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Abstract. Emergency medical services (EMS) are dedicated to provide urgent medical 
care to any person requiring it and to ensure their transport to a hospital or care facility, if 
required. Moreover, in many contexts, EMS also have to provide transportation services 
for patients needing to go from one hospital to another or between their home and the 
hospital. For such organizations, efficient strategies for managing the ambulance fleet at 
their disposal have to be selected, but the highly random and dynamic nature of the 
system under study makes this a challenging task. Most of the published studies which 
have considered these issues have done it focusing on a specific EMS context, one city or 
one territory for instance. However, it is possible to identify several common 
characteristics and processes from one EMS context to another. This is the purpose of the 
generic discrete event simulation-based analysis tool proposed here, which can be 
adapted to a wide range of EMS contexts. In particular, it explicitly considers the two types 
of tasks that can compose the mission of an EMS: serving emergency requests and 
providing transports between care units/hospitals/patients' homes. 
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1 Introduction

An important entry point and a critical element of modern health systems is the pre-hospital part which
is commonly known in North of America as Emergency Medical Services (EMS). The main objective of
an EMS is to provide basic medical care for any person requiring it at the site of an emergency and to
transport these patients to a hospital or care unit, if needed. Furthermore, for critical cases, the response
time to provide first care is a crucial element that can greatly influence the patient’s health and recovery.
In order to ensure an adequate service level to the population of the region they serve, such organizations
have to mobilize and manage efficiently considerable resources (i.e. paramedics, ambulances, emergency
medical responders, etc.). Doing so is an extremely complex task due to, among other reasons, the un-
certain nature of the emergency calls concerning both the arrival time as well as their locations.

In addition to this first task, many EMS are also in charge of a second type of service, which con-
sists in transporting patients between different care units/hospitals or eventually to or from their homes.
These transportation demands or transfer demands, as they will be referred to here onwards, are gener-
ally received dynamically, but sufficiently in advance so they can be scheduled, which is not the case for
emergency demands. In several EMS contexts, the same fleet of vehicles is used to carry out both types
of tasks giving rise to complex decisions regarding fleet management strategies. For simplicity reasons,
most EMS just split the overall fleet into two subfleets, one assigned to emergency calls and the other
to transfer demands. Each fleet is then managed independently. Alternative fleet management strate-
gies such as partial or complete pooling of ambulances can also be considered. These strategies could
eventually result in a more efficient management or a reduction in the fleet size required to achieve a
given service level. However, to evaluate such alternatives, one needs powerful analysis tools. Numerous
problem solving tools have been proposed so far, but simulation is one of the most widely used approaches
(Aboueljinane et al., 2013). Simulation allows to easily integrate stochastic and dynamic aspects faced
in EMS environments. However, most of the simulation studies conducted to address problems arising in
these cases are generally concerned with the specificity of a given city or territory (Mason, 2013). Even
if each EMS operates in a particular and somewhat different context under its own management rules, it
is generally possible to identify several common characteristics and processes from one EMS context to
another. Hence, it would be very useful to develop a simulation-based analysis tool that is generic and
flexible enough to easily adapt to many EMS contexts.

The main objective of this paper is therefore to propose a generic discrete event simulation-based
analysis tool that can be adapted to a wide range of EMS contexts. One interesting aspect of the pro-
posed simulation model is that it explicitly considers the two possible tasks that make up the mission
of an EMS: serving emergency requests and providing transports between care units/hospitals/patients’
homes. In previous EMS simulation models, these two types of tasks have generally been addressed
separately. The proposed simulation model is therefore highly flexible allowing the analysis of several
management strategies for both types of requests, either considered together or independently. Moreover
it can complement another solution tool in a simulation-optimization scheme to validate the results ob-
tained while considering the dynamic and stochastic aspects inherent to EMS contexts.

The paper is organized as follows. Section 2 provides an overview of previous related simulation studies
published in the literature. Section 3 outlines the main EMS characteristics such as its environment,
actors, processes, and decisions. The simulation model is then fully described in section 4. Finally, in
order to verify and validate the simulation model and to show its capabilities, section 5 presents a series
of computational experiments. Concluding remarks and future research avenues are presented in the last
section.

2 Literature review

The literature related to EMS is vast and many studies continue to appear regularly. Most studies re-
lated to EMS are specifically focused on the ambulance location and the ambulance relocation problems.
The ambulance location problem consists in selecting the potential standby sites as well as determining
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how many ambulances should be located at each of them in order to ensure an adequate coverage of
the population. Once implemented, this location plan remains unchanged. The ambulance relocation
problem concerns the relocation of ambulances to standby sites in order to consider the evolution of
the system over a day. Such relocations aim to maintain an adequate service level at all times. Other
problems, such as the dispatching problem which consists in selecting the right ambulance to dispatch
to the scene of an emergency, and the fleet management decision problem which consists in selecting
which type of task to assign to each ambulance, arise in the EMS context. However, studies that explic-
itly analyze those types of decisions are rather scarce compared to the ones dealing with location decisions.

Literature reviews have been published over the past years focusing on both ambulance location and
relocation problems from different methodological standpoints. ReVelle et al. (1989), Marianov and ReV-
elle (1995) and Brotcorne et al. (2003) present an interesting overview of mathematical models applied
to ambulance location problems. Goldberg (2004) and Bélanger et al. (2012) propose a review of the
different approaches developed to tackle location and relocation problems with most of these approaches
falling within the field of mathematical programming, queuing theory and simulation. Finally, Abouelji-
nane et al. (2013) propose a complete survey of simulation models applied to EMS operations. In this
section, we will provide a brief review of studies that consider simulation techniques to address various
problems related to EMS management. This review is not meant to be exhaustive. It rather focuses on
the most relevant works related to the purpose of this paper. We refer those who are interested in a more
detailed description of mathematical models to the reviews cited above.

