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Abstract. We consider tactical planning for a particular class of multi-period vehicle 
routing problems (MPVRP). This problem involves optimizing product collection and 
redistribution from several production locations to a set of processing plants over a 
planning horizon. Each horizon consists of several days, and the collection-distribution are 
performed on a repeating daily basis. In this context, a single routing plan must be 
prepared for the whole horizon, taking into account the seasonal variations in the supply. 
We model the problem using a sequence of periods, each corresponding to a season, and 
intra-season variations are neglected. We propose an adaptive large-neighborhood 
search with several special operators and features. To evaluate the performance of the 
algorithm we performed an extensive series of numerical tests. The results show the 
excellent performance of the algorithm in terms of solution quality and computational 
efficiency. 
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1. Introduction

The vehicle routing problem (VRP) is a difficult combinatorial optimiza-
tion problem that appears in many practical applications relating to the
design and management of distribution systems. Studies of the classical
VRP and its many variants and extensions, starting with the seminal work
of Dantzig and Ramser (1959), represent a significant portion of the opera-
tions research literature (Toth and Vigo, 2002). The classical VRP, referred
to as the capacitated vehicle routing problem (CVRP), concerns the deter-
mination of routes for a fleet of homogeneous vehicles, stationed at a central
depot, that must service a set of customers with known demands (supplies).
The goal is to design a collection of least-cost routes such that: 1) each route,
performed by a single vehicle, begins at a depot, 2) each customer is visited
once by exactly one vehicle, and 3) the quantity of goods delivered (collected)
on each route does not exceed the vehicle capacity (Golden et al, 2008).

In classical settings, e.g., the CVRP, the routing plan is executed re-
peatedly over the planning horizon. The parameters of the problem, such
as the quantities to be delivered (collected) at each customer location, are
assumed fixed over the horizon and known a priori. However, in many real-
life applications, this assumption may result in poor-quality routing plans.
Our problem setting requires routing over relatively long horizons, in envi-
ronments with significant seasonal fluctuations. This setting, milk collection
and redistribution in the dairy industry of Quebec, initially introduced by
Dayarian et al (2014a), has several problem-specific attributes and charac-
teristics. The routing corresponds to the collection of milk from producers’
farms followed by the distribution of the product to a set of processing plants.
The routes must be designed in such a way that the plant demands are com-
pletely satisfied, while every producer is visited by exactly one vehicle and
each vehicle delivers to just one plant per day. We assume that the daily
quantity of milk produced satisfies the total plant demand.

The first studies of this problem were performed by Lahrichi et al (2013)
and Dayarian et al (2014b); both studies assumed that the annual produc-
tion is fixed. Dayarian et al (2014a) addressed a variant of the problem that
accounted for seasonal variations in the supply. Because of contractual and
service-consistency requirements, a single routing plan must be prepared for
a given horizon. The contractual negotiations between the different stake-
holders (producers, carriers, and plants) are based on a single routing plan.
For service consistency, each producer should always be included in the same
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route and serviced by the same vehicle. The drivers also use this routing
plan to schedule their daily operations.

Dayarian et al (2014a) proposed an exact methodology based a multi-
period model and a branch-and-price approach. They divided the horizon
into a series of periods, each a cluster of days with similar seasonal char-
acteristics. The horizon can then be represented as a sequence of periods.
The need to design a single plan for changing contexts recalls the a priori
optimization framework for stochastic optimization problems. In stochas-
tic programming, a two-stage model is often considered. The solution from
the first stage is updated at the second stage as the values of the stochastic
parameters are revealed.

The solution approach proposed by Dayarian et al (2014a) provides op-
timal solutions for instances with up to sixty producers. However, real-life
problems may have several hundred producers. Therefore, we need solution
approaches that can find good but not necessarily optimal solutions to larger
problems. The main goal of this paper is to find such solutions using an
effective adaptive large-neighborhood search (ALNS) framework (Pisinger
and Ropke, 2007; Ropke and Pisinger, 2006). Our main contributions are as
follows:

• We design an ALNS based metaheuristic for a complex vehicle routing
problem. The proposed solution procedure includes a set of novel algo-
rithmic features, including several new operators based on the special
structure of the problem. These are detailed in Section 4.

• To evaluate the quality of the solution, we compute a series of lower and
upper bounds on the value of the multi-period solution. We compare
the solutions obtained through the ALNS with these bounds.

• We extensively analyze the performance of the method and its compo-
nents in terms of computational time and solution quality, through a
series of numerical tests on a large set of randomly generated instances.

The remainder of this paper is organized as follows. In Section 2, we
describe the problem and the notation that we use. Section 3 discusses
the state-of-the-art in this field. In Section 4, we present our ALNS-based
approach to the problem. In Section 5, we propose a series of bounds that
allow us to evaluate the performance of the algorithm. The experimental
results are reported in Section 6, and Section 7 provides concluding remarks.
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2. Problem Statement and Modeling

In this section, we introduce the problem; it is inspired by a dairy problem
in Quebec. For a detailed description of the dairy transportation problem in
Quebec (DTPQ), the reader is referred to Lahrichi et al (2013) and Dayarian
et al (2014a,b).

The DTPQ can be briefly described as follows: In Quebec, the Fédération
des producteurs de lait du Québec (FPLQ), a coalition of milk producers, is
responsible for managing the collection and transportation of milk produced
in the province. The FPLQ negotiates, on behalf of the producers, annual
transportation contracts with the carriers (Lahrichi et al, 2013). Each con-
tract with a carrier for a given horizon H is based on a single tactical routing
plan. A plan consists of a set of routes, each performed by a single vehi-
cle on every collection day of H. An unlimited fleet of identical vehicles is
assumed to be available at multiple depots. On every collection day, each
vehicle departs from a depot, collects a single product type from a subset of
producers, delivers the collected product to a single plant, and then returns
to its depot. This can be seen as an extension of the VRP with additional
deliveries to multiple plants, and it is therefore NP-hard (Lenstra and Kan,
1981).

The producers’ supply over the horizon may vary seasonally. The sea-
sonal variations are often significant and may have a major impact on the
routing. We assume that a year can be divided into several periods, each
representing a seasonal production level. We take inter-period production
variations into account; the potential intra-period fluctuations are neglected.
Intra-period fluctuations can often be handled by leaving a spare capacity of
5%–10% on each vehicle when designing the routes. The producers’ seasonal
fluctuations are assumed to be perfectly positively correlated. This correla-
tion arises because almost all the producers in a given geographical region
are exposed to similar seasonal cycles. The plants must adjust their seasonal
demands according to the supply so that the total supply always meets the
total demand.

The proposed multi-period model has some similarities to an a priori
optimization framework in the context of the vehicle routing problem with
stochastic demand (VRPSD). In a two-stage formulation of a stochastic prob-
lem, the solution from the first stage is updated at the second stage as the
exact values of the stochastic parameters are revealed. We seek a solution
that minimizes the total expected cost of the original plan and the potential
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adjustments in the second stage. Similarly to algorithms for the VRPSD, in
the context of our multi-period problem at the first stage we design a single
plan for the planning horizon, taking into account possible supply changes
between periods. At the second stage, the plan is adjusted based on the
specificities of each period. In seasons with higher supply levels, at a given
producer location a vehicle may have insufficient residual capacity to collect
the supply. We refer to this as a failure. Following a failure, the vehicle
usually travels to a plant to empty its tank and then proceeds to visit the
remaining producers of the planned route. We refer to this extra travel as a
recourse action.

Under our recourse policy, the vehicle always visits the producers in the
order of the planned route; when a failure occurs, it travels to its assigned
plant. Consequently, the total distance traveled corresponds to the fixed
length of the planned route plus the length of the return trip to the plant.

The goal is to design a single least-cost collection-delivery plan for a given
horizon, providing a certain level of service consistency and service quality,
and taking into account the existence of several periods. We define a feasible
plan to be one that is executable over the horizon with at most one failure
per operation per route.

A single plan is necessary because 1) the contractual arrangements be-
tween the FPLQ and the carriers require a single plan that can be used for
cost estimation for the whole horizon; and 2) there is a consistent driver-
producer relationship when the producer is always serviced via the same
route operated by the same vehicle. The second point leads to a familiar
environment for the producer and the driver and avoids potential incompat-
ibilities between the vehicles and the producer’s facilities.

We control the desired service quality over a given horizon by setting
a service reliability threshold (SRT), indicating the minimum percentage of
days over the horizon H that the planned routes should be executable with
no failures. The magnitude of the SRT has a major impact on the design
of the plan. Clearly, if SRT = 100%, no failure occurs in any period of the
horizon. However, this strategy is not cost-efficient, because it often requires
many vehicles.

Let Ξ be the set of all periods in a given horizon H. We associate with
each period ξ ∈ Ξ a weight Wξ, representing the share of period ξ in horizon
H. It is calculated by dividing the length of period ξ by the length of horizon
H. We also associate with each period ξ a production coefficient, Pξ, which
is defined to be the ratio of the production level in period ξ to a chosen
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reference production level Pref . The choice of the reference production level
is discussed in detail in Dayarian et al (2014a). Briefly, the reference period is
obtained by merging the smallest subset of the periods with least production
coefficients, forming a new period in such a way that the cumulative weight of
the added periods to the subset covers the SRT. The newly obtained period,
referred to as the reference period, substitutes the periods included in the
subset. The production coefficient of the reference period corresponds to the
largest coefficient among the added periods while its weight is equal to the
cumulative weight of the substituted periods. For the sake of simplicity, all
the production coefficients are divided by the reference period’s coefficient
Pref (consequently, Pref = 1). In order to provide plans respecting the
defined SRT, one has to make sure that the designed routes do not face any
failure in the reference period.

