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Abstract. This paper introduces a version of the classical traveling salesman problem with 
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that location. The objective is to minimize the total route duration, which consists of the 

total travel time plus the total service time. The proposed model can handle several types 

of service time functions, e.g., linear and quadratic functions. We describe basic 

properties for certain classes of service time functions, followed by the computation of 

valid lower and upper bounds. We apply several classes of subtour elimination constraints 

and measure their effect on the performance of our model. Numerical results obtained by 

implementing different linear and quadratic service time functions on several test 

instances are presented. 

Keywords: Traveling salesman problem, time-dependency, service times, lower and 

upper bounds. 

Acknowledgements. This research was partly supported by the Natural Sciences and 

Engineering Research Council of Canada (NSERC) under Grants 338816-10, 436014-

2013 and 39682-10. This support is gratefully acknowledged. 

 

 

Results and views expressed in this publication are the sole responsibility of the authors and do not 
necessarily reflect those of CIRRELT. 

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 

_____________________________ 

* Corresponding author:  duygu.tas@cirrelt.ca 

Dépôt légal   –  Bibliothèque et Archives nationales du Québec 
  Bibliothèque et Archives Canada, 2014 

© Taş, Gendreau, Jabali, Laporte and CIRRELT, 2014 



1. Introduction

The purpose of this paper is to introduce, model and solve a version of
the classical traveling salesman problem (TSP) with time-dependent service
times (TSP-TS), an extension of the asymmetric TSP. Öncan et al. [13],
and Roberti and Toth [16] present comprehensive reviews of the available
mathematical formulations for the asymmetric TSP, some of which will be
extended to model the TSP-TS.

In most of the research on the TSP, service times are either ignored, or
assumed to be constant and thus accounted for in travel times. However
in practice, it can easily be observed that service times vary according to
several factors which naturally depend on the time of day (e.g., availability
of parking spaces, accessibility to the customer at its location, and so on). In
the TSP-TS, the service time required at each customer is not fixed a priori,
but depends on the start time of service. The TSP-TS aims to minimize the
total route duration including the total travel time and the total service time.
This problem can formally be defined on a connected digraph G = (N,A). In
this graph, N = {0, 1, ..., n, n+ 1} is the set of nodes and A = {(i, j) | i, j ∈
N, i 6= j} is the set of arcs. Nodes 0 and n+1 correspond to the starting and
ending points of the salesman’s tour, respectively. Each node in N\{0, n+ 1}
corresponds to a distinct customer. With each arc (i, j) in A is associated a
travel time tij. Each customer i has a service time defined as a continuous
function si(bi), where bi corresponds to the start time of service at that
customer location.

In the TSP literature, time-dependency is usually addressed in terms of
travel times. The interested reader is referred to Gouveia and Voß [7] who
present a classification of formulations proposed for the time-dependent TSP.
Picard and Queyranne [14], Vander Wiel and Sahinidis [20], and Bigras et al.
[1] consider a time-dependent TSP in which the travel time between any two
nodes depends on the time period of the day. It is further assumed that when
the salesman starts traversing an arc, no transition from one time period to
the next takes place during this travel, in other words there is no transient
zone. More specifically, the travel time from node i to node j depends on
the time period in which node i is visited. This problem with discrete travel
times can be viewed as a single machine scheduling problem with sequence-
dependent setup times. Picard and Queyranne [14] provide three integer
programming formulations for the time-dependent TSP. The authors ana-
lyze the relationships between the relaxations of these models by comparing
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their lower bounds. It is observed that the shortest path relaxation (related
to the first model) is very similar to a formulation proposed by Hadley [8]
for the classical TSP. Vander Wiel and Sahinidis [20] propose an algorithm
for the time-dependent TSP, based on applying Benders decomposition to
a mixed-integer linear programming formulation. The authors also develop
a network-based algorithm to identify Pareto-optimal dual solutions of the
highly degenerate subproblems. Results indicate that the performance of the
algorithm is considerably improved by employing these Pareto-optimal solu-
tions. In Bigras et al. [1], the integer programming formulations of the time-
dependent TSP are extended to solve a single machine scheduling problems
with sequence-dependent setup times. Two separate objectives are consid-
ered: minimizing total flow time and minimizing total tardiness. Instances
with 45 and 50 jobs can be solved exactly by the proposed branch-and-bound
algorithm.

Cordeau et al. [2] consider a time-dependent TSP in which the predeter-
mined time horizon is partitioned into a number of time intervals, and the
average travel speed on each arc during each interval is known. The travel
time on each arc is then computed by a procedure introduced by Ichoua
et al. [10], and a branch-and-cut procedure is developed to solve the prob-
lem. The proposed algorithm is capable of solving instances with up to 40
nodes. In terms of the service cost, Tagmouti et al. [17, 18, 19] consider
time-dependency within the scope of the Capacitated Arc Routing Problem
(CARP). The classical CARP aims to serve a set of required arcs at mini-
mum cost, using a fleet of capacitated vehicles based at the depot. The three
above-mentioned papers focus on a version of the CARP where each arc has
a time-dependent service cost but a fixed service time. Tagmouti et al. [17]
develop a column generation algorithm, and Tagmouti et al. [18, 19] propose
heuristics.

To the best of our knowledge, the TSP-TS has never been considered pre-
viously. In contrast to what is done in the papers just mentioned, we can han-
dle several types of service time functions, such as linear and quadratic func-
tions. Moreover, time-dependent service times are included into the model
not only through the objective function (e.g., models with time-dependent
travel times), but also through the constraints. More specifically, the service
time cannot be incorporated into the arc durations.

The remainder of this paper is organized as follows. In Section 2, we
describe properties of the service time function and provide the computation
of a valid lower bound on the total service time of an optimal solution to

3

The Traveling Salesman Problem with Time-Dependent Service Times 

CIRRELT-2014-48



our problem. In Section 3, we propose a formulation for the TSP-TS, to-
gether with three variants based on different forms of subtour elimination
constraints. We also present the computation of a lower bound on the bigM
which is employed in our model. Section 4 reports computational results cor-
responding to different subtour elimination constraints and different service
time functions. This section also provides the computation of a valid upper
bound on the total route duration of an optimal solution. Finally, our main
findings and conclusions are highlighted in Section 5.

2. Service Time Function

In this section, we present the certain properties of the service time func-
tion si(bi) at node i.

2.1. First-In-First-Out Property

The first property is related to the First-In-First-Out (FIFO) principle
which states that if service at node i starts at a time bi, any service starting
at a later time b′i at that node cannot be completed earlier than bi + si(bi).

Proposition 2.1. si(bi) satisfies the FIFO property if and only if
dsi(bi)

dbi
≥

−1.

Proof. (→ necessity)
If si(bi) satisfies the FIFO property, then

bi + si(bi) ≤ b′i + si(b
′
i),

for all b′i > bi. The above statement can be rewritten as

si(b
′
i)− si(bi) ≥ −(b′i − bi),

where b′i = bi + δ and δ > 0. The latter inequality yields

si(bi + δ)− si(bi) ≥ −δ,

si(bi + δ)− si(bi)
δ

≥ −1,

lim
δ→0

si(bi + δ)− si(bi)
δ

≥ lim
δ→0
−1,
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dsi(bi)

dbi
≥ −1.

(← sufficiency)
It is given that si(bi) is continuous on [bi, b

′
i] where b′i > bi. From the mean

value theorem, we know that there exists at least one point b∗i in (bi, b
′
i) such

that
dsi(b

∗
i )

db∗i
=
si(b

′
i)− si(bi)
b′i − bi

.

