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Abstract. Market clearing in auction-based procurement processes face a fundamental 

problem: the market-maker does not have direct access to information about the bidders' 

private preferences, as well as their specific constraints. This issue has motivated the 

development of iterative auction mechanisms that induce the bidders into progressively 

revealing their private preferences. In this paper, we consider a model that abstracts in a 

fairly general way an exchange of interdependent goods and we propose an iterative 

auction mechanism based on the well-known Dantzig-Wolfe decomposition principle, 

where the bidders reveal parts of their preferences through straightforward, utility-

maximizing bids. Our proposed auction mechanism is illustrated on a simulated wood chip 

market and numerical results obtained are contrasted with those of auctions based on 

Lagrangian relaxation.  
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1 INTRODUCTION AND BACKGROUND

The rise of electronic commerce and Business-to-Business procurement platforms was
accompanied by renewed interest in the design of market mechanisms. Used from times
immemorial as support for selling goods and services, auctions are perhaps the most
popular market mechanism known to the human kind. Traditionally, microeconomic
theory sets as chief target the design of direct revelation market mechanisms (MasColell,
Whinston, and Green [21]) where it is assumed bidders will report truthfully their pref-
erences to a market-maker in charge of clearing the market while pursuing an economic
objective (e.g., maximize the overall efficiency). A significant portion of auction theory
is dedicated to the design of auctions as practical implementations of direct revelation
market mechanisms. The latter fall into two categories: (i) one-shot, sealed-bid auctions
or (ii) iterative, multi-round auctions. Thanks to the latter’s superior characteristics
in terms of price elicitation, decentralization of information, and respect of private val-
uation, iterative auction design has attracted the most attention from recent research
efforts.

Most of the recent literature on the design of iterative auction mechanisms has been
directed toward an unilateral, indivisible goods, combinatorial auction setting. That is
one seller selling several heterogeneous goods to many buyers, with the possibility for
the latter to bid on bundle of goods. We shall present a brief overview of this branch
of literature in Section 2, while directing the interested reader to more extensive sur-
veys (e.g., De Vries and Vohra [16]; Mishra [22]). An interesting alternative is offered
by mathematical programming decomposition approaches, which come with a legacy of
addressing large-scale structured optimization problems. Yet, their potential for decen-
tralized decision making, to the best of our knowledge, has not been fully exploited in the
design of iterative auction mechanisms. This paper aspires to contribute to filling this
gap by focusing on one of the most well-known and used of these methods, Dantzig-Wolfe
(DW) decomposition, presented and interpreted as an iterative auction mechanism. The
paper’s starting point is a general combinatorial exchange economy in which the partici-
pants (sellers and buyers) trade heterogeneous but interdependent divisible commodities.
The participants are assumed to be self-interested in the sense that they seek to maximize
their own economic surplus by submitting optimal bids in reaction to prices announced
by the market maker. The paper shows that the application of the DW decomposition
to the centralized efficiency-maximizing allocation model leads to an iterative auction
mechanism that has the ability to achieve social efficiency without requiring complete
information revelation from the participants. The numerical efficiency of the mechanism,
measured in terms of number of bidding rounds and CPU time needed for convergence
is evaluated on a simulated wood chip market. Numerical comparison with another fam-
ily of auction mechanisms based on Lagrangian relaxation (Abrache et al. [1]) is also
proposed. More specifically, The paper’s contribution is twofold: first, it aims to estab-
lish that the DW decomposition principle can form the basis of an auction mechanism
for both a generic multilateral market of divisible goods and a particular procurement
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case inspired from real wood chip markets; second, it contrasts numerically the proposed
DW auction with dual Lagrangian relaxation based auctions in terms of: a) number of
bidding rounds and CPU time to convergence, b) the extent of which a bidding round is
numerically taxing, and c) the potential of stopping the bidding process before the usual
criteria are met. The findings could shed much needed light on practical implementation
aspects of decomposition based auctions, which to the best of our knowledge, have not
been studied in the past.