The model is defined on a directed graph G = (V ,A), where V and A
are the node and arc sets, respectively. The node set contains the depots,
producers, and plants; V = D ∪N ∪ P . The arc set A ⊂ V × V defines fea-
sible movements between different locations in V . For each pair of locations
ni, nj ∈ V , ni 6= nj, there exists an arc (i, j) ∈ A. Each arc (i, j) ∈ A has
an associated nonnegative travel cost cij, which is proportional to the length
of the arc. An unlimited fleet of vehicles K, with identical capacity Q, is
available at each depot. However, employing vehicle k ∈ K incurs a fixed
cost of ck. Note that a naive upper bound on the number of vehicles can be
obtained by assigning each producer to a vehicle.

In each period, each producer nj ∈ N produces a limited quantity of
product on a daily basis. The supply levels in period ξ ∈ Ξ are given by
a vector in which the jth parameter, denoted oξj , is the supply (offer) of
producer j. Moreover, the supply of each producer nj in the reference period

is given by orefj . Therefore, the supply of producer nj in period ξ is

oξj = Pξ.o
ref
j (j ∈ N , ξ ∈ Ξ), (1)

where Pξ represents the production coefficient in period ξ. Each plant p ∈ P
receives, on a daily basis, the collected product. The demand of each plant
p in period ξ is given by Dξ

p. The routes are designed to have no failures in
the reference period and at most one failure in the other periods. In other
words, for each route r, the following inequalities hold:∑

j∈r

oξj ≤ 2Q, (ξ ∈ Ξ) (2)
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and ∑
j∈r

orefj ≤ Q. (3)

To obtain the “first-stage formulation” of the problem, we define binary
variables xdpijk equal to 1 if and only if vehicle k, departing form depot d
and delivering to plant p, visits producer nj immediately after visiting ni.
Therefore, the first-stage formulation takes the following form:

min mck +
∑
p∈P

∑
d∈D

∑
k∈K

∑
i∈V

∑
j∈V

cijx
dp
ijk + F(x) (4)

subject to

m =
∑
p∈P

∑
d∈D

∑
k∈K

∑
j∈V

xdpdjk; (5)∑
i∈V

xdpihk −
∑
i∈V

xdphik = 0 (h ∈ V , k ∈ K, d ∈ D, p ∈ P); (6)∑
p∈P

∑
d∈D

∑
j∈V

xdpdjk ≤ 1 (k ∈ K); (7)∑
i∈V

orefi
∑
j∈V

xdpijk ≤ Q (k ∈ K, d ∈ D, p ∈ P); (8)∑
d∈D

∑
k∈K

∑
i∈V

orefi
∑
j∈V

xdpijk ≥ Dref
p (p ∈ P); (9)∑

i∈V

∑
j∈V

xdpijk ≤ |S| − 1

(k ∈ K, d ∈ D, p ∈ P ,S ⊆ V , |S| ≥ 2); (10)

xdpijk ∈ {1, 0} (i, j ∈ V , k ∈ K, d ∈ D, p ∈ P). (11)

In this formulation, the objective function computes the total cost of a
solution, which has three components: 1) the fixed vehicle costs; 2) the first-
stage routing cost, obtained by summing the costs of the planned routes; and
3) the second-stage routing cost F(x), which is defined as the average recourse
costs computed over the different periods of the horizon (a full definition of
F(x) is provided in equation (12) and model (13)-(21)). Constraint (5) counts
the number of vehicles. The role of constraints (6) is to ensure that when
a vehicle arrives at a producer it also leaves that producer. Constraints (7)
specify that each vehicle is used at most once. Limits on vehicle capacity
are imposed through constraints (8). Constraints (9) guarantee that the
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plant demands are satisfied. Finally, constraints (10) are standard subtour
elimination constraints

To define the “second-stage” problem, let dk and pk indicate the original
depot and the plant visited by vehicle k, respectively. For the sake of sim-
plicity, in the second-stage formulation, the fixed first-stage variable xdkpkijk is
reduced to xijk, as the information regarding dk and pk is encoded in index k.
The parameter vector oξ represents the supplies in period ξ. We also define
zξijk as the flow on arc (i, j) for all i, j ∈ V traveled by vehicle k in period ξ.

Finally, define the intermediate variable wξik that takes the value 1 when a
failure occurs as producer ni is serviced by vehicle k in period ξ and 0 other-
wise. Therefore, zξ and wξ represent the vectors of zξijk and wξik, respectively.
The recourse problem is defined using the flow-based formulation (13)-(21).
This second-stage formulation was first proposed by Dayarian et al (2014a)
for the same problem.

F(x) =
∑
ξ∈Ξ

WξF (x, oξ) (12)

where

F (x, oξ) = min
∑
k∈K

∑
i∈N

2cipkw
ξ
ik (13)

subject to

zξijk ≤ Qxijk (i, j ∈ V , k ∈ K), (14)

wξik ≤
∑
j∈N

xijk (i ∈ V , k ∈ K), (15)∑
j∈N

zξdkjk = 0 (k ∈ K), (16)∑
j∈N∪P

zξijk =
∑

j∈N∪D

zξjik + oξi −Qw
ξ
ik (i ∈ N , k ∈ K), (17)

εzξijk ≥ xijk (i, j ∈ N ∪ P , k ∈ K), (18)∑
j∈N

wξjk ≤ 1 (k ∈ K), (19)

zξ ≥ 0, (20)

wξik ∈ {0, 1} (i ∈ N , k ∈ K). (21)

Equation (12) defines F(x) as the average recourse cost over the consid-
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ered planning horizon. In a given period, for a specific first-stage solution, the
recourse cost is obtained by solving model (13)-(21). The objective function
(13) returns the recourse cost given a first-stage solution x with respect to
the production level in a given period ξ. As mentioned before, the recourse
cost corresponds to the cost of a return trip to the plant from the failure
point. Constraint (14) shows that the flows are nonzero only on the arcs of
the planned routes and do not exceed the vehicle capacity. Constraint (15)
specifies that a failure at producer ni on route k can occur only if ni is vis-
ited through route k. Constraints (16) assure that vehicles depart from the
depots with empty tanks. Constraints (17) define when a failure occurs at a
given producer ni on a route. Constraint (18) guarantees that in any route
only the initial arc leaving from the depot can have a zero flow. Parameter ε
is a large constant such that both εQ and terms εoξj for all j ∈ N , and ξ ∈ Ξ,
are integers. Such a constant is guaranteed to exist as long as all problem
data are rational numbers. Based on constraints (17) and (18), if a vehicle
is filled exactly by the load collected in a producer nj, route failure will not
occur at nj, but rather at the next producer in the route. Constraints (21)
guarantee that each vehicle faces at most one failure per period.

3. Literature Review

In this section, we review metaheuristic methods for VRPs with a similar
structure to our problem.

Our problem setting has some special features:

1. The need to satisfy the plant demands; our problem can be seen as a
many-to-one pickup and delivery problem (PDP).

2. The need to account for the production variations, while planning over
a horizon.

Lahrichi et al (2013), investigating the same dairy application, considered
a variant of the VRP with features similar to those of our problem. They used
a generalized version of the Unified Tabu Search (Cordeau et al, 2001). They
simultaneously considered the plant deliveries, different vehicle capacities,
different numbers of vehicles at each depot, and multiple depots and periods.
Dayarian et al (2014b) proposed a branch-and-price algorithm for a variant
of the DTPQ in which a time window is associated with each producer, and
the production levels over the horizon are assumed to be fixed.
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The VRPs that are most similar to our problem are the multi-period
(MPVRP) nd the periodic (PVRP) settings. In most studies of theMPVRP,
customers request a service that could be performed over a multi-period hori-
zon (see Tricoire, 2006; Angelelli et al, 2007; Wen et al, 2010; Athanasopoulos,
2011). The classical MPVRP is closely related to the PVRP, in which the
customers specify a service frequency and allowable combinations of visit
days. Surveys of these problems and extensions can be found in Francis et al
(2008) and Vidal et al (2013). The best-known algorithms for the PVRP are
those of Cordeau et al (1997), Hemmelmayr et al (2009), Rahimi-Vahed et al
(2013) and, particularly, Vidal et al (2012) and Vidal et al (2014). In our
problem, all the producers need to be serviced every period on a daily basis.
Moreover, the definition of the periods is based on seasonal variations.

A single plan for a horizon of several periods has been investigated in the
context of telecommunication network design (Kouassi et al, 2009; Gendreau
et al, 2006). However, apart from the work of Dayarian et al (2014a), we are
not aware of any previous study of the VRP with the multi-period configura-
tion considered in this paper. Dayarian et al (2014a) used a branch-and-price
approach to solve the problem that we investigate. However, their algorithm
is able to solve instances with only up to twenty producers.

There are certain similarities between our problem and the consistent
vehicle routing problem (ConVRP) introduced by Groër et al (2009). In the
ConVRP, customers with known demands receive service either once or with
a predefined frequency over a multiple-day horizon. Frequent customers must
receive consistent service, which is defined as visits from the same driver at
approximately the same time throughout the planning horizon (Tarantilis
et al, 2012).

Complete surveys of metaheuristics for the VRP can be found in Gen-
dreau et al (2008) and Vidal et al (2013). They include neighborhood searches
(Gendreau et al, 1994; Cordeau et al, 2001; Rousseau et al, 2002; Bräysy,
2003), population-based methods such as evolutionary and genetic algorithms
(Berger et al, 2003; Bräysy and Gendreau, 2005; Vidal et al, 2012), hybrid
metaheuristics (Gehring and Homberger, 1999; Bent and Van Hentenryck,
2004; Homberger and Gehring, 2005) and parallel and cooperative meta-
heuristics (Crainic, 2008; Crainic et al, 2009; Lahrichi et al, 2012). Of the
neighborhood search methods, the large neighborhood search (LNS) algo-
rithms (Shaw, 1998) have proven to be successful for several classes of the
VRP. ALNS (Ropke and Pisinger, 2006; Pisinger and Ropke, 2007), an exten-
sion of the LNS, is also related to the ruin-and-recreate approach of Schrimpf
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(2000). Recently, ALNS has provided good solutions for a wide variety of ve-
hicle routing problems; see for instance Ropke and Pisinger (2006), Gendreau
et al (2010), Azi et al (2014), and Pepin et al (2009).