If
dsi(b

∗
i )

db∗i
≥ −1 for all b∗i in (bi, b

′
i), then

si(b
′
i)− si(bi)
b′i − bi

≥ −1,

−si(b′i) + si(bi) ≤ b′i − bi,

bi + si(bi) ≤ b′i + si(b
′
i),

which means that the FIFO property is satisfied.

At this point, it is worth observing that a TSP solution is not always
optimal for the TSP-TS, even when we apply a service time function that
satisfies the FIFO property starting from the first customer in the route. To
illustrate, suppose that there are three customers (denoted by nodes 1, 2 and
3) and one depot (denoted by nodes 0 and 4), with the travel time matrix
of Table 1. The classical TSP has the two optimal solutions (0, 3, 1, 2, 4) and
(0, 2, 1, 3, 4), with a total travel time equal to 11.75.

Table 1: Travel time matrix of a small TSP instance

Nodes 0 1 2 3 4

0 0.00 5.00 4.00 4.00 0.00
1 5.00 0.00 2.00 1.75 5.00
2 4.00 2.00 0.00 1.50 4.00
3 4.00 1.75 1.50 0.00 4.00
4 0.00 5.00 4.00 4.00 0.00

Now assume that for the TSP-TS represented by the same graph, the ser-
vice time function is defined as si(bi) = b2i − 6bi + 9 for all i ∈ N \ {0, n+ 1}.
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From Proposition 2.1, the FIFO property is satisfied for all bi ≥ 2.50. Note
that in the TSP solutions, the salesman arrives at the first customer after
the earliest time at which the FIFO property starts holding. Moreover, it is
obvious that waiting at the depot or at a customer location does not bring
any reduction in the total route duration. When we evaluate the two TSP
solutions with the time-dependent service times defined above, we observe
that the total route durations of the corresponding routes substantially in-
crease to 419.35 and 501.81. The arrival times (AT) and departure times
(DT) at each node of the TSP solution (0, 3, 1, 2, 4), which has a lower total
route duration, are provided in Table 2 where there is no waiting. This table
also gives the total travel time (TT) and the total service time (ST) spent
until the departure of the salesman from each node.

Table 2: Details of the TSP solution evaluated with respect to time-
dependent service times

Nodes AT DT TT ST

0 (starting point) 0.00 0.00 0.00
3 4.00 5.00 4.00 1.00
1 6.75 20.81 5.75 15.06
2 22.81 415.35 7.75 407.06
4 419.35 (ending point) 11.75 407.06

The optimal solution of the TSP-TS is (0, 2, 3, 1, 4), with a total route
duration of 331.75. Table 3 provides the details of the corresponding route
at each node. As in the TSP solutions, waiting is not needed since it does
not bring any reduction in the total route duration.

Table 3: Details of the the optimal TSP-TS solution

Nodes AT DT TT ST

0 (starting point) 0.00 0.00 0.00
2 4.00 5.00 4.00 1.00
3 6.50 18.75 5.50 13.25
1 20.50 326.75 7.25 319.50
4 331.75 (ending point) 12.25 319.50
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In a TSP-TS setting, the solution (0, 2, 3, 1, 4) has a lower duration than
that of the TSP solutions (0, 3, 1, 2, 4) and (0, 2, 1, 3, 4). This observation
implies that a TSP solution may not be optimal for the TSP-TS even when all
customers have the same service time function and waiting does not provide
any reduction in the total service time. Moreover, it shows that our problem
may not correspond to the TSP even when all customers have the same
quadratic service time function (with a unique minimum).

2.2. Waiting Property

The second property is related to waiting. If si(bi) does not satisfy the
FIFO property when the salesman arrives at customer i, then it may pay to
wait at that customer before starting service. We first provide a small exam-
ple to illustrate this property. The related propositions are then presented.

Suppose that there are three customers (denoted by nodes 1, 2 and 3)
and one depot (denoted by nodes 0 and 4). In this setting, tij = 0.50 for all
(i, j) in A, and si(bi) = b2i − 4bi + 4 for all i ∈ N \ {0, 4}. From Proposition
2.1, the FIFO property is satisfied for all bi ≥ 1.50. Consider a route that
visits customers in the order 1, 2 and 3. Tables 4 and 5 provide the arrival
times and the departure times at each node in the current route if waiting is
not allowed and if waiting is allowed, respectively. These tables also provide
the total travel time and the total service time spent until the departure of
the salesman from each node. If there is no waiting, the total service time
is equal to 14.79. When waiting is allowed at the first customer, the total
service time is reduced to 0.97.

Table 4: Details of the route for the case without waiting

Nodes AT DT TT ST

0 (starting point) 0.00 0.00 0.00
1 0.50 2.75 0.50 2.25
2 3.25 4.81 1.00 3.81
3 5.31 16.29 1.50 14.79
4 16.79 (ending point) 2.00 14.79

This example shows that when the FIFO property is not always satisfied
by the service time function, then the total route duration may be decreased
by waiting. The related proposition follows.
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Table 5: Details of the route for the case with waiting

Nodes AT DT TT ST

0 (starting point) 0.00 0.00 0.00
1 0.50 1.75 0.50 0.25
2 2.25 2.31 1.00 0.31
3 2.81 3.47 1.50 0.97
4 3.97 (ending point) 2.00 0.97

Proposition 2.2. If the salesman arrives at a customer i before b′i (the
earliest time at which the FIFO property starts holding at that customer),
waiting at that location to begin service at time b′i is then beneficial.

!

depot depot 

customers 

i 0 n+1 

Figure 1: A given route (no waiting)

Proof. Suppose that in the route given by Figure 1, each customer j ∈
N \ {0, n+ 1} has a service time function sj(bj) and waiting is not consid-
ered. The latter structure implies that the arrival time at any customer i is
equivalent to the start time of service at that customer, which is represented
by b̂i.

Suppose that si(bi) satisfies the FIFO property for all bi where b′i ≤ bi ≤ b̄i

and b̂i < b′i. More specifically,
dsi(bi)

dbi
< −1 for all bi such that 0 ≤ bi < b′i,

and therefore such that bi ∈ [b̂i, b
′
i). From the mean value theorem, we know
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that there exists at least one point b∗i in (b̂i, b
′
i) such that

dsi(b
∗
i )

db∗i
=
si(b

′
i)− si(b̂i)
b′i − b̂i

.

Since
dsi(b

∗
i )

db∗i
< −1 for all b̂i < b∗i < b′i, then

si(b
′
i)− si(b̂i)
b′i − b̂i

< −1,

si(b
′
i)− si(b̂i) < −(b′i − b̂i),

si(b
′
i) + b′i < si(b̂i) + b̂i.

The last inequality implies that instead of beginning service immediately,
waiting at customer i until b′i (until si(bi) starts satisfying the FIFO property)
is beneficial.

From Proposition 2.2, we distinguish two categories of service times: (i)
each customer has a distinct service time function, and (ii) all customers
have the same service time function. In Proposition 2.3, we consider the
latter case and prove that all the waiting time can be shifted to the depot
(instead of spending idle times at customer locations).

Proposition 2.3. If all customers have the same service time function, then
the waiting time required to satisfy the FIFO property can be spent at the
depot.

