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Abstract. Structural problem decomposition requires the ability to recombine partial 
solutions. This recombination task, which we call integration, is a fundamental feature of 
many methods, both those based on mathematical formulations such as Dantzig-Wolfe or 
Benders and those based on heuristics that involve sequential solution. Integration may 
be implicit in mathematical decompositions, but in heuristics this critical task is usually 
managed by ad-hoc operators, e.g., operators that combine decisions and heuristic 
adjustments to manage incompatibilities. In this paper, we propose a general framework 
for integration, which is viewed as a problem in itself with well-defined objectives and 
constraints. Four different mechanisms are proposed, based on well-known concepts from 
the literature such as constraining or giving incentives to the critical decisions related to 
partial solutions. We perform computational experiments on the multi-depot periodic 
vehicle routing problem to compare the various integration approaches. The strategy that 
places incentives on selected decisions rather than imposing constraints seems to yield 
the best results in the context of a cooperative search for this problem. 
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1 Introduction

Combinatorial optimization problems appear naturally in various application areas; these
problems are usually large and complex. Various solution methodologies, both exact and
heuristic, have been developed to tackle these problems, and many algorithms apply
a form of solution integration. Solution integration is a general process that combines
specific solutions of a problem to produce new solutions.

Exact methods that are based on decomposition strategies, such as those proposed
by Dantzig and Wolfe [6] and Benders [1], entail a form of solution integration. In these
algorithms, at a given iteration, the solution to a master problem is used to instantiate
a subproblem that is solved to produce a new column (Dantzig–Wolfe decomposition
[6]) or a new cut (Benders decomposition [1]). The new column or cut is then added to
the master formulation to strengthen it. Meaningful new information is thus obtained
from each solution encountered, and by integrating all the information generated in the
master formulation, we can ensure the convergence of the overall solution procedures.
Therefore, in the case of both [6] and [1], the solution integration process is clearly
defined and formalized by the specific decomposition strategy that is used. However, this
is not the case when solution integration is applied in the context of designing heuristic
approaches.

Many classes of heuristics and metaheuristics also use solution integration in their
search processes. Genetic algorithms [8, 12], scatter search [7], and path relinking [7] are
all examples of procedures that employ some form of solution integration (as we highlight
in Section 2). In these methods, the solution integration process is usually performed
by ad-hoc operators that are tailored to the specific application. However, one usually
observes that general underlying solution-integration problems are being addressed by
these operators. Unfortunately, in the literature on heuristics and metaheuristics, there
is a lack of formalization of these problems and of the methodological questions that they
raise. Furthermore, usually no systematic study is conducted to analyze the impact that
these problems have on the performance of the associated heuristic procedures.

The present paper aims to compensate for this lack of formalism in the definition and
treatment of solution integration applied to heuristic procedures. We make the following
contributions:

1. Provide a clear definition of solution integration as a general decision problem;

2. Develop a series of optimization models to formulate the solution-integration prob-
lem, based on different strategies (either restrictions or incentives);

3. Apply the models in the context of performing cooperative searches for the multi-
depot periodic vehicle routing problem (MDPVRP);
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4. Analyze the impact that solution integration has on the performance of this heuris-
tic search for the MDPVRP, and we show the overall efficiency of the integration
models proposed.

The rest of the paper is organized as follows. In Section 2, we review and illustrate
the problem of solution integration in the context of heuristics and metaheuristics. The
problem statement and the different integration models are then described in Section 3.
In Section 4, we apply the integration models to cooperative search for the MDPVRP.
The computational experiments are reported and analyzed in Section 5. Finally, Section 6
provides concluding remarks.

2 The solution-integration problem

Solution integration is a defining element of many classes of heuristics and thus appears
under many guises in the literature. In general terms, given an optimization problem, the
solution-integration process first selects a few complete or partial solutions with desirable
characteristics, the so-called “good” input solutions, and then combines them, in the
integration step, to generate new solutions that preserve the desirable characteristics and
that are “good” with respect to specified criteria, usually quality and diversity.

Population-based metaheuristic search methods are a prime illustration of such pro-
cesses; here solution integration is essential to the algorithms. Genetic algorithms [8, 12],
for example, use a so-called fitness function to assign to each individual solution in a
given population a value reflecting its quality and, eventually, its diversity [14] relative
to that of the other individuals in the population. This fitness function is then used
to select the individuals (the input solutions) that are then combined through certain
procedures (the crossover operators) to generate new solutions (the offspring) inheriting
the desirable characteristics of the input solutions and enhancing the measures in the
fitness function.

Scatter search [7] also evolves a population but applies different selection and com-
bination procedures. It works with a small population of elite solutions (the elite set).
It first selects a small number of good solutions from the elite set and then integrates
them through a combination procedure, e.g., via linear or convex combinations of sets of
variables. The goal is to obtain improved solutions or, at least, solutions that are better
in quality, diversity, or both than the less interesting ones in the elite set. Search context
information, typically recorded in memories counting the occurrence of particular char-
acteristics (e.g., the persistence of solution elements), is generally used to influence both
the selection of the input solutions and the integration step.