As stated earlier, simulation is a widely used approach in the field of EMS, either to test different
alternatives or to validate/evaluate solutions obtained by solving mathematical models. One of the first
attempts to address location decisions in an EMS context through the use of simulation is due to Savas
(1969). The aim of the study was to evaluate the possibility of introducing a second site where ambu-
lances could wait. Since then, many researchers have used simulation to analyze and validate different
decisions faced by EMS such as the selection of location plans (Swoveland et al., 1973; Berlin and Lieb-
man, 1989; Lubicz and Mielczarek, 1987; Fujiwara et al., 1987; Goldberg et al., 1990; Harewood et al.,
2002), the dimensioning of the ambulance fleet (Liu and Lee, 1988) and the selection of management
strategies (e.g. dispatching rules (Gendreau et al., 2001; Carpentier, 2006; Andersson, Petersson, and
Värbrand, 2007) and relocation strategies (Repede and Bernardo, 2008; Carpentier, 2006; Rajagopalan
et al., 2008; Gendreau, et al., 2006; Andersson, Petersson, and Värbrand, 2007)). Some authors also pro-
pose simulation-based analysis tools that are able to consider together or independently several types of
decisions (Trudeau et al., 1989; Goldberg et al., 1990; Ingolfsson et al., 2003). More recently, Henderson
and Mason (2005) present a decision support tool developed for the ambulance service of St John (New
Zealand) that benefits from the combination of simulation and specialized data visualization tools (GIS).
The flexibility of this tool also seems to be one important asset since it allows its direct application to
other cases as presented in Mason (2013). Finally, Zhen et al. (2014) propose a simulation model em-
bedded within a simulation-optimization framework in order to determine the best possible ambulance
deployment in a stochastic environment. Table 1 summarizes the main decisions, system characteristics
and assumptions considered in the development of the simulation model proposed in these studies, and
helps position our work with respect to the existing literature.

As can be observed, most studies on ambulance fleet management have focused exclusively on emer-
gency demands. Few studies dealing with transfer demands have been addressed in healthcare contexts
have been studied so far (Beaudry et al., 2009; Hanne et al., 2009; Parragh, 2011; Kergosien et al., 2011)
and they are generally treated as variants of dial-a-ride problems. Both types of problems have mostly
been studied independently. However, alternative fleet management strategies such as partial or complete
pooling of ambulances can also be envisonned. These strategies could eventually result in a more efficient
management or a reduction in the fleet size required to achieve a given service level, but at the price of
more complex managerial and decisional processes. Unfortunately, we found very few tools or research
explicitly addressing this issue and the underlying trade-offs between centralization and decentralization
of resources in the context of EMS. To the best of our knowledge, the only paper that deals simultaneously
with both types of demands is Kiechle et al. (2008). In that study, the authors test different strategies
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Type of decisions or analysis

Fleet dimensioning

Location decisions

Relocation strategies

Dispatching rules

System characteristics

Districting

Priority of calls

Type of requests

Emergency

Transfer

Fleet management strategy (if transfer requests considered)

Independent

Transfer as emergency

Other

Location of ambulances

Static location

Relocation strategies

Dispatching rules

Nearest ambulance

Other

Input data

Demand arrival (inter-arrival times)

Historical data

Deterministic

Empirical dist.

Poisson process (exp.
dist)

Unspecified

Travel times

Fixed matrix

Historical data

Weibull dist.

Gamma dist.

Linear regression

Distance and speed*

Complex computation

Modified euclidean

Unspecified

Intervention times

Deterministic

Empirical dist.

Uniform dist.

Exponential dist.

Normal dist.

Gamma dist.

Historical data

Unspecified

Table 1: Summary of simulation studies
*Methodology used to compute distance and determine speed vary.
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of ambulance movement based on the selection of standby points that can only be hospitals. However,
no step for solving a location problem is considered.

We can conclude that there is still a need for generic simulation models applicable to a wide spectrum
of contexts or that, at least, can be easily adapted to them. This is the aim of the present study which, in
particular, is able to consider the two types of tasks performed by EMSs, i.e. emergency call response and
transfer demands, enabling future studies on a whole array of different management strategies, ranging
from independently managed fleets to fully integrated ones.

3 EMS components

This section presents the main components related to the management of an EMS: the EMS environment
and actors, the emergency and transfer demands processes as well as the various decisions to be taken.
These three components and their relations allow characterizing an EMS.

3.1 EMS environment and actors

An EMS and its environment can usually be summarized by the following elements:

• Zones: Zones are the basic subdivisions of the region to be covered. To each zone is associated a
specific territory often described by its centroid as well as the population to serve within it. The
notion of coverage is defined with respect to these zones: a zone is said to be fully covered if and
only if an ambulance can reach all demands originating in that zone within the prescribed delay.

• Districts: Most EMS also divide the region they need to cover into several districts, each district
being composed of one or several zones.

• Hospitals: Hospitals are the facilities that have the care units needed to receive patients following
an emergency demand. They are also points of departure and/or arrival of patient transfers.

• Potential standby sites: Sites located at strategic locations in the region covered by the EMS
where one or more ambulances can park while waiting for emergency calls. Hospitals are obviously
potential standby sites.

• Depots: A depot represents a location where ambulances start and finish their shifts. There may
be several depots in the region covered by the EMS.

The main actors involved in an EMS are:

• Emergency medical responders (EMR): EMR are the persons who respond to emergency calls.
Their role is to draw up a health check, provide help and advice by phone, determine the priority of
the call depending on the patient’s condition, and decide if an ambulance must be sent to the site
where the patient is located or not. If this is the case, then the call is forwarded to an operator.