The paper is organized as follows. We present in Section 2 an overview of the state of
the art in iterative auction mechanism design. Section 3 presents the centralized model of
socially efficient allocation that will be the basis of DW decomposition. In Section 4, we
present and analyze our DW auction. Finally, we devote Section 5 to the experimental
study and numerical analysis of results.

2 PRIOR WORK

Thanks to its numerous desirable properties, which include chiefly incentive compatibility,
the Vickrey-Clarke-Groves (VCG) mechanism (Vickrey [27], Clarke [11], Groves [18])
plays a pivotal role in economic theory. The work on the design of iterative VCG auction
mechanisms that would circumvent the requirement of fully communicating preferences to
the auctioneer has been at the heart of modern auction theory research. In this particular
line, the Combinatorial Auction Problem (CAP) has attracted most interest. The CAP
is the problem of determining welfare-maximizing allocations of several indivisible items
to buyers that have preferences for bundles of items. The existence of equilibrium prices
for the CAP has been investigated and linked to the integrality of the LP relaxation of
the CAP in Bikhchandani and Mamer [4]. Bikhchandani and Ostroy ([5],[6]) propose
extended formulations of the CAP that imply nonlinear - and possibly discriminatory
- bundle equilibrium prices. These advances formed the theoretical background needed
for primal-dual implementations of auction mechanisms. The iBundle family of auctions
(Parkes [24]) belongs to that category, as well as the iBEA (iBundle Extand and Adjust)
Auction (Mishra and Parkes [23], Chen and Takeuchi [8]), which extends iBundle by
determining universal competitive equilibrium prices that can be used to compute VCG
payments.

Another branch of economic research concerns mechanisms based on the so-called
tâtonnement process, originally suggested by Walras [28], and aimed at the determina-
tion of Walrasian equilibria. Generally speaking, Walrasian price-tâtonnement proceeds
by adjusting the price of the various goods one by one until balance of supply and demand
of all the goods is realized. Convergence is guaranteed if additional conditions for equi-
librium stability are satisfied. For instance, the gross-substitutes condition, which states
that the demand for a given item does not decrease if prices of other items increase,
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is sufficient for equilibrium stability (Arrow and Hahn [2]). Examples of implementa-
tions of price-tâtonnement include the WALRAS algorithm (Cheng and Wellman [9]).
Walrasian price-tâtonnement has also inspired computational paradigms such as market-
oriented programming (Wellman [30]), which model and implement resource allocation
problems as distributed systems of autonomous agents reacting to a pricing system. Ap-
plications of this paradigm include the allocation of transportation services (Wellman
[29]), quality-of-service allocation in multimedia applications (Yamaki, Wellman, and
Ishida [32]), vehicle routing (Sandholm [25]), power load management (Ygge [33]), and
decentralized scheduling (Wellman et al. [31]). Quantity-tâtonnement processes form the
other important class of market mechanisms based on tâtonnement. In an iteration of
a quantity-tâtonnement process, the market-maker determines provisional allocations of
goods and participants submit their marginal utilities; the allocations are then adjusted
by the market-maker such that participants with higher marginal utilities are awarded
larger quantities, and those with lower marginal utilities receive lower quantities; the
process continues until an equilibrium state is reached. Specific quantity-tâtonnement
mechanisms include simple fixed and variable step size adjustment methods suggested by
Kurose and Simha [19], and a more efficient Newton-Raphson search method proposed
by Ygge and Akkermans [34].

Since its introduction in Dantzig and Wolfe seminal papers [14, 15], DW decomposi-
tion has steadily attracted attention among academic circles and practitioners alike, with
countless contributions exploring its theoretical aspects as well as applications. A concise
modern survey of the fundamentals of DW decomposition can be found in Chung ([10]).
Detailed expositions along with other decomposition methods (Lagrangian relaxation,
Benders decomposition, etc.) appear in many classic references (e.g., Lasdon [20]) and
in recent textbooks (e.g., Conejo et al. [12]). Applications of DW to specific optimiza-
tion problems also form a rich literature (see for instance Vaidyanathan and Ahuja [26]
for an application to the multicommodity flow problem and a comparative study with
Lagrangian relaxation). Although the economic interpretation of DW decomposition as
a decentralized decision making tool is well documented since the early contributions
(Dantzig [13], Baumol and Fabian [3]), this decentralization has not been exploited to its
full potential in auction design.