Path relinking [7], sometimes presented as a special case of scatter search or as a
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mechanism to simultaneously perform diversification and intensification in metaheuristic
search, is also based on solution integration. Path relinking also works with an elite
set of solutions and proceeds by selecting two solutions, the initial and the guiding,
from this set. The guiding solution (often the current best solution) has the desirable
characteristics, and we aim to introduce these characteristics into the initial solution
through a series of neighborhood-based moves (solution transformations) that form the
relinking path. The idea is that, since good solutions often occur close to other good
solutions, we will find improved solutions while building the path (which will be stopped
when we reach the guiding solution or earlier if the search is no longer producing good
solutions). These improved solutions are inserted into the elite set for the next stage of
the method. Search context information, as defined above, is again heavily used to guide
the neighborhood moves.

Similar processes are found in cooperative search, where several solution methods
explore the solution space simultaneously, exchanging information through data ware-
housing and processing mechanisms (central and adaptive memory are encountered most
often) [3, 5, 13]. Le Bouthillier and Crainic [10] proposed a central-memory cooperative
framework for the vehicle routing problem with time windows, where integration was
carried out through the identification and use of globally promising solution character-
istics. In this approach, the cooperating solution methods (tabu searches and genetic
algorithms) store their good solutions in the central memory. The approach identifies
elite sets (the input solutions) and records the persistence of solution elements (arcs) in
these sets during the search. It then identifies sets of persistent elements (the desirable
characteristics) and passes these structures (called patterns in [10, 11]) to the requesting
cooperating methods, along with a solution chosen among the best. The structure is
then used to modify the search trajectory of the receiving cooperating method by in-
fluencing the selection of the arcs to be included in the solution. A companion paper
[11] generalized this approach. The central-memory solutions are separated into three
groups according to the solution quality, elite, average, or bad, and the approach mon-
itors the persistence of solution elements within these sets. It then selects patterns of
persistent/nonpersistent elements in a particular solution set to guide the cooperating
methods (e.g., nonpersistent elements of average solutions allow for a broad exploration,
whereas persistent or nonpersistent elements in elite solutions intensify or diversify the
search).

Two general conclusions emerge from this brief literature survey. First, there has been
no systematic study of solution integration within heuristic search methods for optimiza-
tion. Second, existing integration procedures are at best specific to a class of solution
methods, and they are often ad-hoc, algorithm-specific rules. We can however identify a
general solution-integration problem that, given a definition of solution-evaluation mea-
sures, desirable characteristics, and desired output solution, is made up of three main
components:
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1. Selection of input solutions;

2. Identification of desirable characteristics in these solutions;

3. Integration of solutions.

In the following section, we present a formalization of the first two components and
introduce several optimization formulations to perform the third.

3 Problem setting and integration methodologies

In this section, we present the essential elements of integration including critical variables,
input solutions, integration output, and integration criteria. We also provide complete
notation for the four models of integration proposed in this paper.

3.1 Notation

Let model (P) define an optimization problem formulated as follows: min
x∈X

f(x), where x

is an n-dimensional decision vector, f(x) is a real-value function of x, and X defines the
domain of x. Given (P), the integration problem considered in this paper is defined as
follows: Let yi ∈ X, i ∈ I (where I is a finite index set) be a set of input solutions. The
elements of the integrated solution are identified by two measures. First, critical variables
define characteristics of the input solutions that should be integrated; we denote them
by λi ∈ [0, 1]n, a vector whose components j ∈ N (where N = {1, ..., n}) are defined as
follows:

λi(j) =

{
1 if variable j in input solution yi is critical;
0 otherwise.

We note that a variable is defined to be critical if it has been identified as important
during the process leading to yi. Second, the incentive measure is denoted pi ∈ <n

+, and
its components pi(j), ∀j ∈ N , represent the importance of the associated feature.

We denote by xi
c, i ∈ I, the set of critical variables associated with each input-solution

vector yi. xc represents the set of critical variables x for which there is an i ∈ I such
that x ∈ xi

c (i.e., xc = ∪xi
c), and N(i) designates the set of indices of critical variables

belonging to yi (i.e., N(i) = {j ∈ N | λi(j) = 1}). Finally, we define Λ(j) to be the index
set of all input solutions that have j as a critical variable (i.e., Λ(j) = {i ∈ I | λi(j) = 1}).
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3.2 Problem statement

To define the integration problem, we must specify the input information, yi, pi, and λi,
i ∈ I, and define what will be produced as output and how the output will be evaluated
(i.e., the objective).

We distinguish two ways of selecting the input solutions and their critical variables.
The first involves choosing input solutions that are disjoint in terms of the critical vari-
ables, so that ∀i 6= j ∈ I, we have xi

c ∩ xj
c = ∅. Thus, the xi

c (i ∈ I) form a partition
of xc. The second approach is simply to choose input solutions that have some critical
variables in common, so that ∃i 6= j ∈ I, such that xi

c ∩ xj
c 6= ∅.

Output

We assume that we wish to produce a feasible solution to the problem or to determine
that no such solution exists. The definition of the criteria used to evaluate the output
solution is also an important component of the integration problem.

Criteria

We will use either a single function, which may simply be the objective function of
the original problem, or a multicriteria fitness function that measures quality, diversity,
or closeness to critical variables (e.g., the fitness function defined in Vidal et al. [14].
Table 1 provides a summary of the general outline that we propose for the integration
problem. The next step is to formulate the problem via an optimization model.

