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1. Introduction

Dynamic vehicle routing is attracting a growing attention in the research com-
munity. In these problems, some data are not know in advance, but are rather
revealed in real-time while the routes are executed. Dynamically occurring cus-
tomer requests have often been considered, but also dynamic customer demands
and dynamic travel times. Since our work deals with dynamic customer requests
and dynamic travel times, we provide a non exhaustive review of these variants
in the following. Note that general considerations as well as exhaustive sur-
veys on different types of dynamic vehicle routing problems can be found in
[3, 13, 15].

In [4], the authors propose a parallel tabu search heuristic for a vehicle routing
problem with soft time windows in the presence of dynamic customer requests.
In this work, a central dispatch office manages the planned routes. Furthermore,
the vehicles are not aware of their planned routes and are informed of their next
destination only when they have reached their current customer location. The
optimization procedure runs in background and is interrupted when a vehicle
reaches a customer or when a new customer request is received. At this point,
the best known solution is returned and updated, based on the new information
received, and a new optimization task is launched on the updated solution. An
adaptive memory is also combined with the parallel tabu search to maintain a
pool of interesting solution alternatives. It is shown that this algorithm improves
over simple greedy heuristics when the optimization tasks can run long enough
before they are interrupted. This work was later extended in [5] to address a
courier service application where each new customer request is made of a pick-up
and a delivery location, with a precedence constraint between the two locations.

The impact of diversion has also been studied in the literature. It consists in
diverting a vehicle to a newly occurring customer request, close to the vehicle’s
current location, while en route to another destination. In [7], diversion is inte-
grated within the tabu search heuristic reported in [4], and is shown to provide
substantial improvements. Diversion is also considered in [6] where two different
approaches are compared. The first approach, called sample-scenario planning,
provides high-quality solutions, but at the expense of large computation times.
At each step, a sample of likely-to-occur future customer requests is generated to
obtain a number of scenarios. Robust planned routes are then computed based
on these scenarios. The second method, called anticipatory-insertion heuristic,
incorporates information about expected future customer requests when each
new request is inserted into the current planned routes.

As illustrated by the last method, the myopy of methodologies developed for
static problems can be alleviated by exploiting any probabilistic knowledge
about the occurrence of future customer requests, either implicitly or explic-
itly. Different approaches are based on waiting and relocation strategies. In [1],
for example, the vehicles can either wait at their current customer location or
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at any other site, to answer customer requests that are likely to occur in their
vicinity. A similar idea is also found in [9]. Here, dummy customers in the
planned routes stand for future, likely-to-occur, customer requests which are
replaced by true requests when they occur. Another approach reported in the
literature uses a short-term and a long-term objective, where the latter tends
to introduce waiting times in the planned routes to facilitate the inclusion of
future requests [12].

Dynamic travel times, where times can change due to road congestion, have
also raised the attention of the research community. In [2], for example, a
traffic management system forecasts the travel times, based on road conditions,
and transmits this information to the dispatch office. The latter then takes
appropriate actions in the context of a pickup and delivery problem, assuming
that the communication between the dispatch office and the drivers is possible at
all time. The authors also describe a general framework to account for dynamic
travel times and report results based on traffic information from the city of
Berlin, Germany.

The authors in [14] consider a vehicle routing problem with time windows and
dynamic travel times. The latter have three different components: static long-
term forecasts (often referred to as time-dependent travel times in the litera-
ture), short-term forecasts, where the travel time on a link is modified with
a random uniform value to account for any new information available when a
vehicle is ready to depart from its current location, and dynamic perturbations
caused by unforeseen events that might occur while traveling on a link (e.g.,
an accident causing sudden congestion). A modification to a planned route is
only possible when the vehicle is at a customer location. Hence, a planned
route cannot be reconsidered while the vehicle is traveling on a link between
two customer locations. An extension to this model is proposed in [10]. In this
work, the position of each vehicle can be obtained when a vehicle reaches its
lateness tolerance limit or when a new customer request occurs. Based on this
information, the planned route of each vehicle is reconsidered, including the
possibility of diversion (i.e., redirecting a vehicle en route to its current desti-
nation). The results show that the setting of an appropriate lateness tolerance
limit can provide substantial improvements. Here, we propose a further exten-
sion by assuming that the position of each vehicle is known at all time. This
assumption allows the system to detect perturbations to the travel times and
take appropriate actions much earlier.

