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1 Introduction

North American hospitals are renowned worldwide for the outstanding quality of the staff and
dispensing of patient care. It is hard to deny that there is room for improvement when one of the
most often critiqued shortcoming is the speed at which these services are available. While some
swear that the answer lies in private management, it can be argued that it is rather in the tools
private practices use to balance their workload. The Aimms® competition addresses this issue on
the particular case of operating room (OR) management.

The goal is to schedule one surgeon for two ORs while optimizing the quality of service within
health care standards. In order to achieve these results, we sequentially attack more challenging,
read realistic, models. That is, we first solve a deterministic version and then a stochastic one.

The content of this document is as follows. Section 2 introduces the notations used throughout
this document. Sections 3-4 contain respectively the deterministic and the stochastic analysis. The
paper is ended with our conclusion in Section 5. Section 6 can be seen as an afterword and falls
outside the scope of the problematic. Its purpose is to discuss some of the difficulties we faced with
Aimms.

2 Notation

We distinguish two types of definitions. First, the global definitions which depend on the parame-
trization of the OR management. Second, the local definitions which depend on the instance to solve.
Tables 1 and 2 respectively resume the definitions of these two types. For the sake of mathematical
readability, we also introduce short notations for variables and sets which are used in the paper. The
list of names we used in Aimms are featured in the nomenclature column.

Parameters
Description Notation Default value Nomenclature

Costs (per hour)
cV 1209.60 CostVacantOR
cW 1048.80 CostWaitingSurgeon
cO 806.40 CostOvertime

Time unit (min) τ 5 TimeSlice
Number of ORs ρ 2 nbORRooms

Sets
Description Notation Nomenclature

Surgical procedure decomposition S := [s] ≡ {‘P’, ‘S’, ‘C’} Tasks indexed by task
ORs R := {1, . . . , ρ} Rooms indexed by room

Table 1: Global parameters and sets definitions

The global definitions contain parameters and sets. The cost and the number of ORs are self-
explanatory. The τ -parameter is an artifice which allows to discretize the time. For instance, a task

of length ` minutes will be measured by
⌊
`

τ

⌋
. While this parameter induces a loss of information,

our model is sufficiently flexible to permit a finer discretization than the default 5 minutes. This
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default value is based upon a quick observation of the times sample. In the end, when we speak of
optimal solutions, it would technically be more appropriate to speak of τ -optimality. With regards
to the sets, the only worthwhile observation is that ‘P’, ‘S’, ‘C’ are abbreviations for Preparation,
Surgery, Cleaning respectively.

Parameters
Description Notation Nomenclature

Total number of surgeries N nbSurgeries
Regular day time span (hr) T T_initial

Sets
Description Notation Nomenclature

Surgeries to execute Σ := [σ] ≡ {1, . . . ,N} surgeriesToExecute indexed by sigma
Schedule Θ := [t] ≡ {0, . . . , θ} schedLength indexed by time

Data
Description Notation Nomenclature

Time required to accomplish
Π(σ, s) processTime (sigma, task)task s of surgical procedure σ

Total surgical procedures time Ψ :=
∑

s∈S,σ∈Σ

Π(σ, s) totalProcessesTime

Total actual surgeries time ς :=
∑
σ∈Σ

Π(σ, ‘S’) totalSurgeriesTime

Table 2: Local parameters, sets and data definitions

The local definitions include parameters and sets as well as actual data for the instance to solve.
An instance is defined by the number of surgeries, N , it must perform within the regular day time, T ,
after which overtime cost comes into play. Each surgery is defined by three times which correspond
to the preparation, surgery and cleaning tasks. The schedule is supported by a time span with a
proper upper bound θ. As Ψ represents the total surgical procedure time, it is an acceptable upper
bound for θ. We will thus set θ := Ψ.

3 Deterministic case

The deterministic case is built using the mean values of the provided time data. We then follow
the order of the questions asked for the competition. That is, the rule of thumb heuristic, the
optimization model (two in our case), the comparison with the rule of thumb and finally some
interpretation of the results particularly with respect to the ORs availability.

