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1 Introduction

Many combinatorial problems require of their solutions that they achieve a certain balance of given features.
For example in assembly line balancing the workload of the line operators must be balanced (Falkenauer
2005). In rostering we usually talk of fairness instead of balance, because of the human factor — here
we want a fair distribution of weekends off or of night shifts among workers, for example (Pesant 2008).
Schaus et al. (2009) aim for an even distribution of nurses’ workload in a neonatal care unit. Lemâıtre
et al. (1999) use an earth observation satellite scheduling and sharing problem to investigate different ways
of handling fairness among agents with competing observation requirements while maximizing a weighted
sum of the observations made. Take in particular the Balanced Academic Curriculum Problem (Problem 30
of Gent and Walsh (1999)) in which courses are assigned to semesters so as to balance the academic load
between semesters. Because of additional constraints (prerequisite courses, minimum and maximum number
of courses per semester) and a varying number of credits per course, reaching perfect balance is generally
impossible. A common way of encouraging balance at the modeling level is to set reasonable bounds on
each load, tolerating a certain deviation from the ideal value, but it has the disadvantage of putting on an
equal footing solutions with quite different balance. Consider assigning courses totalling 60 credits among
six semesters, requiring that loads belong to the interval [8, 9, . . . , 12], and aiming for an ideal load of 10:
sets of loads {10, 10, 10, 10, 9, 11} and {8, 8, 8, 12, 12, 12} both satisfy the restriction but the former is much
more balanced. Another way is to minimize some combination of the individual deviations from the ideal
value, but if other criteria to optimize are already present one must come up with suitable weights for the
different terms of the objective function.

Yet another way is to bound the sum of individual deviations as a constraint: the spread (Pesant and
Régin 2005) and deviation (Schaus et al. 2007b) constraints express balance among a set of variables in a
Constraint Programming (cp) model by constraining their mean and their overall deviation from the mean.
In order to formally describe these constraints we first present some basic definitions about cp. Constraint
programming solves combinatorial problems by actively using the constraints of the problem to implicitly
eliminate infeasible regions of the solution space. The algorithm at the heart of cp, termed constraint
propagation, implements complex logical reasoning over the set of constraints by combining local inference
on individual constraints.

Definition 1 (finite-domain and bounded-domain variables). A finite-domain (discrete) variable takes a
value in a finite set called its domain. A bounded-domain (continuous) variable takes a value in a closed
real interval also called its domain.

Definition 2 (Constraint Satisfaction Problem (X,D,C)). Given a finite set of variables, X = {x1, . . . , xn},
a domain for each variable, D = {D1, . . . , Dn}, xi ∈ Di, and a finite set of constraints (relations) on subsets
of the variables, C = {c1, . . . , cm} where cj(x1, . . . , xk) ⊆ D1 × · · · ×Dk, find an assignment of values to X
from D such that each constraint in C is satisfied (i.e. the relation contains the tuple of values).

We will use the following notation: d = maxni=1 |Di|, Dmax
i = max{v ∈ Di}, Dmin

i = min{v ∈ Di},
Dmax = maxni=1D

max
i , Dmin = minni=1D

min
i , and [D] = Dmax −Dmin.

The result of the local inference on constraints, filtering out some inconsistent values in the domain of
individual variables, is characterized formally as a particular level of consistency being achieved.

Definition 3 (domain consistency). A constraint c(x1, . . . , xk) is domain consistent if and only if for every
i ∈ {1, . . . , k} and every v ∈ Di

∀j ∈ {1, . . . , k} \ {i} ∃vj ∈ Dj such that

c(v1, . . . , vi−1, v, vi+1, . . . , vk) is satisfied.

We allow ourselves to restrict this characterization to a subset of the variables {xi ∈ X : i ∈ S ⊂ {1, . . . , k}}
by saying that c(x1, . . . , xk) is domain consistent on S if i ranges over S in the previous definition.