This paper is organized as follows. A description of the problem is provided in
Section 2. Then, Section 3 describes the two models in [10, 14] and explain the
extension proposed here. Section 4 introduces travel time perturbations that
lead to earliness in the planned schedule. The results obtained with the model
in [10] and the new extension are then compared in Section 5. Finally, Section
6 concludes the paper and proposes future research avenues.
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2. Problem description

The description of the problem is based on [10] where a fleet of vehicles performs
routes, starting from and ending at a central depot, to collect goods at customer
locations. Each customer must be visited exactly once by a vehicle within a
(soft) time window. Some customer requests are said to be static, because they
are known in advance and can be used to create initial planned routes. Other
requests occur dynamically through the day and must be incorporated in real-
time into the current solution. The ratio between the number of static requests
and the total number of requests (static plus dynamic) is known as the degree
of dynamism and is denoted dod in the following [11]. Additional details on this
topic can be found in [13].

Formally, let us consider a complete undirected graph G = (V,E) with a set
of vertices V = {0, 1, 2, . . . , n}, where vertex 0 is the depot, and a set of edges
E. Each edge (i, j) ∈ E is characterized by a travel time tij . Also, each vertex
i ∈ V \ {0} has a time window [ei, li]. A vehicle can arrive before the lower
bound ei but must wait to start the service. Conversely, a vehicle can arrive
after the upper bound li, but a (linear) penalty is incurred in the objective. We
assume that K vehicles of virtually infinite capacity are available. Each vehicle
performs a single route which must end before an upper bound l0, otherwise
another penalty is incurred in the objective.

The objective function f takes into account (1) the travel time, (2) the sum of
lateness at customer locations and (3) the lateness at the depot. Denoting tik

the arrival time of vehicle k at customer i ∈ V \ {0} (assuming that customer
i is served by vehicle k) and by tk0 the return time of vehicle k at the depot 0,
the objective can be written as:

f(S) =
∑

k∈K

f(Sk)

=
∑

k∈K

(

α

mk
∑

p=1

tik
p−1

,ikp
+β

mk−1
∑

p=1

max{0, tik
p−1

−lik
p−1

}+γmax{0, tk0 − l0}

)

(1)

where S =
⋃

k∈K Sk represents a solution (a set of routes) and Sk = {ik0 , i
k
1 , . . . , i

k
mk

}

is the route of vehicle k ∈ K, with ik0 = ikmk
= 0. The weights α, β and γ are

used to put more or less emphasis on travel time or lateness.

With regard to the static, time-dependent, component of the travel time, we do
as in [8] and split the operations day in three time periods for the morning, lunch
time and afternoon. With each period is associated a coefficient that multiplies
the average travel time (namely, 1.25 for the morning, 0.5 for the lunch time,
and 1.25 for the afternoon). To guarantee that a vehicle leaving earlier from
some customer location also arrives earlier at destination, which is known as
the FIFO property, the travel times are adjusted when a boundary between two
time periods is crossed.
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The travel times also suffer dynamic perturbations due, for example, to unex-
pected congestion. A dynamic perturbation is thus included based on a normal
probability law with mean 0 and different standard deviations σ. Perturbations
with negative values, leading to earliness, are reset to 0 in the first implemen-
tation, so that only lateness in the planned schedule can occur (as it is done in
[10, 14]). In a second implementation, perturbations with negative values are
also considered.

3. Models

Three related models are presented in this section. The third model is an
extension of the two previous ones.