Proof. Consider a service time function sj(bj) for all j ∈ N \ {0, n+ 1},
satisfying the FIFO property for all bj ≥ b′j ≥ 0. In other words, b′j is the
earliest time at which the FIFO property starts holding at each customer j.
Let i be the first customer in the route given by Figure 2. First, the arrival
time at customer i is equivalent to the start time of service at that customer,
i.e., b̂i. From Proposition 2.2, we know that it is beneficial to delay service at
customer i until b′i. Since all customers have the same service time function,
waiting at the first customer is sufficient to satisfy the FIFO property for all
other customers (no additional waiting is needed to satisfy the FIFO along
the route). This waiting time can be shifted to the depot. More specifically,
waiting is needed only at the depot to satisfy the FIFO property for all
customers.

9

The Traveling Salesman Problem with Time-Dependent Service Times 

CIRRELT-2014-48



depot depot 

customers 

i 0 n+1 

Figure 2: A route where all customers have the same service time function

2.3. Computing A Lower Bound on the Total Service Time

In this section, we derive a lower bound on the total service time of the
optimal solution for the case where all customers have the same linear service
time function.

Proposition 2.4. When all customers i ∈ N \ {0, n+ 1} have the same
linear service time function, si(bi) = βbi + γ where β, γ > 0 and si(bi) > 0,
the total service time of a route, computed by considering the first n + 1
smallest travel times, yields a valid lower bound value on the total service
time of the optimal solution.

Proof. Observe that for the service time function defined as si(bi) = βbi + γ,
dsi(bi)

dbi
= β > 0. In other words, si(bi) is an increasing function when

bi ∈ [0,∞), and thus waiting at the depot or at customer locations does not
bring any reduction in the total route duration. Therefore, we know that
si(bi) satisfies the FIFO property at each customer i ∈ N \ {0, n+ 1} for all
bi ≥ 0. Moreover, the latest possible departure time from the depot in any
route r in G is equal to 0 due to the behaviour of si(bi) for bi ∈ [0,∞). Let
(r, i) denote the ith node visited by route r. Note that (r, 1) and (r, n + 2)
correspond to the depot in each route r.

We have a symmetric travel time matrix in which node 0 and node n+ 1
both correspond to the depot. First define a list L of travel times tij for
all j > i and j 6= n+ 1. When the graph comprises only one customer,
the travel time between that customer and the depot needs to be considered
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twice in the list L (the connection from the depot to the customer, and
the connection from the customer to the depot). The list is then sorted in
ascending order so that k < m implies L[k] < L[m], where L[k] is the kth

element of list L. We then construct a new directed graph G̃ = (Ñ , Ã) where

Ñ = {n + 2, n + 3, ..., 2n + 3} is the set of nodes, and Ã = {(i, j) | i ∈
Ñ \ {2n+ 3}, j = i+ 1, j ∈ Ñ \ {n+ 2}} is the set of arcs. In this graph,
nodes n + 2 and 2n + 3 can be viewed as the starting and ending points of
each route. Each node i ∈ Ñ \ {n+ 2, 2n+ 3} has a service time defined by

the original function si(bi). Moreover, the travel time on each arc (i, j) in Ã,

t̃ij is equal to L[i− n− 1]. From the definition of G̃, it can be observed that
only one route (route p) starts and ends at the depot and visits each node

i ∈ Ñ exactly once. Suppose that the start time of service at the first node
of this route (node n+ 2) is set to 0. With respect to bn+2 and to the service
time spent at node n+ 2, which is equal to 0 by definition, bn+3 is computed
as t̃n+2,n+3. We know that bn+3 ≤ b(r,2) for any possible route r generated

for the original problem since t̃n+2,n+3 = min
(i,j)∈A

{tij} and b(r,1) = 0 for all r.

Similarly, bn+4 is equal to t̃n+2,n+3 + sn+3(bn+3) + t̃n+3,n+4. It is clear that
bn+4 ≤ b(r,3) for any route r, since

(i) sn+3(bn+3) ≤ s(r,2)(b(r,2)),

(ii) t̃n+2,n+3 + t̃n+3,n+4 ≤ t(r,1),(r,2) + t(r,2),(r,3),

(iii) the latest possible departure time from the starting point of any route
r is equal to 0.

Reiterating this process, we observe that bi ≤ b(r,i−n−1) at each node i ∈ Ñ
in route p and for any possible route r generated for the original problem
where (r, i− n− 1) ∈ N , since

(i) bn+2 = 0,

(ii)
∑i−1

k=n+2 t̃k,k+1 ≤
∑i−1

k=n+2 t(r,k−n−1),(r,k−n), i ∈ Ñ \ {n+ 2},

(iii)
∑i−1

k=n+2 sk(bk) ≤
∑i−1

k=n+2 s(r,k−n−1)(b(r,k−n−1)), i ∈ Ñ \ {n+ 2}.

Thus, the total service time of route p yields a valid lower bound on the
total service time in an optimal solution to the original problem defined with
a linear (increasing) service time function at each customer.
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3. Mathematical Model

We now present mathematical models for the TSP-TS, where bi is a de-
cision variable corresponding to the start time of service at customer i. If
there is no waiting at customer i, then bi is equal to the arrival time at
that customer. Waiting is allowed in this problem setting since it may be
helpful to reduce the total service time spent at each customer in the route.
In this model, the decision variable xij takes the value 1 if node j is served
immediately after node i, and 0 otherwise.

A mathematical model considering time-dependent service times is then

minimize
∑
i∈N

∑
j∈N

tijxij +
∑

i∈N\{0,n+1}

si(bi) (1)

s.t.
∑

j∈N\{i}

xij = 1, i ∈ N \ {n+ 1}, (2)

∑
i∈N\{j}

xij = 1, j ∈ N \ {0}, (3)

bi + si(bi) + tij −M(1− xij) ≤ bj, i ∈ N, j ∈ N, (4)∑
i∈S

∑
j∈S

xij ≤ |S| − 1, S ⊆ N \ {0, n+ 1}, S 6= ∅, (5)

bi ≥ 0, i ∈ N, (6)

xij ∈ {0, 1}, i ∈ N, j ∈ N. (7)

The objective (1) is to minimize the total route duration which consists
of the sum of the total travel time and the total service time. Constraints
(2) and (3) ensure that each customer is visited exactly once, and impose
the degree requirements for the two depot nodes. Constraints (4) link the
departure time from a node and the starting time of service at its successor.
Constraints (5) are the classical Dantzig, Fulkerson and Johnson (DFJ) sub-
tour elimination constraints [3]. Constraints (6) ensure that the start time
of service at each customer is non-negative. Constraints (7) indicate that
partial service at customers is not allowed.

In Section 3.1, we present a number of alternative subtour elimination
constraints which will be compared in Section 4.1. In Section 3.2, we provide
a procedure to compute a lower bound on the bigM.
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3.1. Alternative Subtour Elimination Constraints

We consider the three formulations working with different subtour elimi-
nation constraints. These are reported by Öncan et al. [13] and Roberti and
Toth [16] as the best when the model is solved directly by CPLEX [9].

3.1.1. The Miller, Tucker and Zemlin (MTZ) Formulation

Miller et al. [12] proposed the following MTZ subtour elimination con-
straints:

ui − uj + nxij ≤ n− 1, i, j = 1, ..., n, (8)

where ui, i ∈ N \ {0, n+ 1} is an arbitrary real number identifying the vis-
iting order of customer i in a tour. Note that in the original paper, Miller
et al. [12] define the ui variables without any bound.

3.1.2. The Desrochers and Laporte (DL) Formulation

The MTZ subtour elimination constraints were lifted by Desrochers and
Laporte [4], resulting in a stronger LP relaxation. The lifted constraints are
stated as follows:

ui − uj + nxij + (n− 2)xji ≤ n− 1, i, j = 1, ..., n, (9)

− ui + (n− 2)xi,n+1 +
∑

j∈N\{0,n+1}

xji ≤ −1, i = 1, ..., n, (10)

ui + (n− 2)x0i +
∑

j∈N\{0,n+1}

xij ≤ n, i = 1, ..., n. (11)

Desrochers and Laporte [4] also proved that constraints (9) are facet defining.

