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Abstract. In this work we study a suppliers selection and routing problem where a fleet of 
homogeneous vehicles with a predefined capacity is available for procuring different 
products from different suppliers with the aim to minimize both the traveling and the 
purchasing costs. Decisions are further complicated by the presence of pairwise 
incompatibility constraints among products, implying the impossibility of loading two 
incompatible products on the same vehicle. The problem is known as the Multi-Vehicle 
Traveling Purchaser Problem with Pairwise Incompatibility Constraints. We study a variant 
in which products demand is unitary and propose a column generation approach based on 
a Dantzig-Wolfe reformulation of the problem, where each column represents a feasible 
vehicle route associated with a compatible purchasing plan. Two different procedures are 
introduced to solve the pricing problem, namely a labeling algorithm solving a Resource-
Constrained Elementary Shortest Path Problem on an expanded graph, and a tailored 
branch-and-cut algorithm. Due to the integrality request on variables, we embed the 
column generation in a branch-and-bound framework and propose different branching 
rules, thus obtaining a branch-and-price procedure. Extensive tests, carried out on a large 
set of instances, show that our branch-and-price method performs well, improving on 
average, both in quality and in computational time, solutions obtained by a branch-and-cut 
approach existing in the literature that relies on a three-index connectivity constraints 
based formulation.  
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1 Introduction

The Travelling Purchaser Problem (TPP) is a single-vehicle routing problem that has been

widely studied in the last decades. Consider a depot 0, a set M of suppliers dispersed in

a geographical area around the depot, and a set K of products to purchase. A purchasing

demand dk, associated with each product k ∈ K, can be satisfied in a subset Mk ⊆ M of

suppliers at a non-negative price pik, potentially different for each supplier i ∈Mk. For each

product k ∈ K, a quantity qik is offered by supplier i ∈ Mk, such that
∑

i∈Mk
qik ≥ dk.

Let G := (V,A) be a complete directed graph where V := {0} ∪ M is the node set and

A := {(i, j) : i ∈ V, j ∈ V, i 6= j} is the arc set. A traveling cost cij is associated with

each arc (i, j) ∈ A. The TPP looks for a cycle in G starting and ending to the depot,

and visiting a subset of suppliers so to exactly satisfy products demand, while minimizing

both traveling and purchasing costs. This problem variant is known as restricted TPP. The

unrestricted TPP is instead an interesting special case where supplies are unlimited (i.e.,

qik ≥ dk, k ∈ K, i ∈ Mk), that is equivalent to consider dk = 1, k ∈ K, and qik = 1, k ∈ K,
i ∈Mk. The combined optimization of routing decisions, suppliers selection and purchasing

plan construction makes the TPP a very challenging problem, that fits well in several real-life

procurement settings and in other contexts like job scheduling (Burstall, 1966). Hence, a lot

of exact and heuristic approaches have been developed by researchers for the TPP and its

variants (see, e.g., Voss, 1996, Laporte et al., 2003, and Mansini and Tocchella, 2009).

Recently, a multi-vehicle variant of the Travelling Purchaser Problem (MVTPP) has

been introduced by Choi and Lee (2011) as a formulation for maximizing the reliability of

components in a purchasing system with budget constraints. In the MVTPP, optimization

has to be done over a fleet F of homogeneous vehicles, ensuring that the quantity collected

by each vehicle does not exceed a predefined capacity Q. Only few contributes can be found

in the literature for this problem. Riera-Ledesma and Salazar-González (2012) study the

MVTPP as a location routing problem in the context of school bus service, where suppliers

correspond to bus stops and products to students to pick up. They present a branch-and-cut

approach based on a single-commodity flow formulation enhanced by valid inequalities. The

same authors propose a column generation approach for the problem (Riera-Ledesma and

Salazar-González, 2013) taking into account different resource constraints for each route such

as upper bounds on the distances traveled by the students, upper bounds on the number of

visited bus stop and lower bounds on the number of students to pick up. Finally, Bianchessi

et al. (2014) study the distance-constrained MVTPP ensuring that the distance traveled by

each vehicle does not exceed a predefined upper bound.

More recently, in Manerba and Mansini (2014) the authors introduce a generalization of

the MVTPP further complicated by the presence of pairwise incompatibilities among prod-

ucts imposing the impossibility of loading two incompatible products on the same vehicle.
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This problem is called Multi-Vehicle Traveling Purchaser Problem with Pairwise Incompat-

ibility Constraints (MVTPP-PIC). The MVTPP-PIC aims at determining a tour for each

vehicle v ∈ F visiting a subset of suppliers so that the total product demands are satisfied

at minimum purchasing and traveling cost, while guaranteeing all existing incompatibility

restrictions among products and without exceeding vehicle capacity Q. While in general the

use of more than one vehicle highly increases the complexity of a routing problem, in this

case the problem complexity strongly depends also on the number of products taken into

account and on the number of incompatibilities existing among them.

In the present paper, we study the MVTPP-PIC with unitary demands assuming dk = 1,

k ∈ K. Since the problem does not allow to purchase more than the required demand, the

availability of a product is also assumed to be unitary in each supplier that sells it, i.e. qik = 1,

k ∈ K, i ∈Mk. Note that, in a multi-vehicle setting, this is not equivalent to the unrestricted

case of the MVTPP-PIC with dk ≥ 1, due to the presence of a capacity constraint on vehicles.

For modeling the incompatibility issues, let us define B := {(k, g) : k, g ∈ K} as the set of

pairs of products that cannot be transported on the same vehicle, simultaneously. We state

here some definitions used throughout the paper. A product is said to be incompatible if

it appears in at least one pair of the set B. On the contrary, a product is said to be free

when it is compatible with all the other products and can be loaded freely on any vehicle.

Finally, a product is said to be totally incompatible if it is in conflict with the entire set of

incompatible products. Each totally incompatible product can be transported only with free

products.

Similarly to the Split-Delivery Vehicle Routing Problems (SDVRP), the MVTPP-PIC

allows multiple visits to the same supplier by different vehicles. However, while in SDVRP

the split of deliveries might lead to savings in the traveling cost, this may not be the case

for the MVTPP-PIC. Due to the incompatibilities among products, multiple visits of a

supplier could be necessary, possibly impacting in a negative way on the cost. Example 1

shows the optimal solution of the MVTPP-PIC on two instances differing only for the set of

incompatibilities. In the first case a multiple visit results to be convenient, whereas in the

second case it is induced by the incompatibility constraints.

Example 1 Let us consider a fleet of vehicles with capacity Q = 3 placed at a depot 0,

6 products {a, b, c, d, e, f}, and 4 suppliers {1, 2, 3, 4} offering a subset of those products as

shown in square brackets in Figure 1(a). The same figure shows the topology of the graph

and the traveling costs associated with each pair of nodes. In Figures 1(b) and 1(c) are

plotted the visiting tours of the vehicles in the MVTPP-PIC optimal solution when the set B

of incompatibilities is {(a, c), (b, c), (c, d)} and {(a, c), (b, c), (c, d), (c, f)}, respectively. In the

first case, the multiple visit of supplier 2 is convenient. In fact, if multiple visits were not

allowed, one more vehicle would be necessary to satisfy the demand and the total cost would
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rise to 13. In the second case, visiting twice supplier 4 becomes compulsory because of the

incompatibility between products c and f (no feasible solution would exists if multiple visits

were not allowed), thus impacting negatively on the cost.

(a) Instance (b) Traveling cost: 12 (c) Traveling cost: 14

Figure 1: Convenient and necessary multiple visits in MVTPP-PIC solutions.

1.1 Motivations and contributions

Incompatibility restrictions can be found in several real-life problems involving the loading of

vehicles. For example, in general markets procurement, foods and chemical products should

be transported separately, and again in industry distribution, hazardous materials/liquids

might dangerously react if loaded together on the same vehicle (Christofides et al., 1979).

Frequently, in the literature, the incompatibility issue is tackled through the use of hetero-

geneous dedicated vehicles or through the introduction of separation devices on the vehicles

(the latter problem, known as Multi-Compartment Vehicle Routing Problem, is surveyed

in Iori and Martello, 2010). From a theoretical point of view, similar restrictions on items

(sometimes called exclusionary side constraints) have been studied in the combinatorial

optimization literature. Such constraints can be found, for instance, applied to the Trans-

portation Problem (see Sun, 2002 and Goossens and Spieksma, 2009) and to the Bin Packing

Problem (Gendreau et al., 2004).