Achieving Domain Consistency and Counting Solutions for Dispersion Constraints

CIRRELT-2015-08 1



Definition 4 (bounds consistency). A constraint c(x1, . . . , xk) is bounds(D) consistent if and only if for
every i ∈ {1, . . . , k}

∀j ∈ {1, . . . , k} \ {i} ∃vj ∈ Dj such that

c(v1, . . . , vi−1, D
min
i , vi+1, . . . , vk) and c(v1, . . . , vi−1, D

max
i , vi+1, . . . , vk) are satisfied.

A constraint c(x1, . . . , xk) is bounds(Z) consistent if and only if for every i ∈ {1, . . . , k}

∀j ∈ {1, . . . , k} \ {i} ∃vj ∈ {Dmin
j , Dmin

j + 1, . . . , Dmax
j } such that

c(v1, . . . , vi−1, D
min
i , vi+1, . . . , vk) and c(v1, . . . , vi−1, D

max
i , vi+1, . . . , vk) are satisfied.

A constraint c(x1, . . . , xk) is bounds(R) consistent if and only if for every i ∈ {1, . . . , k}

∀j ∈ {1, . . . , k} \ {i} ∃vj ∈ real interval [Dmin
j , Dmax

j ] such that

c(v1, . . . , vi−1, D
min
i , vi+1, . . . , vk) and c(v1, . . . , vi−1, D

max
i , vi+1, . . . , vk) are satisfied.

Here as well we allow ourselves to restrict this characterization to a subset of the variables {xi ∈ X : i ∈
S ⊂ {1, . . . , k}} by saying that c(x1, . . . , xk) is bounds(D or Z or R) consistent on S if i ranges over S in
the previous definitions.

Note that domain consistency is a stronger property (i.e. may filter out more values) than bounds(D) con-
sistency, itself stronger than bounds(Z) consistency, which is stronger than bounds(R) consistency. Typically
this inference process is applied at every node of a depth-first-search tree in which branching corresponds
to fixing a variable to a value in its domain, thus triggering more constraint propagation. We call variable-
selection heuristic and value-selection heuristic the way one decides which variable to branch on and which
value to try first, respectively.

We now formally define the constraints previously introduced to express balance.

Definition 5 (spread constraint (Pesant and Régin 2005)). Given a set of finite-domain integer variables
X = {x1, x2, . . . , xn}, bounded-domain variables µ, σ, and finite-domain variable x̃, constraint
spread(X,µ, σ, x̃) states that the collection of values taken by the variables in X exhibits an arithmetic
mean µ, a standard deviation σ, and a median x̃.

This constraint measures balance using the standard deviation, or root-mean-square, on the values taken
by the variables. Note that the mean does not have to be fixed. Even though the constraint also allows
constraining the median, we will not consider that feature in this paper. Pesant and Régin (2005) achieve
bounds(R) consistency on X in O(n2) time for spread. For a fixed mean Schaus and Régin (2013) improve
on this by achieving bounds(Z) consistency on X in O(n log n) time.

Definition 6 (deviation constraint (Schaus et al. 2007b)). Given a set of finite-domain integer variables
X = {x1, x2, . . . , xn}, a fixed value µ, and bounded-domain variable s, constraint deviation(X,µ, s) states
that the collection of values taken by the variables of X exhibits an arithmetic mean µ and a sum of absolute
differences to µ,

∑n
i=1|xi − µ|, of s.

For this other constraint an analytically simpler expression of balance is used and the mean is considered
fixed, both features contributing to achieve bounds(Z) consistency on X in O(n) time (Schaus et al. 2007a).
A simpler algorithm with the same characteristics was initially proposed by Schaus et al. (2007b) for the
case of a fixed integral mean. More recently Monette et al. (2013) describe a propagator for certain pairs of
sum constraints, of which spread and deviation are special cases. It achieves bounds(Z) consistency on X
for the latter in O(n) time and for the former (as well as for higher norms) in O(n · | ∪ni=1 Di|) time. It can
also be used to achieve bounds(Z) consistency on deviation variable ∆ (defined below).
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Definition 7 (Lp-distance, Lp-deviation). The Lp-distance between two n-dimensional points x and y is

given by the p-norm ‖x − y‖p = (
∑n
i=1|xi − yi|p)

1/p
. We introduce the related concept of Lp-deviation in

which y = µ and we drop the pth root:
n∑
i=1

|xi − µ|p.