3 A CENTRALIZED MARKET CLEARING MODEL

We consider a simplified economy with a set of divisible goods on sale and two categories
of participants, sellers and buyers. This model is the same as the one we previously
used as the basis of an iterative auction mechanism we presented in Abrache et al.
([1]). In the model, there are several heterogeneous goods on sale. Sellers produce
goods according to their specific technology and production cost functions, while buyers
consume goods either directly or as intermediary inputs to a transformation process.

3
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Buyers have preferences for bundles of goods and may also face technological requirements
that constrain their consumption. The following notation is introduced:

• L (resp. S, J ): set of goods (resp. sellers, buyers).

• qs,l (resp. qj,l): quantity of good l, l ∈ L produced by seller s, s ∈ S (resp. consumed
by buyer j, j ∈ J ).

• Ds (resp. Dj): production (resp. consumption) feasibility set of seller s (resp. buyer
j), containing all admissible quantities qs = {qs,l}l∈L (resp. qj = {qj,l}l∈L) that seller
s (resp. buyer j) may produce (resp. consume). These sets are assumed to be con-
vex and
bounded.

• Cs(.): production cost function of seller s, s ∈ S; that is, Cs(qs) is the cost to seller
s of producing qs. This cost function is assumed to be continuous, convex, and
monotone increasing.

• Vj(.): valuation function of buyer j, j ∈ J ; similarly, Vj(qj) is buyer j’s preference
for consuming qj. This valuation function is assumed to be continuous, concave,
and monotone increasing.

In a centralized market mechanism targeting overall efficiency, sellers and buyers need to
communicate to the market-maker their production and consumption feasibility sets and
their cost and valuation functions, respectively. The mechanism’s output is an allocation
of goods and payments sellers (resp. buyers) need to make (resp. receive). The market-
maker needs to determine a socially-efficient allocation, that is, a feasible allocation of
goods that maximizes the overall welfare of all sellers and buyers. More precisely, a
socially-efficient allocation is a solution of model (MC):

max
∑
j∈J

Vj(qj)−
∑
s∈S

Cs(qs) (1)

s.t.
∑
j∈J

qj,l −
∑
s∈S

qs,l = 0, l ∈ L (2)

qj ∈ Dj, j ∈ J ; qs ∈ Ds, s ∈ S (3)

Model (MC) maximizes the market surplus, that is, the difference between the buyers’
valuations and the sellers’ production costs. Constraints (2) match the demand with the
supply, while constraints (3) are buyer and seller quantity feasibility constraints.

With the classical assumptions on the buyers and sellers of having quasi-linear utility
functions and being price-takers, the concept of Walrasian Equilibrium can be defined.
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Definition 1 The allocation q̃ = [{q̃j}j∈J ; {q̃s}s∈S ] and the price vector p = {pl}l∈L form
a Walrasian Equilibrium if: (1) The allocation q̃ is feasible for Model (MC); (2) Vj(q̃j)−
p.q̃j = maxqj∈Dj

(Vj(qj)− p.qj), ∀j ∈ J ; and (3) p.q̃s −Cs(q̃s) = maxqs∈Ds(p.qs −Cs(qs)),
∀s ∈ S.

Condition 1 above means that q̃ is an acceptable allocation for all sellers and buyers,
that matches the total supply with the total demand. Conditions (2) and (3) point out
the behavior of sellers and buyers as price-taking, utility-maximizing participants.

4 A DW DECOMPOSITION AUCTION SCHEME

In the following, we establish that DW decomposition can be interpreted as an itera-
tive auction providing a decentralized way to determine optimal allocations for model
(MC). Assume sets of feasible consumption levels {qrj}r∈kj , j ∈ J , and production levels
{qrs}r∈ks , s ∈ S are initially available to the market-maker. Consider the corresponding

convex hulls: D̃kj
j = {qj =

∑kj
r=1 q

r
jα

r
j :

∑kj
r=1 α

r
j = 1;αr

j ≥ 0,∀r = 1, . . . , kj}, j ∈ J , and

D̃ks
s = {qs =

∑ks
r=1 q

r
sβ

r
s :

∑ks
r=1 β

r
s = 1; βr

s ≥ 0,∀r = 1, . . . , ks}, s ∈ S.