3.1 Rule of thumb

We propose one easy constructive procedure to solve the deterministic case. This heuristic recruits
its construction from current practices at the hospital. As the surgeon is fresher at the beginning of
the day, the longest surgeries are scheduled first. The idea of Algorithm 1 is to first sort the surgeries
by decreasing order of process time and then build the planning accordingly.
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Algorithm 1 Deterministic Rule of Thumb
H <- surgeries sorted by decreasing process time
while H is not empty do
remove first surgery from H
put this surgery in the first free OR

end while

3.2 Optimization models

We present two optimization models for the resolution of the ORs scheduling problem. The first is
constraint programming as suggested in the problem description. The second is column generation.

Before presenting the models, let us establish a property which yields enormous results in both
constraint programming and column generation models. On the former, it allows to accelerate the
findings of good solutions and even close optimality gaps. On the latter, it reduces exponentially the
size of the oracle. We believe this benefit is due to the elimination of symmetry.

Proposition 1. Given an empty time slot of time length l and the preparation task of surgery σ
such that Π(σ, ‘Preparation’) < l. The preparation may be accomplished anywhere within said time
slot.

Proof. The idea is to show that all positions of the preparation time within the time slot are
equivalent. On the one hand, if the whole time slot falls in regular time, it is obvious the cost
structure ensures equivalent evaluations. On the other hand, if part of the time slot is in the overtime
zone. Sure enough, some positions would grant a null overtime. However, recall that this staff must
also perform the cleaning task at the end of the surgery. The overtime cost is therefore the same
regardless of how early the preparation is done.

T

We stress that the proof holds because of the linear cost structure. In particular, it is assumed
that the preparation staff for a surgery must also perform the cleaning. This property would need to
be reviewed thoroughly depending on the intricacies of the collective agreements.

3.2.1 Constraint programming

Table 3 introduces the activities exploited by the constraint programming formulation as well as
additional variables used to compute the objective function.
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Activities
Description Notation Nomenclature

Surgical tasks φ(σ, s),∀(σ, s) ∈ Σ× S surgicalTasks(sigma, task)
Surgical procedures ϕ(σ),∀σ ∈ Σ surgicalProcedures(sigma)

Variables
Description Notation Nomenclature

Total master surgeon waiting time W waitingTimeSurgeon
Total vacant OR time V vacantTimeOR

Potential overtime of ϕ(σ) o(σ),∀σ ∈ Σ overtimeSurgery(sigma)
Total overtime O overtime

Surgeon begin time B surgeonBegin
Surgeon end time E surgeonEnd

Table 3: Constraint programming activities and variables definitions

The decomposition of a surgical procedure in distinctive tasks is regrouped in a cohesive design.
The activity ϕ(σ) therefore recuperates the natural conception and represents the combination of
activities φ(σ, ‘P’), φ(σ, ‘S’) and φ(σ, ‘C’). The extra variables take their values from the activities
attributes and are explained in more details in the model.

Since the goal is to minimize the total cost of the ORs schedule, the objective function is computed
as (1a) while the variables therein must satisfy several conditions.

min f(W,V, o,O,B,E, φ, ϕ) :=(V · cV +W · cW +O · cO)× τ

60
(1a)

subject to:

sequential resource in φ(σ, ‘S’) (1b)
parallel resource in ϕ(σ) (1c)
cp::span(ϕ(σ), s, φ(σ, s)), ∀σ ∈ Σ (1d)

cp::count(σ, φ(σ, ‘P’).Begin, 0, ‘>=’, 1) (1e)
cp::BeginAtEnd(φ(σ, ‘S’), φ(σ, ‘P’), 0), ∀σ ∈ Σ (1f)
cp::BeginAtEnd(φ(σ, ‘C’), φ(σ, ‘S’)), ∀σ ∈ Σ (1g)

o(σ) = max(0, φ(σ, ‘C’).End− T ), ∀σ ∈ Σ (1h)
O = max

σa,σb|σa<>σb
[o(σa) + o(σb)] (1i)