3.1.3. The Gavish and Graves (GG) Formulation

Several single-commodity, two-commodity and multi-commodity flow for-
mulations were introduced for the asymmetric TSP. The interested reader is
referred to Langevin et al. [11] for a comprehensive classification on commod-
ity flow formulations. Gavish and Graves [5] developed a single-commodity
flow formulation for which the LP relaxation of the resulting model is stronger
than that of the MTZ formulation but weaker than that of the DFJ formu-
lation (see Gouveia [6]). In the GG formulation, subtours are eliminated
by using n(n + 1) non-negative variables gij, where i ∈ N \ {0, n+ 1} and
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j ∈ N \ {0}. The GG subtour elimination constraints of this formulation are
stated as follows:∑

j∈N\{0}

gij −
∑

j∈N\{0,n+1}

gji = 1, i = 1, ..., n, (12)

0 ≤ gij ≤ nxij, i = 1, ..., n, j = 1, ..., n+ 1. (13)

In (12) and (13), the gij variables denote the number of arcs on a tour from
the depot to arc (i, j). Note that the starting point of each tour is represented
by node 0. These two sets of constraints yield a network flow model in which
the gij variables naturally take integer values for fixed values of xij variables.

3.2. Computing A Lower Bound on the BigM

In this section, we provide the computation of a sufficiently large value for
the bigM to be used in constraints (4) of the formulation (1)–(7), where all
customers first have the same quadratic service time function (with a unique
minimum).

Proposition 3.1. When all customers have the same quadratic service time
function (with a unique minimum), the arrival time of the salesman at the
last node in a route, computed by considering the first n + 1 largest travel
times, yields a valid value for M in formulation (1)–(7).

Proof. Suppose that each customer i ∈ N \ {0, n+ 1} has the same service
time function si(bi) = αbi

2 − βbi + γ, where α, β, γ > 0 and si(bi) ≥ 0,
and that si(bi) has a unique minimum value (the minimum service time) at

bi = β/2α. Since
dsi(bi)

dbi
≥ 0 and

d2si(bi)

db2i
> 0 for all bi ≥ β/2α, si(bi)

is an increasing function with an increasing derivative for bi ∈ [β/2α,∞).
From Proposition 2.1, we know that si(bi) satisfies the FIFO property at
each customer i ∈ N \ {0, n+ 1} for all bi ≥ (β − 1)/2α. From Proposition
2.3, we know that for any route r in G (starting and ending at the depot,
and visiting each node exactly once), waiting at the depot to arrive at the
first customer at (β − 1)/2α is sufficient to satisfy the FIFO property (no
additional waiting is needed for the FIFO along the route r). Moreover, the
latest possible arrival time at the first customer in any route r in G is equal
to β/2α due to the behaviour of si(bi) for bi ∈ [β/2α,∞). Let (r, i) denote
the ith node visited by route r. Note that (r, 1) and (r, n+ 2) correspond to
the depot in each route r.
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We have a symmetric travel time matrix in which nodes 0 and n+ 1 both
correspond to the depot. In order to compute a lower bound on the bigM, we
first define a list L that contains travel times tij for all j > i and j 6= n+ 1.
When the graph comprises only one customer, the travel time between that
customer and the depot needs to be considered twice in the list L, once in
each direction. This list is then sorted in decreasing order so that L[k] > L[m]
when k < m, where L[k] is the kth element of list L. We then construct a
new directed graph G = (N,A), where N = {n + 2, n + 3, ..., 2n + 3} is the
set of nodes and A = {(i, j) | i ∈ N \ {2n+ 3}, j = i+ 1, j ∈ N \ {n+ 2}}
is the set of arcs. In this graph, nodes n+ 2 and 2n+ 3 can be viewed as the
starting and ending points of each route. Each node i ∈ N \ {n+ 2, 2n+ 3}
has a service time defined by the original function si(bi). Moreover, the
travel time on each arc (i, j) in A, tij is equal to L[i − n − 1]. From the

definition of G, it can be observed that there exists only one route (route
p) starting and ending at the depot, and visiting each node i ∈ N exactly
once. Suppose that the starting time of service at node n+ 2 is set to β/2α.
More specifically, si(bi) satisfies the FIFO property at each node i in route p
and waiting along that route does not yield any reduction in the total service
time. With respect to bn+2 and the service time spent at node n + 2, which
is equal to 0 by definition, bn+3 is computed as (β/2α) + tn+2,n+3. We know
that bn+3 ≥ b(r,2) for any possible route r generated for the original problem

since tn+2,n+3 = max
(i,j)∈A

{tij} and (β/2α) ≥ b(r,1) for all r. Similarly, bn+4 is

equal to (β/2α)+ tn+2,n+3 +sn+3(bn+3)+ tn+3,n+4. It is clear that bn+4 ≥ b(r,3)
for any route r, since

(i) sn+3(bn+3) ≥ s(r,2)(b(r,2)),

(ii) tn+2,n+3 + tn+3,n+4 ≥ t(r,1),(r,2) + t(r,2),(r,3),

(iii) β/2α is the latest possible departure time from the starting point of
any route r.

Continuing in this fashion, we observe that bi ≥ b(r,i−n−1) at each node i ∈ N
in route p and for any possible route r generated for the original problem
where (r, i− n− 1) ∈ N , since

(i) bn+2 = β/2α,

(ii)
∑i−1

k=n+2 tk,k+1 ≥
∑i−1

k=n+2 t(r,k−n−1),(r,k−n), i ∈ N \ {n+ 2},
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(iii)
∑i−1

k=n+2 sk(bk) ≥
∑i−1

k=n+2 s(r,k−n−1)(b(r,k−n−1)), i ∈ N \ {n+ 2}.

Thus, we can conclude that b2n+3 ≥ b(r,n+2) for any possible route r
generated for the original problem defined on G, where (r, n+2) corresponds
to the depot. Note that the departure time of each route r from the starting
point is optimized. In other words, the arrival time of the salesman at the end
of route p provides a valid and reasonable value for the bigM to be employed
in the original problem defined with a quadratic service time function (with
a unique minimum) at each customer.

If we consider a linear service time function, the route constructed by
using the first n + 1 largest travel times is also valid to compute a value
for bigM. Suppose that each customer i ∈ N \ {0, n+ 1} has the same linear
(increasing) service time function si(bi) = βbi+γ, where β, γ > 0 and si(bi) >
0. We know that si(bi) satisfies the FIFO property at each customer i ∈
N \ {0, n+ 1} for all bi ≥ 0 (see the proof of Proposition 2.4). In other
words, waiting at the depot or at customer locations does not yield any
reduction in the total route duration. It is easy to observe that when we
adjust the latest possible departure time from the depot with respect to the
linear function considered at each customer, all properties provided in the
proof of Proposition 3.1 hold. Thus, one can employ the computation of the
bigM when all customers have the same quadratic service time function (with
a unique minimum) or the same linear (increasing) service time function.