Inner-linearization (Geoffrion [17]) of the production (consumption) feasibility sets
and the cost (valuation) functions suggests to solve linear programming approximations
of the non-linear market-clearing problem (MC). More precisely, it proceeds as follows:

• Approximate Dj, j ∈ J and Ds, s ∈ S with D̃kj
j and D̃ks

s , respectively.

• For qj ∈ Dj, j ∈ J , replace Vj(qj) = Vj(
∑kj

r=1 q
r
jα

r
j) with

∑kj
r=1 α

r
jVj(q

r
j ).

Similarly, replace Cs(qs) = Cs(
∑ks

r=1 q
r
sβ

r
s) with

∑ks
r=1 β

r
sCs(q

r
s).

5

A Dantzig-Wolfe Auction Mechanism for Multilateral Procurement

CIRRELT-2014-70



These approximations yield the restricted master problem (MC-R):

max
∑
j∈J

kj∑
r=1

αr
jVj(q

r
j )−

∑
s∈S

ks∑
r=1

βr
sCs(q

r
s) (4)

s.t.
∑
j∈J

kj∑
r=1

αr
jq

r
j,l −

∑
s∈S

ks∑
r=1

βr
sq

r
s,l = 0, l ∈ L (5)

kj∑
r=1

αr
j = 1, j ∈ J (6)

ks∑
r=1

βr
s = 1, s ∈ S (7)

αr
j ≥ 0, r = 1, . . . kj, j ∈ J (8)

βr
s ≥ 0, r = 1, . . . ks, s ∈ S (9)

Let {α̃r
j}r=1,...,kj ,j∈J

; {β̃r
s}r=1,...,ks,s∈S be an optimal basic solution of (MC-R) and

{µ̃l}l∈L, {τ̃j}j∈J , and {τ̃s}s∈S the corresponding dual multipliers. The optimality condi-
tions for the restricted master problem are: Vj(q

r
j ) −

∑
l∈L µ̃lq

r
j,l − τ̃j ≤ 0, r = 1, . . . , kj,

j ∈ J and −Cs(q
r
s) +

∑
l∈L µ̃lq

r
s,l − τ̃s ≤ 0, r = 1, . . . , ks, s ∈ S.

Thus, the generation of new feasible consumption levels q
kj+1
j , j ∈ J , or production

levels qks+1
s , s ∈ S, that eventually improve the approximation can be done by pricing

out sets Dj, j ∈ J , and Ds, s ∈ S; that is, by solving the sub-problems:

(SP)j : max
qj∈Dj

{Vj(qj)−
∑
l∈L

µ̃lqj,l − τ̃j}, j ∈ J ;

and
(SP)s : max

qs∈Ds

{−Cs(qs) +
∑
l∈L

µ̃lqs,l − τ̃s}, s ∈ S.

The DW decomposition principle has a classical economic interpretation as a decen-
tralized planning procedure (Dantzig [13], chapter 23). A central authority (the head-
quarters) has to devise an optimal operation plan for an enterprise composed of several
subsidiaries. Each subsidiary has private information concerning its technology and how
it constrains its contribution to the overall plan. The headquarters deals with the con-
straints concerning the resource exchange between the subsidiaries. DW decomposition
can be viewed as an iterative decision process in which the role of the central authority is
to determine an optimal operation plan given a set of partial operation plans suggested
by the subsidiaries and to announce corresponding dual prices, while the subsidiaries
react to the announced prices by proposing new promising partial plans.
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For the exchange economy considered in this paper, this principle translates into a
two-phase auction mechanism:

• Phase 1.

In this initialization phase, the market-maker asks the sellers and the buyers to
submit the |L|+|J |+|S| bids required to build an initial restricted master problem.

Denote by k
(0)
j the number of bids submitted by buyer j during the initialization

phase, and by k
(0)
s the number of bids submitted by seller s.

• Phase 2.