Special cases of interest here are the L1- and L2-deviations which respectively relate to the deviation

and spread constraints. We introduce dispersion constraints to represent both previous constraints.

Definition 8 (dispersion constraint). Given a set of finite-domain integer variables X = {x1, x2, . . . , xn},
bounded-domain variables µ and ∆, and natural number p, constraint dispersion(X,µ,∆, p) states that the
collection of values taken by the variables of X exhibits an arithmetic mean µ and an Lp-deviation ∆.

No Lp-deviation dominates the others in terms of better balance — which one to use is application-
dependent (see e.g. Schaus et al. (2009)). But the difference between a domain-consistent and a bounds-
consistent dispersion constraint can be more values filtered from domains and ultimately a smaller search
tree.

Example 1. Consider a dispersion constraint on variables x1 ∈ {8, 9, 10}, x2 ∈ {10, 13}, and x3 ∈
{8, 10, 12} whose arithmetic mean is fixed to 10. There are three instantiations achieving that mean,
{〈8, 10, 12〉, 〈9, 13, 8〉, 〈10, 10, 10〉}, and every value of every domain is supported. According to the L1-
deviation, these instantiations get a ∆ value of 4, 6, and 0 respectively. For the L2-deviation, the ∆ values
are 8, 14, and 0. Our constraint will typically bound the amount of deviation from above — call β the maxi-
mum value for ∆: if 4 ≤ β < 6 with the L1-deviation, the middle value 9 should be removed from the domain
of x1; the same can be said if 8 ≤ β < 14 with the L2-deviation. A bounds-consistent filtering algorithm will
not make that deletion but a domain-consistent one will.

As Proposition 1 of Schaus et al. (2007b) states, achieving domain consistency is NP-hard for spread

and deviation. Note however that it is not NP-hard in the strong sense so a pseudo-polynomial time
algorithm is not ruled out.

In this paper we exploit this fact and propose a new filtering algorithm that can be used for dispersion
constraints (and thus both for spread (disregarding the median) and deviation), that achieves domain
consistency, and whose time complexity is similar in practice to that of the previously proposed algorithms
(Section 2). We also extend that algorithm to provide counting information that is used in counting-based
search heuristics (Zanarini and Pesant 2009) (Section 3). Both contributions are then evaluated empirically
on the Balanced Academic Curriculum Problem, the Nurse to Patient Assignment Problem, and on random
instances (Section 4).

2 Domain Consistency for Dispersion Constraints

For the moment, and to help clarity, we consider a fixed mean µ but we will discuss a variable mean in
Section 2.2.

2.1 Fixed Mean

The first part of such constraints is formalized as

n∑
i=1

xi = nµ. (1)

About the second part, the deviation ∆, for spread we transfer the square root and the n denominator over
to the right-hand side in order to make it correspond to an L2-deviation,

n∑
i=1

(xi − µ)2 = ∆ (2)
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and we leave it as is for deviation (L1-deviation),

n∑
i=1

|xi − µ| = ∆. (3)

Linear arithmetic constraints, ` ≤
∑n
i=1 cixi ≤ u, frequently arise in cp models. One often maintains

bounds(R) consistency on such constraints because domain consistency can be too costly: Trick (2003)
proposed a dynamic programming algorithm achieving domain consistency for knapsack constraints whose
time complexity is in O(ndu): nu is an upper bound on the number of states in the recursion and d is an
upper bound on the number of terms to consider in the recursive formula. Because it is linearly related to
the size of the upper bound, it is a pseudo-polynomial time algorithm and hence possibly too slow when u is
large. Equation 1 is a special case of this in which variables have unit coefficients and ` = u. In this section
we show that for this special case and in the context of dispersion constraints, that algorithm essentially
runs in polynomial time and can be extended to keep track of deviations as well by maintaining cumulative
information at each state as is commonly done in dynamic programming, and particularly in cp for the
cost-regular constraint (Demassey et al. 2006).