4. Computational Results

The model just described was coded in C++ and solved by using IBM
ILOG CPLEX 12.5 [9]. All experiments were conducted on an Intel(R)
Xeon(R) CPU X5675 with 12-Core 3.07 GHz and 96 GB of RAM (by us-
ing a single thread). We have experimented with data sets presented in the
TSPLIB library of Reinelt [15]. We have focused on the instances with up to
45 nodes defined with a symmetric travel time matrix (burma14, ulysses16,
gr17, gr21, ulysses22, gr24, fri26, bayg29, bays29, dantzig42 and swiss42).
In addition to these 11 instances, we have generated 11 more instances by
selecting (i) the first 30 nodes from dantzig42, swiss42, att48, gr48, hk48 and
eil51, (ii) the first 35 nodes from swiss42, gr48 and eil51, (iii) the first 40
nodes from eil51, and (iv) the first 45 nodes from eil51. The original travel
times were adjusted in such a way that we have the same average travel time
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per arc in each instance. Note that in all these instances, there exists one
more node for the ending depot, e.g., burma14 includes 15 nodes.

4.1. Effects of Subtour Elimination Constraints

Each instance was solved directly by CPLEX for three types of subtour
elimination constraints: (i) MTZ, (ii) DL and (iii) GG. Each corresponding
formulation was enhanced by implementing: (i) an upper bound on the total
route duration, (ii) a lower bound on the total service time, and (iii) a lower
and an upper bound on the start time of service at each customer. A maxi-
mum of 7,200 seconds was imposed on the solution time of any instance. A
linear service time function si = 10−2bi + 6(10−2) was employed for each cus-
tomer i ∈ N \ {0, n+ 1}. Note that this function provides medium service
times with respect to other functions employed in Section 4.2.

We first present the above-mentioned four valid bounds, starting with an
upper bound on the total route duration of the optimal solution for the case
where all customers have the same linear or quadratic service time function.
If each customer i ∈ N \ {0, n+ 1} has the same quadratic service time func-
tion (with a unique minimum) or the same linear (increasing) service time
function, then the total route duration of a route constructed by implement-
ing the nearest-neighbour heuristic provides a valid upper bound value on
the optimal total route duration.

Suppose that each customer i ∈ N \ {0, n+ 1} has the same service time
function, which is either si(bi) = αbi

2 − βbi + γ where α, β, γ > 0 and
si(bi) ≥ 0, or si(bi) = βbi + γ where β, γ > 0 and si(bi) > 0. When we
consider the first case with the quadratic service time function, we know
that si(bi) satisfies the FIFO property at each customer i ∈ N \ {0, n+ 1}
for all bi ≥ (β − 1)/2α (see the proof of Proposition 3.1). Moreover, waiting
at the depot to arrive at the first customer at (β − 1)/2α is sufficient to
satisfy the FIFO property (no additional waiting is needed for the FIFO
along the route). If the linear function is employed, then si(bi) satisfies the
FIFO property at each customer i ∈ N \ {0, n+ 1} for all bi ≥ 0 (see the
proof of Proposition 2.4).

The nearest-neighbour heuristic starts building the route by moving to the
closest customer to the depot in terms of the travel time. At each iteration,
the algorithm selects the closest customer to the last node in the partial
route not yet visited. This step is reiterated until all customers are routed,
and the resulting route r is a feasible solution to the TSP-TS. Thus, the
total route duration of route r, where the departure time from the depot
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is arranged with respect to the FIFO property of the service time function
considered, provides an upper bound on the total duration of an optimal
TSP-TS solution.

To implement a lower bound on the total service time, we perform the
procedure described in Section 2.3. In addition to the lower and upper bounds
(on the total service time and on the total route duration of the optimal
solution), we implement two bounds on the start time of service at each
customer location. The first related constraint employs an upper bound equal
to the bigM used in the formulation (1)–(7). The second related constraint
employs a lower bound equal to the earliest time at which the FIFO property
starts holding.

Tables 6, 7 and 8 present solutions found within the time limit (7,200 sec-
onds) when MTZ, DL and GG constraints are respectively incorporated into
the model (enhanced with the bounds explained above). In these tables, we
provide the status of solutions (feasible or optimal), the objective function
value (Obj), the percentage of the total travel time in Obj (TT%), the per-
centage of the total service time in Obj (ST%), and the final optimality gap
in percentage (Gapf%). Moreover, we also report average values (Avg) cal-
culated over the instances solved suboptimally and over the instances solved
optimally.

The results given in Table 6 indicate that the model with the MTZ sub-
tour elimination constraints cannot provide a feasible solution to three in-
stances within the time limit. Eight instances with up to 31 nodes are solved
to optimality, and a feasible solution is provided to the remaining 11 in-
stances. Table 7 shows that the model with the DL subtour elimination
constraints performs better than that with the MTZ subtour elimination
constraints (a feasible solution is obtained for each instance). Nine instances
with up to 31 nodes are solved to optimality. Moreover, the optimal solutions
for the eight instances, which are also provided by the model with the MTZ
subtour elimination constraints, are obtained within smaller computation
times (on average by 11.58%). Table 8 indicates that the best performance
is obtained by employing the model with the GG subtour elimination con-
straints. Optimal solutions are obtained for 13 instances with up to 36 nodes
(on average within less than eight minutes). Furthermore, this model de-
creases the computation time required to solve the eight (nine) instances,
which are also provided by the model with the MTZ (DL) subtour elimina-
tion constraints, on average by 89.81% (88.22%). According to results given
in these three tables, we conclude that the model employing the GG subtour
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elimination constraints performs much better than those with the MTZ and
DL constraints, both in terms of the number of instances solved to optimality
and of the required computation time.

Table 6: Solutions with four bounds, MTZ subtour elimination constraints
and medium service times, with si(bi) = 10−2bi + 6(10−2) for all i ∈
N \ {0, n+ 1}

Name Status Obj TT(%) ST(%) Gapf (%) Seconds

burma14 Optimal 236.44 93.70 6.30 0.00 1.07
ulysses16 Optimal 279.57 94.51 5.49 0.00 23.97

gr17 Optimal 245.40 94.40 5.60 0.00 62.43
gr21 Optimal 249.32 90.48 9.52 0.00 7.24

ulysses22 Feasible 318.06 92.91 7.09 6.30 -
gr24 Optimal 284.93 89.29 10.71 0.00 3628.16
fri26 Feasible 263.01 89.06 10.94 14.30 -

bayg29 Optimal 371.22 86.74 13.26 0.00 1544.31
bays29 Feasible 331.90 86.95 13.05 3.58 -
att30 Feasible 273.10 86.51 13.49 14.56 -

dantzig30 Feasible 353.77 86.50 13.50 18.90 -
eil30 Optimal 349.16 85.92 14.08 0.00 147.49
gr30 Feasible 305.23 86.61 13.39 8.39 -
hk30 No integer solution -

swiss30 Optimal 366.78 87.34 12.66 0.00 344.64
eil35 Feasible 397.42 83.79 16.21 1.35 -
gr35 No integer solution -

swiss35 Feasible 406.92 84.46 15.54 2.65 -
eil40 Feasible 452.89 82.36 17.64 2.72 -

dantzig42 Feasible 294.50 79.80 20.20 13.53 -
swiss42 No integer solution -

eil45 Feasible 502.52 79.80 20.20 3.97 -

Average Feasible 354.48 85.34 14.66 8.20 -
Average Optimal 297.85 90.30 9.70 0.00 719.91

4.2. Effects of the Service Time Function

We have also solved the instances given in the TSPLIB with different
service time functions in order to assess the effect of the time-dependent
component on the performance of the model. We have applied the GG sub-
tour elimination constraints since it was shown in Section 4.1 that these
constraints are the most effective.
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Table 7: Solutions with four bounds, DL subtour elimination constraints and
medium service times, with si(bi) = 10−2bi+6(10−2) for all i ∈ N \ {0, n+ 1}