At iteration n ≥ 0 of the auction:

• Suppose k
(n)
j and k

(n)
s bids have been submitted, up to iteration n, by buyer

j and seller s, respectively. The market-maker solves the restricted master
problem (MC-R) and announces prices {µ̃l}L∈L, as well as multipliers {τ̃j}j∈J
and {τ̃s}s∈S to the participants.

• Each buyer j, j ∈ J , determines a

surplus-maximizing solution q
k
(n)
j

j of (SP)j. If q
k
(n)
j

j improves on the approxi-

mation, buyer j submits bid B
(n)
j = {qk

(n)
j

j ;V (q
k
(n)
j

j )}.
Similarly, each seller s, s ∈ S determines a solution qk

(n)
s

s of (SP)s. If qk
(n)
s

s im-
proves the approximation, seller s submits bid

B
(n)
s = {qk

(n)
s

s ;C(qk
(n)
s

s )}.

• Stopping Criterion.

The auction may stop when:

• The reduced-cost optimality condition is ε-satisfied for all bidder sub-problems,
with ε being a small constant, which means no significant improvement by any
additional bid is possible; or,

• A maximum number of bidding rounds is attained.

Otherwise, move to the next bidding round: n← n+ 1.

5 APPLICATION TO A PROCUREMENT CASE

Our proposed auction mechanisms are illustrated on a more detailed model of multi-
lateral multi-commodity markets presented in Bourbeau et al. [7]. This model has the
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advantage of being closer to actual applications in procurement, especially in the context
of regulated marketplaces for the trade of natural resources. We briefly present in the
following the notation and the important elements of the model. We refer the reader
interested in more details about the model to [7].

Participants in the market seek to trade a set of products. A product is a basic
commodity with a specific physical denomination (e.g., a wood species). Products are
generally not available in a “pure” state and come rather as part of lots that are “mix-
tures” of several products. Hence, let K be the set of basic products, L the set of lots,
and bkl be the proportion of product k in lot l, k ∈ K, l ∈ L.

It is assumed for simplicity (but with no loss of generality) that each seller may only
offer a single lot. Thus, a lot l ∈ L is attached to seller l and Ql denotes the maximum
quantity produced of that lot. The production cost function Cl(.) of lot l is assumed to
have a continuous, piecewise-linear, and strictly increasing marginal cost function C ′l(.).
On the buyer side, Bourbeau et al.’s model [7] accounts for the differences in quality
among the various lots by considering: (i) a multiplicative adjustment coefficient rlj,
which indicates that one unit of lot l is equivalent for buyer j to rlj units of a standard
lot; and (ii) an additive coefficient slj, which denotes how much more or less buyer j values,
in absolute terms, a unit of lot l with respect to a unit of the standard lot. Furthermore,
the model considers a unit transportation cost tlj between the seller producing lot l and
buyer j. The latter’s preference for a bundle qj = {qj,l}l∈L can accordingly be expressed
as Vj(qj) = Uj(

∑
l∈L r

l
jqj,l) +

∑
l∈L (slj − tlj)qj,l, where Uj(.) is a utility function such that

U ′j(.) is continuous, piecewise-linear, and strictly decreasing. Buyers need also to express
requirements regarding the composition of the lots they purchase. More specifically, let
Mk

j and mk
j denote respectively the maximum and minimum proportions of product k

that buyer j may tolerate in the acquired lots, and Qj the maximum total volume -
expressed in terms of the standard lot - buyer j requires.

With the notation above, the market-clearing problem corresponds to the following
formulation:

max
∑
j∈J

Uj(
∑
l∈L

rljqj,l) +
∑
l∈L

(slj − tlj)qj,l −
∑
l∈L

Cl(ql)

s.t.
∑
j∈J

qj,l − ql = 0, l ∈ L (10)∑
l∈L

rljqj,l ≤ Qj, j ∈ J (11)

mk
j

∑
l∈L

rljqj,l ≤
∑
l∈L

bkl r
l
jqj,l, j ∈ J , k ∈ K (12)∑

l∈L

bkl r
l
jqj,l ≤Mk

j

∑
l∈L

rljqj,l, j ∈ J , k ∈ K (13)