V = O + 2T −Ψ (1j)
B = min(σ, φ(σ, ‘S’).Begin) (1k)
E = max(σ, φ(σ, ‘S’).End) (1l)

W = E −B − ς (1m)
B,E,W, V,O ∈ Θ (1n)

Constraint (1b) is a sequential resource on all the surgery activities of the different surgical
procedures and therefore forces the solver to position the actual surgery tasks in different time
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zones. Constraint (1c) is a parallel resource on the surgical procedures. It basically forces the
actual completion of all the tasks within the ORs by using an activity level changes of 1 at the
beginning/ending of each surgical procedure. Constraint set (1d) creates a span for each surgical
procedure’s tasks. Constraint (1e) specifies that the work day of at least one the OR will begin at
time t = 0. The cleaning task is performed right after the surgery according to (1g). Constraint (1j)
evaluates the vacant time for both ORs and constraints (1k)-(1m) compute the surgeon workload.
The binding domain is defined in (1n). Finally, constraints (1f), (1h) and (1i) are explained more
thoroughly in the following paragraphs.

Constraint (1f) exploits Proposition 1. The tasks of a surgical procedure are forced to be back to
back in time as displayed in Figure 1. When a solution is reached, it is interpreted with respect to
the OR manager’s demand. The interested reader will find our rationale in the last paragraphs of
this section.

‘P’ ‘S’ ‘C’Idle

Figure 1: Back to back tasks

Constraint set (1h) measures possible overtime values while constraint (1i) computes the actual
overtime by adding up the two highest values. While we admit the model could overestimate the
cost of certain solutions, we stress that there are no better alternative strategies for the manager on
the optimal solutions.

ϕ1 ϕ2

ϕ3

T

Figure 2: Overestimation of solution cost

Back to back rationale The back to back construction regroups the time variables of a surgical
procedure under a unique entity, the surgical procedure span. That is to say when the solver decides
a time position for a surgery σ, it needs not know the time positions of any other surgical procedures
to establish the time frame of the surgical procedure which incorporates σ. Our understanding is that
the propagation provided by global scheduling constraints is also more aggressive than comparison
operators.

Indeed, think of the alternative construction; the preparation time of a surgical procedure must
be fixed according to the termination of its predecessor, if any. Although it is possible to create a
model that finds such solutions directly by replacing constraints (1e)-(1f) with constraints (2)-(4), we
argue that they are less intuitive. Case in point, the very statement of the alternative construction
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is conditional and is quite a testament to the difficulty of defining capturing constraints for a reality
however basic it may seem.

cp::count(σ, φ(σ, ‘P’).Begin, 0, ‘=’, ρ) (2)
cp::Count((σ1, σ2), φ(σ, ‘P’).Begin, φ(σ, ‘C’).End, ‘=’,N − ρ) (3)

cp::EndBeforeBegin(φ(σ, ‘P’), φ(σ, ‘S’)) (4)

3.2.2 Column generation

Our interest in the column generation scheme stems from the linear programming post-analysis
possibilities and the lower bounds it can provide. The sensitivity analysis can add opportunity cost
meaning to some of the resources while the lower bound allows to measure the optimality gap of any
heuristic solution.

Let us establish the construction of the column generation model by decomposing a schedule.
The latter is indeed the union of partial sequences (see Figure 3).

T

Figure 3: Schedule by sequence decomposition

This union must obviously verify the same constraints as (1). It is possible to categorize these
constraints in accordance with the activities that can be done in parallel against those which must
be done sequentially. For instance, the arcs within each surgical procedure address the actual surgery
task and cannot overlap across the ORs.

Observe that a feasible schedule is therefore more than the union of feasible sequences of activities
for each OR. It is indeed mandatory for this union to verify the availability of the surgeon as well
as the completion of all the surgical procedures. In a way, the sequences are blind to each other.
From this observation emanates the column generation model. The master problem (MP) acts as a
coordinator while the sub problem (SP) specializes in establishing feasible sequences for an OR.