The only existing contribution applying incompatibility constraints to a vehicle rout-

ing problem can be found in Manerba and Mansini (2014), where the MVTPP-PIC with

non-unitary demands is studied. The authors first propose a matheuristic that relies on

a decomposition of the original problem in four subproblems treated separately. Then, the

best solution found by this heuristic is used as starting solution for a branch-and-cut method

based on the separation of several families of valid inequalities. The overall exact approach

is able to widely outperform, within 2 hours of computational time, the performance of the

commercial MIP solver Cplex 12.3 tackling a compact three-index one-commodity flow for-

mulation. However, as it frequently happens to branch-and-cut approaches, it presents some

evident drawbacks:
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• the three-index formulation used for the branch-and-cut naturally incorporates sym-

metry issues. Notwithstanding the introduction of symmetry breaking constraints, the

decision tree of the solution procedure tends to explode;

• the method does not seem to scale very well. This is especially true for instances

with a fleet size greater than 6-7 vehicles and for instances with a high density of

incompatibility constraints.

The aim of the present work is to develop and test a new exact branch-and-price approach

based on a set covering formulation of the problem, in order to efficiently overcome the

drawbacks showed above. In particular, we propose a new formulation for the MVTPP-PIC

that exploits the separability of the problem over the vehicles, thus solving symmetry issues.

We will show that the new branch-and-price approach can efficiently optimize instances over

a very large fleet of vehicles and with a high density of incompatibility among products.

Finally, both the multi-vehicle optimization and the incompatibility constraints applied to

the TPP are very recent streams of research, that deserve to be further analyzed.

The rest of the paper is structured as follows. In Section 2, we first present a mixed integer

linear programming formulation of the problem based on connectivity constraints to exclude

subtours, then we propose and analyze a set covering based reformulation obtained through

a Dantzig-Wolfe decomposition technique. Section 3 is devoted to the description of the

proposed branch-and-price approach. We present a simple initial heuristic, the column gen-

eration procedure along with two different exact algorithms for solving the pricing problem

(i.e. a labeling algorithm on an expanded graph and a tailored branch-and-cut approach),

and the branching rules to ensure integrality of the solutions. The computational results

are discussed in Section 4, along with the presentation of the instances used. Finally, some

conclusions are sketched in Section 5.

2 Mathematical formulations

In this section, we first propose a three-index connectivity constraints based formulation for

the problem, then a set covering formulation based on a Dantzig-Wolfe decomposition.

2.1 Three-index formulation

Let xvij, for each arc (i, j) ∈ A and for each vehicle v ∈ F , be a binary variable taking value

1 if arc (i, j) is crossed by vehicle v, and 0 otherwise. Let yvi , for each supplier i ∈M and for

each vehicle v ∈ F , be a binary variable taking value 1 if the corresponding node i is visited
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by vehicle v, and 0 otherwise. Let wvk, for each product k ∈ K and for each vehicle v ∈ F , be

a binary variable taking value 1 if product k is loaded on vehicle v, and 0 otherwise. Finally,

let zvik, for each product k ∈ K, for each supplier i ∈ Mk and for each vehicle v ∈ F , be the

quantity of product k purchased by supplier i and loaded on vehicle v. Moreover, given a

set S ⊂ V , let δ+(S) denote the set of arcs (i, j) with i ∈ S and j ∈ V \S, and δ−(S) denote

the set of arcs (i, j) with j ∈ S and i ∈ V \ S. The MVTPP-PIC with unitary demands can

be formulated as follows:

min
∑
v∈F

∑
(i,j)∈A

cijx
v
ij +

∑
k∈K

∑
i∈Mk

∑
v∈F

pikz
v
ik (1)

subject to ∑
i∈Mk

∑
v∈F

zvik = 1 k ∈ K (2)

∑
(i,j)∈δ+({h})

xvij =
∑

(i,j)∈δ−({h})

xvij = yvh h ∈M, v ∈ F (3)

∑
(i,j)∈δ+(S)

xvij ≥ yvh S ⊆M,h ∈ S, v ∈ F (4)

∑
k∈K

∑
i∈Mk

zvik ≤ Q v ∈ F. (5)

zvik ≤ yvi k ∈ K, i ∈Mk, v ∈ F (6)

wvk + wvg ≤ 1 (k, g) ∈ B, v ∈ F (7)∑
i∈Mk

zvik = wvk k ∈ K, v ∈ F (8)

xvij ∈ {0, 1} (i, j) ∈ A, v ∈ F (9)

yvi ∈ {0, 1} i ∈M, v ∈ F (10)

wvk ∈ {0, 1} k ∈ K, v ∈ F (11)

zvik ≥ 0 k ∈ K, i ∈Mk, v ∈ F (12)

Objective function (1) establishes the minimization of traveling and purchasing costs. Con-

straints (2) ensure that each product demand must be satisfied. In constraints (3) we impose

that if vehicle v visits a supplier h (i.e. yvh = 1), it also has to leave it, while connectivity

inequalities (4) allow to eliminate subtours. Constraints (5) impose that the quantity loaded

on each vehicle does not exceed its capacity. Constraints (6) avoid a vehicle v to load a

product k from a supplier i not included in its visiting tour. Constraints (7) and (8) model

the pairwise incompatibility among products. The first group of constraints states that for

each pair of incompatible products (k, g) ∈ B a vehicle v can load at most one of the two.
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The second set of constraints ensures that if wvk = 0, vehicle v cannot load product k from

any suppliers of its tour, whereas if wvk = 1 the vehicle must purchase exactly one unit of

the product from a supplier that sells it. Finally, (9)–(12) are variables non-negativity and

integrality conditions. Note that w-variables can be easily eliminated from the model using

equalities (8), but we keep them to clearly state the assignment of a product to a vehicle.

2.2 Dantzig-Wolfe decomposition

We now describe a reformulation of the model (1)–(12) obtained through the use of the

Dantzig-Wolfe decomposition technique for linear programs (see Dantzig and Wolfe, 1960).

LetD = {(x, y, w, z) : (x, y, w, z) satisfies (3)–(12)} be the feasible domain of the subproblem

identified by constraints (3)–(12). This domain is decomposable over the vehicles in identical

feasible domains Dv = {(xv, yv, wv, zv) : (xv, yv, wv, zv) satisfies (3)–(12) for v ∈ F}. A

solution (xv, yv, wv, zv) ∈ Dv corresponds to a feasible route when it is associated with a

feasible purchasing plan satisfying vehicle capacity and incompatibility restrictions. Given

this subproblem domain, the Dantzig-Wolfe decomposition leads to the master program

described in the following (a similar decomposition approach has been proposed in Jin et al.,

2008 for solving the SDVRP, and in Desaulniers, 2010 for the SDVRP with Time Windows).

Let us define R as the set of all feasible routes. A feasible route is basically a set of arcs

representing a tour in G starting and ending to the depot 0, and visiting a subset of suppliers

that guarantees the accomplishment of a feasible purchasing plan. A feasible purchasing plan

associated with a route represents the set of decisions about which product to purchase from

which supplier belonging to the route, ensuring that: a) a product is purchased from a

supplier only if it is available there; b) incompatible products cannot be part of the same

purchasing plan; c) the total quantity of products purchased does not exceed the vehicle

capacity. That said, a feasible solution for the MVTPP-PIC can be viewed as a collection

of O(|F |) routes in R such that the demand for each product is satisfied. For each feasible

route r ∈ R, we also define:

• θr: an integer variable equal to the number of times route r is assigned to a vehicle;

• δrik: a coefficient equal to 1 if product k is purchased from supplier i in the route r;

• ari : a coefficient equal to 1 if node i is visited in the route r, and 0 otherwise;

• brij: a coefficient equal to 1 if the arc (i, j) is traversed in the route r, and 0 otherwise;

• cr =
∑

(i,j)∈r cij: the total traveling cost associated with the route r;

• pr =
∑

k∈K
∑

i∈Mk
pikδ

r
ik: the total purchasing cost associated with the route r.
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Finally, let Xij be an integer variable representing the number of times arc (i, j) ∈ A is

traversed, and let Yi be an integer variable representing the number of times node i ∈ V is

visited. With this notation, the MVTPP-PIC can be reformulated as follows:

min
∑
r∈R

(cr + pr)θr (13)

subject to ∑
r∈R

θr ≤ |F | (14)

∑
i∈Mk

∑
r∈R

δrikθ
r ≥ 1 k ∈ K (15)

θr ∈ N r ∈ R (16)∑
r∈R

ari θ
r = Yi i ∈ V (17)

∑
r∈R

brijθ
r = Xij (i, j) ∈ A (18)

Yi ∈ N i ∈ V (19)

Xij ∈ N (i, j) ∈ A (20)

Objective function (13) minimizes the total cost of the selected routes. Inequality (14) limits

the number of selected routes to the fleet size, while constraints (15) ensure that, for each

product, its unitary demand is satisfied. Equations (17) and (18) express Yi and Xij variables

in terms of the θr ones. Finally, in (16), (19) and (20) the integrality of variables is defined.