Name Status Obj TT(%) ST(%) Gapf (%) Seconds

burma14 Optimal 236.44 93.70 6.30 0.00 2.64
ulysses16 Optimal 279.57 94.51 5.49 0.00 62.91

gr17 Optimal 245.40 94.40 5.60 0.00 38.71
gr21 Optimal 249.32 90.48 9.52 0.00 11.54

ulysses22 Feasible 318.06 92.91 7.09 7.61 -
gr24 Optimal 284.93 89.29 10.71 0.00 3207.58
fri26 Feasible 263.01 89.06 10.94 11.07 -

bayg29 Optimal 371.22 86.74 13.26 0.00 1241.87
bays29 Optimal 331.90 86.95 13.05 0.00 4515.15
att30 Feasible 273.10 86.51 13.49 9.15 -

dantzig30 Feasible 349.60 86.81 13.19 3.28 -
eil30 Optimal 349.16 85.92 14.08 0.00 171.40
gr30 Feasible 305.23 86.61 13.39 0.40 -
hk30 Feasible 347.35 87.28 12.72 3.38 -

swiss30 Optimal 366.78 87.34 12.66 0.00 355.60
eil35 Feasible 397.62 84.25 15.75 2.48 -
gr35 Feasible 306.91 84.45 15.55 6.15 -

swiss35 Feasible 406.92 84.46 15.54 2.30 -
eil40 Feasible 452.89 82.36 17.64 2.50 -

dantzig42 Feasible 285.07 81.74 18.26 11.57 -
swiss42 Feasible 388.64 81.89 18.11 5.84 -

eil45 Feasible 502.52 79.80 20.20 3.86 -

Average Feasible 353.61 85.24 14.76 5.35 -
Average Optimal 301.64 89.92 10.08 0.00 1067.49

4.2.1. Linear Service Times

This section aims to analyze the results obtained by implementing differ-
ent linear service time functions. Tables 9 and 10 present solutions of the
instances where si = 5(10−3)bi + 3(10−2) for all i ∈ N \ {0, n+ 1} (small
service times), and where si = 2(10−2)bi+1.2(10−1) for all i ∈ N \ {0, n+ 1}
(large service times), respectively.

The results presented in Table 9 indicate that when we apply a small
service time function, all instances with up to 46 nodes are solved to opti-
mality within a reasonable amount of time (on average within less than eight
minutes). Table 10 shows that six instances with up to 31 nodes are solved
optimally by the model employing a large service time function for each cus-
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Table 8: Solutions with four bounds, GG subtour elimination constraints and
medium service times, with si(bi) = 10−2bi+6(10−2) for all i ∈ N \ {0, n+ 1}

Name Status Obj TT(%) ST(%) Gapf (%) Seconds

burma14 Optimal 236.44 93.70 6.30 0.00 0.46
ulysses16 Optimal 279.57 94.51 5.49 0.00 7.51

gr17 Optimal 245.40 94.40 5.60 0.00 2.33
gr21 Optimal 249.32 90.48 9.52 0.00 0.82

ulysses22 Optimal 318.06 92.91 7.09 0.00 521.19
gr24 Optimal 284.93 89.29 10.71 0.00 21.27
fri26 Optimal 263.01 89.06 10.94 0.00 93.51

bayg29 Optimal 371.22 86.74 13.26 0.00 129.88
bays29 Optimal 331.90 86.95 13.05 0.00 544.31
att30 Feasible 273.10 86.51 13.49 3.77 -

dantzig30 Feasible 349.60 86.81 13.19 3.18 -
eil30 Optimal 349.16 85.92 14.08 0.00 15.65
gr30 Optimal 305.23 86.61 13.39 0.00 412.90
hk30 Feasible 347.35 87.28 12.72 2.42 -

swiss30 Optimal 366.78 87.34 12.66 0.00 409.23
eil35 Optimal 397.42 83.79 16.21 0.00 3342.23
gr35 Feasible 306.91 84.45 15.55 2.67 -

swiss35 Feasible 406.92 84.46 15.54 1.55 -
eil40 Feasible 452.89 82.36 17.64 1.47 -

dantzig42 Feasible 285.07 81.74 18.26 5.78 -
swiss42 Feasible 388.64 81.89 18.11 5.46 -

eil45 Feasible 502.52 79.80 20.20 3.16 -

Average Feasible 368.11 83.92 16.08 3.27 -
Average Optimal 307.57 89.36 10.64 0.00 423.18

tomer. The average computation time required to solve these six instances is
approximately 22 minutes. Comparing the solutions given in Table 8 (with a
medium service time function) to those in Tables 9 and 10, we observe that
the number of instances solved to optimality decreases as the coefficients in
the service time function increase. In addition, more computation time is
required to obtain an optimal solution for the same instance when using a
larger service time function for each customer.

4.2.2. Quadratic Service Times

We now analyze the results obtained by employing a quadratic service
time function for each customer. Recall that the lower bound on the total
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Table 9: Solutions with four bounds, GG subtour elimination constraints and
small service times, with si = 5(10−3)bi + 3(10−2) for all i ∈ N \ {0, n+ 1}

Name Status Obj TT(%) ST(%) Gapf (%) Seconds

burma14 Optimal 228.83 96.81 3.19 0.00 0.18
ulysses16 Optimal 271.74 97.24 2.76 0.00 3.84

gr17 Optimal 238.39 97.18 2.82 0.00 2.05
gr21 Optimal 237.11 95.14 4.86 0.00 0.27

ulysses22 Optimal 306.44 96.43 3.57 0.00 37.72
gr24 Optimal 269.09 94.54 5.46 0.00 1.60
fri26 Optimal 247.99 94.46 5.54 0.00 4.14

bayg29 Optimal 345.49 93.20 6.80 0.00 5.38
bays29 Optimal 309.27 93.31 6.69 0.00 19.35
att30 Optimal 253.85 93.07 6.93 0.00 150.86

dantzig30 Optimal 324.21 92.84 7.16 0.00 247.35
eil30 Optimal 323.40 92.76 7.24 0.00 3.35
gr30 Optimal 283.91 93.11 6.89 0.00 13.48
hk30 Optimal 324.20 93.51 6.49 0.00 176.20

swiss30 Optimal 342.50 93.53 6.47 0.00 5.29
eil35 Optimal 363.39 91.64 8.36 0.00 56.18
gr35 Optimal 281.82 91.97 8.03 0.00 173.19

swiss35 Optimal 373.60 91.99 8.01 0.00 33.69
eil40 Optimal 410.35 90.65 9.35 0.00 367.39

dantzig42 Optimal 257.37 90.53 9.47 0.00 4481.79
swiss42 Optimal 351.15 90.63 9.37 0.00 1060.69

eil45 Optimal 448.11 89.49 10.51 0.00 3125.64

Average Optimal 308.74 93.37 6.63 0.00 453.17

service time of the optimal solution is valid for the case where all customers
have the same linear (increasing) service time function (see Section 2.3). We
have thus implemented three bounds (an upper bound on the total route
duration of the optimal solution, and a lower and an upper bound on the
start time of service at each customer location) for the model with a quadratic
service time function. Since the quadratic model is inherently more difficult
to solve than the linear one, we focus on the 13 instances for which the
optimal solutions can be obtained by the model with a medium linear service
time function. Table 11 presents the solutions of these 13 instances where
si = 4(10−5)b2i − 4(10−3)bi + 10−1 for all i ∈ N \ {0, n+ 1}.