3.3 Integration models

As previously mentioned, the integration problem is formulated via a specific optimization
model. We propose four models, each based on a different integration strategy. The choice
of model depends on the application and the particular characteristics of the integration
strategy.

The two main integration concepts in the literature involve using restrictions to ensure
the appearance of desirable features in the result, or encouraging the appearance of given
features.

We propose a mathematical formalism for integration based on the concept of critical
variables. There are two categories of integrators. The first works with input solutions
that are disjoint in terms of the critical variables, and the second allows nondisjoint
solutions. We now formulate the different integration models.
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INPUT

• Input solutions yi ∈ X, i ∈ I (or solution fragments that are
partially optimized).

• Critical variable vectors λi, i ∈ I, that identify the character-
istics of the input solutions yi that should be integrated.

• Incentive measures pi, i ∈ I, that represent the degree of
occurrence (of the feature encouraged) in the integrated solu-
tion.

OUTPUT
• A feasible solution x ∈ X or an empty set if no feasible solu-

tion can be obtained.

OBJECTIVE

• Possible criteria: solution quality, solution quality or diver-
sity relative to the input solutions, proximity to critical char-
acteristics identified in the input solutions, combinations of
objectives.

Table 1: The integration problem

First category

This category deals with input solutions that are disjoint in terms of the critical
variables. Thus, the eligible input solutions yi (∀i ∈ I) must satisfy ∀j ∈ N , |Λ(j)| ≤ 1.
This category consists of two integrators called IPART and IPEN . We use IPART when
we want the critical features of the input solutions to be found in the output of the
integration process. To achieve this, IPART sets the critical variables in all the input
solutions to their current values as follows:

(IPART ) min
x∈X

f(x) (1)

s.t. xj = yij ∀i ∈ I ;∀j ∈ N : λi(j) = 1 (2)

This integration approach gives a straightforward combination of the input solutions.
However, constraint (2) may lead to an infeasible problem.

We use IPEN when the critical features are preferred but not required. An addi-
tional term is added to the objective function to encourage the appearance of the critical
characteristics in the solution. The model IPEN is as follows:

(IPEN) min
x∈X

f(x) +
∑
i∈I

∑
j∈N

λi(j)pi(j)(xj − yij)2 (3)
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where pi(j) (the relative importance of the critical feature) represents the weight associ-
ated with moving the critical variable xj toward the value yij. The more we judge that a
promising feature should appear in the solution, the higher its weight.

Second category

This category deals with input solutions that have some critical variables in common.
It consists of two integrators, IAND and IPAND. We use IAND when only those critical
features for which there is consensus may appear in the output of the integration process.
To achieve this, IAND sets the critical variables for which there is consensus to their
current values. For a given critical variable, consensus occurs if this variable has the
same value in all the input solutions in which it appears. Define C = {j ∈ N |

∑
i∈I
λi(j) ≥

1, ykj = ylj,∀k, l ∈ Λ(j), k 6= l} to be the set of critical variables for which there is
consensus, and let γj, ∀j ∈ C, be the values of these variables. Then IAND is as follows:

(IAND) min
x∈X

f(x) (4)

s.t. xj = γj ∀j ∈ C (5)

In other words, this integrator preserves the common critical features that are present
in the input solutions. An important property of this approach is that all the input
solutions considered remain feasible in model (4)–(5). Therefore, if xAND defines an
optimal solution to (4)–(5), then f(xAND) ≤ f(yi),∀i ∈ I.

IPAND also sets the critical variables for which there is consensus to their current val-
ues. The remaining critical variables are encouraged to appear in the solution through
the use of the incentive term defined for IPEN . For each such variable just one charac-
teristic can be encouraged; this can be achieved by setting the weights associated with
the other critical characteristics to zero. Therefore, IPAND is as follows:

(IPAND) min
x∈X

f(x) +
∑
i∈I

∑
j∈N\C

λi(j)pi(j)(xj − yij)2 (6)

s.t. xj = γj ∀j ∈ C (7)

The integration problems IPART , IPEN , IAND, and IPAND retain the same structure
(i.e., the constraint set X) as the optimization problem from which they are derived. The
models are obtained either by applying a restriction to the original feasible region (IPART ,
IAND, and IPAND) or by adding an incentive term to the objective function (IPEN and
IPAND). The use of a restriction strategy necessarily reduces the feasible space of the
integration models compared to the original model. The restriction may even lead to a
decomposition of the original problem into a series of smaller subproblems. Therefore,
the integration models obtained by applying restrictions are expected to be easier to solve

7

Solution Integration in Combinatorial Optimization with Applications to Cooperative Search and Rich Vehicle Routing

CIRRELT-2014-40



than the original problem. Moreover, the use of the incentive term does not dramatically
change the objective function. Thus, any algorithm designed to solve the original problem
can be adapted to solve the integration problems.

4 Case study: Integrative cooperative search for the

MDPVRP

We illustrate the different integration concepts using the MDPVRP, which is a multiple-
decision-set and multiple-attribute routing problem. We use the integrative cooperative
search (ICS) framework of Crainic et al. [4] to decompose by decision set and to solve
the problem, and therefore to generate input solutions for our four integrators. We give
criteria for selecting the input information for the integration, and a clear description of
the critical characteristics and their associated critical variables. Finally, we present the
mathematical formulations of the four integrators described in the previous section.