Let us focus on the MP. Define ψp, p ∈ P as the p-th sequence from the set of possible sequences
that either ORs can use for a given surgeries list. The blind cost of implementing sequence ψp is
denoted cp ≡ c(ψp).

Each sequence can be represented by a multidimensional partial descriptive matrix Dp containing
ones and zeros. Since the purpose of the master problem is to coordinate the sequences, the content
of this representation is limited to the surgeon component.

Dp(σ, t) =

{
1, if pattern p is performing the actual surgery σ at time t,
0, otherwise.

(5)
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The binary variables λp, p ∈ P will determine whether or not a sequence is used in the solution.
The dual variables associated with the primal constraints are given in [ ].

min
λ

∑
p∈P

λp · cp + (W · cW ) · τ/60 (6a)

s.t.
∑
p∈P

λp = ρ, [δ] (6b)

∑
p∈P

∑
t∈Θ

Dp(σ, t) · λp = Π(σ, ‘S’), [π],∀σ ∈ Σ (6c)

∑
p∈P

∑
σ∈Σ

Dp(σ, t) · λp ≤ 1, [ζ],∀t ∈ Θ (6d)

U − (U − t) ·
∑
p∈P

∑
σ∈Σ

Dp(σ, t) · λp ≥ B, [α],∀t ∈ Θ|t ≤ U (6e)

1 + t ·
∑
p∈P

∑
σ∈Σ

Dp(σ, t) · λp ≤ E, [β],∀t ∈ Θ (6f)

W ≥ E −B − ς, [γ] (6g)
λp binary, ∀p ∈ P (6h)

B,E,W ≥ 0. (6i)

where U is some valid upper bound on the time at which the surgeon begins his work day.

The cost of the solution is defined by the blind cost of each used sequence and the binding
cost of the surgeon for all ORs as described in (6a). Constraint (6b) ensures that each OR is
assigned a working sequence. Constraint (6c) ensures that each surgery is performed according to
its specification. There are several binding surgeon constraints. The set (6d) limits the surgeon
presence for each time unit. Inequality (6g) computes the surgeon waiting time according to the
interval push provided by the constraints (6e) and (6f).

Since we do not actually know the set P explicitly, we rely on the specialized pricing SP to
generated new sequences as needed. If the blind costs of all sequences are fixed, we can evaluate the
marginal contribution of an unconsidered sequence by computing its opportunity cost. This is done
by feeding the SP with dual information granted by the resolution of MP. The solution of MP is
optimal when SP is not able to identify an improving sequence. As exhibits Figure 4, SP takes the
form of a network problem and is therefore easy to solve.
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Figure 4: Sub problem network design

A surgical procedure takes place on an arc connecting the time line across the actual spanning
time of the surgical procedure. Furthermore, an arc exists if and only if the surgical procedure
can be accomplished within the time line. The idle arcs recuperate the simplification provided by
Proposition 1 and are positioned such that idle time can be used before or after the whole surgical
procedure is done. The end of day arcs start at time t = T because of the choice to pay the OR up
to the regular time period regardless of the fact the work could finish sooner. The day begins at
t = 0 on all schedules. Finally, Table 4 shows the cost structure for each type of arc in the network.

Arc type Cost structure
Idle (any) cV × τ/60

End of day (any) cO × τ/60
Begin of day (B  0) −δ

Surgical procedure (t, σ) −πσ −
∑

l|t+Π(σ,‘P’)≤l<t+Π(σ,‘P’)+Π(σ,‘S’)

ζl + αl · (M − l)− βl · l

Table 4: Arc cost structure

Observe that a surgical procedure can be duplicated throughout the day with this representation.
In order to preserve feasibility with respect to OR scheduling, the following constraint is added
therefore breaking network properties.∑

t∈Θ

xt,σ ≤ 1, ∀σ ∈ Σ (7)