0 ≤ ql ≤ Ql, qj,l ≥ 0, j ∈ J , l ∈ L (14)

8
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Table 1: Characteristics of Problem Instances
Problem Problem description
series # buyers # lots # products ∆m = M −m (%)

S01 50 100 3 30
S02 50 250 3 30
S03 100 50 3 30
S04 100 200 3 30
S05 100 500 3 30
S06 50 100 10 10
S07 50 250 10 10
S08 100 50 10 10
S09 100 200 10 10
S10 100 500 10 10

where qj,l denotes the quantity of lot l purchased by buyer j and ql the total quantity of
lot l procured by the corresponding seller.

The benchmark used is a mechanism based on the centralized market-clearing formu-
lation (10-14), which assumes that the market-maker has access to complete information
about the sellers and buyers valuation and cost functions, as well as their private tech-
nological constraints.

We have performed tests on several problem series made of instances obtained from
a custom problem generator we have developed. Given values for the numbers of buyers,
sellers (lots), and basic products, volumes {Qj}j∈J and {Ql}l∈L, proportions {bkl }l∈L,k∈K,
and tolerances Mk

j ,m
k
j , j ∈ J , k ∈ K are randomly generated according to continuous

uniform distributions over pre-specified intervals. For the sake of simplicity, we considered
purely quadratic buyer utility functions Uj(.), j ∈ J and seller cost functions Cl(.), l ∈
L. This implies no loss of generality, since a simple transformation suggested in [7]
allows to deal with a general piecewise-quadratic formulation as a purely quadratic one.
Furthermore, our instances involved no transportation costs tjl or additive adjustment
coefficients sjl , j ∈ J , l ∈ L. Table 1 displays the characteristics of the problem series
considered in the study. The problem series vary according to (1) |K|, the number of basic
products; and (2) ∆m, the minimum difference between tolerances Mk

j ,m
k
j (∆m = M−m,

where M designates the minimum value Mk
j can take, and m the maximum value of

mk
j ). These two parameters are important since they directly impact the number and

forcefulness of constraints (13 and 12) in the market-clearing formulation. Each problem
series consists of 10 randomly generated instances.

We have set up a DW auction based on our own basic implementation of DW column
generation. The maximum number of rounds has been fixed to 400 rounds. The following
metric is used: GAPdw = (Zcent − Zdw)/Zcent, the gap between the optimal value

9
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Zcent obtained by the centralized allocation model (MC) and the lower bound obtained
by Dantzig-Wolfe auction process Zdw.

The experiments were carried out on a 64-processor, 64 Gigabytes of RAM Sun En-
terprise 10000 operated under SunOS 5.8, with versions 8.0 and 1.2 of the CPLEX solver
and the Concert library, respectively.

The behavior of the DW auction process is summarized in Table 2. The latter displays
the number of bidding rounds considering two stopping criteria: (1) a less-than 10−5 gap
GAPdw, and (2) A less-then 10−6 reduced cost (RC) stopping criterion for the DW
process, that is, no significant improvement by the new bids of the approximation of the
objective during the pricing-out step. CPU times from the start of the auction process to
its conclusion are also displayed in the table. The results indicate convergence on most
instances within the 400 round limit.

In comparison with auctions based on Lagrangian relaxation we propose in Abrache
et al. [1], the following preliminary observations can be made:

1. Auctions mechanisms based on bundle methods provide the only decent competi-
tion to DW, as simpler gradient-based auctions generally fail to converge within
reasonable number of bidding round with an ε-feasible primal allocation.

2. Compared with bundle-based auctions, the following trade-off between the number
of rounds and CPU times could be observed: much larger numbers of bidding
rounds (between 1000 and 2000 for most problem instances) were needed for the
bundle-based auction to converge to ε-feasible primal allocations, with an ε is the
same order of magnitude than the tolerance used by the DW auction; on the other
hand, the CPU times requirements scaled to the number of bidding rounds were
sensibly lower than the DW ones (see Table 3 for a comparison of averages and
standard deviation of CPU time to number of bidding round ratios). This could be
explained by the computational bottleneck created by the solution of the master
problem. Notice that the same observation has been made by other comparative
studies on other types of problems (e.g., Vaidyanathan and Ahuja [26] for the
multicommodity flow problem).