3.1. Model 1

In Model 1 [14], a central dispatch office manages the planned route of each
vehicle. It is assumed that communication between the drivers and the dis-
patch office takes place only at customer locations. When a driver has finished
serving a customer, he communicates with the dispatch office to know his next
destination. Hence, the drivers are not aware of their planned route, but only
of the next customer to be served. The static requests are first used to con-
struct initial routes through an insertion heuristic where, at each iteration, a
customer is selected and inserted at the best possible place in the current routes
(i.e., with minimum increase in the objective value). At the end, a local search-
based improvement procedure is triggered using CROSS exchanges [18], where
sequences of customers are moved from one route to another. Finally, another
local search-based improvement procedure is applied to each individual route,
based on the relocation of each customer. Whenever a new dynamic request
is received, the same insertion and reoptimization procedures are applied to
update the planned routes.

Since travel times are dynamic, a lateness tolerance limit TL is defined, which is
the maximum acceptable delay to a vehicle’s planned arrival time at its current
destination before some reassignment action is considered. For example, if we
assume that sk is the current destination of vehicle k and its planned arrival
time is tsk , then tsk + TL defines the tolerance time limit TTLk of vehicle k.
That is, if vehicle k has not reached customer sk at time TTLk, sk is removed
from its planned route and inserted in the planned route of some other vehicle
l (note that vehicle k is not aware of this change and will continue toward sk,
as communication between the dispatch office and vehicles only take place at
customer locations). If it happens that vehicle k still reaches sk before vehicle
l and while l is en route to sk, then vehicle k serves sk, but vehicle l will only
know when reaching sk. A major drawback of this model thus relates to the
limited communication scheme between the dispatch office and the vehicles.

4

Impact of Online Tracking on a Vehicle Routing Problem with Dynamic Travel Times

CIRRELT-2014-05



3.2. Model 2

In [10], Model 1 was extended by adding diversion to allow any vehicle to be
redirected to another customer, while en route to its current destination (if it
provides some benefit with regard to the objective). When (a) a new customer
request is received or (b) some vehicle k has reached its tolerance time limit,
it is assumed that the dispatch office can obtain the current location of each
vehicle to evaluate the benefits of a diversion. In case (a), a pure diversion of
vehicle k to serve the newly occurring customer request is considered whereas,
in case (b), the current destination of vehicle k is reassigned to another vehicle
l 6= k. Vehicle k is then redirected to the customer that immediately follows
(what was) its current destination in the planned route. Figure 1 illustrates
these two cases. In Figure 1 (a), a new customer request s occurs while vehicle
k is located at position x between vertices ikp−1 and ikp. In this case, vehicle k

will serve s before ikp if it is beneficial to do so. In Figure 1 (b), vehicle k has

reached its tolerance time limit. Thus, its current destination s = ikp is removed
from its planned route and is reassigned to another vehicle l, while vehicle k is
redirected to ikp+1. The results reported in [10] show that Model 2 significantly
outperforms Model 1. Also, empirical results demonstrated that the best TL

value is 0. That is, an appropriate action must be considered as soon as a
perturbation to the planned schedule is detected.
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Figure 1: Diversion and reassignment actions
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3.3. Model 3

The new model proposed here extends Model 2 by assuming that the position
of each vehicle is known at all time, not only when the two types of situations
described above for Model 2 occur. To this end, we first assume that the dynamic
perturbation component of the travel time is distributed uniformly along a link.
Then, as soon as it is impossible for vehicle k to arrive at its current destination
at time TTLk, a reassignment action is considered. For example, let us assume
that vehicle k departs from i to j at time t, with a travel time tij = 5 and a
dynamic perturbation ∆tij = 5. That is, the vehicle is planned to arrive at j at

time t+5, but will in fact arrive only at time t+10. If TL = 0, then TTLk = t+5
and Model 2 will consider a reassignment at time t+5 when it is observed that
vehicle k has not yet reached j. On the other hand, by tracking the current
position of each vehicle, Model 3 can detect the problem much earlier. For
example, at time t+1, vehicle k has still to cover 9

10 of the distance, so that the
planned arrival time at location j could be updated to t + 1 + 9

10 · 5 = t + 5.5
(assuming no more perturbation on the remainder of the link) which already
exceeds TTLk. This assumption holds if we assume the availability of tracking
devices, which are now widely available at competitive prices, as well as a mobile
network coverage of the service area (note that preliminary results regarding this
model have been presented in [16]).