The MPVRP, as considered in this paper, has to date received limited
attention. Based on the success of the ALNS, we propose an ALNS for our
problem. This algorithm is outlined in the next section.

4. Proposed Solution Framework

The classical ALNS algorithm, as presented by (Ropke and Pisinger, 2006;
Pisinger and Ropke, 2007), is an iterative process where, at each iteration,
part of the current solution is destroyed and then reconstructed in the hope
of finding a better solution. The destruction phase for the VRP consists in
disconnecting a number q ∈ [qmin, qmax] of nodes from their current routes
and placing them into the unassigned node pool Φ. Note that qmin and
qmax are parameters whose values are to be tuned. The construction phase
then inserts the nodes from Φ into the routes of the solution. Destruction
and construction are performed by appropriate heuristics, selected at each
iteration from a given set of procedures via a biased random mechanism,
referred to as roulette-wheel, favoring the heuristics that have been successful
in recent iterations according to certain criteria (e.g., improvement in solution
quality).

Our algorithm is based on the general ALNS concept, but incorporates a
number of features that improve its performance; an outline of our procedure
is presented in Algorithm 1. At each iteration, we explore the neighborhood
of the current solution, generating potentially ϕ new solutions (lines 9-17).
New solutions are obtained by applying an operator opr ∈ Ω to the current
solution, where Ω is the set of all operators. Contrary to classical ALNS,
the operators are built through coupling each combination of destruction
and construction heuristics, described in Sections 4.3 and 4.4, respectively.
(A similar idea of paring heuristics was used by Kovacs et al (2012) in the
context of service technician scheduling.) The main advantage is that we can
weight the performance of each (destruction-construction) pair. We select the
operator to apply to the solution of the current iteration via a roulette-wheel
mechanism (line 12).

At the end of each iteration, we apply an acceptance criterion to the best
solution among the ϕ solutions found (lines 18-26). This criterion is usually
defined by the search paradigm applied at the master level, e.g., simulated
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annealing (SA) (see Kirkpatrick et al, 1983). If the solution satisfies the
criterion, it replaces the current solution. That is, the new solution s′ replaces
the current solution s if f(s′) < f(s), where f(s) represents the value of
solution s. In SA, with ∆f = f(s′) − f(s), solution s′ is accepted with
probability

exp(
−∆f

T
), (22)

where T > 0 is the temperature parameter. The temperature is initialized
to T init and is lowered in the course of the search by a cooling rate c ∈ (0, 1):
T ← cT (line 41). The probability of accepting worse solutions reduces as T
decreases. This allows the algorithm to progressively find better local optima.
We perform the cooling procedure when no global best feasible solution has
been found in the last δ iterations. This can be seen as a dynamic repetition
schedule that dynamically defines the number of iterations executed at a
given temperature. This procedure divides the search into several segments,
each being a series of consecutive iterations. The length of each segment
corresponds to the repetition schedule for a given temperature and therefore
has a minimum length of δ iterations, where δ is a parameter to be tuned.
If a new global best feasible solution is found in the current segment, the
length of the segment is extended for another δ iterations (line 21).

To intensify the search, at the end of each segment, we apply a series of
local search (LS) operators to the best solution found in the segment (lines
31-40). If this gives an improvement, we update the current solution.

We also propose the use of an enhanced central memory, which stores
high-quality solutions. We design several new destruction heuristics that
use information extracted from the central memory. Moreover, we design
new operators for our specific problem setting. The main components of our
algorithm are described next.

4.1. Search Space

It is well known in the metaheuristic literature that allowing the search
into infeasible regions may lead to good solutions. We therefore permit
infeasible solutions in which the plant demands are not completely satis-
fied. We evaluate the moves and solutions using a penalty function f(s) =
C(s) + ηD−(s), where C(s) is the total operating cost of the solution (i.e.,
fixed, routing, and recourse costs) and D−(s) is the unsatisfied plant demand.
The parameter η is initially set to 1. After each block of Iteradj iterations,
we multiply η by 2 if the number of infeasible solutions in the last Iterhis
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Algorithm 1 ALNS
1: s← InitialSolution;
2: Initialize the weights π;
3: Set the temperature T ;
4: iter ← 1;
5: segmentIter ← 1;
6: seg ← 1;
7: sseg ← s;
8: repeat
9: repeat

10: siter ← s;
11: qiter ← Number of nodes to be removed;
12: Opriter ← Select an operator;
13: s′ ← Opriter(s, qiter);
14: if f(s′) < f(siter) then
15: siter ← s′;
16: end if
17: until iter/ϕ == 0
18: if f(siter) < f(s∗) and siter feasible then
19: s∗ ← siter;
20: sseg ← siter;
21: segmentIter ← 0;
22: else
23: if ACCEPT(siter, s) then
24: s← siter;
25: end if
26: end if
27: if f(siter) < f(sseg) then
28: sseg ← siter;
29: end if
30: Update the score of opr;
31: if segmentIter == δ then
32: s′ ← LOCAL SEARCH(sseg);
33: if f(s′) < f(s∗) then
34: s∗ ← s′;
35: segmentIter ← 0;
36: else
37: if f(s′) < f(s) then
38: s← s′;
39: end if
40: T ← c.T ;
41: sseg ← s;
42: seg ← seg + 1;
43: end if
44: end if
45: if seg/γ == 0 then
46: Update the weights;
47: end if
48: iter ← iter + 1;
49: segmentIter ← segmentIter + 1;
50: until Stopping Criterion
51: return s∗
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iterations is greater than δmax, and we divide it by 2 if the number of such
solutions is less than δmin. The two parameters δmin and δmax are to be
tuned.

This penalty function is similar to that used in Taburoute (Gendreau
et al, 1994) and the Unified Tabu Search (Cordeau et al, 2001). Our penalty
strategy favors removal from routes serving plants with an oversupply and
insertion into routes servicing plants being under-supplied. We add a penalty
ρ to the local cost of removal or insertion in a given position, where

ρ = ηD−(s). (23)

4.2. Adaptive Search Engine

We implement an adaptive weight adjustment procedure to represent the
historic performance of the operators, and use these weights to bias their
selection at each iteration. A weight ωopr is thus assigned to each operator
opr. Initially, all the weights are set to one. We update the operator weights
after each block of γ segments, based on a combination of long and short-
term performance history (lines 45-46). The probability of selecting opr is
then defined as ωopr/

∑
k∈Ω ωk.

The short-term performance of the operators is captured through a scor-
ing mechanism. A score is assigned to each operator, the score being set
to zero initially and after each γ segments. At each iteration, we then up-
date the scores (line 30) by adding a bonus factor σi, i ∈ {1, . . . , 4}, where
σi ≤ σi+1, i ∈ {1, 2, 3}, to the current score as follows:

I. σ4 if a new global best feasible solution has been found;

II. σ3 if the new solution improves the current solution but not the global
best feasible solution;

III. σ2 if the new solution satisfies the acceptance criterion and is inserted
into ΨFS;

IV. σ1 if the new solution satisfies the acceptance criterion but is not in-
serted into ΨFS.

The bonus factor is zero in all other cases.
Let πopr be the total score of opr obtained from νopr applications of opr in

the last γ segments. We update the weight of each operator using a parameter
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α ∈ [0, 1], called the reaction factor, through the formula

ωopr,ι+1 = ωopr,ι(1− α) + α
πopr
νopr

, (24)

where ωopr,ι represents the weight of operator opr in ιth block of γ segments.

4.3. Destruction Heuristics

Several destruction heuristics have been proposed in the literature, and
some can be adapted to our problem setting. We focus on the following
destruction heuristics from the literature:

Worst Removal: Initially proposed by Rousseau et al (2002) and later used
by Ropke and Pisinger (2006), it removes the q worst placed nodes and
places them in Φ.

Route Removal: Removes a randomly selected route and places the corre-
sponding nodes in Φ.

Cluster Removal: This heuristic (Pisinger and Ropke, 2007) removes a
cluster of nodes from a route, based on their geographical region. It
randomly selects a route from the current solution. It then applies
the well-known Kruskal algorithm to find a minimum spanning tree for
the nodes of this route, based on the arc length. When two forests
have been generated, one of them is randomly chosen and its nodes are
removed and placed in Φ.

Smart Removal: This heuristic (Rousseau et al, 2002) randomly selects a
pivot node and removes portions of different routes around the pivot,
based on a reference distance and a proximity measure.

We also define a series of memory-based destruction heuristics, which pri-
marily differ in the way that the closeness of the removed nodes are weighted.
The solution-cost-based related removal is adapted from existing heuristics
proposed by Pisinger and Ropke (2007), while others are new.

Define Ψ, a central memory containing a limited number of solutions of
two types:

- Best Feasible Solutions (ΨFS): A list of the β1 best feasible solutions
generated so far.
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- Best Infeasible Solutions (ΨNFS): A list of the β2 best infeasible solu-
tions generated so far.

The size of the central memory follows from a trade-off between search qual-
ity on the one hand and computational efficiency and memory requirements
on the other. We extract different types of information from the central mem-
ory, and use the extracted information to determine the closeness between
different nodes of the graph with respect to different criteria. We design
a destruction heuristic based on each criterion, obtaining the six heuristics
below.

Solution-Cost-Based Related Removal

The solution-cost-based related removal heuristic, based on the histori-
cal node-pair removal (Pisinger and Ropke, 2007), associates with each arc
(u, v) ∈ A a weight f ∗(u, v). This weight indicates the value of the best-
known solution that contains arc (u, v). Whenever a new solution is inserted
into the central memory, we update the f ∗(u, v) value of all the arcs (u, v) in
the solution.