4.1 The MDPVRP and its decomposition

The MDPVRP designs a set of routes for a fleet of homogeneous vehicles located at
different depots. Customers require multiple deliveries with known demands following a
defined frequency in the given period. A list of possible visit-combinations is provided
for each customer (i.e., lists of periods when visits may occur). Each vehicle performs
at most one route per day, the route starts and finishes at the same depot, and each
customer must be served from the same depot throughout the time horizon.

We use the notation introduced in Vidal et al. [14]. Let VCST denote the set of
customers and VDEP the set of depots, with V = VCST ∪VDEP. Each customer i requires
qi units, and τi is the service time. We assume that τo = 0 for each depot vo. Visits to
customer i should occur during one of the possible visit-combinations Li. Let the binary
constants apl = 1 if day l belongs to visit-combination p and 0 otherwise.
A fleet of m homogeneous vehicles with capacity Q is available at each depot. The
duration of the routes should not exceed T . For all vi, vj ∈ V , cij is defined to be the
travel time from vertex vi to vj. We introduce three sets of binary variables:

y′io =

{
1 if customer i is assigned to depot vo

0 otherwise;

yip =

{
1 if customer i is assigned day combination p ∈ Li

0 otherwise;

8
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xijklo =

{
1 if customer i is followed by j in route of vehicle k originating from o on day l

0 otherwise.

Appendix A presents the detailed mathematical formulation of the MDPVRP.

We decompose the problem using the ICS paradigm introduced in [4]. We choose
the depot and the period decision sets for the decomposition. We obtain two prob-
lems, the periodic vehicle routing problem (PVRP) and the multi-depot vehicle routing
problem (MDVRP) for which algorithms are available. Indeed, fixing the customer-
to-depot assignments in the MDPVRP yields several PVRPs and fixing the patterns
(day-combinations) for all customers yields a subset of MDVRPs. In the latter case, a
global linking constraint is added to ensure that the customer-to-depot assignment is the
same in each period.

4.2 Integration subproblems for MDPVRP

According to Section 3, to define each integrator subproblem, we need to first identify
the input information. Since the MDPVRP decomposes by depot and period decision
sets, we use two solutions, one from the solver applied to the MDVRP and the other
from the PVRP. Both categories of integrators may be applied.

The critical characteristics of the solutions are the customer-to-depot assignment and
the customer-to-pattern assignment. Formally, let S1 and S2 be two partial solutions
selected as input information where S1 is an MDVRP solution and S2 is a PVRP solution;
dji and pji are respectively the depot and pattern of customer i for solution Sj. Therefore,
d1i, p1i are the critical characteristics of S1 and d2i, p2i are the critical characteristics of
S2.

Integrators IPART and IPEN deal with two disjoint families of critical characteristics.
IPART sets the customer-to-depot assignments (y′io) of the first family and the customer-
to-pattern assignments (yip) of the second family.

(IPART ) Minimize
∑
vi∈V

∑
vj∈V

m∑
k=1

t∑
l=1

∑
vo∈VDEP

cijxijklo (8)

subject to: y′id1i
= 1 vi ∈ VCST (9)

yip2i = 1 vi ∈ VCST (10)

All constraints of MDPVRP model (11)

9

Solution Integration in Combinatorial Optimization with Applications to Cooperative Search and Rich Vehicle Routing

CIRRELT-2014-40



The objective is to minimize the routing cost where the constraints fix the customers’
assignment to depot 9 and pattern 10. Note that the MDPVRP in which this assignment
is complete separates into (number of depots)*(number of periods) smaller VRPs. State-
of-the-art algorithms such as Vidal et al. [14] may be used.

Integrator IPEN encourages the critical characteristics to appear; an incentive term
is introduced in the objective function. Let ρo and ρp be n-dimensional positive vectors
to encourage the critical characteristics in solutions S1 and S2 respectively. The incentive
term is

∑
vi∈VCST

ρio(1− y′id1i) +
∑

vi∈VCST

ρip(1− yip2i).

(IPEN ) Minimize
∑
vi∈V

∑
vj∈V

m∑
k=1

t∑
l=1

∑
vo∈VDEP

cijxijklo +
∑

vi∈VCST

ρio(1− y′id1i
) +

∑
vi∈VCST

ρip(1− yip2i
) (12)

subject to: All constraints of MDPVRP model (13)

Integrators IAND and IPAND deal with a subset of the two selected solutions. IAND

fixes the customer-to-depot and customer-to-pattern assignments common to S1 and S2.
Let VCST′

be the set of customers i satisfying d1i = d2i, and define VCST′′
to be the set of

customers i such that p1i = p2i. IAND may be formulated as follows:

(IAND) Minimize
∑
vi∈V

∑
vj∈V

m∑
k=1

t∑
l=1

∑
vo∈VDEP

cijxijklo (14)

subject to: y′id1i
= 1 vi ∈ VCST′

(15)

yip2i
= 1 vi ∈ VCST′′

(16)

All constraints of MDPVRP model (17)

The resulting integration problem is smaller than the original MDPVRP. The ob-
jective function is unchanged, and constraints (15) and (16) are added for the set pairs
(customer, depot) or (customer, day combination) that are common to both parent solu-
tions S1 and S2. The other constraints of the MDPVRP remain the same. There are few
MDVRP algorithms in the literature; to the best of our knowledge, Vidal et al. [14] is
the only approach for solving this problem directly. A generalized version of the unified
tabu search proposed by Cordeau et al. [2], namely GUTS, is also available [4].