Constraints (17)–(20) are not strictly necessary for the model. Anyway, these relations are

stated here since they are useful to understand the branching rules proposed in Section 3.3.

From now on, we denote the linear relaxation of (13)–(16) as master problem (MP).

Since the set R contains a huge number of feasible routes, it is impossible to solve ex-

plicitly the model by generating all its variables. Hence, we resort to a branch-and-price

solution approach where, at each node of the tree, the MP is solved by using a column gen-

eration procedure. Note that, differently from formulation (1)–(12), here it is not explicitly

required to purchase exactly a unit for each product; however, this relaxation is valid since

it is never optimal to buy more than one unit for any product. The rationale behind the

choice of a set-covering formulation is that an equality in constraints (15) would lead to free

dual variables, which typically slow down the convergence of a column generation algorithm.

Finally, variables θ are not defined to be binary to avoid |R| constraints of the type θr ≤ 1

in the MP, even if it is clear that any solution containing a route r with θr > 1 could not be

optimal.
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3 A branch-and-price solution approach

This section is devoted to describe all the components of the branch-and-price solution al-

gorithm based on the set-covering formulation (13)–(20). Branch-and-price represents a

standard approach for solving huge integer programs (see Barnhart et al., 1998) and it has

been applied effectively to many vehicle routing and scheduling problems (see, e.g., Gen-

dreau et al., 2006 and Desaulniers et al., 2002). This method combines a branch-and-bound

framework with the use of a column generation technique for solving the linear relaxations

at each node of the tree. In our implementation, the overall procedure is initialized by a

simple heuristic, to find a feasible solution quickly.

3.1 Heuristic upper bound

In every enumerative methods based on bounding, it is useful to start the procedure with a

feasible solution (an upper bound in this case) that permits to prune a higher number of nodes

in the branch-and-bound tree. In order to better understand the behavior of our branch-and-

price, we decide to implement just a basic initial heuristic consisting in a simplified version

of the four-step heuristic proposed in Manerba and Mansini (2014). That heuristic relies on

a decision tree, searched through a Beam Search procedure, where each node corresponds

to a different subset of suppliers. In this work, that decision tree is essentially reduced to a

unique node corresponding to the set of all the suppliers.

First, we find a feasible purchasing plan by optimally solving the following Assignment

Problem, where λik :=
∑

v∈F z
v
ik are continuous variables representing the quantity of product

k purchased in supplier i:

min
∑
k∈K

∑
i∈Mk

pikλik (21)

subject to ∑
i∈Mk

λik = 1 k ∈ K (22)

λik ≥ 0 k ∈ K, i ∈Mk (23)

Given the optimal solution of (21)–(23), we then eliminate all non-visited suppliers.

Since problem (21)–(23) ignores the vehicles, a greedy heuristic is then used to find a

feasible assignment of products to vehicles and, consequently, of vehicles to suppliers. The

method chooses randomly an incompatible product, and assign it to a vehicle. If a product

can not be assigned to a vehicle (because it would exceed its capacity or because it is

incompatible with some already loaded products) another vehicle is chosen, and so on. This

procedure is repeated for each incompatible product. Then, for each supplier, the remaining

free products fill up first the vehicles that have been already associated with that supplier.
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Finally, once decided which suppliers have to be visited by each vehicle, we find a feasible

route by solving a Traveling Salesman Problem (TSP). This is done heuristically through the

Lin-Kernighan-Helsgaun algorithm, which is a recent variant of one of the most successful

methods for generating near-optimal solutions for the TSP (Helsgaun, 2000).

3.2 Column generation

Column generation is a state-of-the-art method for solving linear programs containing a huge

number of variables. In this method, columns (variables) are iteratively found by a so-called

pricing problem (or subproblem), and added to the master problem. The pricing problem

aims at computing columns with negative reduced cost with respect to a dual solution of the

restricted master problem (RMP), i.e. the linear relaxation of the master problem limited

to the current subset of variables. When no new columns with negative reduced cost can be

found, the optimal solution of the RMP is also optimal for the MP.

In our case, given π the non-positive dual variable associated with constraint (14), and

µk the non-negative dual variable associated with a constraint (15) for product k, the pricing

problem is as follows:

min
∑

(i,j)∈A

cijxij +
∑
i∈M

∑
k∈K

(pik − µk)zik − π (24)

subject to ∑
(i,j)∈δ+({h})

xij =
∑

(i,j)∈δ−({h})

xij = yh h ∈M (25)

∑
(i,j)∈δ+(S)

xij ≥ yh S ⊆M,h ∈ S (26)

zik ≤ yi k ∈ K, i ∈Mk (27)∑
k∈K

∑
i∈Mk

zik ≤ Q (28)

wk + wg ≤ 1 (k, g) ∈ B (29)∑
i∈Mk

zik = wk k ∈ K (30)

xij ∈ {0, 1} (i, j) ∈ A (31)

yi ∈ {0, 1} i ∈M (32)

wk ∈ {0, 1} k ∈ K (33)

zik ∈ {0, 1} k ∈ K, i ∈Mk (34)
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Variables x, y, w and z have the same meaning as variables in formulation (1)–(12), but

for a given vehicle v ∈ F . The problem (24)–(34) is a Traveling Purchaser Problem with

Pairwise Incompatibility Constraints but without the demand constraints. In this problem,

the purchasing of each product is not forced by a specific demand requirement (as in common

TPP), but by the minimization of a purchasing cost where product (reduced) prizes p′ik :=

pik − µk can be negative.

We propose two exact methods for solving the pricing problem, i.e. the labeling algorithm

and the branch-and-cut approach described in Sections 3.2.1 and 3.2.2, respectively. It is

worth noticing that, at each iteration of the column generation procedure, a lower bound on

the optimal value of the MP (zMP ) can be computed as:

zMP = z∗RMP + c̃∗|F | (35)

where z∗RMP corresponds to the optimal value of the current RMP and c̃∗ is the reduced cost

value of the optimal column found by the relative pricing problem.

3.2.1 A labeling algorithm for the pricing problem

The pricing problem can be reformulated as an Elementary Shortest Path Problem with

Resource Constraints (ESPPRC) on an expanded graph G′ = (A′, V ′) defined as follows.

The node set V ′ includes the depot 0 and the nodes representing all the possible pairs (k, i)

where k ∈ K and i ∈Mk. The arc set A′ corresponds to the Cartesian product V ′×V ′. For

each arc (v1, v2) ∈ A′ we define a cost c̃v1,v2 equal to:

c̃v1,v2 :=



c0j + pjk − µk if v1 = 0 and v2 = (k, j),

cij + pjg − µg if v1 = (k, i) and v2 = (g, j),

pig − µg if v1 = (k, i) and v2 = (g, i),

ci0 if v1 = (k, i) and v2 = 0,

∞ otherwise.

(36)

Even if solving an ESPPRC on G′ is an NP-hard problem, the aim of this formulation is

to take advantage from the effective labeling algorithms proposed in the literature (see e.g.

Irnich and Desaulniers, 2005). In such labeling algorithms, any feasible partial path starting

from the depot is represented by a label associated with the arriving node. Generally, labels

include useful information about the partial path, such as its current (reduced) cost, the

visited nodes, and the current value of its resources. Starting from an initial void label

associated with the depot, labels are extended in all possible directions through arcs in the

graph (and their components are updated accordingly), until they return to the depot. It is

possible to extend a label only if the extension satisfies all the resource constraints. Finally,

dominance procedures can be used to eliminate labels and speed up the solution. An exact
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solution of the just explained algorithm returns a set of Pareto-optimal columns with respect

to all the considered resources.

In our implementation, each feasible partial path from 0 to a node v = (k, i) ∈ V ′ is

represented by a label E := (C,L, (tk)k∈K , v) where C is the reduced cost of the partial

path, L represents the vehicle load, and (tk)k∈K is a {0, 1}-vector indicating for each product

k if it is loaded on the vehicle. A partial path is feasible if the vehicle load does not exceed

the capacity, i.e. L ≤ Q, and if the vehicle does not transport incompatible products, i.e

if for any k, g ∈ K such that tk = 1 and tg = 1 it holds that (k, g) 6∈ B. Thus, a label

can be extended only if the new label is associated with a feasible path. Extending a label

(Cv1 , Lv1 , (tv1k )k∈K , v1) along an arc (v1, v2) ∈ A′ to a node v2 = (g, j) produces a new label

(Cv2 , Lv2 , (tv2k )k∈K , v2) where Cv2 = Cv1 + c̃v1,v2 , L
v2 = Lv1 + 1, tv2g = 1, and tv2k = tv1k for

k ∈ K, k 6= g. If instead the arriving node is the depot (v2 = 0), the extension simply

produces a new label (Cv2 , Lv1 , (tv1k )k∈K , v2) where Cv2 := Cv1 + c̃v1,v2 .

