6	1026.73	19.48	1469.72	7	1066.00	3.83	0.00	-99.98	0.48	8
A-n45-k7	1264.83	42.99	4023.41	7	1338.75	5.84	0.77	-98.20	41.24	8
A-n46-k7	1002.22	14.26	1122.64	7	1072.23	6.99	0.25	-98.25	5.78	8
A-n48-k7	1187.14	32.46	2356.65	7	1276.01	7.49	0.52	-98.41	18.27	8
A-n53-k7	1124.27	10.99	859.81	8	1174.12	4.43	1.06	-90.31	23.28	8
A-n54-k7	1287.07	30.95	3412.74	8	1369.11	6.37	0.25	-99.20	8.02	8
A-n55-k9	1179.11	15.06	964.54	10	1269.32	7.65	2.21	-85.34	22.96	10
A-n60-k9	1529.82	36.10	4052.28	10	1576.97	3.08	0.45	-98.76	8.02	10
E-n22-k4	411.57	12.77	610.51	4	447.90	8.83	0.06	-99.50	0.20	5
E-n33-k4	850.27	1.74	230.74	4	869.74	2.29	0.23	-86.52	19.21	4
E-n51-k5	552.26	4.11	104.47	6	554.54	0.41	0.39	-90.47	4.83	6
P-n19-k2	224.06	4.05	98.15	3	233.36	4.15	0.19	-95.42	7.23	3
P-n20-k2	233.05	6.06	88.11	2	242.11	3.89	0.22	-96.42	5.97	3
P-n21-k2	218.96	3.15	64.26	2	249.02	13.73	0.01	-99.54	0.49	3
$\mathrm{P}-\mathrm{n} 22-\mathrm{k} 2$	231.26	5.13	108.16	2	254.11	9.88	0.01	-99.72	0.49	3
P-n22-k8	681.06	18.51	915.52	9	750.56	10.20	1.73	-90.68	35.79	10
P-n23-k8	619.53	16.51	630.02	9	639.29	3.19	0.27	-98.37	6.79	10
P-n40-k5	472.50	5.63	83.16	5	490.48	3.81	0.70	-87.51	7.47	6
P-n45-k5	533.52	6.75	165.61	5	543.79	1.92	0.21	-96.86	2.30	6
P-n50-k10	758.76	15.82	405.58	11	786.41	3.64	1.44	-90.87	10.54	11
P-n50-k7	582.37	4.10	88.87	7	585.05	0.46	0.12	-96.97	1.05	7
P-n50-k8	669.23	8.52	240.41	9	680.65	1.71	1.24	-85.49	9.24	9
P-n51-k10	809.70	15.41	524.44	11	854.42	5.52	0.57	-96.31	6.07	12
P-n55-k10	742.41	8.95	163.11	10	760.93	2.49	1.02	-88.58	9.09	11
P-n55-k15	1068.05	18.36	659.15	18	1091.76	2.22	1.54	-91.63	23.57	17
P-n55-k7	588.56	0.92	21.37	7	592.10	0.60	0.11	-87.77	0.92	7
P-n60-k10	803.60	9.91	268.30	11	828.32	3.08	1.28	-87.09	11.69	11
P-n60-k15	1085.49	22.15	721.68	16	1125.52	3.69	0.97	-95.61	11.75	17
Max.						13.73		-40.98		
Min.						0.41		-99.98		
Avg.						4.79		-93.52		
Std. Dev.						3.16		9.72		

Table 6: Results for the VRPSD-DC instances with quadratic penalty. $E[T(\mathcal{R})]$: total expected duration; $E[O(\mathcal{R})]$: total expected overtime; $E\left[\phi_{3}(O(\mathcal{R}))\right]$: total expected overtime cost; $|\mathcal{R}|$: number of routes; $\Delta E[T(\mathcal{R})](\%)$: relative difference in the expected duration with respect to the ED solution; $\Delta E[O(\mathcal{R})]$ (\%): relative difference in the expected overtime with respect to the ED solution.

4.2.4 A word about execution times

Table 7 summarizes the computational performance of GRASP $+\mathrm{HC}(\cdot)$ for each formulation (detailed results are given in Appendix C). As expected, dealing with duration-profile computations in CC and PF increases the time needed to solve the problem with respect to the classical VRPSD. The data show similar average running times for ED and CC, but the Max. CPU and Std. Dev. metrics tip the balance toward the former in terms of the computational performance. On the other hand, the CPU times for PF are consistently double those for ED, independent of the penalty function. There are two reasons for the difference between CC and PF. First, under PF the split procedure in Algorithm 2 tends to perform more inner-loop iterations (lines $6-22$), since the expected load constraint is the only condition that can stop arc extensions (line 13). Second, as Table 1 shows, the most computationally expensive part of a move evaluation under CC comes at the last step, which is reached by only a few moves.