Integrator IPAND uses the set VCST′
that is the complement of VCST′

, i.e., VCST′ ∪
VCST′

= VCST, and similarly for VCST′′
. Let ρo and ρp represent respectively a |VCST′|-

10
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dimensional and a |VCST′′ |-dimensional positive vector to encourage any critical charac-
teristics that are not common to solutions S1 and S2. In IPAND, we add to the objective
function of IAND two positive terms to encourage critical characteristics (see (18)).

(IPAND) Minimize
∑
vi∈V

∑
vj∈V

m∑
k=1

t∑
l=1

∑
vo∈VDEP

cijxijklo+
∑

vi∈VCST′

ρio(1−y′id1i
)+

∑
vi∈VCST′′

ρip(1−yip2i
) (18)

subject to: y′id1i
= 1 vi ∈ VCST′

(19)

yip2i = 1 vi ∈ VCST′′
(20)

All constraints of MDPVRP model (21)

IPAND fixes the same customer-to-depot and customer-to-pattern assignments as in
IAND. Customer-to-depot assignments (y′io) for the solution selected from the MDVRP
solver and customer-to-pattern assignments (yip) for the solution selected from the PVRP
solver (which we have not determined yet) are encouraged via the objective function.

There is a direct relationship between the four models: the critical assignments are
either fixed or encouraged, and either all assignments or only a subset are fixed. The
models use constraints and incentive terms in the objective function to implement the
chosen integration strategy.

5 Computational Experiments

To test the efficiency of our integrators we used the data sets from Vidal et al. [14]: 10
MDPVRP problems of various sizes, ranging from instances with 48 customers and 96
services to instances with 288 customers and 864 services, on a horizon of four or six days.
The customers are randomly located, with some of them being grouped into clusters to
imitate many practical problem settings.

We coded the integrators and the ICS application in C++ and used a cluster of
Itanium II 1.5 Ghz processors, with 64-bit values for all the data (including distances)
and calculations.

We developed three families of tests. The first compares the individual performance of
each integrator in terms of the computational time, the quality of the resulting solution,
and the distance between the input and output solutions computed as follows:
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dist(S1, S2, C) =

∑
i∈VCST(δd1i

dCi
+ δp2i

pCi
)

2card(VCST)

where S1 is a solution associated with the MDVRP partial solver and S2 is a solution
associated with the PVRP partial solver. We tested two strategies for the selection of S1

and S2. First, we randomly selected them from the best 25% of the solutions. Second,
we performed five uniform random selections for each parent (S1 and S2) among the
best 25% of the solutions, generating 25 combinations (pairs) of parent solutions. We
retained the pair where the two solutions were closest in terms of distance (i.e., correlated
parents). C is the complete solution resulting from integrating S1 and S2, and d1i and
dCi represent the depot for customer i in solution S1 and in the complete solution C.
Similarly, p2i and pCi denote the patterns (allowable day-combinations of visits and days)
for customer i associated with S2 and with C. Finally, δ is a discrete function defined as
follows:

δii = 1, ∀i, and δij = 0, ∀i 6= j

The second family of tests studies the impact of the quality of S1 and S2 on the
complete solution C obtained by the integration process. For both families, we used the
HGA developed by Vidal et al. [14] to solve the integration problem. The third family
of tests measures the impact of different combinations of integrators in the ICS context.
It uses a generalization of the UTS [2] method for partial solvers and the HGA of Vidal
et al. [14] for the integration.

Tables 2 and 3 report the average percentage gap in relation to the best known so-
lution (BKS) obtained from Lahrichi et al. [9]. The gap is computed using the formula
z∗ −BKS
BKS

where z∗ is the best solution found. The tables also report the average time in

seconds to perform the integration, and the average distance between the complete solu-
tion resulting from the integration and the associated input solutions. These results show
that IAND outperforms the other approaches in terms of the solution quality (average
deviation from BKS) for both parent-selection strategies. To strengthen our conclusions,
we conducted a Friedman test to compare the different integrators, considering the solu-
tion quality (% gaps) obtained for 10 instances by running each of them 10 times. We
performed the test for correlated parents, and Figure 2 gives the results as boxplots of
paired differences in solution quality. The grey boxes indicate statistically significant
pairwise effects as highlighted by a Friedman test with post-hoc. This statistical test
confirms that IAND is better than IPAND, IPART , IPEN , and IRAND with high confidence:
p < 0.00045, p < 10−5, p < 10−5, and p < 10−5 respectively (see the first four boxes
of Figure 2). However, in terms of computing time and the average distance between
the complete solution and the input solutions, IPART is the best approach. It provides
solutions with the maximum possible common attributes with the input solutions, since
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Criterion Integrator Instance
01 02 03 04 05 06 07 08 09 10

Parents GapBKS (%) 0.55 0.35 0.98 1.62 1.29 1.38 0.90 0.74 0.41 2.60

GapBKS (%)