We define the individual deviation of value v with respect to the mean as δµ(v) = |v − µ| for the L1-
deviation and δµ(v) = (v − µ)2 for the L2-deviation. Since what follows is independent of the Lp-deviation
being used, we will often drop the last argument of the constraint and simply write dispersion(X,µ,∆).

Let f(i, j) represent the smallest cumulative deviation
∑i
k=1 δµ(xk) achievable by {x1, x2, . . . , xi} such

that
∑i
k=1(xk − bµc) = j. We use the integer part of µ here because we wish for j to be an integer. It can

be computed recursively as

f(i, j) = min
v∈Di

{δµ(v) + f(i− 1, j − (v − bµc))} 1 ≤ i ≤ n, j ≤ j ≤ j (4)

f(0, j) =

{
0, if j = 0
∞, otherwise

(5)

Its first index ranges over the number of variables; the range of the second index can be bounded, as we
shall see in the proof of Theorem 2 (j and j are defined later in Algorithm 2).

Lemma 1. Equations 4 and 5 correctly define f(i, j).

Proof. We show the correctness of the recurrence by induction on i. At the base case (i = 0), both summa-
tions are empty so j = 0 and the deviation is null. As our induction hypothesis, for every j, let

f(i− 1, j) = min
i−1∑
k=1

δµ(xk) such that
i−1∑
k=1

(xk − bµc) = j and xk ∈ Dk ∀1 ≤ k ≤ i− 1.

Then by definition
f(i, j) = min

v∈Di

{δµ(v) + f(i− 1, j − (v − bµc))}

and using the induction hypothesis we get

f(i, j) = min
v∈Di

{δµ(v) + min
i−1∑
k=1

δµ(xk)}

such that
∑i−1
k=1(xk − bµc) = j − (v − bµc), which we rewrite as

∑i
k=1(xk − bµc) = j with xi = v. And so

f(i, j) = min
i∑

k=1

δµ(xk) such that
i∑

k=1

(xk − bµc) = j,

as desired.

Achieving Domain Consistency and Counting Solutions for Dispersion Constraints

4 CIRRELT-2015-08



Similarly we define f ′, representing the largest cumulative deviation. Arguably most of the time one
wishes to constrain the cumulative deviation from above in order to achieve balance. Sometimes one may
also wish to constrain it from below to obtain some diversity. Rarely would we want both at the same time.
The next theorem covers these two important cases.

Theorem 1. We distinguish two cases.

i. ∆ ∈ [0,∆max]:
dispersion(X,µ,∆) is satisfiable iff f(n, n(µ− bµc)) ≤ ∆max

ii. ∆ ∈ [∆min,∞):
dispersion(X,µ,∆) is satisfiable iff f ′(n, n(µ− bµc)) ≥ ∆min

Proof. At f(n, n(µ − bµc)) and f ′(n, n(µ − bµc)) we have
∑n
k=1(xk − bµc) = n(µ − bµc) which we rewrite

as
∑n
k=1 xk − nbµc = nµ− nbµc or

∑n
k=1 xk = nµ so it is equivalent to Equation 1. Now consider the first

case. If f(n, n(µ − bµc)) ≤ ∆max (and it is non-negative by definition) then the corresponding assignment
satisfies the balance constraint. Conversely if the constraint is satisfied then there must exist an assignment
of cumulative deviation at most ∆max, so the smallest cumulative deviation f(n, n(µ − bµc)) certainly
is at most that. The second case proceeds similarly. If f ′(n, n(µ − bµc)) ≥ ∆min then the corresponding
assignment satisfies the dispersion constraint. Conversely if the constraint is satisfied then there must exist
an assignment of cumulative deviation at least ∆min, so the largest cumulative deviation f ′(n, n(µ − bµc))
certainly is at least that.

Note that for the special case of an integral mean, n(µ − bµc) = 0. Besides being useful to decide
satisfiability, f and f ′ can tighten the lower and upper bounds on ∆, respectively, achieving bounds(D)
consistency on it. Algorithm 1 describes how to compute f . We can view the process as building a layered
graph such as Figure 1, in which vertices are the elements of set S (growing progressively as we reach from
one value of i to the next) and edges are the transitions considered in the innermost loop. The top and
bottom dashed lines originating from state (0, 0), with respective slopes Dmax − bµc and Dmin − bµc, define
the area in which vertices may occur when reaching from (0, 0). Similar dashed lines originate from state
(n, n(µ− bµc)), parallel to the first two, defining the area in which vertices may reach (n, n(µ− bµc)). The
test at Line 6, based on the latter lines, avoids adding to S states that cannot possibly be extended to the
final state (n, n(µ− bµc)).