• Operators: Operators have the main responsibility of selecting the ambulance to be dispatched
to the scene of the emergency once an emergency call has been transferred by an EMR. Computer
aided dispatch systems (CADS) are sometimes available to guide the operators to take the best
possible decisions. CADS usually display the location of the demands to be processed and propose
a list of ambulances that can be dispatched in order to adequately serve the demand. Operators also
have to manage the ambulance fleet and thus take decisions according to the different ambulance
movements over time such as real-time relocation decisions. If the region to cover is divided into
several districts, an operator can be in charge of one or several districts.

• Paramedics and ambulances: Ambulances are the vehicles used to transport patients. They
carry the medical supplies and equipment required for on-site treatment and they are able to
transport one patient at a time. Each ambulance is manned by a crew generally composed of
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Figure 1: Emergency demand process stages

two paramedics qualified to provide advanced medical care for emergency cases. The ambulance
fleet can either be homogeneous or heterogeneous. In the latter case, several types of ambulances
having different characteristics (e.g. medical equipment, size, etc.) are available. Depending on the
context, the number of available ambulances can vary over time depending on the work schedules
of paramedics. If the region to cover is divided into several districts, an ambulance may be assigned
to one or several districts.

The three main types of actors just described are defined from a functional point of view. Depending
on the EMS context under study, one can find organizations where the processes may differ from the ones
described herein, but they will generally contain these three functional actors.

3.2 Emergency and transfer demands processes

Demands treated by an EMS can be classified into emergency demands and transfer demands.

3.2.1 Emergency demands

Emergency demands arriving to the EMS call center can either require medical advice or the assistance
of an ambulance at the site of the emergency. In the first case, the demand process ends after it has been
processed by the EMR. In the second case, the EMR determines the priority of the call and transfers it
to an operator who will select the proper ambulance to dispatch to the call. Once the ambulance arrives
on the scene, the paramedics will provide the required medical treatment to the patient. If no transport
is required, the demand process ends. Otherwise the ambulance will transport the patient to a specific
hospital, determined according to several criteria such as distance, patient pathology, etc. The hospital
destination can be chosen by paramedics, operators or EMRs. It can be consider as a data or a decision
to be made. After arriving at the hospital, the patient is transferred to the staff of the receiving care
unit. Figure 1 summarizes all the stages involved in the emergency demand process and their duration.
It also introduces the response and service times that constitute the most commonly used operational
performance measures. The response time is generally considered the most important criterion to assess
EMS effectiveness. The arrival time of the calls and the time spent at each stage are not known in
advance.

3.2.2 Transfer demands

Transfer demands are usually received dynamically by the emergency medical responder or directly by
the operators. When the demand is received, an operator will determine which ambulance will perform
the transportation request when needed. The type of ambulance required, the priority, the starting and
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Figure 2: Transfer demand process stages

destination points, the time window during which the transport has to begin in order to be on time at
the destination point, the ambulance availabilities, and the demands already planned will be considered
in the dispatching process. Once the time at which to perform the demand has been reached and the
selected ambulance is available at the departure location, the transportation takes place. This transport
is divided into three main steps. The first part consists in the transfer of the patient from its departure
location to the ambulance. The second corresponds to the ambulance travel to the destination location.
Once the ambulance arrives at the destination, the last part concerns the transfer of the patient to its
service destination (usually by stretcher or wheelchair) (cf. Figure 2). However, a transfer demand may
be canceled at any time before the patient is loaded into the ambulance, forcing the operators to revise
the planning.

3.3 Decision making

To ensure an adequate service level to the population, an EMS has to mobilize several resources (i.e.
paramedics, ambulances, EMRs, operators, etc.) and then, manage them efficiently. Therefore, several
questions arise regarding the means and strategies to be deployed in order to respond efficiently to
the demands received, for instance: How much of each resource should be mobilized? How should the
ambulance fleet be managed? Where should the ambulances be located? All such decisions can be
classified according to three levels of decision-making:

• Strategic level: Long-term decisions address the location of the depots or call centers, the type of
management, the dimensioning of the ambulance fleet (for each type of vehicle), the determination
of the staffing levels and the division of the territory into districts.

• Tactical level: Medium-term decisions involve the location of the potential standby sites, the
selection of staff management strategies (crew pairing and scheduling), and the allocation of the
ambulances to task types (emergency or transfer demands) as well as their eventual allocation to
potential standby sites.

• Operational level: These short-term decisions concern the management rules such as dispatching
decisions, choice of hospital, redeployment policies, break scheduling, and the scheduling of transfer
demands.

The decision-making process is very important in the EMS context. Indeed, the choices and decisions
made will directly impact the quality of service for both types of demands as well as the operation costs.
Moreover, these decisions are usually closely related and may have significant impact on each other. In
order to better assess and analyze the impact of each decision on the performance of the system, we
propose the development and use of a generic simulation model.

The simulation model proposed in this work can be used to consider decisions at the three levels either
by changing the input data or decision routines. At strategic and tactical levels, input data such as the
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Figure 3: Simulation model architecture

number of ambulances or the allocation of ambulances to task types can be modified to address different
situations. At the operational level, decision routines that replicate the policies or strategies to evaluate
can be adapted to the context under study. The simulation model thus aims to be flexible enough to
address decisions taken at all levels, but also to evaluate the interaction between decisions at the different
levels. In particular, and in order to illustrate the potential of the proposed simulation model, Section 5
evaluates two strategies to respond to urgent and transfer requests.