3.3 Results

The deterministic results are summarized in Table 5. It includes the rule of thumb as well as both
the constraint programming and the column generation models.
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Rule of thumb Constraint programming Column generation
Instance Objective Objective Time (sec) Objective (LP) Time (sec) Gap (%)

1 5237 4710.8 0.02 4536 0.97 3.85
2 3791 3615.4 0.02 3528 2.50 2.48
3 2292 2204.2 0.01 2116.8 3.65 4.13
4 8416 8238.8 0.25 8064 5.62 2.17
5 7691 7163.8 5.65 6552 6.91 9.34
6 8980 2493.8 2.00 1008 19.48 147.40
7 10220 6210.2 1.00 4032 25.29 54.02
8 14628 14273.4 0.91 14011.2 6.90 1.87
9 5721 5195 64.69 4233.6 18.11 22.71
10 8891 4429.4 12.35 1411.2 49.25 213.87

Table 5: Deterministic results on 10 instances

The computation times are omitted for the rule of thumb because they are virtually null. The
results speak for themselves, the rule of thumb heuristic is instantly discarded with respect to the
power of constraint programming which provides optimal solutions (bold face) within one minute
for 7 of the 10 instances, more importantly within 5 seconds for six of them. In fact, it takes at
most 13 seconds to reach a very good solution for any of the instances. Indeed, the bold face in the
time section shows the running time required to obtain the corresponding solution although without
proving its optimality.

In regards to the column generation results, the results are less stellar but there is still some
interpretation that can be done. The linear relaxation allows a fractional surgeon to perform almost
anywhere and thus greatly eliminate the surgeon waiting cost. In fact, in all the instances tested it
removes it altogether.

The three instances that CP fails to optimize have tremendous gaps and show how hard it is to
guarantee the best schedule for the surgeon even with the overtime and vacant time fixed. In other
words, the vacant time and overtime values are relatively stable in good solutions with respect to the
instance surgeries list. Furthermore, one can observe the rule of thumb fails to perform adequately
on the same instances!

3.4 One OR

This question has motivated our choice to pay each OR. Indeed, in both models, the vacant cost
considers that the OR is open until at least the end of the day. We think this decision is logical,
because there is a cost for opening an OR. Furthermore, if the vacant cost takes only into account
vacant slots between the preparation and the surgery, the optimization can lead to a situation where
only one OR is used. Consequently, each OR open has to be paid. Finally, in this context, it is
possible to compare two situations: one OR opened and two ORs opened. The results obtained from
the constraint programming formulation are summarized in Table 6.
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One OR Two ORs
1 1687.4 4710.8
2 2709 3615.4
3 4349 2204.2
4 4920.8 8238.8
5 7676.8 7163.8
6 12858.6 2493.8
7 20709 6210.2
8 5580 14273.4
9 16905.4 5195
10 22974.4 4429.4

Table 6: Comparison of 1 vs 2 ORs

These results shows that one OR open can be cheaper than two ORs. Indeed, if the instance
does not have enough surgeries to fill two ORs (instances 1, 2, 4 and 8), it is better to open just one.
At the same time, it can be very expensive in overtime and in waiting time for the surgeon, if there
are not enough ORs open to realize all the surgeries.

4 Stochastic case

Once again the analysis is broken down according to the questions order. The rule of thumb and the
optimization model are presented. The results follow with the comparison and the interpretation
that ensues.

4.1 Rule of thumb

This constructive procedure is similar to the deterministic rule of thumb. Instead of simply considering
the process time of a surgery σ, the variability of the process time is also taken into account. Let
µ(σ) be the average process time of the surgery σ plus three times its standard deviation. µ(σ) is
a kind of upper bound for the length of the surgery σ. Indeed, for a normal distribution, around
99.9% of the values are lower than µ(σ) (three sigma rule). The surgeries with the biggest µ(σ) are
realized first. Therefore, the surgeon has a high probability to perform the longest surgeries first.
Algorithm 2 builds the planning with the average process times.