4. Earliness

As stated earlier, only positive perturbations to the travel times that lead to
lateness in a vehicle schedule were considered in [10], by resetting any negative
value to 0. Negative perturbation values, leading to earliness in a vehicle sched-
ule (i.e., the vehicle will arrive earlier than expected at its current destination)
have been tested here for both Models 2 and 3. If some vehicle l is late, then
the earliness in the schedule of another vehicle k will automatically be exploited
by the optimization procedure. That is, the current destination of vehicle l will
likely be transferred to vehicle k. The benefits of Model 3 over Model 2 in this
situation are the same as those mentioned for positive perturbation values: it
will be possible to detect the earliness and lateness in the vehicle schedules be-
fore the vehicles reach their current destination and, consequently, react more
promptly. Figure 2 illustrates this capability. In the figure, vehicle k is currently
traveling between customers ikp−1 and ikp and is ahead of its schedule. Similarly,

another vehicle l is traveling between customers ilp−1 and ilp and is late. Then,

vehicle k can be redirected to ilp and vehicle l to ilp+1 while both vehicles are en
route.
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Figure 2: Integrating earliness into the model

5. Computational results

Tests were performed on a 3.4 GHz Intel Quad-core i7 with 8 GB of DDR3 RAM
memory. The Euclidean 100-customer Solomon’s benchmark instances [17] were
used to compare Models 2 and 3. Any dynamic customer request i was set to
occur at time ei · r, where ei is the lower bound of the time window at customer
i and r is a random number between 0 and 1. Parameters α, β and γ were set
to 1 in the objective. For these experiments, only the three classes of instances
R2, C2 and RC2 with 11, 8 and 8 instances, respectively, were considered due
to their large time horizon which allows for many customers per route. Note
that customers are randomly generated in R2, clustered in C2 or both clustered
and randomly generated in RC2. Note also that the computing times are not
commented given that the optimization takes place within a fraction of a second.

Tables 1 to 3 show the results on classes R2, C2, and RC2 respectively, for
various tolerances TL and σ values in Euclidean units (where σ is the variance
of the dynamic perturbations to the travel times). Each entry in these tables
correspond to the average objective value over ten runs, using ten different seeds,
and over each instance of a given class. There is also a pair of numbers between
parentheses: the first number is the average number of times a reassignment
action was considered (per instance) and the second number is the percentage
of reassignments that were undertaken because they proved to be beneficial.
The last row with TL = 1000 · σ is an extreme case where no action is taken.
That is, the planned routes are followed whatever the perturbation. The degree
of dynamism dod was set to 0.5 and only lateness with regard to the current
schedule was allowed (i.e., negative perturbations to the travel times were reset
to 0).
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Table 1: Results of Model 3 on class R2

TL σ = 1 σ = 4 σ = 16 σ = 32

0
1548.57
(52.76,8.86%)

2099.08
(54.65,15.77%)

4779.91
(67.24,45.86%)

7322.89
(77.35,65.35%)

0.5 · σ
1595.78
(31.95,8.14%)

2233.27
(32.64,13.59%)

6283.63
(35.56,39.72%)

13491.44
(36.91,56.11%)

1 · σ
1623.17
(15.96,7.86%)

2288.34
(16.24,13.89%)

6641.03
(16.58,34.10%)

15201.17
(15.05,44.69%)

2 · σ
1634.21
(2.05,9.73%)

2326.33
(2.04,12.50%)

6945.38
(1.75,18.75%)

15211.18
(1.33,27.40%)

3 · σ
1640.09
(0.07,25.00%)

2335.04
(0.07,0.00%)

6925.79
(0.04,0.00%)

15260.43
(0.04,0.00%)