4 Simulation model

An important feature of our simulation model is that it separates ‘physical’ parts (the resources) from
‘decisional’ parts: doing so allows us to better understand EMS management strategies and also increases
the flexibility and generality of the model. Taking this into account, the proposed EMS object-oriented
model is built on the following components: an Input data block containing all the system parameters as
well as the information on the system state at the beginning of the simulation, a Demand generation block
that provides the emergency (i.e. urgent) and transfer requests, a Simulation engine which manages the
simulation clock, a Travel time block which estimates ambulance travel times between sites, a Decisions
block which decides, according to the current fleet situation, the different tasks and activities to be
assigned to each particular ambulance, and finally, a Performance measurement block which traces and
compiles all the information required to evaluate the system performance. The model architecture is
illustrated in Figure 3.

4.1 Input data

Input data can be classified into two groups. The first one defines the system and its configuration, in
particular the division of the region under the EMS responsibility into zones and districts, the list of
available ambulances, the set of potential standby sites, and the set of hospitals in the region. A zone is
characterized by its geographical Cartesian coordinates, a population density, and a probability vector.
The probability vector of a given zone x represents, for each period, the probability that the next request
is located in x. Since this probability can evolve according to the time of day, a day is decomposed into
several periods whose length can be fixed by the user. To each zone is also associated a set of potential
standby sites from which the zone can be reached (covered) within some pre-specified time delay (the
covering time), or several of such sets if more than one covering time is used. The set of standby sites
contains their geographic location as well as the maximum number of ambulances that can be stationed
at each site. Each hospital is characterized by its location and a probability vector containing, for each
time period, the probability that a transfer demand originates at that hospital. The second class of data
defines the initial state of the system. It includes the initial position of ambulances, the initial state of
each resource, etc.
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4.2 Demand and random variable generation

Simulation models uncertain events by means of probability distributions. An important part of simu-
lating consists in sampling these probability distributions in order to draw random variable realizations
or, in other words, plausible specific values for uncertain events to be used during the simulation execution.

For example, service time at a patient site is, in practice, uncertain. We model service times by
a probability distribution function of known parameters. When we simulate ambulance activities, we
sample this function to generate the actual time that the ambulance will spend at the patient site. Note
that several random values are set in advance, before the simulation starts, but will only be used by
the system later on. For instance, although a request may not require the transport of the patient to a
hospital, an ambulance needs to be sent to the site and only after the paramedic team has arrived will it
become known whether or not the transport is required.

The reason why some random events and values, such as service times, are not generated dynamically
during the simulation but drawn a priori and stored as input data files is twofold. First, this approach is
very useful during the model development because it allows to validate/verify the model behavior and to
debug the code if required. Second and more importantly, generating as much random events as possible
out of the simulation execution drastically reduces the variance of the simulation results. Indeed, when
comparing the performance of two management strategies or configurations, one never knows which part
of the measured differences is due to the particular values taken by random variates in each simulation and
which is due to the differences between the tested alternatives. Variance reduction techniques promote
the use of independent random numbers between replications of a same experiment, but of strongly
positively correlated random numbers between runs of different alternatives. Using the same variates for
all the configurations under study clearly minimizes variance of the results.

4.3 Simulation engine

The model proposed in this paper is based on discrete event simulation (DES). DES, as defined in Law
and Kelton (2000), deals with the modeling of a system as it evolves over time by a representation in
which the state variables change instantaneously at particular points in time and where the system is
defined by a set of entities each characterized by a set of attributes and a set of state variables. These
points in time are the ones at which an event occurs, where an event is defined as an instantaneous
occurrence that may change the state of the system. The events management is provided by a simulation
engine, a timing routine which is in charge of moving the simulation clock from one event time to the
following. Each time an event occurs, some decision procedures are triggered and the state of the system
and it’s entities are modified or adjusted according to the decisions taken. The simulation process then
resumes moving the simulation clock to the next event.

Model entities. From an implementation perspective, the simulation model is composed of program-
ming ‘blocks’ which represent entities and servers within an EMS. Entities have fixed attributes (i.e.
characteristics that do not change during the simulation execution) and states (i.e. characteristics which
evolve during the simulation execution). The model uses two main entities, Requests and Ambulances.

Request entities can take three states only: waiting, in treatment and done. However, they are
characterized by a large number of attributes, among which it is worth to mention:

• Type of request : emergency or transfer,

• Diag : hospital or abort (indicates if the patient of an Emergency request needs to be transferred
to the hospital, and if yes, to which one),

• Arrival time, Treatment time at scene (for emergency requests).

Since we use an Object-Oriented approach, the same “request” structure is used to represent an un-
limited number of requests which differ one from the other by the specific values taken by their attributes
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Figure 4: Possible states for an ambulance

(origin zone, call time, request type).

Ambulance is the second type of entity. A generic Ambulance also has specific attributes (for example,
it is assigned to a fixed depot and works under a given fixed schedule) and may evolve through different
states (it may be idle, in transit towards a standby point, or even responding to an emergency request)
as the simulation runs. More precisely, Figure 4 illustrates the possible states of an ambulance. The
left part of the figure describes the cycle of states associated to a transfer request, while the right part
depicts the one for an emergency request. Transitions between states follow from the realization of the
events.