IPART 0.87 0.15 1.98 1.47 1.71 1.47 1.78 0.26 0.52 3.29
IAND 0.07 0.03 0.53 0.86 0.57 0.83 0.34 0.20 0.14 2.07
IPAND 0.18 0.05 0.53 0.86 0.59 0.78 0.37 0.22 0.22 2.2
IPEN 0.15 0.37 1.00 1.43 3.26 2.17 0.98 0.98 2.87 6.68
IRAN 0.10 0.91 1.11 2.46 5.96 2.79 1.16 3.05 4.22 8.27

Time (s)

IPART 0.31 0.80 2.50 6.15 20.36 22.01 0.78 2.41 7.97 40.20
IAND 0.45 2.02 10.07 22.86 42.44 52.57 3.02 9.82 27.56 64.27
IPAND 0.43 1.53 6.73 17.69 35.30 40.49 2.28 6.95 19.48 61.25
IPEN 0.90 3.43 9.00 29.49 62.55 71.24 4.24 18.14 66.19 104.80
IRAN 1.32 6.97 17.06 36.93 69.25 89.6 5.73 25.64 72.92 121.12

Dist.

IPART 0 0 0 0 0 0 0 0 0 0
IAND 0.16 0.14 0.15 0.14 0.09 0.09 0.22 0.16 0.08 0.10
IPAND 0.09 0.04 0.05 0.04 0.02 0.02 0.12 0.07 0.03 0.03
IPEN 0.10 0.05 0.09 0.06 0.06 0.05 0.18 0.13 0.14 0.16
IRAN 0.24 0.31 0.32 0.30 0.35 0.32 0.42 0.42 0.38 0.39

Table 2: Integrator results with random choice of parents

it greatly reduces the search space by fixing the optimized parts (attributes) from each
input solution. It is however the worst approach in terms of solution quality. When we
consider the three criteria simultaneously, IPAND seems to be the most efficient approach
since it offers a good compromise.

Criterion Integrator Instance
01 02 03 04 05 06 07 08 09 10

Parents GapBKS (%) 0.87 1.15 1.59 2.74 2.57 4.71 2.01 3.77 2.72 4.27

GapBKS (%)

IPART 0.74 0.08 2.00 2.43 4.30 5.74 1.44 0.32 1.25 4.14
IAND 0.06 0.02 0.25 0.90 0.79 1.60 0.28 0.33 0.72 2.09
IPAND 0.33 0.15 0.58 1.16 1.23 2.24 0.31 0.35 0.97 2.61
IPEN 0.24 0.17 0.73 1.39 2.13 2.41 0.88 0.54 2.06 5.56
IRAN 0.05 0.66 1.08 2.11 3.49 3.32 1.13 2.70 4.00 6.93

Time (s)

IPART 0.31 0.70 2.49 5.36 18.10 20.71 0.80 2.10 8.37 57.11
IAND 0.39 1.43 8.27 20.04 37.5 55.82 2.36 8.03 30.10 74.53
IPAND 0.39 1.20 5.18 11.59 31.33 36.03 1.91 5.53 19.85 65.43
IPEN 0.80 2.59 8.54 22.22 48.93 64.37 3.68 12.51 47.93 116.38
IRAN 1.30 7.24 16.42 32.62 58.63 87.95 5.94 22.88 63.64 140.95

Dist.

IPART 0 0 0 0 0 0 0 0 0 0
IAND 0.09 0.11 0.11 0.11 0.10 0.13 0.15 0.14 0.11 0.08
IPAND 0.02 0.03 0.03 0.03 0.03 0.03 0.08 0.05 0.02 0.03
IPEN 0.02 0.02 0.03 0.03 0.02 0.04 0.11 0.06 0.06 0.08
IRAN 0.23 0.29 0.32 0.3 0.35 0.32 0.43 0.43 0.4 0.39

Table 3: Integrator results with correlated choice of parents

From Tables 2 and 3 and specifically the integrators IAND and IPAND, we deduce
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Figure 1: Selection of parents

that neither of the two parent-selection strategies is dominant in terms of the average
gap. However, we observe that selecting parents that are close to each other leads to
solutions that are close to the parents in a relatively short integration time. This finding
is consistent, since starting with correlated parents greatly reduces the search space of
IAND and IPAND. Hence, their computing times are short, and the solutions will have
more attributes in common with the parents and therefore they will be closer to the
parents.

We also studied the impact of parent quality on the complete solution obtained by
integration (see Figure 1). We classified the solutions according to the following criteria:
a high-quality solution is among the best 25% of the solutions; an average solution is
among the next 25%; and the remaining solutions are low quality. Figure 1 shows a
surface giving the percentage of elite complete solutions resulting from integration in
terms of the quality of the parent solutions (horizontal axes) for MDVRP and PVRP.
For both IAND and IPAND, the complete solution is strongly related to the quality of
the parent solution associated with the MDVRP, since the percentage of elite solutions
decreases rapidly as the MDVRP parent quality decreases, while the slope of the curve
along the axis that represents the PVRP solution quality is almost zero. This is because
choosing a bad pattern for a client may lead to a poor complete solution, but this can
be partially corrected by making a good choice of the remaining attributes. However, a
poor choice of the depot generally leads to poor solutions with long routes.

To demonstrate the benefits of cooperation in the ICS context, we used four processors
for the integration. We tested several combinations of integrators (with each integrator
running on one processor). We ran each scenario (combination) for 30 minutes and 10
times for each MDPVRP instance. We compared the solutions in terms of the average
deviation from the BKS. By analyzing Table 4, we found that two combinations of
integrators (4IPEN and 2IAND + 2IPEN) give good results. IAND and IPAND outperform
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Time Integrator Instance Avg.
(min) combination 01 02 03 04 05 06 07 08 09 10 Dev.