Algorithm 1: Computing recursive function f

1 f(0, 0)← 0;
2 S ← {(0, 0)};
3 for i = 1, 2, . . . , n do
4 forall the (i− 1, j) ∈ S do
5 forall the v ∈ Di do
6 if (n− i) · (bµc −Dmax) ≤ (j + v − bµc)− n(µ− bµc) ≤ (n− i) · (Dmin − bµc) then
7 if (i, j + v − bµc) 6∈ S then
8 f(i, j + v − bµc)← δµ(v) + f(i− 1, j);
9 S ← S ∪ {(i, j + v − bµc)};

10 else
11 f(i, j + v − bµc)← min(f(i, j + v − bµc), δµ(v) + f(i− 1, j));

12 return f ;

Theorem 2. Algorithm 1 runs in O(n2d[D]) time.

Proof. Lines 6-11 inside the loops can be done in O(1). The loop at Line 3 clearly requires n iterations and
the one at Line 5 requires at most d. The middle loop at Line 4 deserves a closer analysis. For a given i, how
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x1 x3 x4 x5x2

−1

−2

0

+2

+1

−3

0 1 2 3 4 5

Figure 1: An example of recursion graph for n = 5 and an integral µ.

many states can be in S? From the previous discussion, states are restricted to the shaded area of Figure
1. The maximum number of states of any given abscissa i is related to the vertical distance between the
parallel sides, given in particular by the difference between their respective y-intercepts. For the two sides
of slope Dmax − bµc, the y-intercepts are 0 and b = y −mx = n(µ− bµc)− (Dmax − bµc)n = n(µ−Dmax).
For the other pair, the y-intercepts are 0 and n(µ−Dmin). We take the minimum of the two distances since
they jointly constrain the range of states of a given abscissa:

min(0− n(µ−Dmax), n(µ−Dmin)− 0) + 1 = nmin(Dmax − µ, µ−Dmin) + 1

≤ n(Dmax −Dmin)/2 + 1

≤ n[D] + 1

The result follows.

Corollary 1. Bounds(D) consistency on ∆ can be achieved in O(n2d[D]) time for the dispersion constraint
(and hence also for spread and deviation) with fixed mean.

Note that this is a stronger level of consistency than that achieved in Monette et al. (2013).
But we are even more interested in filtering the domains of the xi variables and to this end, we

also define the backward version of f , b(i, j) representing the smallest cumulative deviation achievable by
{xi+1, xi+2, . . . , xn} such that

∑n
k=i+1(xk − bµc) = j. (As before we define b′ similarly.)

b(i, j) = min
v∈Di+1

{δµ(v) + b(i+ 1, j − (v − bµc))} 0 ≤ i ≤ n− 1, j ≤ j ≤ j (6)

b(n, j) =

{
0, if j = n(µ− bµc)

−∞, otherwise
(7)

The smallest deviation possible for a solution containing instantiation xi = v is the minimum of expression
{f(i−1, j)+δµ(v)+b(i, j+(v−bµc))} over j. Algorithm 2 describes how to achieve domain consistency on X

Achieving Domain Consistency and Counting Solutions for Dispersion Constraints

6 CIRRELT-2015-08



in the case ∆ ∈ [0,∆max]. Most of it is concerned with computing for each i the possible range [j, j+1, . . . , j]

for j. The inner loop then tests each domain value for removal. For the case ∆ ∈ [∆min,∞), we are seeking
the largest deviation possible so Line 1 would compute f ′ and b′ instead and the condition on Line 14 would

be replaced by maxjj=j{f ′(i− 1, j) + δµ(v) + b′(i, j + (v − bµc))} < ∆min.