Discrete-event simulation engine. The simulation engine described in this paper is inspired from the
one proposed by Pidd (2004), which consists of a three-phase algorithm that allows the clock to be ad-
vanced asynchronously from one event to the next. The simulation engine works with a list of events
sorted by their execution time. Each time an event is executed, the system state (and eventually the
entities states) is modified accordingly, and the simulation clock moves to the following event in the list.
Sometimes, the execution of an event does not change the state of the system, but rather generates new
events to be added to the list. In this case, the time at which the event will be executed is computed or
simulated (drawn from an appropriate probability distribution). Events are classified into bounded (B)
and conditional (C). B-type events are those for which the execution date can be predicted (or simulated)
by the system. For example, let t be the current time at which a particular event (e.g., departure from
standby site towards request site) is executed. The execution of this event implies changing the ambulance
state from idle to traveling to scene, changing the request state to in treatment, and the generation of a
new event (e.g., arrival to request site) whose execution date can be stated as t+ d, where d is the travel
time between the ambulance standby site and the location associated with the specific request. Regard-
less of the approach followed to model travel times, which can be either deterministic or stochastic, d is
a computed or simulated value. On the other hand, the execution date for conditional events cannot be
determined in advance because they depend on the current system state. For example, it is not possible to
set the execution date of an event like departure from standby site towards request site in advance because
the event can only be executed when the following two conditions are satisfied simultaneously: (1) an
emergency request is waiting to be served, and (2) an ambulance able to serve that request is available.
By defining different condition sets for conditional events, it is quite straightforward to integrate specific
behaviors or management strategies.

Table 2 illustrates the possible states for the main system entities (request and ambulance). We noted
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E an emergency request, T a transfer request, D a dispatcher (operator) and A an ambulance.

4.4 Decisions block

The execution of some events implies modeling and reproducing some of the decision processes carried
out by operators or dispatchers. Indeed, these decision processes mimic the practices and tactics followed
by the EMS organization under study. In fact, one might see the Decisions block as the “expert” to
whom the simulator turns to when choices need to be made like, for example, selecting the ambulance to
respond to an urgent request. This “expert” may take the form of a mathematical program, an artificial
intelligent algorithm, or in the simplest case, decisions rules. These decisions, as well as the specific
choices selected in the context of this study will be discussed in Section 5.3.

4.5 Travel time calculator

Simulating travel times is a very difficult yet important task. In fact, travel times influence the precision
of the simulation results and are a key element when evaluating the credibility of the simulator. Although
most of the simulators in the literature use pre-computed travel times between pairs of pre-determined
points (zone centroids, standby points, and hospitals), in our context, the fact that an ambulance may be
diverted while it travels towards a new destination, implies that one needs to be able to evaluate where
the ambulance is at the moment it is diverted in order to compute a precise travel time from that point
to the new destination. Several methods can be used to estimate travel times, including sophisticated
methods linked to powerful geographic information systems (GIS). We elected to implement the following
relatively simple and generic method based on a priori knowledge of some real travel times or estimates
for a set of important or frequent locations (e.g. hospitals, potential waiting sites, zone centroids, etc.).
Let M be the matrix of known travel times between these locations, the size of M depends on the amount
of information that can be obtained from the real case studied. Evidently, increasing the number of points
in M will increase the accuracy of the estimated travel times. During the simulation, the computation
of the travel time tab between two locations a and b not in matrix M , is based on the known travel time
ta′b′ between two locations a′ and b′, where a′ and b′ are the locations in M that are the nearest to a
and b respectively, and on the Euclidean distances from a to b and from a′ to b′ noted dab and da′b′ , as
follows :

tab =
dab ∗ ta′b′

da′b′

Clearly, this method is not as accurate as a GIS based one. However, if matrix M contains enough points,
this method should approximate adequately travel times by taking into account through the data in the
matrix the presence of obstacles or particular features of the transportation infrastructure (e.g. highways,
bridges, tunnels, one-ways etc.) as well as the general traffic conditions on the itineraries corresponding
to each pair of locations in M . When an ambulance is diverted, its current position is estimated at a
distance equal to α from the original point in direction of the destination point, where α is the ratio
between the elapsed time since the ambulance left its departure point and the total travel time to the
destination point.

4.6 Performance measurement

The last block is devoted to support the analyses of the simulation results by the user. To this end,
a complete history of the simulation is used to calculate some performance indicators. This history in-
cludes all movements and demands performed by each ambulance, all the times at which the entities and
resources states changed, and other statistical information about the decisions taken, e.g. the number of
deployments. Some of the performance indicators offered to the user are: the response times to answer
calls by EMRs and operators, the elapsed time between the arrival of an emergency call and the arrival
of the ambulance at the accident scene for emergency demands, the delays for transfer demands, the
workload of each team and amount of overtime if there was any, the number of times an ambulance was
redeployed or diverted. The list of movements of each ambulance can in particular be used to visualize
the work of ambulances through a graphical interface.
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The next section proposes some computational experiments which will allow to illustrate how the
generic simulator may adequately reproduce any real or pseudo-real environment. Before presenting the
computational results, we will discuss how the model was verified and validated.

5 Computational experiments

This section presents several numerical experiments illustrating the usefulness and flexibility of the sim-
ulation tool. However, it is not meant to show wether a given management policy is better than another.
For this, the simulator would need to be fed with the real data and decision rules of a particular or-
ganization which is not the case here. The section describes also how verification and validation of the
simulation model were conducted.

5.1 Implementation, verification and validation

The simulation model was implemented in C++. The use of a generic programming language was justified
by the need of higher flexibility and to avoid the restrictions due to specific architectures of simulation
softwares. Moreover, this approach allows us to easily build routines that will replicate almost any deci-
sion procedure.

The verification of the simulation model consists in the following activities: inspecting simulation
program logic, performing simulation test runs and inspecting sample path trajectories, and performing
simple consistency checks (Altiok and Melamed, 2007). In order to ease the verification process, the
simulation tool has been designed to store the complete history of all the events and decisions performed
during the simulation experiment, i.e. the sequence of tasks and movements performed by each ambulance
as well as the information regarding each specific demand. Thus, the sequence of events for some specific
ambulances or demands can be traced to make sure that the implementation is correct and the simulation
works the way it is supposed. Several functions have been implemented to check the correctness of the
simulation process. Among others, functions check if the succession of entity/resource states are correct,
if the ambulance routes are feasible with respect to times and locations, if all demands are performed
as they should (e.g. on the right day, at a reasonable time, with emergencies requiring transport to a
hospital effectively followed by such a transport, etc.).