30

4IPART 0 1.67 1.07 2.17 8.21 4.78 1.00 4.77 4.82 10.37 3.89
4IAND 0 2.67 1.16 3.34 4.05 5.56 0.97 1.49 0.45 3.36 2.30
4IPAND 0 1.97 1.27 1.81 3.12 4.40 0.55 5.20 1.47 4.73 2.45
4IPEN 0 0 0.05 0.32 0.72 0.71 0 0 0.44 2.49 0.47

2IAND + 2IPEN 0 0 0 0.34 0.90 0.57 0 0 0.47 1.79 0.40
IPART + IAND + IPAND + IPEN 0 0 0.02 0.41 1.04 0.55 0 0 0.43 2.39 0.48

15

4IPART 0 2.32 1.34 3.36 9.00 10.41 1.00 6.75 5.45 11.07 5.07
4IAND 0 2.67 1.55 4.25 5.02 8.84 0.97 2.95 0.75 4.23 3.12
4IPAND 0 2.48 1.36 3.09 3.92 8.06 0.55 5.57 1.83 5.75 3.26
4IPEN 0 0 0.08 0.43 1.10 0.93 0 0 0.63 3.30 0.65

2IAND + 2IPEN 0 0 0.02 0.41 1.14 0.87 0 0 0.79 2.68 0.59
IPART + IAND + IPAND + IPEN 0 0 0.05 0.54 1.17 1.11 0 0 0.67 3.18 0.72

10

4IPART 0 3.13 1.57 4.75 11.54 9.52 1.00 7.62 6.31 11.87 5.73
4IAND 0 2.67 1.73 5.49 5.45 11.00 0.97 4.33 1.06 4.75 3.74
4IPAND 0 2.48 1.41 3.67 4.42 10.15 0.55 5.59 2.19 6.19 3.66
4IPEN 0 0.02 0.12 0.57 1.47 1.11 0 0 0.72 3.88 0.79

2IAND + 2IPEN 0 0.29 0.05 0.44 1.39 1.54 0 0 0.99 3.81 0.82
IPART + IAND + IPAND + IPEN 0 0.66 0.10 0.62 2.03 1.60 0 0 0.85 3.89 0.91

5

4IPART 0 4.11 3.19 6.95 14.60 false 1.00 8.81 8.28 12.72 6.63
4IAND 0 3.35 1.86 7.51 7.33 13.32 1.10 6.87 2.61 6.17 5.01
4IPAND 0 2.51 1.62 4.71 6.13 11.52 0.61 7.73 4.27 7.09 4.62
4IPEN 0 0 0.20 0.77 2.06 1.79 0 0.03 1.55 4.36 1.08

2IAND + 2IPEN 0 0 0.28 0.79 2.86 2.60 0 0.11 1.73 5.18 1.35
IPART + IAND + IPAND + IPEN 0 0 0.60 1.05 3.37 2.40 0 0.38 1.43 5.79 1.50

Table 4: Deviation from BKS for different integrator combinations

IPART and IPEN in terms of individual performance, but this behavior is not maintained
in a cooperative search context. In fact, IAND and IPAND could not be distinguished in
the cooperative search context (see Table 4), especially when we used combinations of four
identical integrators. When we compared the individual performance of the integrators,
good quality parents were selected. Thus, selecting common attributes is generally a good
strategy since these attributes are associated with very good solutions. In the context of
cooperative search, we notice that pools of partial elite solutions contain a high percentage
of identical solutions. Thus, most of the integrators that we have developed deal with
almost identical solutions. In this situation the search space is quite limited. In the case
of IPEN , which encourages the appearance of parent attributes, the search space is not
limited by the fixing strategy, so a larger neighborhood is explored; this explains IPEN ’s
performance.

To conclude, we believe that the success of IAND and IPEN in the context of ICS is
mainly due to their complementarity, since IAND allows search intensification in a region
of good solutions while IPEN allows search diversification (critical characteristics are en-
couraged but not fixed). As we did for the individual integrators with correlated parents,
we performed a Friedman test to compare the different combinations of integrators in
ICS, measuring the solution quality (% gaps) obtained for 10 instances. Figure 3 confirms
our analysis based on Table 4: the combinations 4IPEN , 2IAND + 2IPEN , and IPART +
IAND + IPAND + IPEN are significantly better than 4IPART , 4IAND, and 4IPAND with
high confidence (p < 10−5). However, it is impossible to conclude from the statistical
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test which combination dominates.
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IPAND − IAND   ; PostHoc P.value = 0.00045
IPART − IAND    ; PostHoc P.value = <1e-05
IPEN − IAND      ; PostHoc P.value = <1e-05
IRAND − IAND   ; PostHoc P.value = <1e-05
IPART − IPAND  ; PostHoc P.value = <1e-05
IPEN − IPAND    ; PostHoc P.value = 0.00181
IRAND − IPAND ; PostHoc P.value = <1e-05
IPEN − IPART    ; PostHoc P.value = 0.31915
IRAND − IPART ; PostHoc P.value = 0.86736
IRAND − IPEN   ; PostHoc P.value = 0.03355