Moreover, we decide to allow extensions of labels from a node v1 = (k, i) to a node

v2 = (g, i) only if g > k. This restriction prevents the possibility of generating equivalent

paths that differ only for the order in which products are purchased in a market, thus solving

the symmetries yielded by using the expanded graph G′. Note also that it is never convenient

to extend a label to a node v2 = (g, j) if tv1g = 1, i.e. if product g has been already loaded

on the vehicle.

A dominance rule can be applied in order to eliminate partial paths that can not be

extended to Pareto-optimal ones. Given two labels E1 = (C1, L1, (t1k)k∈K , v) and E2 =

(C2, L2, (t2k)k∈K , v) associated with the same node v, E1 is said to dominate E2 if it collects

the same products (independently from the visited markets) and it has a better reduced cost,

i.e. if t1k = t2k, k ∈ K and C1 ≤ C2.

3.2.2 A branch-and-cut algorithm for the pricing problem

In this section, we propose an alternative solution method to the dynamic programming

based approach proposed above. Since several polyhedral aspects of (25)–(34) have been

studied before, we are able to develop an efficient branch-and-cut algorithm by using some

families of valid inequalities.

A consolidated approach in the literature consists in solving the model (25)–(34) without

the connectivity constraints (26), that are exponential in the size of |M |, and in adding

dynamically only those of them that better cutoff the current LP relaxation optimal solution

(x∗, y∗, w∗, z∗). An exact separation algorithm for connectivity constraints can be executed

in polynomial time by solving max-flow/min-cut problems on a capacitated graph G = (V,A)

where for each arc (i, j) ∈ A a capacity x∗ij is considered. More precisely, given a supplier h

such that y∗h 6= 0, the most violated constraint (26) corresponds to the partition (S, V \ S)
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associated with a minimum-capacity cut in G separating node 0 from h, and such that h ∈ S.

We also consider valid inequalities corresponding to a particular type of connectivity

constraints involving z-variables (the so-called zSEC inequalities introduced for the TPP by

Laporte et al., 2003): ∑
(i,j)∈δ−(S)

xij +
∑

h∈Mk\S

zhk ≥ 1 k ∈ K,S ⊆Mk. (37)

Each inequality (37) imposes that at least one arc must enter a subset S ⊆ Mk whenever

any product offered in S is not purchased in at least one supplier of Mk \S. Similarly to the

previous separation procedure, given a product k ∈ K, we can formulate a max-flow/min-cut

problem on a capacitated graph Gk := (Vk, Ak) where Vk := V ∪ {t}, t is a dummy supplier,

and Ak = A ∪ {(h, t) : h ∈ Mk}. In this graph, the capacity of each arc (i, j) ∈ A is equal

to x∗ij, whereas the capacity of each new arc (h, t) is equal to z∗hk. The most violated valid

inequalities (37) corresponds to consider the set S := St \ {t}, where (St, Vk \St) is the node

partition associated with a minimum-capacity cut in Gk separating 0 and t, with t ∈ St.

The cut is effective only if the minimum-capacity cut value is less than 1.

Moreover, the model (25)–(34) can be enriched with the direct addition of the following

classes of simple valid inequalities:

zik ≤ wk k ∈ K, i ∈Mk, (38)∑
i∈Mk

yi ≥ wk k ∈ K, (39)

yi ≤
∑
j∈M

x0j i ∈M, (40)

xij ≤ yj i ∈ V, j ∈M. (41)

Inequalities (38) state that if a product k is purchased at a supplier i (zik = 1) then the

product k has to be loaded (wk = 1). Inequalities (39) establish that if a product k is loaded,

at least one of the suppliers offering such a product has to be visited. Valid inequalities (40)

simply state that if a supplier i is visited, then at least an arc must leave the depot, and,

through inequalities (25), that one arc has to enter and one has to leave the depot. The

three previous cuts are inherited from those proposed in Manerba and Mansini (2014) for the

MVTPP-PIC with non unitary demands and restricted availabilities. Finally, inequalities

(41) are logical constraints ensuring that if the arc (i, j) is used, then the supplier at the end

of the arc has to be visited (Fischetti et al., 1998). These constraints make the integrality

requirement on the y-variables redundant.
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3.2.3 Stabilization

Column generation approaches generally suffer from slow convergence of the objective func-

tion. This is especially true when multiple dual solutions can be associated with each primal

solution. A wrong choice of the dual variables values used in the subproblem could lead

indeed to an inappropriate estimation of the marginal costs associated with columns. In

order to overcome this drawback, a lot of different methods have been proposed in the lit-

erature (stabilization methods). Differently from those that try to limit the fluctuation of

the dual variables values from an iteration to another (see e.g. du Merle et al., 1999), we

decided to implement the interior point stabilization (IPS) method proposed by Rousseau

et al. (2007). Briefly, the main idea is to solve, at each iteration of the column generation,

a certain number of different slightly perturbed master problems, to collect all the optimal

dual solutions corresponding (generally) to extreme points of the dual polyhedron, and fi-

nally to return a dual solution corresponding to an interior point of such a polyhedron. This

point is calculated as the convex combination of all the collected extreme points.

The IPS method is particularly indicated when the MP needs very few CPU time to be

solved, as in our case. On other hand, a better estimation of the marginal costs generally

leads to subproblems more complex to solve. Hence, the method results efficient especially

when is associated with heuristic or really optimized solution algorithms for the subproblem.

3.2.4 Accelerating techniques

Several techniques, described in the following, have been implemented in order to speed up

the entire column generation phase.

Initialization: We decide to initialize the column generation phase with columns cor-

responding to the routes originated from the initial heuristic (explained in Section 3.1).

Hence, O(|F |) columns are initially added. Moreover, in order to ensure the feasibility of

the MP, even with respect to the branching constraints, we add |K| artificial slack variables,

one in each inequality (15). These variables are highly penalized in the objective function.

Heuristic labeling algorithm: Since labeling algorithms are really time consuming, a

common practice is to stop the generation of columns prematurely. This can be done apart

in the very last iteration of the column generation, where we need to prove that no more

negative reduced cost columns exist. We implement two different stopping rules based on the

number of labels returned to the depot. More precisely, the algorithm stops when a number

negLabelLIM of negative reduced cost labels has returned to the depot 0 (that corresponds

to bound the number of columns added to the master problem for each iteration), or when
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the total number of labels returned to the depot reaches allLabelLIM . In order to make these

stopping rules more efficient, they are checked every time a new label arrives in 0. Moreover,

the first extension for each label associated with a node v1 is along the arc (v1, 0).

Returning multiple columns through the branch-and-cut algorithm: The branch-

and-cut proposed in Section 3.2.2 aims at finding the optimal solution corresponding to a

column with the minimum reduced cost. However, we store all the feasible integer solutions

found during the branch-and-cut tree and return them as columns to add to the MP.

Switching the subproblem solution methods: Actually, the heuristically stopped la-

beling algorithm and the branch-and-cut method proposed for solving the subproblem have

quite complementary features. While the first method returns a lot of columns, most of

which of bad quality, the second method returns very few columns but always including

the best one. This suggests that the two methods can be used alternatively to solve the

subproblems, taking advantage from the good features of each one. The combined use of

the two algorithms might take different configurations. After several preliminary tests, we

decide to implement the following scheme. At each node of the branch-and-price tree the

subproblem is initially solved through the labeling algorithm, always checking for the stop-

ping rules. If negLabelLIM is reached, the labeling algorithm stops and the MP (enriched

by the columns found) is solved again, but the solution method for the subproblem does not

change. Instead, it switches to the branch-and-cut as soon as the allLabelLIM is reached, i.e.

when the labeling algorithm seems no more effective in finding negative reduced cost columns.

Restricted master heuristic: We implement a two-phase procedure in order to get fea-

sible solutions quickly without waiting the end of the entire process. This is useful also for

reducing the number of visited nodes in the branch-and-price tree. Both the two phases are

based on the solution of the RMP. First, during the column generation procedure, it might

happen that the RMP yields an integer (non-optimal) solution but that such a solution re-

sults infeasible for the MVTPP-PIC showing a purchase greater than 1 for some products.

In fact, the relaxation used in the master problem, i.e. the inequalities (15), is equivalent to

the MVTPP-PIC only if optimality has been reached. However, given an integer solution,

we can easily check if the purchase for each product is unitary, i.e. if
∑

i∈Mk

∑
r∈R δ

r
ikθ

r = 1,

k ∈ K. In case of positive answer, we can update the best incumbent solution and the

overall upper bound. In the negative case, the second phase is applied. This consists in

optimally solving, through the use of a MIP solver, the integer model (13)–(16) restricted to

the columns currently generated, and where the inequalities (15) are changed in equalities. If

the optimal solution has a better value than the incumbent one, the upper bound is updated.
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3.3 Branching

When the optimal solution of the MP results to be fractional, we need to implement a

branching scheme to ensure integrality of variables. This rises some difficulties, because the

branching rules need to be compatible with the column generation phase.