Metric	ED		CC		Linear			Piecewise	Quadratic
Avg. CPU	36.09	34.73	88.46	88.90	83.45				
Min. CPU	1.69	1.71	2.96	2.69	2.64				
Max. CPU	102.43	242.00	434.90	450.93	475.19				
Std. Dev. CPU	27.08	46.78	100.15	102.42	102.26				

Table 7: Execution time summary. CPU: execution time in seconds. All metrics are computed over 390 runs for each approach.

5 Conclusions

We have studied a problem that has received little attention in the literature: the vehicle routing problem with stochastic demands and DCs (VRPSD-DC). We have discussed two different formulations for the problem, namely CC and PF. In CC the DCs are handled as chance constraints, meaning that for each route, the probability of exceeding the maximum duration must be lower than a given threshold. In PF , violations to the DC are penalized in the objective function. To solve the problem, we introduce a hybrid metaheuristic (GRASP +HC). In the GRASP phase, our method uses a set of randomized routefirst, cluster-second heuristics to generate initial solutions and a VND with two move types for the local search. To accelerate the local search procedure, we use a three-step move-evaluation procedure that allows a quick rejection of unpromising moves. In the HC phase, we use a commercial optimizer to solve an SPP formulation of the problem over the set of routes found in the local optima. In contrast to the few solution approaches previously reported, our method does not use Monte Carlo simulation to verify the chance constraints or to compute the penalties for violations of the maximum duration. These tasks are accomplished by explicitly building the probability distribution of the total duration of the routes. We have discussed in detail the computational implications of our approach.

For validation purposes, we tested our method on a 40 -instance standard testbed for the classical VRPSD. Our algorithm matched all 40 BKSs (38 of which are optimal); the two state-of-the-art metaheuristics for the problem cannot match this result. For experiments on the VRPSD-DC, we have proposed a set of 39 instances that we have made publicly available. Our experiments have focused on analyzing how solutions built using the most classical approach in the literature, i.e., enforcing DCs over the expected travel time of the routes (ED), differ from those built using the chance-constraint and penalty paradigms. Our results show that under CC and PF our GRASP + HC provides solutions with a good tradeoff between reliability, measured in terms of violations to the DCs, and increases in the total expected travel time.

Research currently underway includes extensions of our method to solve the VRPSD with a heterogeneous fleet and the VRP with stochastic and correlated demands.