Algorithm 2: Domain consistency algorithm for the dispersion constraint

1 Compute f and b;
2 fwd← 0;

3 bwd←
∑n
i=1(Dmax

i − bµc);
4 fwd← 0;

5 bwd←
∑n
i=1(bµc −Dmin

i );
6 for i = 1, 2, . . . , n do
7 fwd← fwd+ (bµc −Dmin

i );

8 bwd← bwd− (Dmax
i − bµc);

9 fwd← fwd+ (Dmax
i − bµc);

10 bwd← bwd− (bµc −Dmin
i );

11 j ← max(fwd, bwd);

12 j ← min(fwd, bwd);
13 forall the v ∈ Di do

14 if minjj=j{f(i− 1, j) + δµ(v) + b(i, j + (v − bµc))} > ∆max then

15 Remove value v from domain Di;

Theorem 3. Domain consistency on X can be achieved in O(n2d[D]) time for the dispersion constraint
(and hence also for spread and deviation) with fixed mean.

Proof. We analyze Algorithm 2. The computation of f and b (or f ′ and b′) was already shown to take
O(n2d[D]) time. The body of the nested loops will be executed at most nd times and each execution
essentially finds the minimum of j − j + 1 terms, that number being in O(n[D]) as we saw in the proof of
Theorem 2.

In practice for the most likely case ∆ ∈ [0,∆max], d and [D] are small if µ is fixed since each xi is
meant to be close to µ. Consequently the complexity of the filtering algorithm is essentially quadratic in the
number of variables. Because the graph structure is maintained, the algorithm is also incremental and the
time complexity of re-establishing domain consistency upon a domain change is proportional to the number
of necessary updates in the graph.

Example 2. Consider variables x1 ∈ {10, 11}, x2 ∈ {9, 11}, and x3, x4, x5 ∈ {9, 10, 11, 12} on which a
dispersion constraint using the L2-deviation (i.e. spread) is stated with µ = 11: the corresponding graph
is shown in Figure 2. Constrained by ∆ ≤ 5, value 9 for x3 can be removed since f(2, 0)+δ11(9)+b(3,−2) =
0 + 4 + 2 = 6. In fact value 9 would be removed from the domain of x2, x4, and x5 as well.

Note that the preceding treatment could be applied to other deviations as well. For example to work
with the L0-deviation (number of deviations) the individual deviation (δµ) becomes a 0-1 function, and for
the L∞-deviation (maximum deviation) we would take the maximum of the two terms in (4) and (6) instead
of the sum.

2.2 Variable Mean

We end this section by addressing the issue of a fixed mean. In most contexts we have a known number
of features to distribute as evenly as possible among a set of “recipients”: the mean is therefore fixed since
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Figure 2: Layered graph for Example 2 with f and b values on the left and right of each vertex, respectively.

it corresponds to the ratio of the number of features to the number of recipients. This situation occurs in
rostering, for example, when night shifts should be evenly distributed among staff members. Contrast this
with the handling of broken weekends (a weekend on which one day is worked and the other not), a generally
undesirable feature: we often do not know in advance how many such weekends will occur in a schedule but
we nevertheless wish the number of broken weekends to be evenly distributed among all staff members. In
such a context we cannot fix the mean a priori, so being able to work with an unspecified mean is worthwhile.

Our algorithm can be generalized to the wider context of a variable mean, but at a computational cost.
Essentially we need to add a third dimension to our recurrences, corresponding to the span of allowed values
for µ. A similar graph is built independently for every allowed value for µ since its definition, both in a
vertex’s second dimension and in its deviation label, depends on µ. For convenience we can think of these
allowed values as integers once we scale them by n. So the size of the data structure and the computation
time are increased by a nµmax − nµmin + 1 factor.

Corollary 2. Domain consistency on X can be achieved in O(n3d[D](µmax−µmin)) time for the dispersion

constraint with variable mean.

3 Counting the Solutions to a Dispersion Constraint

The filtering algorithm of the previous section maintains a data structure that represents every solution to
the constraint: a solution is a path in the layered graph whose deviation labels on the arcs sum up to ∆. By
augmenting the data structure with multiple labels on each vertex, representing not only a path of smallest
or largest deviation but every path, we can count the number of solutions. We limit ourselves to the more
common case in which the deviation is upper-bounded. We first recall some definitions from Zanarini and
Pesant (2009).