Algorithm 2 Stochastic Rule of Thumb
H <- surgeries sorted by decreasing µ(σ)
while H is not empty do
remove first surgery from H
put this surgery in the first free operating room

end while
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4.2 Optimization model

Let us introduce the optimization model as a paradigm rather than an actual model. We capitalize
on the promising result of the deterministic model to built a simulation algorithm. The idea is to
extract enough information, a la Monte Carlo, about the uncertainty to propose a good schedule.

A schedule is defined as a sequential order of surgical procedures associated to their respective
operating room. We define a scenario as a specific set of observed times for a given surgery list.
We represent the future process times by a set Ω = {ω} of scenarios. These process times are
independent and identically distributed for each instance. The distribution simply picks a random
time for each task from the data provided by the competition. The goal is to build a planning
that would be robust over the set of scenarios. To measure the quality of this ORs schedule, it
is important to consider how well each schedule copes with the instability of the actual surgical
procedures times. The robustness encapsulates this idea of quality in a performance measure g.
Notice that the performance of our algorithm depends on the quality of the probabilistic model.
Therefore, we have chosen this distribution proposed by the competition instead of any others to
have a fair evaluation by the performance measure g.

The first stage of the stochastic algorithm decides the schedule r according to a scenario ω. This
schedule is computed by the constraints programming model (1) which is solved with the process
times of the scenario ω. The obtained scheduled r is stored in RΩ. The second stage prices this
schedule against every scenarios of Ω. This can be done with a small heuristic when the allocation
to an OR and the order of the surgeries are fixed. Therefore, we obtain a cross matrix A which
compares all scenarios and schedules to each other.

Algorithm 3 Stochastic Optimization Procedure
for all ω ∈ Ω do
solve the deterministic constraint programming model
store the schedule in RΩ

end for
for all r ∈ RΩ, ω ∈ Ω do
price the schedule r on the scenario ω

end for
compute the function g
choose the schedule which reaches the maximum of g

We define different statistics on the matrix A. Let mr be the mean, Q2
r the median, Q1

r the first
quartile and Q3

r the third quartile of the costs of the schedule r. Further define M and v as the
mean and standard deviation of mr. We additionally compute for each schedule r the percentage pr
of scenarios which have a cost lower than M + v.
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Figure 5: Distribution of mr, Q1
r and Q3

r for the instance 10

The mean represents the expected cost of a schedule on the set of scenarios Ω. The other statistics
give an idea of the dispersion of these costs. Figure 5 shows the evolution of different measures on
instance 10. Observe that these statistics vary a lot. In other words, the best schedule in terms of
expected cost is not necessarily the more stable. Indeed, two plannings can have approximately the
same expected cost but a totally different dispersion. The function g verifies whether a schedule has
a good expected cost and does not vary too much. Therefore, this function computes the best 5%
schedules for different measures: mr, Q2

r, Q3
r and pr. If a schedule is in this ranking, it obtains 1

point (2 points for the mean) and 0 otherwise. Finally, we choose the schedule with the best score
g; in case of equality, we look at the best mean. This measure gives an important weight to the
expected cost of schedule, but it also takes into account the dispersion of the cost in order to ensure
a good upper bound on the latter.

Algorithm 3 allows the performance measure g to be as complex as one wishes. One can therefore
define other relevant statistics according to his goals. In fact, if the statistical operators are restricted
on cost metrics, an avid manager could incorporate practical measures like the patient waiting time
before its surgery.