Following a call to this heuristic, we perform a worst removal procedure
in which the weight f ∗(u, v) replaces the cost of each arc (u, v) ∈ A. We
repeat this process until q nodes have been removed and placed in Φ.

Route-Cost-Based Related Removal

The route-cost-based related removal heuristic, which is similar to the
heuristic above, associates with each arc (u, v) ∈ A a weight r∗(u, v), in-
dicating the value of the minimal-cost route found so far that contains arc
(u, v). We perform a worst removal based on the r∗(u, v) weights.

Paired-Related Removal

This heuristic investigates adjacent producer nodes. We give each arc
(i, j) a weight $(i,j), initially set to 0. The heuristic starts by adding a
weight hs to the weights of all the arcs used in the solutions of the central
memory. When an arc (i, j) is used by solution s, we add the weight hs to
both (i, j) and (j, i). We compute hs via hs = List.size()−posinList(s), where
List represents the list to which solution s belongs, List.size() is the length
of that list, and posinList(s) is the position of solution s in that list. This
procedure favors the solutions at the start of the lists. When a new solution
is inserted into any of the lists, we update the weights hs. We use the arc
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weights $(i,j) to identify the q producer nodes that seem to be related to each
other. An initial node ni is randomly selected, removed, and placed in Φ.
Then, while |Φ| < q, we randomly select a node nj from Φ and identify the
node nk in Φ that is the most closely related to node nj (it has the highest
$(j,k)). We then remove the node nk and place it in Φ.

Route-Related Removal

This heuristic, similarly to the previous heuristic, adds a weight hs to all
pairs of nodes serviced by the same route in solution s. We assign weights
as for the previous heuristic. We remove nodes from their current position
following a similar procedure to that for the previous heuristic.

Depot-Producer-Related Removal

This heuristic attempts to identify the nodes that may be misassigned to
a depot. A weight is assigned to each depot-node pair (nd, ni), for d ∈ D and
i ∈ N . The weight increases by hs if, in solution s, producer i is assigned
to a route departing from depot d. We calculate the value of hs as for the
paired-related removal heuristic. We select a node to remove via the following
steps:

Step 1: We sort the producer-depot assignments in the current solution s
according to the historical pair weights obtained as described above in
Listi,d(s).

Step 2: Starting from the producer-depot pair with the lowest weight, we
remove nodes from their current position with probability

Prni,ndi
(s) =

rank(ni)

Listi,d(s).size()
, (25)

where rank(ni) is the position of the pair (ndi , ni) in Listi,d(s). More-
over, Listi,d(s).size() is the length of the node-depot list, which is the
number of producer nodes. Accordingly, we remove the node with the
lowest weight from its current position with probability 1.

Step 3: If the list is traversed to the end, but the number of removed nodes
is less than q, we update the length of the list to Listi,d(s).size()− |Φ|
and make the corresponding updates to the pair ranking. We then
return to Step 2.
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Plant-Producer-Related Removal

This heuristic follows the three steps above. It attempts to remove pro-
ducer nodes based on the node-plant pair weights calculated from the histor-
ical information.

4.4. Construction Heuristics

After the destruction heuristic, the nodes that have been removed and
placed in Φ are considered for reinsertion into routes. We consider the fol-
lowing construction heuristics from the literature:

Best-First Insertion: Inserts each node in the cheapest position. At each
step it selects the node with the lowest insertion cost.

Regret Insertion: This heuristic (Ropke and Pisinger, 2006), orders the
nodes in Φ by decreasing regret values. The regret value is the cost dif-
ference between the best insertion position and the second best. More
generally, the k-regret heuristic defines the regret value with respect to
the k best routes.

We also designed the following construction heuristic based on the char-
acteristics of our problem.

Minimum-Loss Insertion This heuristic is based on the regret insertion
heuristic but does not use ρ. It inserts nodes into the routes while
attempting to maintain the feasibility of the solution at the minimal
cost. The heuristic is based on the regret associated with the insertion
of a node into a route servicing a plant with unsatisfied demand rather
than in the best possible route. Clearly, the best candidate is a node
for which the best possible position is in a route servicing a plant with
unsatisfied demand. The best insertion candidate is determined using
the following criterion:

ni := arg min
ni∈Φ

( min
r∈RD−

s

(∆fr+ni
(s))− min

r∈Rs

(∆fr+ni
(s))), (26)

where Rs is the set of routes for solution s, and RD−
s is the set of routes

servicing plants with unsatisfied demand. If all the plant demands are
met, the insertion order of the remaining nodes in Φ is defined as for
the regret insertion operator.
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4.5. Local Search

At the end of each segment, LS procedures are performed on the best
solution found during the segment. Our LS procedures are inspired by the
education phase of the genetic algorithm proposed by Vidal et al (2012).
The procedures are restricted to the feasible region. We build each node’s
neighborhood using a threshold ϑ, which is computed as follows:

ϑ =
Z(s)

nbArc(s)
, (27)

where Z(s) and nbArc(s) are the sum of the arc costs and the number of arcs
used in solution s. In our implementation, Z(s) and nbArc(s) are limited to
the arcs between producer nodes; the recourse costs and the corresponding
arcs are omitted. The value ϑ is the average length of the arcs between the
producer nodes in solution s. The neighbour set of each node ni contains all
nodes nj such that cij ≤ ϑ.

Suppose that nu, assigned to route ru, is a neighbor of nv, assigned to
route rv. Moreover, suppose that nx and ny are immediate successors of nu
and nv in ru and rv, respectively. For every node nu and all of its neighbors
nv, we perform the LS operators in a random order. When a better solution
is found, the new solution replaces the current solution. The LS stops when
no operator generates an improved solution. The LS operators are:

Insertion 1: Remove nu and reinsert it as the successor of nv.

Insertion 2: Remove nu and nx; reinsert nu after nv and nx after nu.

Insertion 3: Remove nu and nx; reinsert nx after nv and nu after nx.

Swap 1: Swap the positions of nu and nv.

Swap 2: Swap the position of the pair (nu, nx) with nv.

Swap 3: Swap the position of (nu, nx) with (nv, ny).

2-opt: If ru = rv, replace (nu, nx) and (nv, ny) with (nu, nv) and (nx, ny).

2-opt* 1: If ru 6= rv, replace (nu, nx) and (nv, ny) with (nu, nv) and (nx,
ny).

2-opt* 2: If ru 6= rv, replace (nu, nx) and (nv, ny) with (nu, ny) and (nx,
nv).
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5. Bounds on the Multi-Period Solution

To evaluate the performance of our algorithm, we compute lower and
upper bounds on the objective function value. This calculation is based
on the set partitioning formulation of the problem (Dayarian et al, 2014a).
Let the single-period problem that considers only the production levels in
the reference period be Pbref , with optimal solution xref . Let Pbmp be the
multi-period problem, with optimal solution x∗.

Recall, the route cost, C, has three components: 1) fixed vehicle costs, 2)
first-stage routing costs, and 3) second-stage routing costs (recourse costs).
These components are denoted cf (x), c(x), and F(x), respectively. That is,
C(x) = cf (x)+c(x)+F(x). For any feasible solution x to Pbmp, the following
inequality provides an upper bound on the value of the multi-period solution:

C(x∗) ≤ C(x). (28)

Moreover, because the fixed vehicle costs are significantly large compared
to the total routing costs, the number of vehicles used in the multi-period so-
lution is the minimum number of vehicles needed during the reference period,
so the fixed vehicle costs are the same:

cf (x
∗) = cf (x

ref ). (29)

Since x∗ is also a feasible solution to P ref , we have

c(xref ) ≤ c(x∗). (30)

We combine (29) and (30) to obtain a lower bound on the value of the multi-
period solution:

cf (x
ref ) + c(xref ) ≤ C(x∗). (31)

We also consider a lower bound on the value of F(x∗). Let F (r, ξ) be the
recourse cost in period ξ ∈ Ξ for route r ∈ Rs, where Rs is the set of routes
in solution s. We have

F(x) =
∑
ξ∈Ξ

∑
r∈Rs

WξF (r, ξ). (32)

Let the set of producer nodes visited by route r be Nr, the plant to which r
is assigned be pr, and the set of all routes serving plant p ∈ P be Rp

s ⊆ Rs.
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Then

F (r, ξ) ≥ 2 min
i∈Nr

ci,pr .t
ξ
r (33)

⇒ F(x∗) ≥ 2
∑
r∈Rs

tξr min
i∈Nr

ci,pr (34)

= 2
∑
p∈P

∑
r∈Rp

s

tξr min
i∈Nr

ci,pr , (35)

where tξr is a binary parameter, which is equal to 1 if a failure occurs on route
r in period ξ and 0, otherwise.

The minimum failure cost for a given instance can then be computed
by first determining the minimum number of vehicles needed to service the
plants and producers. We then assign the producers to vehicles (routes) while
attempting to minimize the total failure cost. To do this, we assign failure
points to the routes so that the total failure cost is minimized. The minimum
number of vehicles, K∗, is obtained using equation (36).