5.2 Test data

We decided to base our test data on a real city in order to adequately represent EMS issues such as
high and low density zones, the presence of a downtown sector, and so on. Therefore, the context of
Montreal and Laval (the suburb just north of Montreal), which constitute the major population center in
the province of Québec (Canada) with about 2.3 million inhabitants (Urgences-Santé, Rapports annuels),
was elected. However, the EMS described here is fictitious in the sense that the strategies and rules that
implement the operational and real-time management of the system such as fleet management strategies,
location and relocation policies, as well as dispatching decisions, are based on a set of rules generally con-
sidered and accepted in the literature rather than the ones actually used by the local EMS of Montreal
(Urgences-santé) for which we have no official information. Thus, two sub-fleet of ambulances (one for
emergency and one for transfer) were considered, the nearest ambulance is always dispatched to a call
and the location of ambulances are determined in real-time based on the system state, which seems to
be in line with the strategies used by the local EMS. Nevertheless, the way each of these decisions are ef-
fectively taken is based on models proposed in the literature which will be discussed in the next subsection.

Figure 5 shows the region covered by the fictive EMS where each dot represents the gravity center of
a zone and the size of a dot indicates the relative importance of the population in that zone. The region
contains: 600 zones, 40 potential standby sites arbitrarily located, two depots, and 15 hospitals.

In the experiments, we consider that the fleet is managed in a “centralized” manner, meaning that
a sole decision maker manages the whole region and all the ambulances. However, the simulation can
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Figure 5: Cartography of the region to cover

easily be parameterized to consider several districts. Also, since no real data was available to us regarding
the demand, ambulances travel times or service times, we randomly generated a set of realistic data by
merging several sources of information: annual reports of the local EMS organization Urgences-Santé
(Rapports annuels), population statistics for the region (Statistics Canada (2012)), and information col-
lected from the literature. Most of these informations being of an aggregated nature, we therefore set the
parameters of our generator empirically in order to ensure that the detailed data generated was effectively
realistic and adequately fitted the aggregate data collected (in terms of total number of requests of both
types, number of transports, number of teams and size of the fleet).

As is generally accepted in the literature (Ingolfsson, 2013), an exponential distribution was used to
model the inter-arrival times between two consecutive emergency demands. We divided each day into 12
two hour periods to build a daily workload curve which accounts for the variation in demand intensity
throughout the day. The mean of the exponential distribution was arbitrarily set to a specific value for
each of these periods, ranging from 1.5 to 5 minutes. As suggested in Law and Kelton (2000), we used
the method described in Lewis and Shedler (1979) to generate arrivals from the resulting non-stationary
arrival process. Once a request is generated, we use the process depicted in Figure 6 to set its type,
attributes, and sampled probability distributions. For example, once the arrival of a new request is gen-
erated, its type is set to Urgent with a probability 0.75 or Transfer with probability 0.25. If the request
is set to Urgent, then we randomly decide if the request will need transportation to a hospital or not
(probabilities of 0.75 and 0.25, respectively). If a Transport to a hospital is generated, then Time at
scene and Discharge time at hospital are drawn from Gamma distributions according to the observations
in Schmid (2012).

An urgent request is associated to a specific zone following a discrete distribution where the proba-
bility of selecting a zone depends on its demographic weight.As discussed in (Aboueljinane et al., 2013),
this is one of the approaches proposed to adequately generate demands. For transfer requests, their ori-
gin location (or destination) is randomly determined to be a hospital with probability 0.85 (the specific
hospital also being selected randomly) or a patient’s home (with probability 0.15). In the latter case, the
specific coordinates of the patient’s home are generated uniformly.

We also assumed that call handling by EMRs and operators is not a bottleneck, so the number of
EMRs and operators in the simulation model were set to values large enough so that incoming calls
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Figure 6: Generation process of attributes and random values for a request

would generally not have to wait before being answered. Call processing times by EMRs and operators
are generated according to a Gamma(1;2) distribution.

Travel times are computed as described at the end of section 4.5 using the Euclidean distance between
each point. It is important to recall that the demand generator as well as the travel time computations
are independent from the simulation tool itself. Different probability distributions or parameters can
easily be used to model other contexts. Moreover, GIS based methods could also be used to compute
more accurate travel times.

5.3 Decision procedures

Within each simulation run, several decisions need to be made to adequately handle both types of de-
mands. This section discusses the strategies adopted to tackle these decisions as well as the algorithms
used to solve the underlying problems.

Our experiments will compare two different fleet management strategies. The first strategy considers
that ambulances are separated into two fleets, one assigned to emergency demands and the other as-
signed to transfer demands, and that the two are managed independently. The second strategy considers
a complete pooling of ambulances where both emergency and transfer demands can be assigned to any
ambulance. Let us describe first the case of independent fleets.