4.3 Results

All the tests have been computed on a set of 200 scenarios. The maximum solving time for each
schedule is equal to T in seconds (for the first instance, the maximum is 4 seconds).
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Expected cost (mr) of the solution
Instance Rule of thumb Deterministic Minimum Retained Perfect VSS EVPI
1 5309.2 4994.8 4919.2 4919.2 4846.2 75.6 73.0
2 4016.0 4272.9 3919.6 3919.6 3746.2 353.3 173.4
3 3183.2 3413.5 3122.2 3122.2 2598.3 291.4 523.9
4 8805.4 8710.7 8500.1 8500.1 8127.7 210.6 372.4
5 8157.0 7940.1 7750.0 7750.0 7287.8 190.1 462.1
6 10629.1 6570.2 5471.3 5520.1 3429.3 1050.1 2090.8
7 12129.7 18198.2 10412.2 10412.2 6383.3 7786.0 4028.9
8 14990.8 14915.9 14678.6 14678.6 14153.4 237.3 525.3
9 8250.5 8571.7 8077.7 8077.7 6034.2 494.0 2043.6
10 13864.0 13280.3 9399.8 9399.8 4228.4 3880.5 5171.4

Table 7: Stochastic results on 10 instances

Table 7 presents the expected value of each solution. The rule of thumb solution is computed by
the Algorithm 2. The deterministic solution is the schedule obtained by the constraint programming
model (1) on the deterministic case. The minimum solution is the one which reaches the minimum
expected cost. The retained solution is computed by the Algorithm 3. The perfect solution is the
mean of the minimum cost obtained by the constraint programming model (1) on each scenario ω.
Since it is impossible to have better results, it can be seen as the lower bound of the expected value.
Finally, we look at two others measures to see the contribution of the stochastic approach. The
value of the stochastic solution (VSS) measures the gain of this approach, i.e., the difference between
the expected costs of the deterministic and the retained solutions. The expected value of perfect
information (EVPI) shows the maximum that we are able to gain with a better estimation of the
future, i.e., the difference between the expected costs of the retained and the perfect solutions.

In a stochastic case, the rule of thumb and the deterministic solution are equivalent in the sense
that they both perform poorly. It proves that a small heuristic can achieve the same performance
than a deterministic optimization program. It also validates the stochastic approach. Furthermore,
the retained and the minimum are always the same except for the instance 6. In this example, the
retained solution scores every criteria while the minimum solution does not reach a good enough
percentage. It is the perfect opportunity to underscore the reason we did not only choose the
expected cost to measure the quality of a solution. Other statistics can improve the stability of the
cost at the expense of a small fee, 48.8 for this instance. This fee still falls within the realms of
expected values and can be seen very much like an insurance fee for peace of mind. In other words,
our algorithm is sufficiently flexible to permit the manager to find an equilibrium in accordance with
his risk aversion.

The VSS proves that the stochastic approach is worth it. The gains are important for all instances.
Furthermore, the EVPI shows that it is possible to gain even more in terms of expected cost. If the
uniform distribution does not fit well the observed data, another distribution could improve a lot of
the results and decrease the EVPI while increasing the VSS. However, the EPVI gives the gap with
the oracle (and optimal) solution, this solution is impossible to reach because it adapts perfectly the
schedule for each scenario.

It can be also noted that the instances 6, 7 and 10 remain difficult for the deterministic solution,
the VSS is very high in these cases. The EVPI is also important; these instances have a lot of
surgeries, this is why they are so difficult to solve. Since a great deal of effort is deployed to
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minimize the objective during the constraint programming procedure, the perturbations in the
process times will disturb the planning. Indeed, most of the tasks will be realized one right after
the other. Furthermore, the surgeon performs surgeries over two ORs, consequently most of the
surgery tasks are on the critical path. The perturbations in the process times will thus strongly
impact the schedule. Finally, the next section continues to analyze the effect of opening two ORs
with one surgeon in a stochastic and more realistic case.

4.4 One OR

One OR Two ORs
Instance Retained solution Increase (%) Retained solution Increase (%)

1 1854.0 9.9 4919.2 4.4
2 2684.7 -0.9 3919.6 8.4
3 4177.5 -3.9 3122.2 41.6
4 4947.2 0.5 8500.1 3.2
5 7224.8 -5.9 7750.0 8.2
6 12586.5 -2.1 5520.1 121.4
7 20485.3 -1.1 10412.2 67.7
8 6236.8 11.8 14678.6 2.8
9 16757.4 -0.9 8077.7 55.5
10 23173.1 0.9 9399.8 112.2

Table 8: Comparison of 1 vs 2 ORs in a stochastic case

Table 8 compares the expected cost over 200 scenarios of the retained solution for one and two ORs.
The increase represents the percentage of augmentation between these results and those of Table 6.