K∗ = max{
∑
p∈P

dDp/Qe, d
∑
i∈N

oi/Qe}. (36)

5.1. Minimum Failure Cost

Given the minimum number of vehicles, we can compute a lower bound
on the total failure cost of Pbmp based on inequality (35). We assign nodes
to the restricted vehicle set K∗, assuming that for a given route r, all the
failures in different periods occur on the node that is closest to pr. We assign
the nodes by solving a bin-packing formulation that minimizes the failure
cost, Table 1 displaying the notation:
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Z = min
∑
ξ∈S

Wξ

∑
p∈P

∑
i∈N

2ci,pu
ξ
ikp (37)

subject to

lkp =
∑
i∈N

oixikp (p ∈ P , k ∈ K∗); (38)

lkp ≤ Qykp (p ∈ P , k ∈ K∗); (39)∑
p∈P

ykp = 1 (k ∈ K∗); (40)∑
k∈K∗

lkp ≥ Dp (p ∈ P); (41)∑
k∈K∗

∑
p∈P

xikp = 1 (i ∈ N ); (42)

xikp ≤ ykp (i ∈ N , p ∈ P , k ∈ K∗); (43)

Pξ
∑
p∈P

lkp ≤ Q(1 + tξk) (ξ ∈ S, k ∈ K∗); (44)∑
p∈P

∑
i∈N

uξikp = tξk (ξ ∈ S, k ∈ K∗); (45)

uξikp ≤ xikp (ξ ∈ S, i ∈ N , p ∈ P , k ∈ K∗); (46)

ykp ≤ yk−1p + yk−1p−1 (p ∈ P , k ∈ K∗); (47)

y11 = 1; (48)

xikp, ykp, t
ξ
k, u

ξ
ikp ∈ {0, 1} (ξ ∈ S, i ∈ N , p ∈ P , k ∈ K∗).(49)

Constraints (38) and (39) ensure that the vehicle capacities are satisfied.
Constraint (40) ensures that each vehicle is assigned to a single plant. Con-
straint (41) ensures that the plant demands are satisfied, and constraint (42)
ensures that each producer is assigned to a single vehicle. Constraint (43)
ensures that producers are assigned only to open routes. For each period ξ,
constraints (44)–(46) determine the number and location of failures on each
vehicle k. Constraints (47) and (48) break the possible symmetry due to the
set of identical vehicles. The objective function, Z, provides a lower bound
on the total failure cost. We assume that, for a given route, all the failures
in different periods occur in the node that is closest to the assigned plant.

The bound can be tightened if we acknowledge that on a given route not
all periods have failures at the same node. Proposition 1 provides a condition
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Table 1: Bin-packing notation for the minimum failure cost formulation

Notation Description
xikp 1 if producer i is assigned to vehicle k and plant p;
ykp 1 if vehicle k serves plant p;
oi supply of producer i ∈ N ;
Dp demand of plant p ∈ P ;
K∗ set of K∗ identical vehicles;

tξk 1 if a failure in period ξ is assigned to vehicle k;

uξikp 1 if a failure in period ξ is assigned to producer i

on vehicle k, serving plant p;
lkp quantity delivered to plant p by vehicle k.

determining when two periods both encounter failure at the same node.

Proposition 1. Two periods ξ1 and ξ2 may both encounter a failure at node
nj if the following inequality holds:

Q

P2

(1− P2

P1

) ≤ oj. (50)

Proof 1. Assume that P1 ≥ P2 and that in period ξ1 the quantity collected
prior to node nj is Q. The quantity collected in period ξ2 will then be P2

Q
P1
.

Moreover, ξ2 has a failure at node nj if P2
Q
P1

+ P2oj ≥ Q. �

Including this condition in the model (37)–(49) may lead to an increase
in the value of Z by assigning certain failure points to nodes that are farther
from the plant. This occurs when two different periods cannot both encounter
failure on the closest node to the plant.

6. Computational Experiments

We describe our computational experiments in the following sequence. In
Section 6.1, we introduce the set of test problems. We calibrate the param-
eter values via extensive sensitivity analysis; the results of these tests are
presented in Section 6.2. We also study the impact of different components
of the algorithm based on a series of tests, which are presented in Section
6.3. Finally, the computational results for the test problems are presented in
Section 6.4.
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6.1. Test Instances

We consider instances with producer set sizes ranging from 40 to 200.
The instances with 40, 50, and 60 producers were originally generated by
Dayarian et al (2014a). We also created a set of larger instances with 100
and 200 producers to evaluate our heuristic on larger-scaled instances. Each
instance was considered with 4 or 5 periods, to represent the multi-periodic
aspect of the problem. For each case with 4 or 5 periods, 5 different scenar-
ios {T1, . . . , T5} were explored, differing in terms of the distribution of the
period weights and the SRT level. The details of the instances considered
in this paper are presented in Table 2. The production levels and period
weights are the same as in Dayarian et al (2014a) and are given in Table 3.

Table 2: Specifications of test instances

Number of producers Number of depots Number of plants

40 2, 3 2, 3
50 2, 3− 4, 6 2, 3− 4, 6
60 2, 3− 4, 6 2, 3− 4, 6
100 2, 3, 6 2, 3, 6
200 3, 6 3, 6

Table 3: Weight and production-level distribution of the periods (Dayarian et al, 2014a)

# periods Type 1 Type 2 Type 3 Type 4 Type 5

4

Pξ Wξ% Pξ Wξ% Pξ Wξ% Pξ Wξ% Pξ Wξ%
1.00 60 1.00 50 1.00 40 1.00 30 1.00 20
1.30 20 1.30 25 1.20 35 1.10 30 1.10 40
1.50 10 1.50 15 1.35 20 1.20 25 1.30 30
1.70 10 1.70 10 1.50 15 1.40 15 1.70 10

5

Pξ Wξ% Pξ Wξ% Pξ Wξ% Pξ Wξ% Pξ Wξ%
1.00 60 1.00 50 1.00 40 1.00 30 1.00 20
1.30 15 1.30 20 1.20 25 1.10 25 1.10 35
1.50 15 1.50 15 1.35 20 1.20 20 1.20 25
1.70 5 1.70 10 1.50 10 1.40 15 1.40 15
1.90 5 1.90 5 1.65 5 1.70 10 1.70 5

We ran our ALNS algorithm for each of the test instances and investigated
its performance in terms of solution quality and computational efficiency.
The algorithm was coded in C++ and the tests were run on computers with
a 2.67 GHz processor and 24 GB of RAM.
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6.2. Parameter Settings and Sensitivity Analysis

Similarly to most metaheuristics, changing the values of the parameters
may affect the performance (but not the correctness) of the algorithm.

We tune the parameters via a blackbox optimizer (Opal Audet et al,
2012). One drawback of this optimizer is that as the number of parameters
increases, the accuracy of the algorithm decreases considerably. We therefore
apply a two-phase procedure, where at each phase a subset of the parameters
is tuned. In the first phase, the parameters that have a greater impact on the
performance of the algorithm are adjusted using the blackbox optimizer. In
the second phase, the less sensitive parameters are tuned via trial-and-error.
As for the selection of the parameters to be included in each phase, it was
made based on extensive preliminary tests.

We tune the parameters in the first subset by first determining a range for
each parameter based on preliminary tests. We then find the best value for
each parameter using the Opal algorithm (Audet et al, 2012). Opal takes an
algorithm and a parameter vector as input, and it outputs parameter values
based on a user-defined performance measure. Opal models the problem as
a blackbox optimization, which is then solved by a state-of-the-art direct
search solver.

To define a performance measure for Opal, we selected a restricted set of
training instances. This set included instances ranging from 40 to 200 pro-
ducer nodes, with 2 to 6 depots and plants. For a given vector of parameters,
we ran each instance five times and recorded the average objective function
value. The performance measure is defined to be the geometric mean of the
average values of the training instances. Table 4 gives the values found for
the first subset of parameters.

Table 4: Parameter values found using Opal

Parameter Range Value

δ Default segment length [50, 150] 70

ϕ Inner loop length [3, 7] 6

γ Number of segments [1, 4] 2
to update operator weights

α Reaction factor in weight update [0, 1] 0.25

c Cooling rate for SA [0.9980, 0.9998] 0.9987
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We set the initial temperature to T init = 0.05C(s0)
|N | ln(0.5)

, where C(s0) is the value

of the initial solution. By equation (22), setting the initial temperature to
0.05C(s0)

ln(0.5)
allows us to accept solutions that are 5% different from the current

solution with a probability of 50%. The choice of these values were inspired
by the tuning performed by Pisinger and Ropke (2007). Preliminary tests
showed that dividing this value by the number of producers improved the
results; similar results were reported by Pisinger and Ropke (2007). We set
the final temperature to T fin = T initc25000, allowing a minimum of 25000
iterations. Table 5 gives the resulting values for the second subset.

Table 5: Parameter values found by trial and error

Parameter Value

[qmin, qmax] Bounds on number [min(5, 0.05|N |),min(20, 0.4|N |)]
of nodes removed q

Iteradj Number of iterations 20
after which η is updated

Iterhis History used to update η 100

δmin and δmax Bounds on number of infeasible 30 and 45
solutions used to update η

β1, β2 Lengths of lists in central memory 20, 20

σ1, σ2, σ3, σ4 Bonus factors 1, 1, 1, 2
for adaptive weight adjustment

6.3. Evaluating the Contributions of the Algorithmic Components

We studied and now demonstrate the usefulness of various components of
our algorithmic framework. We first examine the performance of the different
operators, followed by an evaluation of the contribution of each destruction
and construction heuristic. We then examine the gain of including the heuris-
tics pairing feature, the local search operators, and the adaptive mechanism
of the algorithm. Finally, we compare our algorithm with an adapted version
of the basic ALNS proposed by Pisinger and Ropke (2007). These compu-
tations are based on a representative subset of 64 instances for different size
combinations. The comparison is measured based on the following metrics:

best: The best value of the routing cost (solution’s total cost excluding the
vehicles fixed cost) found over five runs;

avg.: The mean value of the routing costs found over the five runs.
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Furthermore, the variants obtained by excluding either a pairing of heuris-
tics, or local search operators, or the adaptive layer, as well as the basic
ALNS, are also compared on the basis of the CPU time:

T (s): The average computational time over five runs.