It is widely accepted that branching on variables θ representing routes in the master

problem is inefficient, leading to strong imbalance in the branch-and-bound tree. Hence,

we prefer to branch on the more representative variables derived from the connectivity con-

straints based formulation. Some very efficient branching schemes have been developed for

branch-and-price approaches applied to similar vehicle routing problems where each supplier

has to be visited at most by one vehicle. Unluckily, in our problem suppliers may be visited

more than once, hence those schemes are not enough to ensure integrality. Following Gen-

dreau et al. (2006), we propose a hierarchical branching scheme composed by three different

rules. These branching decisions are explained in the order we apply them.

In the first branching rule, if any node is visited a fractional number α of times (i.e.,

if Yi is fractional), we choose the node i for which the fractional part of the corresponding

Yi variable’s value is closest to 0.5, and we impose
∑

r∈R a
r
i θ
r ≤ bαc and

∑
r∈R a

r
i θ
r ≥ dαe,

respectively. Note that branching on the depot is equivalent to branching on the number of

vehicles used in the solution.

When all Y variables are integer, we check if any arc is traversed a fractional number

β of times (i.e., if any Xij is fractional). In this second branching rule, we select the arc

(i, j) with a fractional part of the corresponding Xij variable closest to 0.5 and we impose∑
r∈R b

r
ijθ

r ≤ bβc and
∑

r∈R b
r
ijθ

r ≥ dβe for the two generated subproblems, respectively.

When all Y and X variables are integer, we adopt a third level of branching applying

the so-called Flow-Splitting Method proposed in Feillet et al. (2005). Briefly, the idea is

to branch on a subset of θ variables generating a fractional flow for the current solution.

In vehicle routing problems this set can be generally identified by clustering variables that

begin with the same sequence of visited customers. In our case, the clustering is based on

the sequence of visits in an expanded graph where nodes are of the type (k, i), k ∈ K, i ∈Mk,

as in the graph G′ described in Section 3.2.1. Note that this third-level branching rules is

not expected to be often used in practice, however it is necessary to ensure the θ-variables

integrality.

4 Computational experiments

This section presents the setting and the results of the computational experiments we run.

The branch-and-price has been implemented in C++, makes use of Cplex 12.5 solver for the

solution of linear programs, and the branch-and-bound tree is searched through a best-first
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strategy. Cplex 12.5 is also used as a general branch-and-cut framework (for the solution of

the subproblems), where cuts are embedded via Concert Technology callbacks. Concerning

the IPS method, we generate (at each iteration) 20 random vertices of the optimal master

problem’s dual polyhedron through the simplex method. Preliminary tests confirmed that

this number of points is large enough to produce a valuable dual variables stabilization effect,

without damaging the total computational time.

4.1 Instances

No specific benchmark instances exist for the MVTPP-PIC with unitary demands. In

Manerba and Mansini (2014) the authors introduced a set of instances for the more gen-

eral case in which demands are not unitary. It is clear that a simple modification of those

instances would lead to very meaningless relations between the demand of products and the

capacity of the vehicles. We decide to create new instances adapting the method used in the

just mentioned paper, as follows.

The suppliers and the depot integer coordinates are randomly generated in a [0, 1000]×
[0, 1000] square according to a uniform distribution, and routing costs are computed by

rounding the Euclidean distances through EUC 2D function from TSPLIB. Each product k is

randomly associated with |Mk| selected suppliers, where |Mk| is randomly generated in the

interval [1, |M |]. For each product k and each supplier i, prices pik are selected in interval

[1, 200] according to a discrete uniform distribution. To generate the incompatibility set B,

we first fix the percentage of free products with respect to the total number of products, i.e.

f% = 100|Kfree|/|K| where Kfree is the set of all the free products. Then, for each product

k 6∈ Kfree, we randomly choose the number and the set of products with which there is an

incompatibility and we construct the incompatibility pairs. Parameter f% allows to better

control the structure of the instance.

Finally, for each instance, we need to determine the number |F | of available vehicles

in order to guarantee that at least a feasible assignment of products to the vehicles exists.

In Manerba and Mansini (2014) the authors propose an NP-hard procedure (including

the exact solution of a Minimum Vertex Coloring Problem) just to calculate the minimum

feasible size of the fleet. The rationale is that, in the case of their branch-and-cut solution

algorithm, the dimension of the model strongly depends on the number of vehicles. Since

a strict evaluation of the fleet size is often impractical in real settings, we prefer to simply

compute an upper bound on the optimal fleet size by using the following formula:

|F | := |K \Kfree|+max

(
0,

⌈
|Kfree| − |K \Kfree| ∗ (Q− 1)

Q

⌉)
. (42)

Note that, if no incompatibility exists among products, expression (42) reduces to the com-

mon upper bound value used for computing the fleet size in vehicle routing problems.
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4.2 Preliminary results

We run a set of preliminary tests to compare the performance of our branch-and-price ap-

proach with respect to the branch-and-cut method proposed in Manerba and Mansini (2014).

The latter method has been used as a black-box, without adapting any procedure or the

effectiveness of valid inequalities to the special case with unitary demands. We consider

instances with a number of nodes (the suppliers plus the depot) |V | = {10, 25, 40}, and a

number of products |K| = {10, 20, 30}. We also consider three percentage values of free

products f%, equal to 80%, 50% and 30%. This means that the most constrained instances

have 70% of cross-incompatibilities between products. Moreover, we use three different val-

ues for the vehicle capacity Q, i.e. {6, 10, 15}. Generating an instance for each combination

of {|V |, |K|, f%, Q} leads to a set of 81 instances. In these preliminary tests, we set the

labeling algorithm’s parameters negLabelLIM and allLabelLIM to 50 and 500, respectively.

Moreover, for each solution method we set a threshold time of 7200 second (i.e., 2 hours).

Table 1 shows the comparison between the performance obtained, on the entire set of 81

instances, by our branch-and-price (B&P) and those obtained by the branch-and-cut (MM-B&C)

method proposed in Manerba and Mansini (2014). Each table entry refers to the average

result out of 9 instances with the same combination of {|V |, |K|}. For each method, the

columns have the following meaning: gap% is the percentage gap between the best integer

solution and the best lower bound found during the search in the branch-and-bound tree; t

is the CPU time in seconds; ttb is the CPU time in seconds needed to find the best feasible

(integer) solution; root% is the percentage gap left at the root node of the branch-and-bound

tree; B&Bn is the number of nodes visited in the branch-and-bound tree (value 1 represents

the root node). Moreover, #opt is the number of instances (out of 9) optimally solved by

both the methods whereas column ∆% shows the percentage deviation of the branch-and-

price solutions with respect to the branch-and-cut ones (a negative value means that the

branch-and-price has found a better solution).

Table 1: B&P vs MM-B&C
B&P MM-B&C

|V | |K| |F | ∆% #opt gap% t ttb root% B&Bn #opt gap% t ttb root% B&Bn

10 10 5 0.00 9 0.00 2 1 100.00 1 9 0.00 4 1 88.33 5379

10 20 9 0.00 9 0.00 24 22 99.51 6 9 0.00 455 15 85.83 220431

10 30 14 0.00 9 0.00 44 39 99.84 4 3 16.78 4831 198 75.26 1530617

25 10 5 0.00 9 0.00 5 3 100.00 1 9 0.00 5 3 94.56 393

25 20 9 0.00 9 0.00 68 55 99.81 6 3 8.43 4808 319 85.58 296341

25 30 14 -1.48 9 0.00 176 152 99.90 4 3 22.71 4879 3647 72.44 140179

40 10 5 0.00 9 0.00 62 47 99.84 2 9 0.00 730 215 90.57 28166

40 20 9 -0.28 9 0.00 436 346 99.99 1 2 12.38 5641 4066 84.60 101011

40 30 14 -2.53 9 0.00 1166 1052 99.97 2 0 26.92 7200 5076 71.93 139385

-0.48 0.00 220 191 99.87 3 9.69 3172 1505 83.23 273545

Looking at Table 1 results, we can notice that the branch-and-cut method is able to prove
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optimality only for 47 instances out of 81. Moreover, it shows very high percentage gaps

especially for instances with a higher number of products, and in general, as expected, for

all instances with a larger fleet size. On the contrary, in all the instances, the branch-and-

price always finds the optimal solution within the threshold time of two hours. Apart from

the optimality gaps, the branch-and-price strictly improves the branch-and-cut solution in 8

instances, yielding an average percentage deviation (∆%) of -0.48. Concerning computational

times, the branch-and-cut results quite efficient for instances with a small fleet size, reaching

the time limit of 2 hours in the remaining cases. B&P almost reaches the time limit only

for one instance, but never exceeds 900 seconds in the remaining ones. Finally, the average

CPU time (t) and the average time-to-best (ttb) for the branch-and-price are an order of

magnitude lower than the competitor’s ones.