1000 · σ
1641.17
(0.00,-)

2335.04
(0.00,-)

6925.79
(0.00,-)

15260.43
(0.00,-)

Table 2: Results of Model 3 on class C2

TL σ = 1 σ = 4 σ = 16 σ = 32

0
2145.41
(51.65,6.53%)

2746.84
(51.68,7.21%)

6047.75
(53.70,12.90%)

10865.41
(58.20,26.29%)

0.5 · σ
2362.23
(31.60,7.83%)

2972.81
(31.53,8.88%)

6432.07
(32.15,13.61%)

11914.13
(32.68,25.78%)

1 · σ
2419.65
(15.80,8.39%)

3054.61
(15.75,9.52%)

6722.66
(15.48,15.51%)

12808.44
(12.50,28.60%)

2 · σ
2696.53
(2.03,11.11%)

3311.12
(2.03,9.88%)

7119.54
(1.75,18.57%)

13263.69
(0.90,33.33%)

3 · σ
2725.66
(0.10,50.00%)

3349.47
(0.10,25.00%)

7197.18
(0.10,25.00%)

13326.74
(0.00,-)

1000 · σ
2728.99
(0.00,-)

3359.17
(0.00,-)

7200.55
(0.00,-)

13326.74
(0.00,-)
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Table 3: Results of Model 3 on class RC2

TL σ = 1 σ = 4 σ = 16 σ = 32

0
1515.47
(52.03,6.78%)

1878.14
(53.98,13.06%)

3975.85
(63.75,36.39%)

6205.70
(73.58,56.81%)

0.5 · σ
1547.14
(31.58,6.25%)

1952.08
(32.45,11.86%)

4815.76
(34.40,30.31%)

10187.55
(34.33,47.20%)

1 · σ
1572.37
(15.85,4.73%)

2006.65
(16.03,10.30%)

5313.23
(15.38,27.80%)

11370.48
(13.75,36.91%)

2 · σ
1590.77
(1.98,3.80%)

2037.86
(1.98,7.59%)

5490.76
(1.88,13.33%)

11641.22
(1.25,26.00%)

3 · σ
1591.66
(0.10,0.00%)

2041.68
(0.10,0.00%)

5495.05
(0.10,25.00%)

11685.73
(0.08,66.67%)

1000 · σ
1591.66
(0.00,-)

2041.68
(0.00,-)

5501.21
(0.00,-)

11734.49
(0.00,-)

These results indicate that small TL values lead to better results, with the best
value being TL = 0 in all cases. In other words, a reactive action should be
considered as soon as a perturbation to the current schedule is detected. This
observation is in line with the results reported in [10]. Also, the percentage
of reassignments that provide an improvement increases with σ. This is not
surprising, given that the current plan is likely to be improved when large per-
turbations are encountered.

Table 4 shows the objective values as well as the percentage of improvement of
Model 3 over Model 2 when dod ranges from 0.1 to 0.9 with TL = 0. Although
we show only these results, additional experiments with other TL values led
to the same observation, namely, that Model 3 is clearly superior to Model 2
due to its ability to detect perturbations to the current plan much earlier. The
improvement is quite substantial in the case of R2 and RC2, and can even reach
30% for large σ values. The results are less impressive in the case of C2 (Model
3 is even worse than Model 2 for dod = 0.9 and σ = 16). This observation can
be explained by the geographical clustering of customers which seriously limits
the benefit of redirecting a vehicle, for example to serve a distant customer in
another cluster. Table 5 summarizes the improvements obtained over all dod
values for each class of instances, as well as over all classes of instances.
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Table 4: Improvement of Model 3 over Model 2 with TL = 0 for different dod values

dod σ = 1 σ = 4 σ = 16 σ = 32

0.1
R2 Model 2

Model 3

% Imprv.

1183.59

1168.82

1.26%

1653.41

1598.71

3.42%

4827.73

4097.30

17.83%

8606.15

6545.20

31.49%
C2 Model 2

Model 3

% Imprv.