6.3.1. Evaluating the Performances of the Operators

Table 6: Final probabilities of choosing different destruction-construction pair

Destruction Heuristic Construction Heuristic min % avg. % max %

Worst Removal Regret Insertion 1.03 6.16 17.41
Best-First Insertion 0.01 1.76 6.56
Minimum-Loss Insertion 0.00 2.17 4.75

Cluster Removal Regret Insertion 1.16 6.27 11.14
Best-First Insertion 0.11 3.19 9.52
Minimum-Loss Insertion 0.03 3.19 6.68

Route Removal Regret Insertion 0.00 2.32 10.51
Best-First Insertion 0.00 0.50 4.03
Minimum-Loss Insertion 0.00 1.81 6.03

Smart Removal Regret Insertion 1.55 6.86 14.32
Best-First Insertion 0.15 2.68 8.55
Minimum-Loss Insertion 0.62 3.69 7.93

Paired-Related Removal Regret Insertion 2.50 7.68 11.24
Best-First Insertion 0.67 2.55 4.49
Minimum-Loss Insertion 0.91 3.35 5.03

Solution-Cost-Based Related Removal Regret Insertion 2.66 8.63 15.87
Best-First Insertion 0.12 2.88 11.49
Minimum-Loss Insertion 0.00 1.58 5.63

Route-Cost-Based Related Removal Regret Insertion 0.46 6.66 17.20
Best-First Insertion 0.00 1.95 7.69
Minimum-Loss Insertion 0.00 1.07 7.65

Depot-Producer-Related Removal Regret Insertion 0.47 7.26 23.31
Best-First Insertion 0.01 2.47 11.98
Minimum-Loss Insertion 0.11 2.60 9.62

Plant-Producer-Related Removal Regret Insertion 0.53 7.07 13.16
Best-First Insertion 0.02 1.85 6.08
Minimum-Loss Insertion 0.02 1.81 8.18

Table 6 provides statistics on the probabilities of selecting different op-
erators, computed at the end of the solution process of the instances in
the representative instance subset. For each operator (pair of destruction-
construction heuristics), three data are given:

min: The minimum probability of being selected at the end of the solution
procedure among the 64 instances;
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avg.: The average probability of being selected at the end of the solution
procedure, considering the 64 instances;

max: The maximum probability of being selected at the end of the solution
procedure among the 64 instances.

The minimum, average and maximum probabilities are distributed in
[0.00, 2.66], [0.5, 8.63] and [4.03, 23.31] intervals, respectively. Moreover, the
average of the values under the columns min, avg., and max are 0.49%, 3.70%
and 9.85%, respectively. The results show that considering all the instances,
at some point, each operator is useful. The significant variations between the
min and max final probabilities in the case of some operators, such as the
Depot-Producer-Related Removal with the Regret Insertion or the Route-
Cost-Based Related Removal with the Regret Insertion show the importance
of the adaptation layer. Even in the case of the operator formed of Route
Removal with Best Insertion, which represents the smallest average final
probability, in an instance its final probability was 4.03, which is larger than
1/27, its probability if no adaptation was considered. In fact, an operator
may be strongly efficient in the case of an instance, while the same operator
does not contribute significantly for another instance. The results also show
that the adaptive layer of the algorithm allows the probability adjustment
with respect to the characteristics of each instance.

Moreover, as we see in Table 6, the final probabilities of all operators
that use the Regret Insertion outweigh the other operators. However, as we
will show in Section 6.3.2, the exclusion of the operators that either use the
Best-First Insertion or the Minimum-Loss Insertion leads to a degradation
in the performance of the algorithm. Therefore, these operators are kept in
the algorithm.

6.3.2. Evaluating the Contributions of the Heuristics

Table 7 provides statistics on the removal and insertion heuristics. We
ran each instance five times while excluding one heuristic and keeping the
others. Whenever a heuristic is excluded, the whole block of operators us-
ing that heuristic are disabled. For each instance, we recorded the average
result over the five runs of the 64 instances of the representative set. The
comparison is done based on the average percentage of solution degradation
(columns Best sol. deg. over five runs and Avg. deg. over five runs) and
also the maximum percentage of solution degradation (columns Max best sol.
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deg. over five runs and Max avg. deg. over five runs). The maximum degra-
dation shows the maximum loss corresponding to the exclusion of the block
of operators using a specific heuristic in at least one of the instances of the
representative set. Note that the values in the first two columns of Table 7
indicate the degradation in the geometric mean of the values obtained for all
the instances in the considered subset. We use the geometric mean because
the subset includes problems of different sizes with varying objective values.
With the geometric mean the degradation’s in smaller instances’ objectives
is not dominated by the larger ones.

Table 7: Evaluation of contribution (%) of each heuristic

Heuristic Best sol. deg. Avg. deg. Max best sol. deg. Max avg. deg.
over five runs over five runs over five runs over five runs

Worst Removal 0.02 0.11 0.97 0.85
Cluster Removal 0.02 0.07 0.72 0.65
Route Removal 0.12 0.21 1.40 1.73
Smart Removal 0.03 0.11 0.74 0.90
Paired-Related Removal 0.08 0.13 1.37 1.23
Solution-Cost-Based Related Removal 0.10 0.16 1.53 1.35
Route-Cost-Based Related Removal 0.04 0.09 0.68 1.07
Depot-Producer-Related Removal 0.09 0.15 1.50 1.21
Plant-Producer-Related Removal 0.15 0.20 1.75 1.44
Regret Insertion 0.18 0.32 1.27 2.27
Best-First Insertion 0.03 0.08 0.92 0.86
Minimum-Loss Insertion 0.13 0.19 1.39 1.10

These results indicate the usefulness of all of our destruction and con-
struction heuristics in the case of this problem setting. Overall, the plant-
producer-related removal is the most efficient removal heuristic, followed by
the route removal and Solution-Cost-Based Related Removal heuristics. Re-
gret insertion is the most useful insertion heuristic, followed by the minimum-
loss insertion heuristic.

6.3.3. Evaluating the Performance of Destruction-Construction Heuristics
Pairing

Table 8 synthesizes results on the contribution of particular algorithmic
components. It provides, in particular, the average deterioration of the vari-
ant of the algorithm in which destruction and construction heuristics are con-
sidered individually rather than in pairs. This is equivalent to consider two
separate pools of heuristics (destruction and construction), while the choice
of heuristics from each pool is performed independently. In this variant, at
the end of each iteration of the algorithm, the scores of the two heuristics
used are incremented using the bonus factors, presented in Section 4.2.
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The figures in Table 8 show that when no pairing is used to define the
operators, the results observed deteriorate, on average, by 0.23%, 0.35% and
27.04% respectively for the best solution observed over five runs, the average
solution quality obtained over five runs and the overall CPU time. Based on
these results the use of the heuristics paring is motivated.

Table 8: Evaluation of contribution of algorithmic components

Algorithm Best sol. degradation Ave. degradation CPU degradation (%)
over five runs (%) over five runs (%)

No Heuristic Pairing 0.23 0.35 27.04
No Local Search 0.26 0.23 -2.04
No Adaptation 0.11 0.16 -5.73
Basic ALNS 2.54 3.82 75.51

6.3.4. Evaluating the Contribution of the Local Search

Table 8 also compares the results of our algorithm with the variant in
which the local search operators at the end of each segment are disabled. The
absence of the local search operators in the algorithm incurs a degradation of
0.26 % in the value of the best solution over five runs, a degradation of 0.23%
in the average value of the five runs while causing a gain of 2.04 % in the CPU
time. Considering the trade-off between CPU time and solution quality, it
seems valuable to include the local search operators in the algorithm.

6.3.5. Evaluating the Contribution of the Adaptive Layer

We now turn to the impact of excluding the adaptive layer of the ALNS
framework. This translates into the variant of the algorithm in which the
roulette-wheel mechanism selects the operators equiprobably. We have al-
ready demonstrated the usefulness of each of our heuristics. When the adap-
tation is disabled, one may expect a significant deterioration in the perfor-
mance if some less useful heuristics are kept. As shown in Table 8, the routing
cost deterioration while disabling the adaptation mechanism is 0.11 % on the
best solution over five runs and 0.16 % on the mean value of the five runs.

The relatively limited gains obtained using the adaptive layer tend to
demonstrate the robustness of our algorithm (all operators defined are use-
ful). Nonetheless, this algorithmic feature serves an important role. As
illustrated in Section 6.3.1, given the number of operators that are used, the
adaptive layer enables the algorithm to improve its choices iteratively by tai-
loring the selection probabilities according to the observed efficiency of the
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operators on the specific instance a. Accordingly, the use of the adaptive
layer is motivated.

6.3.6. Evaluating the Performance of the basic ALNS

We finally compare the results obtained from our implementation of the
basic ALNS introduced by Pisinger and Ropke (2007) with those obtained
from our proposed algorithm. This translates in disabling several additional
features proposed in this paper. These modifications are:

• Destruction-construction heuristics pairing is disabled. Each destruc-
tion or construction heuristic is treated separately;

• At each iteration, instead of ϕ neighbors of the current solution, only
one neighbor is explored. In return the number of iterations before
stopping the algorithm is set to 25000ϕ;

• The repetition schedule in the master level is disabled. This is equiv-
alent to lowering the temperature in the SA mechanism at the end of
each iteration.;

• Following the previous point, the weight adjustment of the heuristics is
not performed dynamically: we adjust the weights after δγ iterations;

• The local search operators are disabled;

• A noise to the insertion cost was added as described in Ropke and
Pisinger (2006);

• A large penalty associated with infeasible solutions is added, as Pisinger
and Ropke (2007) consider only feasible solutions;

• The list of employed destruction and construction heuristics in this
variant is:

• Random Removal;

• Worst Removal;

• Cluster Removal;

• Route Removal;

• Solution-Cost-Based Related Removal (Historical node-pair re-
moval);
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• Paired-Related Removal (Historical request-pair removal);

• Regret Insertion;

• Best Insertion.

Note that the historical request-pair removal proposed by Pisinger and
Ropke (2007) is based on the memory of the top 100 solutions. Accordingly,
we replace our central memory with a list of the top 100 solutions.

As reported in Table 8, our implementation of the ALNS based on the
algorithm proposed by Pisinger and Ropke (2007) resulted in solutions with
an average degradation in the value of the routing cost of 2.54% and 3.82%
on the best and average over five runs, respectively. The larger CPU time
(75.51% more) can be explained by the use of a larger number of iterations.