Finally, to deeply understand the behavior of our B&P approach, in Tables 2–4 we provide

additional statistics showing the detailed results obtained by the method for the instances

with |V | = 10, 25 and 40, respectively. In each table, instances are uniquely identified by

a combination of the tuple {|V |, |K|, f%, Q, |F |}. Apart from the column headers already

explained, tUB is the CPU time of the initial heuristic in seconds, #iter is the number of

iterations performed by the column generation, tsub is the average CPU time in seconds

needed for the solution of a subproblem, and troot is the CPU time needed to calculate the

linear relaxation at the root node of the branch-and-bound tree.

Table 2: B&P details for |V | = 10 instances
B&P

|V | |K| f% Q |F | gap% tUB t #iter tsub #col root% troot B&Bn

10 10 30 6 7 0.00 0.02 0.76 4 0.15 65 100.00 0.76 1
10 10 30 10 7 0.00 0.00 0.78 4 0.16 70 100.00 0.78 1
10 10 30 15 7 0.00 0.00 1.33 6 0.18 65 100.00 1.33 1
10 10 50 6 5 0.00 0.02 1.23 6 0.17 63 100.00 1.23 1
10 10 50 10 5 0.00 0.00 1.14 6 0.15 65 100.00 1.14 1
10 10 50 15 5 0.00 0.00 0.97 5 0.16 60 100.00 0.97 1
10 10 80 6 2 0.00 0.02 3.31 20 0.12 493 100.00 3.31 1
10 10 80 10 2 0.00 0.02 3.85 19 0.15 438 100.00 3.85 1
10 10 80 15 2 0.00 0.00 3.34 18 0.14 463 100.00 3.34 1
10 20 30 6 14 0.00 0.02 9.38 21 0.41 153 100.00 9.38 1
10 20 30 10 14 0.00 0.00 9.22 20 0.43 164 100.00 9.22 1
10 20 30 15 14 0.00 0.00 9.30 21 0.41 151 100.00 9.30 1
10 20 50 6 10 0.00 0.00 66.48 119 0.51 312 97.26 15.56 31
10 20 50 10 10 0.00 0.00 11.89 27 0.41 110 100.00 11.33 3
10 20 50 15 10 0.00 0.02 17.46 36 0.45 137 100.00 10.51 5
10 20 80 6 4 0.00 0.02 28.08 53 0.49 228 98.70 16.60 3
10 20 80 10 4 0.00 0.02 41.43 77 0.49 270 99.63 16.71 9
10 20 80 15 4 0.00 0.02 23.10 48 0.44 210 100.00 20.86 3
10 30 30 6 21 0.00 0.00 18.52 29 0.60 155 100.00 18.52 1
10 30 30 10 21 0.00 0.00 20.17 31 0.61 209 100.00 18.10 3
10 30 30 15 21 0.00 0.02 22.48 34 0.62 160 100.00 16.38 5
10 30 50 6 15 0.00 0.02 24.34 37 0.62 181 100.00 24.34 1
10 30 50 10 15 0.00 0.00 24.91 38 0.62 188 100.00 24.91 1
10 30 50 15 15 0.00 0.00 23.24 37 0.59 155 100.00 23.24 1
10 30 80 6 6 0.00 0.02 145.66 207 0.64 516 98.58 27.39 25
10 30 80 10 6 0.00 0.02 36.05 52 0.65 195 100.00 36.05 1
10 30 80 15 6 0.00 0.00 76.47 103 0.69 271 100.00 76.47 1

0.00 0.01 23.14 39.93 0.41 205.44 99.78 14.87 3.89
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Table 3: B&P details for |V | = 25 instances
B&P

|V | |K| f% Q |F | gap% tUB t #iter tsub #col root% troot B&Bn

25 10 30 6 7 0.00 0.00 1.64 8 0.17 126 100.00 1.64 1
25 10 30 10 7 0.00 0.00 1.47 7 0.17 106 100.00 1.47 1
25 10 30 15 7 0.00 0.00 2.40 9 0.23 128 100.00 2.40 1
25 10 50 6 5 0.00 0.00 3.92 12 0.29 224 100.00 3.92 1
25 10 50 10 5 0.00 0.00 4.52 12 0.34 208 100.00 4.52 1
25 10 50 15 5 0.00 0.02 3.67 11 0.29 226 100.00 3.67 1
25 10 80 6 2 0.00 0.00 8.69 13 0.64 152 100.00 8.69 1
25 10 80 10 2 0.00 0.00 6.43 11 0.55 119 100.00 6.43 1
25 10 80 15 2 0.00 0.02 11.73 14 0.80 90 100.00 11.73 1
25 20 30 6 14 0.00 0.02 21.73 18 1.17 144 100.00 21.73 1
25 20 30 10 14 0.00 0.02 27.24 24 1.10 129 100.00 27.24 1
25 20 30 15 14 0.00 0.00 27.21 21 1.26 132 100.00 27.21 1
25 20 50 6 10 0.00 0.02 35.62 25 1.38 265 100.00 31.26 3
25 20 50 10 10 0.00 0.02 31.36 22 1.38 201 100.00 24.01 3
25 20 50 15 10 0.00 0.00 31.25 23 1.32 179 100.00 28.47 3
25 20 80 6 4 0.00 0.02 255.67 169 1.46 445 98.29 54.85 39
25 20 80 10 4 0.00 0.02 100.01 41 2.39 212 100.00 100.01 1
25 20 80 15 4 0.00 0.02 81.11 31 2.57 275 100.00 74.66 3
25 30 30 6 21 0.00 0.02 70.56 26 2.67 154 100.00 70.56 1
25 30 30 10 21 0.00 0.02 64.74 23 2.77 180 100.00 58.28 3
25 30 30 15 21 0.00 0.02 93.72 31 2.98 167 100.00 80.42 3
25 30 50 6 15 0.00 0.00 122.02 49 2.45 193 100.00 92.60 7
25 30 50 10 15 0.00 0.02 133.91 48 2.74 230 100.00 97.25 5
25 30 50 15 15 0.00 0.02 91.37 32 2.81 193 100.00 91.37 1
25 30 80 6 6 0.00 0.02 174.72 70 2.44 298 99.53 116.03 7
25 30 80 10 6 0.00 0.02 209.20 69 2.97 317 100.00 166.92 3
25 30 80 15 6 0.00 0.02 626.11 159 3.85 677 99.54 247.45 9

0.00 0.01 83.04 36.22 1.60 213.70 99.90 53.88 3.81

Table 4: B&P details for |V | = 40 instances
B&P

|V | |K| f% Q |F | gap% tUB t #iter tsub #col root% troot B&Bn

40 10 30 6 7 0.00 0.00 23.01 12 1.88 117 100.00 23.01 1
40 10 30 10 7 0.00 0.02 21.90 11 1.95 114 100.00 21.90 1
40 10 30 15 7 0.00 0.00 25.41 13 1.92 101 100.00 25.41 1
40 10 50 6 5 0.00 0.02 21.17 12 1.73 105 100.00 21.17 1
40 10 50 10 5 0.00 0.02 21.20 13 1.59 114 100.00 21.20 1
40 10 50 15 5 0.00 0.02 28.94 15 1.89 119 100.00 28.94 1
40 10 80 6 2 0.00 0.02 246.39 40 6.12 159 98.56 64.68 7
40 10 80 10 2 0.00 0.00 77.08 13 5.89 74 100.00 77.08 1
40 10 80 15 2 0.00 0.00 96.35 14 6.85 55 100.00 96.35 1
40 20 30 6 14 0.00 0.02 177.97 20 8.85 188 100.00 177.97 1
40 20 30 10 14 0.00 0.02 191.23 18 10.58 167 100.00 191.23 1
40 20 30 15 14 0.00 0.00 151.23 17 8.85 186 100.00 151.23 1
40 20 50 6 10 0.00 0.00 267.34 24 11.09 232 100.00 267.34 1
40 20 50 10 10 0.00 0.02 654.30 25 26.12 276 100.00 654.30 1
40 20 50 15 10 0.00 0.00 529.73 23 22.99 219 100.00 529.73 1
40 20 80 6 4 0.00 0.02 355.34 40 8.82 664 100.00 355.34 1
40 20 80 10 4 0.00 0.00 789.64 49 16.06 377 99.95 535.74 3
40 20 80 15 4 0.00 0.00 808.02 32 25.20 372 100.00 808.00 1
40 30 30 6 21 0.00 0.02 271.35 38 7.09 221 100.00 271.35 1
40 30 30 10 21 0.00 0.00 292.94 40 7.27 260 100.00 292.94 1
40 30 30 15 21 0.00 0.02 285.47 36 7.87 285 100.00 285.47 1
40 30 50 6 15 0.00 0.02 267.65 39 6.81 231 100.00 267.63 1
40 30 50 10 15 0.00 0.00 534.40 54 9.84 261 100.00 534.40 1
40 30 50 15 15 0.00 0.02 432.51 46 9.35 281 100.00 380.53 3
40 30 80 6 6 0.00 0.02 402.81 55 7.26 417 100.00 402.81 1
40 30 80 10 6 0.00 0.02 869.55 72 12.01 432 100.00 869.55 1
40 30 80 15 6 0.00 0.02 7141.03 181 39.30 977 99.72 1634.46 7

0.00 0.01 554.96 35.26 10.19 259.41 99.93 332.95 1.59
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It clearly seems that the superiority of the branch-and-price approach (in terms of solution

quality and computational times) relies on the strength of the set-covering formulation used.