References

[1] Ak A, Erera A (2007) A paired-vehicle recourse strategy for the vehicle-routing problem with stochastic demands. Transportation Science 41(2):222-237
[2] Bent R, Van Hentenryck P (2004) Scenario-based planning for partially dynamic vehicle routing with stochastic customers. Operations Research 52(6):977-987
[3] Bent R, Van Hentenryck P (2007) Waiting and relocation strategies in online stochastic vehicle routing. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI'07), pp 1816-1821
[4] Bianchi L, Birattari M, Chiarandini M, Manfrin M, Mastrolilli M, Paquete L, Rossi-Doria O, Schiavinotto T (2004) Metaheuristics for the vehicle routing problem with stochastic demands. In: Parallel Problem Solving from Nature - PPSN VIII, Lecture Notes in Computer Science, Springer Berlin, Heidelberg, pp 450-460
[5] Christiansen C, Lysgaard J (2007) A branch-and-price algorithm for the capacitated vehicle routing problem with stochastic demands. Operations Research Letters 35(6):773-781
[6] Contardo C, Cordeau JF, Gendron B (2013) A GRASP + ILP-based metaheuristic for the capacitated location-routing problem. To appear in Journal of Heuristics
[7] Cordeau JF, Laporte G, Savelsbergh M, Vigo D (2006) Vehicle routing. In: Barnhart C, Laporte G (eds) Handbooks in Operations Research and Management Science: Transportation, vol 14, Elsevier, Amsterdam, pp 367-428
[8] Erera A, Morales JC, Savelsbergh M (2010) The vehicle routing problem with stochastic demands and duration constraints. Transportation Science 44(4):474-492
[9] Gauvin C (2012) Un algorithme de génération de colonnes pour le problème de tournées de véhicules avec demandes stochastiques. Master's thesis, École Polytechnique de Montréal
[10] Gendreau M, Laporte G, Séguin R (1996) A tabu search heuristic for the vehicle routing problem with stochastic demands and customers. Operations Research 44(3):469-477
[11] Goodson JC, Ohlmann JW, Thomas BW (2012) Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand. European Journal of Operational Research 227(2):312-323
[12] Goodson JC, Ohlmann JW, Thomas BW (2013) Restocking-based rollout policies for the vehicle routing problem with stochastic demand and duration limits. Tech. rep., University of Iowa
[13] Goodson JC, Ohlmann JW, Thomas BW (2013) Rollout policies for dynamic solutions to the multivehicle routing problem with stochastic demand and duration limits. Operations Research 61(1):138-154
[14] Hansen P, Mladenović N, Moreno-Pérez J (2008) Variable neighbourhood search: Methods and applications. 4OR: A Quarterly Journal of Operations Research 6:319-360
[15] Haugland D, Ho S, Laporte G (2007) Designing delivery districts for the vehicle routing problem with stochastic demands. European Journal of Operational Research 180(3):997-1010
[16] Laporte G, Louveaux F, Van Hamme L (2002) An integer L-shaped algorithm for the capacitated vehicle routing problem with stochastic demands. Operations Research 50(3):415-423
[17] Mendoza JE, Castanier B, Guéret C, Medaglia AL, Velasco N (2009) A simulation-based MOEA for the multi-compartment vehicle routing problem with stochastic demands. In: Proceedings of the VIII Metaheuristics International Conference (MIC). Hamburg, Germany
[18] Mendoza JE, Castanier B, Guéret C, Medaglia AL, Velasco N (2010) A memetic algorithm for the multi-compartment vehicle routing problem with stochastic demands. Computers \& Operations Research 37(11):1886-1898
[19] Mendoza JE, Castanier B, Guéret C, Medaglia AL, Velasco N (2011) Constructive heuristics for the multicompartment vehicle routing problem with stochastic demands. Transportation Science 45(3):335345
[20] Mendoza JE, Villegas JG (2013) A multi-space sampling heuristic for the vehicle routing problem with stochastic demands. Optimization Letters 7(7):1503-1516
[21] Novoa C, Berger R, Linderoth J, Storer R (2006) A set-partitioning-based model for the stochastic vehicle routing problem. Tech. rep., Texas State University
[22] Pillac V, Gendreau M, Guéret C, Medaglia AL (2013) A review of dynamic vehicle routing problems. European Journal of Operational Research 225(1):1-11
[23] Pillac V, Guret C, Medaglia AL (2013) A parallel matheuristic for the technician routing and scheduling problem. Optimization Letters 7(7):1525-1535
[24] Prins C (2004) A simple and effective evolutionary algorithm for the vehicle routing problem. Computers \& Operations Research 31(12):1985-2002
[25] Rosing KE, Revelle CS (1997) Heuristic concentration: Two stage solution construction. European Journal of Operational Research 17(96):75-86
[26] Savelsbergh M, Goetschalckx M (1995) A comparison of the efficiency of fixed versus variable vehicle routes. Journal of Business Logistics 16:163-187
[27] Secomandi N, Margot F (2009) Reoptimization approaches for the vehicle-routing problem with stochastic demands. Operations Research 57(1):214-230
[28] Sörensen K, Sevaux M (2006) MA|PM: Memetic algorithms with population management. Computers \& Operations Research 33(5):1214-1225
[29] Sörensen K, Sevaux M (2009) A practical approach for robust and flexible vehicle routing using metaheuristics and Monte Carlo sampling. Journal of Mathematical Modelling and Algorithms 8(4):387-407
[30] Subramanian A, Uchoa E, Ochi LS (2013) A hybrid algorithm for a class of vehicle routing problems. Computers \& Operations Research 40(10):2519-2531
[31] Tan KC, Cheong CY, Goh CK (2007) Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation. European Journal of Operational Research 177(2):813-839
[32] Teodorović D, Pavković G (1992) A simulated annealing technique approach to the vehicle routing problem in the case of stochastic demands. Transportation Planning and Technology 16(4):261-273
[33] Tricoire B (2013) Optimisation dans les réseaux logistiques: du terrain à la prospective. PhD thesis, Université d'Angers (France)
[34] Villegas JG, Prins C, Prodhon C, Medaglia AL, Velasco N (2013) A matheuristic for the truck and trailer routing problem. European Journal of Operational Research 230(2):231-244
[35] Yang WH, Mathur K, Ballou R (2000) Stochastic vehicle routing with restocking. Transportation Science 34(1):99-112