6.4. Computational Results

Detailed results obtained by applying our algorithm to the instances de-
scribed in Section 6.1 are given in Tables 9 –16, where:

Bounds on opt. sol. are the lower and upper bounds obtained as described
in Section 5;

BKS DCGR is the optimal solution from Dayarian et al (2014a), whenever
it is available;

T (s) DCGR is the computational time of the branch-and-price algorithm
of Dayarian et al (2014a);

ALNS best over 5 is the best solution found over 5 runs of the ALNS;

ALNS avg. over 5 is the average of the solutions found over the 5 runs;

% dev. total cost is the standard deviation of the total cost from the
ALNS best over the 5 runs;

% dev. routing cost is the standard deviation of the routing cost from the
ALNS best over the 5 runs;

T (s) ALNS avg. is the average computational time of the five runs;

% dev. ALNS best from DCGR is the deviation of the ALNS best from
the BKS DCGR;
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% dev. ALNS best from LB is the deviation of the ALNS best from the
lower bound reported in column “Bounds on opt. sol.”;

% dev. DCGR from LB is the deviation of the the BKS DCGR from the
lower bound reported in column “Bounds on opt. sol.”.

For the smaller instances (with 40, 50, and 60 producers), some optimal
solutions are reported in Tables 9 – 13 in column BKS DCGR. We also gen-
erate lower and upper bounds as described in Section 5. The lower bound
has two parts: 1) the value of the optimal solution for the VRP for the ref-
erence period, and 2) a lower bound on the total recourse cost, based on the
bin-packing formulation described in Section 5. For the first part, we adapt
the algorithm proposed by Dayarian et al (2014b) for the deterministic vari-
ant of the problem to solve the VRP corresponding to the reference period.
This algorithm can solve some instances with up to 60 producers; we do not
report bounds for larger problems. We solved the bin-packing formulation
using Cplex 12.6. We compute the upper bound by evaluating the cost of
the solution to the reference period, based on the objective function of the
multi-period problem.

Table 9 gives the results for the instances with 40 producers. Results
show that in the case of 20 out of the 29 instances with known optimal
solutions, the best solution obtained by ALNS over 5 runs corresponds to
the optimal solution. Moreover the average optimality gap of the best ALNS
solutions over these 29 instances is 0.02%. The average deviation of the best
ALNS solutions from the lower bound over the 34 instances for which the
lower bound is available is 1.29%. We also calculated the deviation of the
BKS DCGR from the lower bound, for the cases where both these values are
available. The average deviation BKS DCGR from the lower bound over the
24 instances for which the BKS DCGR and the lower bound are available was
1.28 %. The similitude between the deviations from the lower bound in the
case of the BKS DCGR and the ALNS Best shows the quality of the ANLS
Best even when the BKS DCGR is not available for the basis of comparison.
In terms of CPU time, in the case of the instances with 40 producers, the
gain of using the ALNS compared to the exact solution method is significant
(29 seconds vs. 6128 seconds on average).

Tables 10 and 11 report the results for the instances with 50 producers.
We divided these instances into two groups with 2/3 or 4/6 depots and plants.
Results show that, on average, an increase in the number of depots or plants
does not necessarily affect the performance of the ALNS. A smaller number
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of available optimal solutions in the case of the BKS DCGR for the instances
with a larger number of depot/plant shows the limits of the exact method.
However, the comparison of the average optimality gap (% dev ALNS best
from DCGR) in Tables 10 and 11, 0.05 % vs. 0.03 %, shows that the ALNS
dealt well facing an increase in the number of depots/plants. Moreover,
in Table 10, in the case of 17 out of 24 instances for which the optimal
solutions are available, the ALNS best coincides with the optimal value. In
terms of CPU, comparing the computation time of those 24 instances reached
optimality using the algorithm of DCGR and the 40 instances solved by the
ALNS, we observe a significant reduction (4509 vs. 42 seconds). As for
the second part of instances with 50 producers, reported in Table 11, the
ALNS best corresponds to the optimal solution BKS DCGR in the case of
7 instances out of 12 with known optimal solutions. The comparison of
CPU based on only those 12 instances solved by the algorithm DCGR and
all the 40 instances solved by the ALNS reveals a decrease from over 6300
seconds to 80 seconds. Similar to the case of the instances with 40 producers,
comparable values representing the average deviation of ALNS best from the
lower bound and the average deviation of DCGR from the lower bound ,
whenever the corresponding values are available. This further supports the
claim that our ALNS is able to provide high-quality results (1.24 vs. 1.34
and 1.13 vs. 0.80).

Tables 12 and 13 show results for instances with 60 producers. The
analyses of the results are more limited, as less information regarding the
optimal solution values and the lower bounds is available for these instances.
It can be observed that increasing the number of depots/plants made the
problems harder on average. This is obvious from a larger average deviation
of ALNS best from BKS DCGR in the case of instances with larger numbers
of depots/plants. Moreover, an increase in the value of the average deviation
of the routing cost from the best ALNS comparing to instances with 40 and 50
producers shows the higher difficulty of these instances. Similar to the results
obtained for the instances with 40 and 50 producers, a significant reduction
in CPU time is observed in the case of the instances with 60 producers (part
1: 8164 seconds for the exact algorithm vs. 55 second for the ALNS, part 2:
6297 seconds for the exact algorithm vs. 111 seconds for the ALNS).

Overall, an increase in the number of depots and/or plants (which po-
tentially leads to a larger number of routes to be included in the solution),
increases the average CPU time (e.g., in the case of instances with 40 pro-
ducers: 22 seconds for 2D2P4S vs. 32 seconds for 3D3P4S, in the case of
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instances with 50 producers: 33 seconds for 2D2P4S vs. 100 for 6D6P4S, and
in the case of instances with 60 producers: 41 second in the case of 2D2P4S
vs. 145 seconds in the case of 6D6P4).

The results for the instances with 100 and 200 producers, reported in
Tables 14 – 16, show that larger problems are more difficult. Increasing the
number of plants has a greater impact than increasing the number of depots,
on both the computational time and the deviation from the best solution
obtained by restarting. It is however noticeable that the meta-heuristic we
propose is able to generate good-quality solutions within low computational
efforts even for these difficult instances.

7. Conclusions

We have investigated the design of tactical plans for a transportation
problem inspired by real-world milk collection in Quebec. To take the sea-
sonal variations into account, we modeled the problem as a multi-period
VRP. We developed an ALNS algorithm incorporating several heuristics for
this VRP.

We tested the algorithm on a large set of instances of different sizes.
The results for the smaller instances were compared with the existing exact
solutions in the literature. For the larger instances, where optimal solutions
were not available, we computed lower and upper bounds on the value of the
solution.

While the problem investigated in this paper is rather specific, we believe
that many insights gained from the application of the proposed method to
this problem could be extended to other complex vehicle routing problems.

Future research will include more attributes and constraints such as soft
time windows on the collection, restrictions on the route length, and het-
erogeneous fleets of vehicles. We also plan to consider the situation where
a vehicle may perform several deliveries to more than one plant per day. It
would also be interesting to take into account the daily variations in the
production levels. This transforms the problem into a VRP with stochastic
demands.
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Table 14: Results for instances with 100 producers (1)

Instance ALNS best ALNS avg. % dev % dev T (s)
over 5 total cost routing cost

pr-100-2D2P4S-T1 29519.2 29532.1 0.05 0.21 72
2 depots pr-100-2D2P4S-T2 29831.6 29838.2 0.03 0.14 71
2 plants pr-100-2D2P4S-T3 30193.8 30204.8 0.05 0.18 73
4 periods pr-100-2D2P4S-T4 29968.2 29988.2 0.09 0.35 74

pr-100-2D2P4S-T5 30251.3 30268 0.07 0.28 77
pr-100-2D2P5S-T1 29580.4 29591.2 0.04 0.18 79

2 depots pr-100-2D2P5S-T2 29892.1 29910.4 0.07 0.29 78
2 plants pr-100-2D2P5S-T3 29965 29988.7 0.09 0.37 77
5 periods pr-100-2D2P5S-T4 30100.9 30119 0.07 0.29 83

pr-100-2D2P5S-T5 30228.9 30248.8 0.08 0.33 85
pr-100-2D3P4S-T1 26407.4 26416.5 0.04 0.22 57

2 depots pr-100-2D3P4S-T2 26585.5 26609.1 0.10 0.48 56
3 plants pr-100-2D3P4S-T3 26830.6 26857.3 0.12 0.56 60
4 periods pr-100-2D3P4S-T4 26666.9 26710.9 0.19 0.92 60

pr-100-2D3P4S-T5 26925.1 26939.5 0.07 0.32 57
pr-100-2D3P5S-T1 26415.1 26430.8 0.07 0.36 61

2 depots pr-100-2D3P5S-T2 26626.5 26648.8 0.09 0.45 63
3 plants pr-100-2D3P5S-T3 26671.8 26691.4 0.09 0.43 61
5 periods pr-100-2D3P5S-T4 26786 26832.1 0.22 1.00 63

pr-100-2D3P5S-T5 26859.8 26920 0.27 1.26 66
pr-100-2D6P4S-T1 26940.4 26964.9 0.10 0.47 98

2 depots pr-100-2D6P4S-T2 27148.6 27179.1 0.14 0.60 99
6 plants pr-100-2D6P4S-T3 27418.9 27462.9 0.19 0.81 113
4 periods pr-100-2D6P4S-T4 27164.5 27178.7 0.08 0.35 119

pr-100-2D6P4S-T5 27413.6 27464.6 0.25 1.05 114
pr-100-2D6P5S-T1 26946.5 26980.7 0.15 0.67 114