3. The DW-based auction has the significant advantage of being a primal method,
working within the space of feasible allocations from the beginning of the auction
until the end. This means the market-maker could stop the auction anytime with
the guarantee that the allocation returned are always implementable, independent
of the level of efficiency of the overall allocation.

4. The DW-based auction is relatively simpler to understand by both the market-
maker and the bidder thanks to its intuitive economic interpretation. In contrast,
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Table 2: Convergence of the DW Auction for Problem Series S01 to S10.
Problem # Rounds CPU Problem # Rounds CPU

GAPdw ≤ 10−5 RC Criterion (sec.) GAPdw ≤ 10−5 RC Criterion (sec.)
S01Pb01 79 105 227.51 S06Pb01 95 119 328.87
S01Pb02 75 95 204.18 S06Pb02 104 132 377.2
S01Pb03 68 94 202.52 S06Pb03 99 124 348.2
S01Pb04 76 108 234.22 S06Pb04 107 145 401.39
S01Pb05 76 104 224.58 S06Pb05 105 135 387.13
S01Pb06 92 133 304.72 S06Pb06 157 178 556.59
S01Pb07 93 120 285.14 S06Pb07 152 180 573.19
S01Pb08 139 181 457.90 S06Pb08 104 135 412.07
S01Pb09 89 120 273.19 S06Pb09 102 132 391.97
S01Pb10 86 111 252.21 S06Pb10 92 114 342.38
S02Pb01 120 148 1488.44 S07Pb01 113 158 1851.33
S02Pb02 132 176 1859.91 S07Pb02 137 181 2107.41
S02Pb03 116 137 1391.85 S07Pb03 135 179 2131.75
S02Pb04 130 187 2029.14 S07Pb04 126 181 2250.27
S02Pb05 109 148 1516.85 S07Pb05 133 187 2209.31
S02Pb06 120 161 1670.56 S07Pb06 143 177 2117.90
S02Pb07 131 165 1802.64 S07Pb07 130 171 2055.09
S02Pb08 118 167 1740.40 S07Pb08 129 169 2008.47
S02Pb09 131 166 1864.28 S07Pb09 122 161 1858.03
S02Pb10 122 174 1896.38 S07Pb10 141 183 2230.64
S03Pb01 101 130 325.40 S08Pb01 133 166 496.68
S03Pb02 105 135 411.62 S08Pb02 116 142 473.58
S03Pb03 86 112 273.34 S08Pb03 126 161 530.64
S03Pb04 100 133 340.99 S08Pb04 128 151 462.29
S03Pb05 96 128 345.91 S08Pb05 117 147 443.78
S03Pb06 96 125 320.64 S08Pb06 137 178 513.41
S03Pb07 98 129 384.03 S08Pb07 118 145 413.02
S03Pb08 90 119 301.15 S08Pb08 133 174 588.35
S03Pb09 107 138 401.84 S08Pb09 136 162 530.70
S03Pb10 86 117 318.45 S08Pb10 116 147 425.78
S04Pb01 184 249 6737.06 S09Pb01 221 282 7817.13
S04Pb02 169 220 5546.10 S09Pb02 213 293 8163.64
S04Pb03 147 226 5513.94 S09Pb03 192 243 6355.45
S04Pb04 174 228 6016.38 S09Pb04 216 265 7735.9
S04Pb05 160 213 4995.58 S09Pb05 191 237 6589.59
S04Pb06 216 288 9131.96 S09Pb06 245 306 9535.88
S04Pb07 183 244 6733.79 S09Pb07 225 286 7236.46
S04Pb08 152 200 4941.07 S09Pb08 238 298 8553.55
S04Pb09 156 214 5706.89 S09Pb09 225 290 8578.7
S04Pb10 243 293 9873.75 S09Pb10 203 250 6726.14
S05Pb01 285 338 43334.1 S10Pb01 269 345 43360.27
S05Pb02 238 320 39982.90 S10Pb02 400 400 57209.84
S05Pb03 226 308 33954.93 S10Pb03 261 336 37137.53
S05Pb04 249 357 43696.49 S10Pb04 270 365 45529.23
S05Pb05 238 313 36781.61 S10Pb05 282 381 49178.12
S05Pb06 227 280 33363.27 S10Pb06 244 333 38499.70
S05Pb07 236 305 37194.54 S10Pb07 309 399 53485.34
S05Pb08 243 309 38988.24 S10Pb08 305 375 50591.40
S05Pb09 218 327 38237.93 S10Pb09 259 345 41305.67
S05Pb10 368 400 60557.18 S10Pb10 308 381 48641.40