In fact, in the most part of the instances, its linear relaxation already coincides with the

optimal integer solution (see all the values equal to 100.00 in the root% column). In the

remaining cases, when branching is needed, the branch-and-price tree never exceeds 40 nodes.

On average, branch-and-price trees have 3 nodes, whereas the branch-and-cut trees have

about 270000 nodes.

4.3 Extensive experiments

Being established that our new branch-and-price is the preferable solving method for the

MVTPP-PIC with unitary demands (especially when the fleet size is quite large, as in prac-

tical applications), we define 72 new instances to better evaluate its performance. We con-

sider a number of nodes (suppliers plus the depot) |V | = {20, 35, 50}, a number of products

|K| = {10, 30, 50, 70}, and a percentage value of free product f% := {30, 55, 80}. For each

combination of {|V |, |K|, f%}, two particular values of the capacity Q := {Q1, Q2} are con-

sidered. In particular, Q1 := d|K|/max{|Ktot|, 2}e where Ktot represents the set of totally

incompatible products, and Q2 := d10Q1/f%e. The rationale of this choice is as follows. A

larger vehicle capacity as Q1 tends to generate instances where the number of vehicles needed

to satisfy the demand is strongly (or solely) influenced by incompatibilities among products.

The value Q2 leads instead to more strict capacity constraints, and the final number of vehi-

cle used will depend from the trade-off between vehicle capacity and incompatibilities. This

new set of hard-to-solve problems also provides a test bed for future contributions and can

be downloaded from the web page http://www.ing.unibs.it/∼orgroup/instances.html.

Tables 5–7 present the results for |V | = 20, 35 and 50 instances, respectively. Columns

meaning has been already explained, apart from #v and obj that represent the number of

vehicles used and the objective function value of the best solution found. In column gap%,

values are highlighted in bold font when they correspond to a solution proved to be optimal.

In this new experiments, the value of the parameters negLabelLIM and allLabelLIM have been

doubled, being set to 100 and 1000, respectively. Finally, in order to avoid a useless explosion

of the branch-and-bound tree, we also stop the branch-and-price when the percentage gap

is less than 0.2%.

The new results confirm the overall goodness of our approach, pointing out also some of

its limitations. The method works very well in particular for instances with |V | = 20 and

|V | = 35 (see Tables 5 and 6). For 11 out of 72 instances the method is not able to terminate

the column generation procedure at the root node within the threshold time (see entries with

value 1 in column B&Bn and gap% greater than zero). In these cases the integrality gaps

are quite high, because the restricted master heuristic seems quite ineffective and the best
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Table 5: B&P results for |V | = 20 instances
B&P

|K| f% Q |F | obj #v gap% t ttb #iter tsub #col root% troot B&Bn

10 30 2 7 4267 6 0.00 14 0 36 0.28 82 98.43 1.14 17
10 30 5 7 3286 4 0.00 9 7 12 0.66 143 100.00 8.73 1
10 55 2 5 4036 5 0.00 1 1 5 0.19 57 100.00 1.24 1
10 55 5 5 2784 3 0.00 7 6 10 0.67 104 100.00 7.28 1
10 80 2 5 3928 5 0.00 6 0 15 0.31 77 97.58 0.81 9
10 80 5 2 2422 2 0.00 13 11 19 0.62 128 100.00 12.95 1
30 30 5 21 8419 10 0.00 55 52 41 1.26 235 100.00 40.30 5
30 30 15 21 8419 10 0.00 57 54 43 1.24 238 100.00 51.48 3
30 55 3 14 7899 10 0.00 62 48 65 0.86 222 99.68 36.42 7
30 55 15 14 6359 7 0.00 70 66 45 1.46 300 100.00 69.80 1
30 80 2 15 10521 15 0.00 77 29 104 0.65 197 99.33 20.83 35
30 80 15 6 4655 4 0.00 201 172 103 1.82 568 99.88 146.77 5
50 30 9 35 11266 15 0.19 3553 337 878 3.64 978 99.30 245.46 687
50 30 25 35 11266 15 0.07 4418 449 1056 3.80 1050 99.30 236.43 879
50 55 4 23 10526 13 0.00 1605 629 538 2.66 814 99.54 136.35 287
50 55 17 23 9393 12 0.00 341 309 90 3.65 521 99.12 305.21 3
50 80 4 13 9615 13 0.00 365 360 160 1.94 576 98.16 151.15 33
50 80 25 10 6181 5 0.00 618 613 155 3.67 1014 100.00 617.78 1
70 30 6 49 19536 21 0.00 589 561 98 5.77 595 100.00 441.22 9
70 30 18 49 19460 21 0.00 658 651 99 6.43 529 100.00 470.68 13
70 55 7 32 14209 14 0.00 1574 1534 243 5.84 1119 99.75 447.00 33
70 55 35 32 14133 14 0.00 1037 1021 182 5.16 1043 100.00 624.95 21
70 80 5 14 13101 14 0.00 3202 3048 279 3.13 1170 99.45 1046.77 33
70 80 35 14 9480 8 0.00 2331 2305 324 5.90 2426 100.00 2143.90 9

0.01 869 511 192 2.57 591 99.56 302.69 87

Table 6: B&P results for |V | = 35 instances
B&P

|K| f% Q |F | obj #v gap% t ttb #iter tsub #col root% troot B&Bn

10 30 2 7 1596 6 0.00 6 1 11 0.49 75 98.31 2.65 3
10 30 5 7 1351 3 0.00 12 10 14 0.76 71 100.00 11.51 1
10 55 2 5 1538 5 0.00 7 0 12 0.49 78 98.24 2.42 3
10 55 4 5 1342 4 0.00 9 2 11 0.75 64 100.00 8.89 1
10 80 2 5 1538 5 0.00 5 0 10 0.44 80 94.86 2.40 3
10 80 5 2 1187 2 0.00 14 9 14 0.91 104 100.00 13.63 1
30 30 4 21 5245 12 0.00 111 68 26 4.16 263 99.96 99.76 3
30 30 10 21 5236 12 0.00 137 113 28 4.79 256 100.00 107.94 3
30 55 3 14 4703 11 0.00 155 59 50 2.98 395 99.46 80.92 7
30 55 15 14 4097 7 0.00 500 452 45 11.00 368 100.00 404.31 3
30 80 2 15 5713 15 0.00 73 25 47 1.46 242 98.79 28.13 13
30 80 8 6 3501 5 0.00 1606 1109 152 10.38 562 99.64 558.62 19
50 30 6 35 12907 20 0.00 941 905 47 19.90 368 100.00 941.15 1
50 30 17 35 12907 20 0.00 2907 2421 57 50.83 475 100.00 2906.64 1
50 55 3 23 11160 17 0.00 925 788 88 10.31 494 99.24 246.75 25
50 55 13 23 10988 13 21.81 7200 7185 72 99.69 863 - - 1
50 80 4 13 8723 13 0.00 827 813 149 5.24 578 97.79 430.89 19
50 80 25 10 11182 6 54.34 7200 0 111 64.45 1135 - - 1
70 30 6 49 12308 25 0.00 2041 2002 120 16.68 812 99.89 1092.00 27
70 30 18 49 12133 25 0.00 1783 1732 89 19.76 744 100.00 1679.37 5
70 55 5 32 10195 16 0.00 2743 2200 175 15.02 763 99.83 1134.65 27
70 55 24 32 9521 16 0.00 4463 4399 163 26.78 1215 100.00 4463.18 1
70 80 5 14 8944 14 0.00 4901 4866 275 10.05 1167 99.42 3583.14 35
70 80 35 14 15529 9 74.08 7200 0 110 65.04 1203 - - 1