Given a constraint γ defined on the set of variables {x1, . . . , xk} and respective finite domains Di 1≤i≤k,
let #γ(x1, . . . , xk) denote the number of solutions to constraint γ. Given a variable xi in the scope of γ, and
a value v ∈ Di, we call

σ(xi, v, γ) =
#γ(x1, . . . , xi−1, v, xi+1, . . . , xk)

#γ(x1, . . . , xk)

the solution density of pair (xi, v) in γ. It measures how often a certain assignment is part of a solution of
the constraint γ.

Intuitively one would expect that for a dispersion constraint bounding deviation from above, the value
v ∈ Di reaching the highest solution density for xi would be one minimizing δµ(v) since it leaves more
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Table 1: Solution densities for x3 in Example 3.
value max L1-deviation max L2-deviation

2 4 8 2 4 8
9 0 0,05 0,05 0 0 0,05
10 0,20 0,16 0,15 0,20 0,23 0,15
11 0,50 0,32 0,30 0,50 0,38 0,30
12 0,30 0,47 0,50 0,30 0,38 0,50

x4

<(1,3),(3,2),(5,4),(7,1)><(5,3),(1,2)>

<(6,4),(4,3),(2,1)>

<(1,1)>

<(2,2),(0,1)>

Figure 3: A detailed view of part of the graph at Figure 2, showing the number of incoming and outgoing
paths of each amount of deviation.

freedom to the remaining variables. The corresponding value-ordering heuristic would then be trivial to
compute. However the following example shows that it is not necessarily the case.

Example 3. Consider again variables x1 ∈ {10, 11}, x2 ∈ {9, 11}, x3, x4, x5 ∈ {9, 10, 11, 12}, and µ = 11.
Table 1 gives the solution densities for x3 under a few upper bounds for the L1 and L2-deviations. The value
with maximum solution density in each case is shown in bold. We can observe that the resulting density is
influenced both by the stringency of the deviation bound and by the particular distribution of available values,
which may pull in opposite directions.

Beyond the qualitative preoccupation of ranking values, solution densities offer the additional advantage
of quantifying values relative to one another. This is important for example if one wishes to choose non-
deterministically between closely ranked values but with a bias according to quantitative information. In
the context of counting-based search, it offers a normalized score that is more easily compared with similar
information originating from the other constraints in the model.

For the counting algorithm, we replace the single-value labels at the left and right of each vertex in
the layered graph by lists of pairs of values (Figure 3). The list on the left of vertex (i, j) is denoted
〈(∆`

1(i, j),#`
1(i, j)), . . . , (∆`

m`
ij

(i, j),#`
m`

ij
(i, j))〉. Every possible cumulative deviation ∆`

k(i, j) achieved by

some assignment of x1, . . . , xi with
∑i
k=1(xk − µ) = j is represented in the list, which is in strict decreasing

order of deviation. Each #`
k(i, j) reports the number of partial assignments achieving a deviation of at most

∆`
k(i, j) (therefore these decrease in value). The list on the right of vertex (i, j), 〈(∆r

1(i, j),#r
1(i, j)), . . . ,

(∆r
mr

ij
(i, j),#r

mr
ij

(i, j))〉, represents similar information except that it is in strict increasing order of deviation

and that #r
k(i, j) reports the number of partial assignments achieving a deviation of exactly ∆r

k(i, j). As
we will see in Algorithm 4, this difference in the structure of the left and right lists allows a more efficient
combination of counting information when computing solution densities. Note that the total number of
solutions to the constraint is given by #`

1(n, n(µ− bµc)).
Algorithm 3 computes the left labels on vertices of the layered graph. The loop starting at Line 5 iterates

through the incoming arcs of vertex (i, j). The loop at Line 7 first goes down the left labels of the origin of
the incoming arc until a cumulative deviation from the source respecting the upper bound is found. The loop
starting at Line 10 then processes the remaining labels, either adding their number of paths to an existing
entry or creating a new entry at the appropriate place in the ordered list L representing the labels for vertex
(i, j). (Lines 21-24 complete the list once either one of the input lists have been exhausted.) Finally the loop
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Algorithm 3: Computing the left labels on vertices of the layered graph.