1195.68

1171.77

2.04%

1536.89

1533.58

0.22%

4073.00

3920.30

3.89%

8578.14

8230.87

4.22%
RC2 Model 2

Model 3

% Imprv.

1267.60

1259.96

0.61%

1557.40

1524.96

2.13%

4002.04

3512.06

13.95%

7499.71

5805.93

29.17%

0.3
R2 Model 2

Model 3

% Imprv.

1381.69

1346.87

2.59%

1933.86

1853.73

4.32%

5334.02

4520.57

17.99%

9228.19

7097.35

30.02%
C2 Model 2

Model 3

% Imprv.

1645.09

1642.23

0.17%

2014.47

1970.29

2.24%

5269.25

5103.47

3.25%

9705.95

9466.89

2.53%
RC2 Model 2

Model 3

% Imprv.

1460.75

1442.85

1.24%

1857.16

1775.30

4.61%

4521.94

3815.26

18.52%

8105.48

6338.51

27.88%

0.5
R2 Model 2

Model 3

% Imprv.

1604.03

1548.57

3.58%

2245.95

2099.08

7.00%

5891.80

4779.92

23.26%

9636.36

7322.89

31.59%

C2 Model 2

Model 3

% Imprv.

2193.26

2145.41

2.23%

2769.02

2746.84

0.81%

6221.36

6047.76

2.87%

11652.32

10865.42

7.24%
RC2 Model 2

Model 3

% Imprv.

1551.26

1515.47

2.36%

1949.16

1878.14

3.78%

4621.90

3975.86

16.25%

8426.49

6205.70

35.79%

0.7
R2 Model 2

Model 3

% Imprv.

2014.79

1932.65

4.25%

2823.41

2599.74

8.60%

6553.96

5292.18

23.84%

10366.10

8037.42

28.97%
C2 Model 2

Model 3

% Imprv.

2444.12

2340.94

4.41%

2806.64

2790.25

0.59%

6075.49

5809.04

4.59%

11937.20

10929.91

9.22%
RC2 Model 2

Model 3

% Imprv.

1805.32

1747.96

3.28%

2343.49

2185.97

7.21%

5311.32

4708.65

12.80%

9153.11

6948.25

31.73%

0.9
R2 Model 2

Model 3

% Imprv.

2182.42

2044.20

6.76%

2994.81

2769.36

8.14%

6961.94

5728.86

21.52%

11386.24

8902.86

27.89%
C2 Model 2

Model 3

% Imprv.

3498.62

3414.02

2.48%

4337.93

4216.22

2.89%

8702.07

8941.81

-2.68%

15191.83

14441.63

5.19%
RC2 Model 2

Model 3

% Imprv.

2097.39

2008.42

4.43%

2782.93

2554.65

8.94%

6743.54

5759.39

17.09%

10730.58

8285.90

29.50%
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Table 5: Improvement of Model 3 over Model 2 with TL = 0 over all dod values

σ = 1 σ = 4 σ = 16 σ = 32

R2 3.69% 6.30% 20.89% 29.99%

C2 2.27% 1.35% 2.38% 5.68%

RC2 2.38% 5.33% 15.72% 30.81%

Overall 2.78% 4.33% 13.00% 22.16%

Tables 6 to 8 are similar to Tables 1 to 3 and report the results of Model 3 for
various tolerance TL and σ values with dod = 0.5 when negative perturbations
to the travel times are allowed (leading to earliness in the schedule). Tables 9
and 10 are also similar to Tables 4 and 5 and report the improvement of Model
3 over Model 2 with TL = 0 for dod values between 0.1 and 0.9 when negative
perturbations are allowed. Not surprisingly, the trends are the same as those
observed previously but are somewhat accentuated, in particular for large σ

values.