Figure 2: Boxplots of paired differences in solution quality for different integrators when
parents are correlated
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4xIPAND − 4xIAND        ; PostHoc P.value = 0.95949
4xIPART − 4xIAND         ; PostHoc P.value = 0.04508
4xIPEN − 4xIAND           ; PostHoc P.value = <1.e-05
IAND&IPEN − 4xIAND    ; PostHoc P.value = <1.e-05
One each − 4xIAND       ; PostHoc P.value = <1.e-05
4xIPART − 4xIPAND       ; PostHoc P.value = 0.31748
4xIPEN − 4xIPAND         ; PostHoc P.value = <1.e-05
IAND&IPEN − 4xIPAND  ; PostHoc P.value = <1.e-05
One each − 4xIPAND      ; PostHoc P.value = <1.e-05
4xIPEN − 4xIPART          ; PostHoc P.value = <1.e-05
IAND&IPEN − 4xIPART   ; PostHoc P.value = <1.e-05
One each − 4xIPART      ; PostHoc P.value = <1.e-05
IAND&IPEN − 4xIPEN    ; PostHoc P.value = 0.56961
One each − 4xIPEN        ; PostHoc P.value = 0.99899
One each − IAND&IPEN ; PostHoc P.value = 0.80459

Figure 3: Boxplots of paired differences in solution quality for different combinations of
integrators in the context of ICS

6 Conclusion

We have presented a general approach to deal with integration. Four different strategies
have been used to build integrators, and two of them have given good results. The
first fixes only the critical variables that have a consensus among the parent solutions
(input information) in the integration subproblem. The second in addition encourages
the remaining critical characteristics to appear in the integrated solution by following a
nearly-Lagrangian relaxation procedure. In the ICS context, we have investigated the
use of several combinations of integrators. The results indicate that two combinations
(4IPEN and 2IAND + 2IPEN) give better results in terms of the average deviation from
the BKS of ICS.
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Future research directions will involve developing exact methods for integration. We
believe that exact integrators may improve the quality of the complete solutions or guar-
antee the solution quality. It might be possible to use exact integration methods to
provide robust guidance in the context of ICS.
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Appendix A: MDPVRP Formulation

Minimize
∑
vi∈V

∑
vj∈V

m∑
k=1

t∑
l=1

∑
vo∈VDEP

cijxijklo (22)

subject to:
∑
p∈Li

yip = 1 vi ∈ VCST

(23)∑
vo∈VDEP

y′io = 1 vi ∈ VCST

(24)∑
vj∈V

m∑
k=1

xijklo −
∑
p∈Li

aplyip = 0 vi ∈ VCST ; vo ∈ VDEP ; l = 1 . . . t

(25)∑
vj∈V

m∑
k=1

xijklo ≤ y′io vi ∈ VCST ; vo ∈ VDEP ; l = 1 . . . t

(26)∑
vi∈V

m∑
k=1

xijklo ≤ y′jo vj ∈ VCST ; vo ∈ VDEP ; l = 1 . . . t

(27)∑
vj∈V

xojklo ≤ 1 vo ∈ VDEP ; k = 1 . . .m ; l = 1 . . . t

(28)∑
vj∈V

xijklo = 0 vi ∈ VDEP ; vo ∈ VDEP ; vo 6= vi ; k = 1 . . .m ; l = 1 . . . t

(29)∑
vi∈V

xijklo = 0 vj ∈ VDEP ; vo ∈ VDEP ; vo 6= vj ; k = 1 . . .m ; l = 1 . . . t

(30)∑
vj∈V

xjiklo −
∑
vj∈V

xijklo = 0 vi ∈ V ; vo ∈ VDEP ; k = 1 . . .m ; l = 1 . . . t

(31)∑
vi∈V

∑
vj∈V

qixijklo ≤ Q vo ∈ VDEP ; k = 1 . . .m ; l = 1 . . . t

(32)∑
vi∈V

∑
vj∈V

(cij + τi)xijklo ≤ T vo ∈ VDEP ; k = 1 . . .m ; l = 1 . . . t

(33)
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∑
vi∈S

∑
vj∈S

xijklo ≤ |S| − 1 S ∈ VCST ; |S| ≥ 2 ; vo ∈ VDEP ; k = 1 . . .m ; l = 1 . . . t

(34)

xijklo ∈ {0, 1} vi ∈ V; vj ∈ V ; vo ∈ VDEP ; k = 1 . . .m ; l = 1 . . . t
(35)

y′io ∈ {0, 1} vi ∈ V ; vo ∈ VDEP

(36)

yip ∈ {0, 1} vi ∈ V ; p ∈ Li

(37)

Constraints (23), (24), and (25) ensure that customer i is assigned to one depot and
has only one day-combination. Constraints (26) and (27) force customers i and j to be
served by a route associated with depot vo if and only if they are assigned to depot vo.
Constraints (28) force the solution to contain at most m routes on each day. Constraints
(29) and (30) ensure that each route can be associated with only one depot. Constraints
(31) are flow conservation constraints for each customer i and each day l. Constraints
(32) ensure that the capacity of each vehicle k for each day l is satisfied. Constraints
(33) ensure that the maximum duration of each route associated with vehicle k on day l
is limited to T . Finally, Constraints (34) eliminate subtours.
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