bundle methods are mathematically much more sophisticated. Also, the imple-
mentation and tuning effort needed to successfully put them into practice is much
higher.

6 CONCLUDING REMARKS

This paper has presented a new perspective of mathematical decomposition methods as
iterative auctions in combinatorial exchanges of interdependent goods. We have focused
on DW decomposition, and we have shown that it can be the basis of price-driven iterative
mechanisms in which the participants progressively reveal their preferences to the market-
maker. Numerical results obtained on a wood chip market case show relatively quick
convergence to a near optimal allocation. These results are related to dual mechanisms
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Table 3: Comparison of ratios CPU time to Nbr. rounds for DW and bundle-based
auctions

Problem Average and standard deviation of
series ratios CPU time to Nbr. rounds

DW Bundle

S01 (2.254, 0.117) (0.600, 0.023)
S02 (10.574, 0.367) (1.972, 0.061)
S03 (2.697, 0.204) (0.622, 0.021)
S04 (27.088, 3.092) (3.631, 0.131)
S05 (123.892, 10.417) (13.845, 0.330)
S06 (2.940, 0.142) (1.556, 0.145)
S07 (11.911, 0.249) (5.716, 0.286)
S08 (3.099, 0.194) (1.494, 0.133)
S09 (28.039, 1.626) (11.304, 0.748)
S10 (126.502, 9.121) (40.698, 1.014)

based on Lagrangian relaxation we developed in an earlier paper (Abrache et al. [1])
with an application to the same simulated market, in which we present sub-gradient
and bundle-based iterative auctions. This comparison, albeit a preliminary one, allowed
us to draw insightful conclusions on the degree of suitability of different mathematical
programming decomposition methods to serve as the basis of practical iterative auction
mechanisms. Yet, our conclusions cannot be generalized without a more comprehensive
comparative study involving more problems of various structures. This study, along with
the exploration of the more theoretically challenging issue of incentive compatibility, form
the core of our future research on the topic.
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[28] Walras, L. Eléments d’économie politique pure. L. Corbaz, Lausanne, 1874.

[29] Wellman, M.P. A market-oriented programming environment and its application to
multi-commodity flow problems. Journal of Artificial Intelligence Research, 1:1–22,
1993.

[30] Wellman, M.P. Market-oriented programming: Some early lessons. In S. Clearwa-
ter, editor, Market-Based Control: A Paradigm for Distributed Resource Allocation.
World Scientific, River Edge, New Jersey, 1996.

14

A Dantzig-Wolfe Auction Mechanism for Multilateral Procurement

CIRRELT-2014-70



[31] Wellman, M.P., Walsh, W.E., Wurman, P.R., and MacKie-Mason, J.K. Auction
Protocols for Decentralized Scheduling. Games and Economic Behavior, 35:271–
303, 2001.

[32] Yamaki, H., Wellman, M.P., and Ishida, T. A market-based approach to allocating
QoS for multimedia applications. In Second International Conference on Multi-Agent
Systems, pages 385–392. Kyoto, 1996.

[33] Ygge, F. Market-Oriented Programming and its Application to Power Load Man-
agement. PhD thesis, Department of Computer Science, Lund University, 1998.

[34] Ygge, F. and Akkermans, H. Resource-Oriented Multi-Commodity Market Algo-
rithms. Autonomous Agents and Multi-Agent Systems Journal, 3(1):53–71, 2000.

15

A Dantzig-Wolfe Auction Mechanism for Multilateral Procurement

CIRRELT-2014-70