The results presented in Table 11 indicate that nine instances with up
to 31 nodes are solved optimally when a quadratic service time function is
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Table 10: Solutions with four bounds, GG subtour elimination constraints
and large service times, with si = 2(10−2)bi + 1.2(10−1) for all i ∈
N \ {0, n+ 1}

Name Status Obj TT(%) ST(%) Gapf (%) Seconds

burma14 Optimal 252.62 87.69 12.31 0.00 4.13
ulysses16 Optimal 296.28 89.18 10.82 0.00 58.41

gr17 Optimal 260.34 88.99 11.01 0.00 12.22
gr21 Optimal 275.96 81.74 18.26 0.00 10.75

ulysses22 Feasible 343.58 86.01 13.99 5.19 -
gr24 Optimal 320.42 79.40 20.61 0.00 1880.42
fri26 Feasible 297.39 78.77 21.23 4.67 -

bayg29 Feasible 430.35 74.82 25.18 3.28 -
bays29 Feasible 383.78 75.19 24.81 4.85 -
att30 Feasible 316.51 74.95 25.05 10.78 -

dantzig30 Feasible 404.54 75.52 24.48 9.99 -
eil30 Optimal 408.23 74.22 25.78 0.00 5853.90
gr30 Feasible 353.89 74.70 25.30 7.32 -
hk30 Feasible 400.88 75.78 24.22 8.69 -

swiss30 Feasible 422.54 75.81 24.19 7.23 -
eil35 Feasible 474.90 70.75 29.25 3.94 -
gr35 Feasible 365.75 70.87 29.13 10.66 -

swiss35 Feasible 485.44 70.80 29.20 10.28 -
eil40 Feasible 556.10 67.25 32.75 5.22 -

dantzig42 Feasible 352.36 66.22 33.78 12.72 -
swiss42 Feasible 480.30 66.26 33.74 11.87 -

eil45 Feasible 638.13 63.00 37.00 6.84 -

Average Feasible 419.15 72.92 27.08 7.72 -
Average Optimal 302.31 83.54 16.46 0.00 1303.31

considered. This model cannot provide a feasible solution to one instance
within the 7,200 seconds time limit, and the remaining three instances can
be solved suboptimally. When we compare the solutions given in Table 11 to
those of Table 8, we observe that the number of instances solved to optimal-
ity decreases when we use a quadratic service time function (even though the
proportion of the service time in the total route duration decreases). In addi-
tion, the model with a linear service time function requires less computation
time to obtain an optimal solution for the same instance (the difference is
66.95% on average).
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Table 11: Solutions with three bounds, GG subtour elimination constraints
and quadratic service times, with si = 4(10−5)b2i − 4(10−3)bi + 10−1 for all
i ∈ N \ {0, n+ 1}

Name Status Obj TT(%) ST(%) Gapf (%) Seconds

burma14 Optimal 224.83 98.53 1.47 0.00 0.77
ulysses16 Optimal 268.14 98.54 1.46 0.00 9.17

gr17 Optimal 234.82 98.66 1.34 0.00 3.94
gr21 Optimal 232.77 96.91 3.09 0.00 2.77

ulysses22 Optimal 301.58 97.98 2.02 0.00 639.74
gr24 Optimal 263.04 96.72 3.28 0.00 47.61
fri26 Optimal 239.08 97.98 2.02 0.00 30.85

bayg29 Feasible 345.11 93.30 6.70 4.34 -
bays29 Feasible 305.46 94.47 5.53 2.69 -
eil30 Feasible 320.74 93.53 6.47 3.26 -
gr30 Optimal 279.94 94.43 5.57 0.00 2247.43

swiss30 Optimal 340.42 94.10 5.90 0.00 1462.91
eil35 No integer solution -

Average Feasible 323.77 93.77 6.23 3.43 -
Average Optimal 264.96 97.09 2.91 0.00 493.91

4.3. Effects of Lower and Upper Bounds

Finally, we analyze the effects of the bounds implemented to enhance
the performance of the proposed formulation. We focus on the GG subtour
elimination constraints and the linear service times since we observe from
Sections 4.1 and 4.2 that the model comprising these constraints and service
times performs well on the considered instances. Tables 12, 13 and 14 present
the solutions obtained within the 7,200 seconds time limit by employing
the basic model (without any additional lower and upper bounds) with the
GG subtour elimination constraints where si = 5(10−3)bi + 3(10−2) for all
i ∈ N \ {0, n+ 1}, si = 10−2bi + 6(10−2) for all i ∈ N \ {0, n+ 1} and
si = 2(10−2)bi + 1.2(10−1) for all i ∈ N \ {0, n+ 1}, respectively.

Comparing the results of Table 12 to those of Table 9 (the model with a
small service time function and four valid bounds), we observe that the num-
ber of instances solved to optimality decreases from 22 (with up to 46 nodes)
to 17 (with up to 36 nodes). These 17 instances, where both models can
obtain corresponding optimal solutions, are solved by the model with four
bounds in smaller computation times (on average by 87.29%). The enhanced
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model also provides smaller final gaps for the instances which are subop-
timally solved by the basic model (on average 99.98%, leading to optimal
solutions for all instances).

Comparing the results of Table 13 to those of Table 8 (the model with
a medium service time function and four valid bounds), we observe that the
number of instances solved to optimality decreases from 13 (with up to 36
nodes) to nine (with up to 31 nodes). These nine instances, where both
models can obtain corresponding optimal solutions, are solved by the model
with four bounds in smaller computation times (on average by 73.89%). The
enhanced model also provides smaller final gaps for the instances which are
suboptimally solved by the basic model (on average 76.64%).

Comparing the results of Table 14 to those of Table 10 (the model with
a large service time function and four valid bounds), we observe that the
number of instances solved to optimality decreases from six (with up to 31
nodes) to four (with up to 22 nodes). These four instances, where both
models can obtain corresponding optimal solutions, are solved by the model
with four bounds in smaller computation times (on average by 33.61%). The
enhanced model also provides smaller final gaps for the instances which are
suboptimally solved by the basic model (on average 64.95%).

From the results given in Tables 12, 13 and 14, we conclude that the
model proposed in this paper performs much better with the four bounds
explained in Section 4.1.
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Table 12: Solutions with GG subtour elimination constraints and small ser-
vice times, with si = 5(10−3)bi + 3(10−2) for all i ∈ N \ {0, n+ 1}

Name Status Obj TT(%) ST(%) Gapf (%) Seconds

burma14 Optimal 228.83 96.81 3.19 0.00 0.38
ulysses16 Optimal 271.74 97.24 2.76 0.00 3.38

gr17 Optimal 238.39 97.18 2.82 0.00 2.36
gr21 Optimal 237.11 95.14 4.86 0.00 0.42

ulysses22 Optimal 306.44 96.43 3.57 0.00 59.44
gr24 Optimal 269.09 94.54 5.46 0.00 7.04
fri26 Optimal 247.99 94.46 5.54 0.00 17.68

bayg29 Optimal 345.49 93.20 6.80 0.00 417.16
bays29 Optimal 309.27 93.31 6.69 0.00 467.83
att30 Optimal 253.85 93.07 6.93 0.00 525.07

dantzig30 Optimal 324.21 92.84 7.16 0.00 1062.66
eil30 Optimal 323.40 92.76 7.24 0.00 1138.93
gr30 Optimal 283.91 93.11 6.89 0.00 62.28
hk30 Optimal 324.20 93.51 6.49 0.00 1743.14

swiss30 Optimal 342.50 93.53 6.47 0.00 21.92
eil35 Feasible 363.39 91.64 8.36 2.78 -
gr35 Optimal 281.82 91.97 8.03 0.00 1109.01

swiss35 Optimal 373.60 91.99 8.01 0.00 270.03
eil40 Feasible 410.35 90.65 9.35 5.95 -

dantzig42 Feasible 257.37 90.53 9.47 3.31 -
swiss42 Feasible 351.15 90.63 9.37 5.06 -

eil45 Feasible 448.11 89.49 10.51 8.00 -

Average Feasible 377.76 89.90 10.10 6.80 -
Average Optimal 291.87 94.18 5.82 0.00 406.40
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Table 13: Solutions with GG subtour elimination constraints and medium
service times, with si = 10−2bi + 6(10−2) for all i ∈ N \ {0, n+ 1}