2 depots pr-100-2D6P5S-T2 27171.6 27218.3 0.20 0.87 116
6 plants pr-100-2D6P5S-T3 27225.8 27248.9 0.11 0.47 121
5 periods pr-100-2D6P5S-T4 27338.8 27347.6 0.04 0.18 130

pr-100-2D6P5S-T5 27430.4 27451.9 0.10 0.44 131
pr-100-3D2P4S-T1 23774.1 23791.6 0.11 0.43 89

3 depots pr-100-3D2P4S-T2 24038.8 24049.3 0.05 0.20 86
2 plants pr-100-3D2P4S-T3 24269.8 24296.2 0.14 0.52 92
4 periods pr-100-3D2P4S-T4 24070.5 24084.5 0.08 0.33 83

pr-100-3D2P4S-T5 24289.4 24300.6 0.06 0.24 85
pr-100-3D2P5S-T1 23808.4 23811 0.02 0.07 86

3 depots pr-100-3D2P5S-T2 24062.1 24073.7 0.06 0.22 97
2 plants pr-100-3D2P5S-T3 24110.6 24127.9 0.10 0.38 97
5 periods pr-100-3D2P5S-T4 24204.8 24233.4 0.14 0.53 106

pr-100-3D2P5S-T5 24311 24315.2 0.03 0.11 107
pr-100-6D2P4S-T1 26283.4 26289.4 0.03 0.15 95

6 depots pr-100-6D2P4S-T2 26482.9 26487.5 0.02 0.10 94
2 plants pr-100-6D2P4S-T3 26721.2 26724.1 0.01 0.06 110
4 periods pr-100-6D2P4S-T4 26557 26572 0.07 0.34 89

pr-100-6D2P4S-T5 26790.2 26812.8 0.10 0.45 116
pr-100-6D2P5S-T1 26319.1 26324.4 0.03 0.12 100

6 depots pr-100-6D2P5S-T2 26533.7 26541.4 0.03 0.17 121
2 plants pr-100-6D2P5S-T3 26592 26598.1 0.03 0.13 116
5 periods pr-100-6D2P5S-T4 26710.7 26729.7 0.08 0.39 122

pr-100-6D2P5S-T5 26793.7 26801.2 0.04 0.16 113
Avg. 33630.72 33655.19 0.11 0.49 113
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Table 15: Results for instances with 100 producers (2)

Instance ALNS best ALNS avg. % dev % dev T (s)
over 5 total cost routing cost

pr-100-3D3P4S-T1 27704.8 27740 0.14 0.59 101
3 depots pr-100-3D3P4S-T2 27904.7 27927.7 0.11 0.45 102
3 plants pr-100-3D3P4S-T3 28143.9 28163.3 0.09 0.35 101
4 periods pr-100-3D3P4S-T4 27803.8 27852.6 0.20 0.82 107

pr-100-3D3P4S-T5 28037.4 28081.3 0.18 0.70 110
pr-100-3D3P5S-T1 27768.7 27779.1 0.05 0.19 107

3 depots pr-100-3D3P5S-T2 27990.1 28015.9 0.10 0.42 107
3 plants pr-100-3D3P5S-T3 28006.1 28023.4 0.07 0.28 111
5 periods pr-100-3D3P5S-T4 28038 28067.5 0.14 0.54 119

pr-100-3D3P5S-T5 28067.9 28076.4 0.04 0.15 121
pr-100-3D6P4S-T1 33482.8 33489.6 0.03 0.14 134

3 depots pr-100-3D6P4S-T2 33605.1 33652.9 0.16 0.81 136
6 plants pr-100-3D6P4S-T3 33501.3 33534.9 0.11 0.59 148
4 periods pr-100-3D6P4S-T4 33185.2 33195.4 0.04 0.22 150

pr-100-3D6P4S-T5 33413.7 33435.1 0.08 0.42 157
pr-100-3D6P5S-T1 33531.2 33560.7 0.10 0.52 139

3 depots pr-100-3D6P5S-T2 33751.2 33760.5 0.04 0.19 141
6 plants pr-100-3D6P5S-T3 33512.3 33540.2 0.09 0.48 154
5 periods pr-100-3D6P5S-T4 33500.2 33519.6 0.07 0.35 163

pr-100-3D6P5S-T5 33345.4 33362.3 0.06 0.30 162
pr-100-6D3P4S-T1 26829.5 26838.3 0.04 0.18 109

6 depots pr-100-6D3P4S-T2 27056.5 27069 0.05 0.24 112
3 plants pr-100-6D3P4S-T3 27256.4 27289.8 0.14 0.60 115
4 periods pr-100-6D3P4S-T4 26980.3 26994.1 0.06 0.27 122

pr-100-6D3P4S-T5 27225.3 27239.1 0.07 0.30 125
pr-100-6D3P5S-T1 26852.4 26858.2 0.03 0.13 114

6 depots pr-100-6D3P5S-T2 27089.7 27110.9 0.09 0.40 117
3 plants pr-100-6D3P5S-T3 27140.4 27152.4 0.05 0.23 120
5 periods pr-100-6D3P5S-T4 27147.4 27177.6 0.13 0.57 129

pr-100-6D3P5S-T5 27176.4 27190.5 0.06 0.28 132
pr-100-6D6P4S-T1 30673 30705.2 0.15 0.68 210

6 depots pr-100-6D6P4S-T2 30878.8 30919.7 0.16 0.70 208
6 plants pr-100-6D6P4S-T3 31076 31109.8 0.15 0.66 218
4 periods pr-100-6D6P4S-T4 30795.9 30824.8 0.12 0.53 226

pr-100-6D6P4S-T5 31072.9 31099.1 0.10 0.46 231
pr-100-6D6P5S-T1 30729 30754.4 0.10 0.47 215

6 depots pr-100-6D6P5S-T2 30929.2 30974.6 0.19 0.83 216
6 plants pr-100-6D6P5S-T3 30995.4 31027.9 0.13 0.58 223
5 periods pr-100-6D6P5S-T4 30964.4 31026.3 0.24 1.07 233

pr-100-6D6P5S-T5 30943.6 31002.7 0.27 1.19 240
Avg. 29852.7 29878.6 0.11 0.47 150
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Table 16: Results for instances with 200 producers

Instance ALNS best ALNS avg. % dev % dev T (s)
over 5 total cost routing cost

pr-200-3D3P4S-T1 53888 53915.7 0.06 0.26 167
3 depots pr-200-3D3P4S-T2 54490.3 54514.3 0.06 0.22 165
3 plants pr-200-3D3P4S-T3 55283.6 55326.7 0.10 0.36 172
4 periods pr-200-3D3P4S-T4 54907 54985.3 0.17 0.63 186

pr-200-3D3P4S-T5 55642 55682.7 0.09 0.33 192
pr-200-3D3P5S-T1 53968.6 53995.9 0.06 0.24 174

3 depots pr-200-3D3P5S-T2 54525.8 54564.7 0.08 0.33 176
3 plants pr-200-3D3P5S-T3 54817.5 54860.6 0.09 0.35 182
5 periods pr-200-3D3P5S-T4 55176.1 55210.7 0.08 0.30 184

pr-200-3D3P5S-T5 55519.3 55551.3 0.08 0.29 195
pr-200-3D6P4S-T1 49392.1 49440.8 0.11 0.54 207

3 depots pr-200-3D6P4S-T2 49871.4 49977.6 0.26 1.20 202
6 plants pr-200-3D6P4S-T3 50415.7 50505.7 0.21 0.95 194
4 periods pr-200-3D6P4S-T4 50163.1 50193.6 0.08 0.36 202

pr-200-3D6P4S-T5 50753.3 50767.6 0.04 0.17 204
pr-200-3D6P5S-T1 49435.4 49509.5 0.17 0.82 217

3 depots pr-200-3D6P5S-T2 49913.3 50014.5 0.23 1.06 215
6 plants pr-200-3D6P5S-T3 50124.4 50178.7 0.12 0.56 213
5 periods pr-200-3D6P5S-T4 50382.9 50439.2 0.13 0.56 212

pr-200-3D6P5S-T5 50668.5 50700.9 0.08 0.35 218
pr-200-6D3P4S-T1 50071.9 50118 0.10 0.47 189

6 depots pr-200-6D3P4S-T2 50576.1 50606.9 0.08 0.33 194
3 plants pr-200-6D3P4S-T3 51270.7 51318.6 0.11 0.46 200
4 periods pr-200-6D3P4S-T4 50913.8 50987.5 0.16 0.69 216

pr-200-6D3P4S-T5 51526.7 51605.9 0.18 0.75 211
pr-200-6D3P5S-T1 50113 50152.8 0.10 0.46 188

6 depots pr-200-6D3P5S-T2 50644.7 50688.8 0.11 0.46 198
3 plants pr-200-6D3P5S-T3 50942.2 50967.5 0.07 0.29 202
5 periods pr-200-6D3P5S-T4 51235.6 51311.9 0.18 0.74 217

pr-200-6D3P5S-T5 51426.1 51537 0.26 1.06 224
pr-200-6D6P4S-T1 57968.5 58008.4 0.08 0.37 318

6 depots pr-200-6D6P4S-T2 58522.4 58565.8 0.09 0.38 329
6 plants pr-200-6D6P4S-T3 58977.3 59060.3 0.16 0.69 351
4 periods pr-200-6D6P4S-T4 58463.3 58536 0.15 0.65 359

pr-200-6D6P4S-T5 59006.3 59039.8 0.07 0.29 369
pr-200-6D6P5S-T1 58006.9 58058.9 0.11 0.49 331

6 depots pr-200-6D6P5S-T2 58597.2 58654.8 0.12 0.50 330
6 plants pr-200-6D6P5S-T3 58701.8 58742.1 0.09 0.36 344
5 periods pr-200-6D6P5S-T4 58880.1 58907.4 0.05 0.23 363

pr-200-6D6P5S-T5 58891.3 58969.3 0.17 0.72 379
Avg. 53601.9 53654.3 0.12 0.51 235
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