Table 6: Results of Model 3 on class R2 including negative perturbations

TL σ = 1 σ = 4 σ = 16 σ = 32

0
1408.23
(53.13,8.80%)

1576.70
(54.82,14.23%)

2951.06
(66.20,42.85%)

4156.69
(76.67,62.81%)

0.5 · σ
1451.92
(32.22,7.62%)

1675.40
(32.73,12.89%)

4164.83
(35.77,38.81%)

9962.26
(37.57,55.17%)

1 · σ
1474.64
(16.20,7.58%)

1719.48
(16.35,14.17%)

4840.45
(16.71,34.33%)

12027.22
(15.36,45.03%)

2 · σ
1488.51
(2.12,8.58%)

1753.46
(2.10,10.82%)

5176.51
(1.90,25.36%)

12765.64
(1.39,40.52%)

3 · σ
1490.47
(0.13,14.29%)

1761.16
(0.12,15.38%)

5160.00
(0.09,10.00%)

12485.61
(0.07,12.50%)

1000 · σ
1491.05
(0.00,-)

1762.37
(0.00,-)

5161.13
(0.00,-)

12489.44
(0.00,-)
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Table 7: Results of Model 3 on class C2 including negative perturbations

TL σ = 1 σ = 4 σ = 16 σ = 32

0
2208.83
(52.21,6.22%)

2480.35
(52.43,7.20%)

4934.58
(54.14,12.65%)

8706.28
(57.91,24.15%)

0.5 · σ
2349.66
(31.93,7.01%)

2593.29
(32.06,8.38%)

5153.91
(32.63,13.26%)

9852.66
(32.64,24.01%)

1 · σ
2433.25
(15.90,8.18%)

2697.11
(15.95,9.01%)

5550.78
(15.54,14.88%)

10736.38
(12.54,26.32%)

2 · σ
2592.38
(2.09,10.18%)

2877.84
(2.08,12.65%)

5923.32
(1.73,21.01%)

11454.67
(0.89,29.58%)

3 · σ
2639.34
(0.14,27.27%)

2932.43
(0.14,9.09%)

5999.76
(0.11,22.22%)

11449.34
(0.04,0.00%)

1000 · σ
2638.97
(0.00,-)

2933.91
(0.00,-)

6018.05
(0.00,-)

11449.34
(0.00,-)

Table 8: Results of Model 3 on class RC2 including negative perturbations

TL σ = 1 σ = 4 σ = 16 σ = 32

0
1444.06
(53.05,7.28%)

1570.02
(54.51,12.27%)

2602.30
(65.19,37.03%)

3583.52
(74.21,55.47%)

0.5 · σ
1472.57
(32.01,6.44%)

1630.52
(32.78,11.94%)

3387.50
(34.94,30.88%)

7333.01
(34.93,48.21%)

1 · σ
1489.27
(15.96,6.50%)

1669.12
(16.15,12.00%)

3931.03
(15.61,29.78%)

8636.15
(13.38,39.81%)

2 · σ
1503.83
(2.06,8.48%)

1712.14
(2.10,16.07%)

4122.88
(1.83,24.66%)

9111.62
(1.39,28.83%)

3 · σ
1508.63
(0.14,0.00%)

1722.23
(0.14,0.00%)

4150.32
(0.14,18.18%)

9185.94
(0.05,25.00%)

1000 · σ
1508.63
(0.00,-)

1722.23
(0.00,-)

4145.58
(0.00,-)

9184.10
(0.00,-)
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Table 9: Improvement of Model 3 over Model 2 with TL = 0 for different dod values, including

negative perturbations

dod σ = 1 σ = 4 σ = 16 σ = 32

0.1
R2 Model 2

Model 3

% Imprv.

1093.38

1082.36

1.02%

1238.16

1208.02

2.50%

3091.47

2531.94

22.10%

5400.52

3723.15

45.05%
C2 Model 2

Model 3

% Imprv.

1180.54

1167.54

1.11%

1361.29

1343.24

1.34%

3160.62

3095.66

2.10%

6975.13

6527.79

6.85%
RC2 Model 2

Model 3

% Imprv.

1205.74

1199.42

0.53%

1322.11

1300.70

1.65%

2749.25

2298.89

19.59%

4765.88

3178.00

49.96%

0.3
R2 Model 2

Model 3

% Imprv.