Name Status Obj TT(%) ST(%) Gapf (%) Seconds

burma14 Optimal 236.44 93.70 6.30 0.00 0.80
ulysses16 Optimal 279.57 94.51 5.49 0.00 6.66

gr17 Optimal 245.40 94.40 5.60 0.00 4.51
gr21 Optimal 249.32 90.48 9.52 0.00 1.91

ulysses22 Optimal 318.06 92.91 7.09 0.00 709.47
gr24 Optimal 284.93 89.29 10.71 0.00 122.47
fri26 Optimal 263.01 89.06 10.94 0.00 749.30

bayg29 Feasible 371.22 86.74 13.26 6.40 -
bays29 Feasible 331.90 86.95 13.05 7.09 -
att30 Feasible 273.10 86.51 13.49 6.08 -

dantzig30 Feasible 349.60 86.81 13.19 5.53 -
eil30 Feasible 349.16 85.92 14.08 6.55 -
gr30 Optimal 305.23 86.61 13.39 0.00 2353.52
hk30 Feasible 347.35 87.28 12.72 7.12 -

swiss30 Optimal 366.78 87.34 12.66 0.00 1678.08
eil35 Feasible 397.42 83.79 16.21 11.68 -
gr35 Feasible 306.91 84.45 15.55 9.00 -

swiss35 Feasible 406.92 84.46 15.54 7.59 -
eil40 Feasible 452.89 82.36 17.64 13.71 -

dantzig42 Feasible 285.07 81.74 18.26 13.72 -
swiss42 Feasible 388.64 81.89 18.11 14.05 -

eil45 Feasible 502.52 79.80 20.20 17.52 -

Average Feasible 384.20 83.35 16.65 11.75 -
Average Optimal 283.19 90.92 9.08 0.00 625.19
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Table 14: Solutions with GG subtour elimination constraints and large ser-
vice times, with si = 2(10−2)bi + 1.2(10−1) for all i ∈ N \ {0, n+ 1}

Name Status Obj TT(%) ST(%) Gapf (%) Seconds

burma14 Optimal 252.62 87.69 12.31 0.00 4.78
ulysses16 Optimal 296.28 89.18 10.82 0.00 56.14

gr17 Optimal 260.34 88.99 11.01 0.00 16.11
gr21 Optimal 275.96 81.74 18.26 0.00 51.75

ulysses22 Feasible 343.58 86.01 13.99 5.72 -
gr24 Feasible 320.42 79.40 20.61 8.03 -
fri26 Feasible 297.39 78.77 21.23 12.27 -

bayg29 Feasible 430.35 74.82 25.18 18.76 -
bays29 Feasible 383.78 75.19 24.81 17.91 -
att30 Feasible 316.51 74.95 25.05 17.76 -

dantzig30 Feasible 404.54 75.52 24.48 18.64 -
eil30 Feasible 408.23 74.22 25.78 18.80 -
gr30 Feasible 353.89 74.70 25.30 15.66 -
hk30 Feasible 400.88 75.78 24.22 18.12 -

swiss30 Feasible 422.54 75.81 24.19 14.33 -
eil35 Feasible 474.90 70.75 29.25 23.84 -
gr35 Feasible 365.75 70.87 29.13 22.57 -

swiss35 Feasible 485.44 70.80 29.20 21.45 -
eil40 Feasible 556.10 67.25 32.75 27.74 -

dantzig42 Feasible 352.36 66.22 33.78 28.04 -
swiss42 Feasible 480.30 66.26 33.74 28.90 -

eil45 Feasible 638.13 63.00 37.00 33.93 -

Average Feasible 440.95 71.44 28.56 22.38 -
Average Optimal 271.30 86.90 13.10 0.00 32.20
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5. Conclusions

We have considered a traveling salesman problem with time-dependent
service times. Several analytical properties of the service time function were
derived and a lower bound on the total service time of the optimal solution
was computed. Examples were presented to illustrate properties. We then
described a mathematical formulation capable of solving linear and quadratic
service time functions. We have developed a procedure to compute a suffi-
ciently large value for the bigM, which was then employed in the proposed
mathematical model. In numerical experiments, a lower and an upper bound
on the start time of service at each customer were also implemented. Com-
putational results showed that our model (with the four bounds) can success-
fully solve instances with up to 46 nodes with a linear service time function,
and with up to 31 nodes with a quadratic service time function.

Acknowledgements

This research was partly supported by the Canadian Natural Sciences
and Engineering Research Council under Grants 338816-10, 436014-2013 and
39682-10. This support is gratefully acknowledged.

References

[1] L.-P. Bigras, M. Gamache, G. Savard, The time-dependent traveling
salesman problem and single machine scheduling problems with sequence
dependent setup times, Discrete Optimization 5 (2008) 685–699.

[2] J.-F. Cordeau, G. Ghiani, E. Guerriero, Analysis and branch-and-cut
algorithm for the time-dependent travelling salesman problem, 2012.
accepted/in press, Transportation Science, http://dx.doi.org/10.

1287/trsc.1120.0449.

[3] G.B. Dantzig, D.R. Fulkerson, S.M. Johnson, Solutions of a large-scale
traveling-salesman problem, Operations Research 2 (1954) 363–410.

[4] M. Desrochers, G. Laporte, Improvements and extensions to the Miller-
Tucker-Zemlin subtour elimination constraints, Operations Research
Letters 10 (1990) 27–36.

29

The Traveling Salesman Problem with Time-Dependent Service Times 

CIRRELT-2014-48



[5] B. Gavish, S.C. Graves, The travelling salesman problem and related
problems, Technical Report GR-078-78, Operations Research Center,
Massachusetts Institute of Technology, 1978.

[6] L. Gouveia, A result on projection for the vehicle routing problem, Eu-
ropean Journal of Operational Research 85 (1995) 610–624.

[7] L. Gouveia, S. Voß, A classification of formulations for the (time-
dependent) traveling salesman problem, European Journal of Opera-
tional Research 83 (1995) 69–82.

[8] G. Hadley, Nonlinear and Dynamic Programming, Addison-Wesley,
Reading, Massachusetts, 1964.

[9] IBM, ILOG CPLEX Optimizer 12.5, http://www-01.ibm.com/

software/integration/optimization/cplex-optimizer, 2014.

[10] S. Ichoua, M. Gendreau, J.-Y. Potvin, Vehicle dispatching with time-
dependent travel times, European Journal of Operational Research 144
(2003) 379–396.

[11] A. Langevin, F. Soumis, J. Desrosiers, Classification of travelling sales-
man problem formulations, Operations Research Letters 9 (1990) 127–
132.

[12] C.E. Miller, A.W. Tucker, R.A. Zemlin, Integer programming formula-
tions and travelling salesman problems, Journal of the Association for
Computing Machinery 7 (1960) 326–329.
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