In the case of one OR, the resource constraints on the surgeon and the OR are redundant. That
is why the stochastic impact is less important. Indeed, the increase is close to 0 for most instances
while it is not the case for two ORs. The schedules for one OR are a lot more stable. It is even
cheaper to open one OR for the instance 5 while it is the opposite in the deterministic case.

When there are a lot of surgeries to schedule (instances 3, 6, 7, 9 and 10), the increase due to the
variability of the process can be very important. It is also better to open two ORs for the exact
same instances. Operating with two ORs can thus be very expensive in a realistic case because the
waiting time of the surgeon, the overtime and the vacant time increase a lot for these instances.
Finally, one should verify if these solutions are the best. Perhaps, when there are a lot of surgical
procedures, two surgeons should perform all these surgeries, i.e., one surgeon for each OR. This will
decrease the overtime and the vacant time, but increase the waiting time of the surgeon.

5 Conclusion

It is interesting to apply our knowledge of operations research to practical use. This problem allowed
us to appreciate the power of constraint programming and gave us a strong background in further
Aimms implementations. More importantly, the OR management problem is a very big issue in
today’s world and it stands to reason even more papers will address this problem in the near future.
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Our integrated approach to lift the uncertainty dimension relies on our capability to solve a
deterministic version in an efficient and reliable manner. We are enthusiastic about our stochastic
algorithm because we believe the embedded design shows the strength of integrating different fields
of mathematics in a collaborative framework.

From a management perspective, we can extract two types of decisions from our analysis. The
first is a tactical decision and corresponds to an hospital guideline. A policy can be devised to
establish the trade off between ORs and surgeon costs. Three options are available: one OR and
one surgeon, two ORs and one surgeon and finally two ORs and two surgeons depending on the
variability of the surgeries to perform. Indeed, the first and third options have the advantage of
being more stable. The second however does best with the resources currently available but it can
be very expensive to schedule surgeries over two ORs.

The second is an operational decision and depends on the risk aversion of the manager. Indeed,
the tactical policy determined which resources the retained schedule may utilize. Its cost can be seen
in a twofold measure: an expected cost plus a security loading which allows said schedule to behave
more consistently. In the end, the size of this security loading is left at the discretion of the manager.

As an open question, we raise the possibility of a more integrated model where the length of
regular time is also taken as a variable. This might lead to cost reduction for the idle OR after the
last procedure and could provide a good approximation for the cost of actually opening an OR room
in a given hospital.

6 Difficulties with Aimms

The general usage of Aimms is fairly straightforward, but it is in the details that we faced some
difficulties. We would really appreciate to have some feedback on some of the most challenging issues
we faced.

As mentioned earlier, the column generation scheme uses a sub problem that is almost a network
problem. It turns out, we could not associate a cost to each arc (variable) because the FlowCost
command was misbehaving. Perhaps the fact that the problem is not actually a network creates
confusion in the internal representation. The command should either work regardless of the network
properties or be forbidden to use in non-network scenarios.

In the constraint programming model, when we add a bound constraint on the optimal value,
the solver seems to be breaking down stating that the problem is infeasible even with perfectly
acceptable bounds. The where time_limit option on the solve method also seems to behave badly
on mathematical programs that are of the type constraint programming.

While the following functionality might be available, we did not find a way to copy/paste model
sections into other projects. We feel this is a great loss in terms of flexibility between team members.
While we understand the user-friendliness of Aimms must create some difficulties in implementing
such a system, we also found it would have been nice to eliminate the need to verify the validity of
unused variables while testing out different modeling strategies.

In the end, since we feel the most difficult obstacle of Aimms is indeed figuring out its idiosyncrasies,
we can definitely appreciate the virtues of utilizing Aimms on different projects once that learning
curve is put behind.
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