1255.76

1229.63

2.12%

1445.00

1377.47

4.90%

3417.23

2679.75

27.52%

5638.62

3874.91

45.52%
C2 Model 2

Model 3

% Imprv.

1626.13

1607.29

1.17%

1767.72

1735.47

1.86%

3902.18

3651.05

6.88%

7793.65

7159.94

8.85%
RC2 Model 2

Model 3

% Imprv.

1372.78

1356.16

1.23%

1541.12

1481.81

4.00%

3208.57

2532.72

26.68%

5321.58

3579.10

48.68%

0.5
R2 Model 2

Model 3

% Imprv.

1454.72

1408.23

3.30%

1668.62

1576.70

5.83%

3741.13

2951.06

26.77%

5996.84

4156.69

44.27%
C2 Model 2

Model 3

% Imprv.

2269.21

2208.83

2.73%

2496.09

2480.35

0.63%

5110.58

4934.58

3.57%

9508.50

8706.28

9.21%
RC2 Model 2

Model 3

% Imprv.

1478.08

1444.06

2.36%

1634.76

1570.02

4.12%

3338.04

2602.30

28.27%

5278.44

3583.52

47.30%

0.7
R2 Model 2

Model 3

% Imprv.

1803.15

1728.48

4.32%

2053.27

1909.71

7.52%

4159.67

3264.42

27.42%

6545.16

4409.19

48.44%
C2 Model 2

Model 3

% Imprv.

2310.80

2217.70

4.20%

2422.14

2336.18

3.68%

4852.43

4573.30

6.10%

9672.17

8745.50

10.60%
RC2 Model 2

Model 3

% Imprv.

1669.42

1625.96

2.67%

1853.11

1747.68

6.03%

3614.90

2805.90

28.83%

5818.96

3807.39

52.83%

0.9
R2 Model 2

Model 3

% Imprv.

1965.55

1861.09

5.61%

2283.00

2099.15

8.76%

4631.17

3610.27

28.28%

7386.65

4990.11

48.03%
C2 Model 2

Model 3

% Imprv.

3323.86

3261.67

1.91%

3621.42

3446.48

5.08%

6403.54

6610.18

-3.13%

12274.79

11123.78

10.35%
RC2 Model 2

Model 3

% Imprv.

2112.12

2016.67

4.73%

2381.04

2195.41

8.46%

5101.59

3943.92

29.35%

7644.64

5532.53

38.18%
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Table 10: Improvement of Model 3 over Model 2 with TL = 0 over all dod values, including

negative perturbations

σ = 1 σ = 4 σ = 16 σ = 32

R2 3.28% 5.90% 26.42% 46.26%

C2 2.22% 2.52% 3.10% 9.17%

RC2 2.30% 4.85% 26.55% 47.39%

Overall 2.60% 4.42% 18.69% 34.28%

Finally, Figure 3 illustrates the average objective values of Models 2 and 3 with
TL = 0 and dod = 0.5 for a large number of σ values taken between 1 and 32
using the instances of class RC2. In this figure, negative perturbations to the
travel times are allowed. This figure clearly shows that the gap between the two
models sharply increases with σ.
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Figure 3: Average objective values of Models 2 and 3 on class RC2 with TL = 0, dod = 0.5

and different σ values
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6. Conclusion

This paper has investigated the impact of on-line vehicle tracking devices on
solution quality for a dynamic vehicle routing problem with time windows. The
dynamic characteristics relate to the occurrence of new customer requests and
perturbations to the travel times. We empirically demonstrated that a reactive
action should be contemplated as soon as a perturbation is detected in the cur-
rent planned routes. Our model was also shown to be robust and to behave well
under different degrees of dynamism. It also proved to be significantly superior
to another model where the location of each vehicle is only known at specific
moments during the operations day. In the future, we plan to investigate the
impact of other probability distributions to model the travel time perturbations.
We also want to consider other ways to distribute a perturbation to the travel
time along a link.
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