A Detailed results for VRPSD instances

B Duration constraints for the adapted instance set

Instance	T
A-n32-k5	239
A-n33-k5	172
A-n33-k6	192
A-n34-k5	190
A-n36-k5	315
A-n37-k5	213
A-n37-k6	254
A-n38-k5	190
A-n39-k5	216
A-n39-k6	226
A-n44-k6	252
A-n45-k6	225
A-n45-k7	249
A-n46-k7	208
A-n48-k7	220
A-n53-k7	211
A-n54-k7	245
A-n55-k9	176
A-n60-k9	266
E-n22-k4	129
E-n33-k4	268
E-n51-k5	112
P-n19-k2	120
P-n20-k2	129
P-n21-k2	121
P-n22-k2	121
P-n22-k8	128
P-n23-k8	117
P-n40-k5	106
P-n45-k5	120
P-n50-k10	93
P-n50-k7	135
P-n50-k8	100
P-n51-k10	104
P-n55-k10	96
P-n55-k15	99
P-n55-k7	122
P-n60-k10	98
P-n60-k15	101

C Detailed CPU times

Instance	CC			
		Linear	Piecewise	Quadratic
A-n32-k5	11.05	31.31	29.17	21.99
A-n33-k5	7.31	25.77	21.87	19.07
A-n33-k6	10.70	19.41	20.81	19.22
A-n34-k5	8.56	31.40	27.01	18.36
A-n36-k5	33.02	50.21	52.78	52.95
A-n37-k5	17.04	35.70	37.85	30.53
A-n37-k6	26.26	46.72	49.28	51.37
A-n38-k5	9.38	33.95	32.17	26.26
A-n39-k5	29.29	99.62	91.97	87.85
A-n39-k6	18.16	51.02	47.76	37.40
A-n44-k6	43.61	95.73	98.86	98.33
A-n45-k6	26.71	71.64	65.41	60.96
A-n45-k7	68.84	142.19	149.32	158.15
A-n46-k7	52.53	136.61	120.42	113.33
A-n48-k7	63.15	204.34	198.16	154.70
A-n53-k7	90.51	295.03	304.99	272.95
A-n54-k7	176.46	404.58	407.43	407.06
A-n55-k9	55.70	198.37	203.08	166.30
E-n22-k4	2.75	5.02	4.59	4.43
E-n33-k4	10.76	61.38	61.58	40.08
P-n19-k2	1.71	2.96	2.69	2.64
P-n20-k2	2.02	3.32	3.20	3.18
P-n21-k2	2.44	6.95	6.81	4.33
P-n22-k2	2.55	5.79	5.83	4.90
P-n22-k8	4.13	5.36	5.64	7.06
P-n23-k8	4.59	5.01	5.60	5.66
P-n40-k5	6.63	34.67	31.23	22.94
P-n45-k5	10.62	46.28	48.18	35.00
P-n50-k10	18.35	52.66	55.02	57.11
P-n50-k7	35.07	59.36	61.75	58.80
P-n50-k8	18.89	60.40	58.93	52.95
P-n51-k10	38.57	102.66	107.08	100.33
P-n55-k10	28.46	90.43	90.77	88.16
P-n55-k15	38.49	60.02	68.64	83.48
P-n55-k7	37.54	100.26	101.89	87.59
P-n60-k10	36.96	146.07	145.99	133.03
P-n60-k15	48.40	94.63	101.03	117.48
A-n60-k9	242.00	434.90	450.93	475.19
E-n51-k5	15.17	98.34	91.31	73.37
Max.	242.00	434.90	450.93	475.19
Min.	1.71	2.96	2.69	2.64
Avg.	34.73	88.46	88.90	83.45
Std. Dev.	46.78	100.15	102.42	102.26

Table 9: Average running times (in seconds) over ten runs of GRASP + HC for the different VRPSD-DC formulations.

[^0]: Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily reflect those of CIRRELT.
 Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du CIRRELT et n'engagent pas sa responsabilité.

[^1]: * Corresponding author: Louis-Martin.Rousseau@cirrelt.ca

 Dépôt légal - Bibliothèque et Archives nationales du Québec
 Bibliothèque et Archives Canada, 2013
 © Mendoza, Rousseau, Villegas and CIRRELT, 2013

[^2]: ${ }^{1}$ The mechanism has been given different names, but we believe the term heuristic concentration best encapsulates the spirit of the idea.

[^3]: ${ }^{2}$ In fact, customer 2 violates one of the basic assumptions of the problem since $\operatorname{Pr}\left(\tilde{\xi}_{2}>Q\right)=0.1573$. Because of the high failure probability and the travel time to the depot, it is impossible to include customer 2 in a route, even the trivial route $(0,2,0)$, without violating the DC for $\beta<0.1573$.