Decision procedures of the independent fleet management: In the case of emergency demands,
the decisions that have to be made are vehicle deployment, redeployment and dynamic redeployment
eventually, as well as deciding which vehicle to assign to each request. In fact, each time an ambulance
becomes available (i.e. starts its working shift) or unavailable (i.e. it is assigned to a mission or it ends
its working shift), or whenever the coverage has degraded under a given threshold, the system considers
where to deploy or redeploy the whole fleet. The relocation problem is based on the one proposed in
Gendreau et al. (1997), in which two types of covering constraints are considered, as recommended in
the United States EMS act (United States EMS Act, 1973): absolute covering constraints requiring all
demands to be reachable by at least one ambulance within a given time limit r2 and relative covering
constraints stating that a proportion α of all demands have to be reachable within a given time limit r1,
with r2 > r1. In our case, r1 is set to 9 minutes, r2 to 11 minutes and α to 90% of the demands. The
model aims at maximizing the sum of the zones that are covered twice within r1 minutes weighted by
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the probability of a new demand occurring in that zone. This performance measure is often used in the
literature to take into account the stochastic nature of ambulance availability (i.e. although located to
cover a given zone an ambulance might eventually be unavailable if it is already answering a previous
emergency). By using the maximum double coverage one seeks to maintain coverage of demand areas as
high as possible even though some ambulances may be already responding to calls. This idea was first
introduced by Hogan and ReVelle (1986) and used in several studies among which the one of Gendreau
et al. (1997) that was selected to illustrate the simulation-based analysis tool. The relocation plan is
computed and applied if the coverage has degraded too much i.e. not all zones can be reached by an
available ambulance within r2. In order to avoid infeasible solutions, we relax the covering constraints
and strongly penalize their violation in the objective function. Also, to prevent a specific ambulance from
being relocated too often, we include a penalty term for ambulances that have been relocated recently.
The solution obtained indicates where the available ambulances should be placed. Then, which specific
ambulances to redeploy are identified by minimizing the total traveled distance which consists in solving
a min-cost max-flow problem. Finally, when a new emergency demand occurs, the nearest available am-
bulance is sent.

Transfer demands, on the other hand, are scheduled to form “routes” (i.e. a sequence of transfers
to do). Routes are designed using a tabu search algorithm similar to the one proposed in Kergosien et
al. (2011). It uses a lexicographic objective function which first minimizes the sum of transportation
delays and crew overtimes then the sum of traveled distances, the motivation being that in practice the
first criterion is often more important than the second (the latter serving only to avoid useless return
trips). Since requests arrive dynamically, all routes are recomputed each time a new demand occurs or
an existing demand is cancelled.

Decision procedures of the complete pooling fleet management: In the case of a single pooled
fleet, all vehicles are considered as in the case of the emergency fleet described above. Whenever a transfer
demand arrives, it is modeled as a “dummy” emergency demand that will appear at the starting time
of the time window during which the transport has to begin. The nearest available ambulance will be
assigned to it.

5.4 Results

The objective of the experiments presented here is first to verify and validate the simulation model by
assessing how the performances obtained through the simulator correspond to the expected ones as well
as through consistency analyses. The second objective of these experiments is to illustrate the flexibility
and capability of the simulation tool, i.e. that the simulation tool is able to model several management
strategies and measure their expected performance for a given context. In particular, this shows that the
simulation model works efficiently and can be adapted to replicate the two fleet management strategies
described previously. However, we want to stress that these experiments are in no way intended to be a
thorough comparison of the alternate management strategies considered nor to compare or judge existing
methods for solving the different optimization sub-problems present in the context of ambulance fleet
management (i.e. dial-a-ride problem or ambulance relocation problem).

The experiments are structured as follows. For each management strategy (independent fleets and
pooled fleet), we explored two cases having a total of 150 and 200 paramedical teams, respectively. By do-
ing so we wish to assess if and how much system congestion (i.e. when reducing the amount of resources)
translates into worse performance values. We assume that teams work each day, on 8-hour shifts. To set
the number of paramedical teams on duty at each time of the day, we generated first a workload curve
and then we assigned teams and vehicles to time slots in order to respect standard working constraints
(i.e. maximum shift length and lunch breaks). Figure 7 shows the number of paramedic teams on duty
depending on the time of day for the case where 200 ambulances were considered.

In order to verify and validate the simulation model, several performance measures were recorded over
the simulation runs. We report hereafter those measures we deemed the most relevant with respect to the
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Figure 7: Number of ambulances during a day

objectives of the computational experiments. Results reported in Table 3 are based on 20 replications,
each one composed of the same 7 consecutive simulated days. In order to remove the transient states
corresponding to the first and last day of the horizon, the reported results are computed using only the 5
middle days. The time required to perform a simulation run (i.e. the 20 replications) is about 2 hours for
the independent strategy and 20 minutes for the complete pooling strategy. It should be stressed, how-
ever, that the essential part of the overall computation time is due to the running times of the algorithms
that replicate relocation and routing decisions. In particular, the tabu search algorithm used to take the
routing decisions for transfer demands in the independent strategy requires considerable computing time
which also explains why there is such a significant difference between the running times of the two fleet
management strategies.

For each measure, the values reported are the average over the 20 replications and the standard devia-
tion within parenthesis. As mentioned earlier, special attention was given to the use of Variance Reduction
Techniques (Law and Kelton, 2000) like using common random numbers for the different replications. As a
result, the standard deviations for performance measures are generally small even for only 20 replications.

Let us first analyze the results for the 200 ambulances case. In terms of service, both strategies
handled an average 2593.4 urgent and 649.7 transfer requests. Both management strategies were able to
respond to approximately 75 % of emergency demands within the 9 minutes threshold and around 90%
within 11 minutes, the average response time for urgent requests being 439.7 and 433.6 seconds for the
independent fleets and pooled fleet, respectively. We therefore observe very similar performances with
a slight advantage to the pooled fleet. Unsurprisingly, these performances are significantly below the
theoretical ones embedded in the deterministic relocation mathematical model (which was configured to
ensure response to 90 % of the demands in less than 9 minutes and 100 % in less than 11 minutes). How-
ever, this gap between theoretical and empirical performances is easily explained by the strong variability
of emergency demands which is not taken into consideration by the relocation model.