6.26 1907 1215 78 18.43 516 99.31 847.57 9

solutions are compared to very poor lower bounds (computed as the maximum between the

value obtained by the formula (35) and the optimal solution value of the LP relaxation of

(1)–(12) without constraints (4)). However, the B&P has been able to solve optimally about

78% of the instances (in particular, it has found 22, 21 and 13 optimal solutions out of

22

The Multi-Vehicle Traveling Purchaser Problem with Pairwise Incompatibility Constraints and Unitary Demands: 
A Branch-and-Price Approach

CIRRELT-2014-52



Table 7: B&P results for |V | = 50 instances
B&P

|K| f% Q |F | obj #v gap% t ttb #iter tsub #col root% troot B&Bn

10 30 2 7 3045 6 0.00 9 3 8 1.03 63 100.00 8.66 1
10 30 4 7 2869 6 0.00 36 20 11 3.23 104 100.00 36.21 1
10 55 2 5 2803 5 0.00 13 5 10 1.25 70 100.00 13.10 1
10 55 4 5 2371 4 0.00 70 35 12 5.76 168 100.00 69.94 1
10 80 2 5 2803 5 0.00 15 9 12 1.17 76 100.00 14.73 1
10 80 5 2 1779 2 0.00 147 111 17 8.56 179 100.00 146.69 1
30 30 3 21 5803 12 0.00 291 180 32 9.00 243 100.00 291.10 1
30 30 8 21 5708 11 0.00 4651 3829 38 122.29 257 100.00 3574.22 3
30 55 3 14 5487 10 0.00 490 437 48 10.09 297 99.48 235.78 11
30 55 15 14 13662 8 89.22 7200 2 22 327.19 280 - - 1
30 80 2 15 6448 15 0.00 197 159 56 3.14 2036 99.58 132.74 5
30 80 15 6 9273 4 84.12 7200 0 12 599.95 207 - - 1
50 30 9 35 7919 14 0.00 5117 4468 67 76.16 521 100.00 5116.93 1
50 30 25 35 7919 14 0.00 4144 3832 56 73.79 504 100.00 4143.51 1
50 55 5 23 7271 12 0.15 7200 3237 158 45.22 734 99.28 2587.21 30
50 55 25 23 6808 11 2.04 7200 7124 61 117.82 644 - - 1
50 80 3 17 8425 17 0.00 2915 1817 186 14.96 719 98.42 673.80 61
50 80 17 10 13382 7 80.90 7200 0 45 159.82 603 - - 1
70 30 12 49 29051 19 89.87 7200 2719 49 146.77 528 - - 1
70 30 35 49 32186 19 90.86 7200 6159 41 175.46 480 - - 1
70 55 5 32 9752 18 0.37 7200 6338 100 71.47 795 99.60 4845.81 5
70 55 24 32 25044 17 88.25 7200 0 33 218.00 410 - - 1
70 80 5 14 9266 14 10.28 7200 5302 147 41.20 1033 89.72 6930.73 2
70 80 35 14 15780 8 81.35 7200 0 13 553.76 180 - - 1

25.73 4054 1908 51 116.13 464 99.13 1801.32 6

24 instances with |V | = 20, 35, and 50, respectively). For the whole set of instances with

|V | = 20, the B&P generates an average percentage gap equal to 0.01, and the average CPU

time is about 870 seconds.

Some other trends can also be noticed. For example, the complexity of the instances

grows not surprisingly with the number of products involved, but also with the percentage

of free products. The reason might be that our subproblem solving procedures are much

more efficient when products present a lot of incompatibilities. Moreover, instances with

a vehicle capacity equal to Q1 (even lines of each table) appear in general a bit harder

to solve than the ones with capacity Q2 (odd lines). It seems that a smaller value of Q,

instead of enhancing the combined effect of the two types of restrictions (vehicle capacity

and incompatibilities), mitigates the combinatorial hardness caused by the PIC.

In order to better understand the benefits of some components of our branch-and-price

(B&P), we compare its performance to those obtained by the method excluding stabilization

(B&P-NoStab) and the two-phase restricted master heuristic (B&P-NoRMH). Table 8 shows

this comparison on a subset of 24 instances of the type {|V |, |K|, f%, Q}, where |V | =

{20, 35, 50}, |K| = {10, 70}, f% = {30, 80}, and Q = {Q1, Q2}. Each table entry refers to

the average result out of 4 instances with the same combination of {|V |, |K|}. We can see

that B&P-NoRMH achieves 2 optimal solutions less and shows an optimality gap about the

5% worse than the standard version. This is due to a slower convergence of the column

generation procedure. In fact, on average, the overall CPU time and that for solving the
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linear relaxation at the root node are greater. This is not true for the easiest instances,

where the stabilization seems unnecessary. On the contrary, B&P-NoRMH is slightly less time

consuming with respect to the standard version (since it does not make use of the restricted

master heuristic), but presents a worse optimality gap and a consistent average percentage

deviation of the solutions with respect to the best found (around 10%). In conclusion, as

expected, both the stabilization method and the restricted master heuristic implemented give

efficiency and effectiveness to the solution procedure, in particular for the hardest instances.

Table 8: B&P vs B&P-NoStab and B&P-NoRMH
B&P B&P-NoStab B&P-NoRMH

|V | |K| #opt gap% t troot #opt gap% t troot ∆% #opt gap% t troot ∆%

20 10 4 0.00 10 6 4 0.00 8 6 0.00 4 0.00 9 6 0.00
20 70 4 0.00 1695 1026 3 12.80 3708 2310 26.22 4 0.00 1103 770 0.00
35 10 4 0.00 9 8 4 0.00 11 10 0.00 4 0.00 9 7 0.00
35 70 3 18.52 3981 3389 3 17.95 4713 4128 0.00 3 17.37 4161 2922 0.00
50 10 4 0.00 52 52 4 0.00 42 42 0.00 4 0.00 51 51 0.00
50 70 0 68.09 7200 7133 0 83.65 7200 7200 56.60 0 83.64 7200 6732 56.60

14.43 2158 1935 19.07 2614 2283 13.80 16.84 2089 1748 9.43

On the same subset of instances we now evaluate the contribution to the column genera-

tion procedure of the two solution methods proposed for the pricing problem, i.e., the labeling

algorithm (Lab) and the tailored branch-and-cut (B&C). The average CPU time per iteration

(tSUB) of the two methods is presented in Figure 2, whereas Figure 3 shows the percentage

number of iterations executed and the number of columns added by the two methods out of

the total number. Results are grouped by value of |V |. In Figure 2 we see that tSUB for B&C

Figure 2: Average time per iteration for the two pricing problem solution methods.

grows exponentially with the number of nodes, whereas it grows quite linearly for Lab. This

depends on the fact that the labeling algorithm, in our branch-and-price implementation,

is stopped prematurely as soon as it results to be ineffective, whereas the branch-and-cut

always needs to ensure optimality for the pricing problem. Figure 3 reveals instead how the

two methods collaborate in the column generation procedure. Not surprisingly, the labeling
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algorithm is always executed very few times with respect to the total number of iterations

(this value never exceeds, on average, the 5%). However, in proportion, it generates a con-

spicuous part of the total number of columns (20% for |V | = 35 instances, and almost 35%

for |V | = 50 instances). B&C, instead, returns the most part of the columns but using a num-

ber of iterations about 20 times larger. This means that the intrinsic drawbacks of the two

pricing problem solution procedures are very well compensated by the use of the switching

method exposed in Section 3.2.4.

Figure 3: Percentage of iterations and columns for the two pricing problem solution methods.

5 Conclusions

In this paper we dealt with the Multi-Vehicle Travelling Purchaser Problem with Pairwise

Incompatibility Constraints and unitary demands for the products. We developed a branch-

and-price solution approach embedding a column generation procedure within a branch-and-

bound framework. The column generation relies on a set-covering formulation of the problem

where a column corresponds to a feasible route associated with a compatible purchasing

plan. We proposed two exact methods to solve the pricing problem, i.e. a labeling algorithm

solving a Resource Constrained Elementary Shortest Path Problem on an expanded graph

and a tailored branch-and-cut approach. We also proposed an initial heuristic, three different

branching rules, and several acceleration techniques to speed up the process. Experimental

tests have shown that the resulting implementation outperforms the branch-and-cut method

existing in the literature, both in solution quality and in computational time, especially when

the size of the fleet involved is quite large as in real applications. Our branch-and-price has

been able to optimally solve in a reasonable amount of time instances with up to 50 suppliers,

70 products, and 70% of cross-incompatibilities among products.
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