As for the transfer demands, the complete pooling strategy clearly outperforms the independent fleets.
This was expected because the pooling strategy allows any ambulance to serve any demand thus increas-
ing the system flexibility. In other words, the system can take advantage of any lull in emergency demand
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Fleet of 200 ambulances Fleet of 150 ambulances
Fleet management strategies Fleet management strategies
Independent Complete Independent Complete

Emergency demands pooling pooling

Number of emergency demands 2593.4 (49.3) 2593.4 (49.3) 2600.8 (40.4) 2600.8 (40.4)

Response time (R.T) in sec. 439.7 (4.1) 433.6 (4.0) 514.9 (13.9) 541.0 (15.2)

Percentage of demands such that
R.T.≤ 540 sec.

74.4 (0.81) 75.7 (0.78) 57.5 (1.5) 58.1 (2.0)

Percentage of demands such that
R.T.≤ 660 sec.

90.0 (0.62) 90.7 (0.68) 75.3 (1.7) 75.2 (1.8)

Transfer demands

Number of transfer demands 649.7 (18.2) 649.7 (18.2) 653.9 (15.1) 653.9 (15.1)

Number of late transfer demands 69.7 (20.88) 1.6 (1.6) 265.2 (36.0) 52.9 (18.7)

Delays per late requests in sec. 3266.2 (1232.5) 310.4 (191.5) 6658.8 (830.1) 1221.6 (361.3)

Ambulances

Number of diversions 1949.8 (87.1) 2333.2 (120.4) 2792.2 (80.2) 3250.4 (75.1)

Number of relocations performed 652.8 (30.2) 682.4 (32.5) 490.5 (19.1) 432.9 (23.9)

Percentage of time ambulances per-
form empty travels

20.4 (0.3) 23.4 (0.2) 23.2 (0.2) 25.0 (0.2)

Percentage of time ambulances are
occupied

44.8 (0.9) 44.7 (0.9) 59.4 (0.9) 59.8 (1.0)

Number of overtimes for
paramedics

614.9 (5.4) 599.6 (6.8) 481.1 (5.9) 461.0 (6.9)

Overtime for paramedics in sec. 3659.7 (101.3) 3649.3 (102.7) 4558.4 (184.9) 4829.2 (213.9)

Table 3: Results

arrivals to serve waiting transfer demands. In particular, the pooled fleet performed only 1.6 late trans-
fers, on average, while the independent fleet incurred 69.7 for the same number of transfer requests. The
average delay of late transfers were of around 5 minutes in the case of the pooled fleet, but of almost
55 minutes in the independent fleet case. We were surprised by the large values of the average and the
standard deviation of delays produced by the independent fleet, but after a thorough look at the results,
we realized that this was the result of some transfer demands not being able to be performed during the
day and that had to be postponed to the next day (thus resulting in delays are larger than 28800s). Al-
though this behaviour does not make much sense in practice (overtime could/should be used to complete
all the demands), it confirms that the simulator reproduces with fidelity the management rules proposed
by the user. It is also worth to mention that the similar performances produced by the two management
strategies were also expected since the size of each fleet in the independent fleets case was “optimized”,
in other words, they were selected to fit the demand curve as described previously.

Regarding the efficiency of the fleet, ambulance occupation was around 45% for both strategies, the
pooled fleet performing in average a few more diversions and relocations than the independent fleet
(2332.2and 682.4 as opposed to 1949.8 and 652.8). These results were expected because (1) diversions
might occur frequently in the complete pooling strategy due to the priority of emergency demands over
are transfer demands, and (2) diversion is limited to the urgent fleet when they are managed separately.
The increase in both the number of diversions and relocations directly leads to an increase in the per-
centages of time ambulances perform empty travels. This could be seen as the “price of flexibility”.

The right part of Table 3 shows how performance deteriorates when the number of ambulances is
reduced from 200 to 150, leading to a more saturated system with higher occupation rate (almost 60%).
Average response times increase to 514.9 and 541.0 seconds while the percentage of demands responded
within 9 minutes falls to 57.5% and 58.1%, for independent fleets and pooled fleet, respectively. Similarly,
the number of late transfers as well as the average delay increase for both management strategies. In
such saturated conditions, there is not much opportunity left to perform relocations, because ambulances
are occupied too often. Nonetheless, more and more diversions are performed as a way to respond to the
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arrival of urgent demands.

The analysis of these results, allow us to conclude that the proposed simulation model indeed suc-
ceeds in adequately representing a complex EMS context as well as two very different fleet management
strategies such as what was considered in this study, and this under different conditions (number of
ambulances). It therefore successfully illustrates the flexibility and usefulness of the proposed simulation
model confirming thus the great potential of such analytic tools for investigating the performance of
varied and eventually quite complex management strategies in diverse EMS contexts.

The results also seem to indicate that the use of a pooling strategy can be a very interesting manage-
ment alternative in the context of a large EMS as the one modeled here.

6 Conclusion

EMS management generally involves many challenging decisions. This is mainly due to the highly ran-
dom and dynamic nature of the system. To help EMS managers in their decision-making process, the
development of a simulation-based analysis tool can be very useful. Indeed, simulation has been proven
to be an effective analysis methodology to compare different scenarios while integrating stochastic and
dynamic aspects. In this context, this paper presents a generic simulation model that can adequately
represent all important operations related to the management of an EMS. One interesting aspect of this
simulation model is that it explicitly considers the two possible types of tasks carried out by EMS: emer-
gency demands and transfer demands. The proposed discrete-event simulation model is highly flexible
thus allowing the analysis of several management strategies for both types of demands, regardless of the
specific geographical characteristics of the geographical area being considered. The computational exper-
iments presented to verify and validate the simulation model have also shown its relevance and capability
to adequately represent the different aspects of the EMS context considered here. However, we want to
emphasize that the simulation model presented has been designed in order to be easily adapted to handle
diverse contexts. What we have presented in this paper is in fact a simulation analysis tool which can be
used to compare several strategies related to decision problems faced by EMS. Among others, relocation
and fleet management strategies can be investigated using this tool.
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