input: layered graph G, upper bound on deviation ∆max

output: set of left labels Li,j for each vertex (i, j) of G
1 L0,0 ← 〈(0, 1)〉;
2 for i = 1, 2, . . . , n do
3 forall the vertices (i, j) in layer i of G do
4 L← 〈〉;
5 forall the arcs from a vertex (i− 1, k) to vertex (i, j) do
6 p← 1;

7 while (p ≤ m`
i−1,k) ∧ (∆`

p(i− 1, k) + δµ(j − k + bµc) > ∆max) do

8 p+ +;

9 q ← 1;

10 while (q ≤ m`
i,j) ∧ (p ≤ m`

i−1,k) do

11 if ∆`
p(i− 1, k) + δµ(j − k + bµc) = ∆`

q(i, j) then
12 insert (∆`

q(i, j),#
`
q(i, j) + #`

p(i− 1, k)) at the back of L;

13 p+ +;
14 q + +;

15 else if ∆`
p(i− 1, k) + δµ(j − k + bµc) > ∆`

q(i, j) then
16 insert (∆`

p(i− 1, k) + δµ(j − k + bµc),#`
p(i− 1, k)) at the back of L;

17 p+ +;

18 else
19 insert (∆`

q(i, j),#
`
q(i, j)) at the back of L;

20 q + +;

21 if q ≤ m`
i,j then

22 append 〈(∆`
q(i, j),#

`
q(i, j)), . . . , (∆`

m`
i,j

(i, j),#`
m`

i,j
(i, j))〉 to L;

23 while p ≤ m`
i−1,k do

24 insert (∆`
p(i− 1, k) + δµ(j − k + bµc),#`

p(i− 1, k)) at the back of L;

25 t← 0;
26 Li,j ← 〈〉;
27 forall the elements (∆`(i, j),#`(i, j)) of L traversed in reverse order do
28 t← t+ #`(i, j);

29 insert (∆`(i, j), t) at the front of Li,j ;
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at Line 27 traverses L backwards to compute the prefix sums required by our data structure. Right labels
are computed similarly but without that last loop.

Algorithm 4: Solution density algorithm for the dispersion constraint

input: variable index i, value v
1 count ← 0;
2 forall the arcs between a vertex (i, j) and vertex (i+ 1, j + (v − bµc)) do
3 p← 1;
4 for q = 1, 2, . . . ,mr

i+1,j+(v−bµc) do

5 while (p ≤ ml
ij) ∧ (∆`

p(i, j) + δµ(v) + ∆r
q(i+ 1, j + (v − bµc)) > ∆max) do

6 p+ +;

7 if p > ml
ij then

8 break;

9 count ← count + #`
p(i, j)×#r

q(i+ 1, j + (v − bµc));
10 return count / #`

1(n, n(µ− bµc));

Algorithm 4 returns the solution density of variable-value pair (xi, v). The loop starting at Line 2 iterates
through the arcs of the graph which correspond to using value v for variable xi. The left and right labels
at the respective endpoints of each arc are traversed to find feasible combinations: at Line 4 increasing
amounts of deviation from the mean are considered from the right; Lines 5-6 find the largest amount of
deviation possible from the left without exceeding the upper bound on cumulative deviation. Line 9 then
counts all feasible (w.r.t. that constraint alone) variable assignments through this arc that feature a given
deviation from the right (recall that #`

p(i, j) represents all paths from the left with a cumulative deviation

of ∆`
p(i, j) or less). Finally Line 10 returns the proportion of solutions with xi = v. Going back to Figure

3, the processing of the arc from the bottom left vertex by Algorithm 4 will traverse left and right lists
〈(6, 4), (4, 3), (2, 1)〉 and 〈(1, 3), (3, 2), (5, 4), (7, 1)〉 respectively. Suppose that δµ(v) = 1 and ∆max = 10: it
will identify feasible combinations (6, 4)(1, 3), (6, 4)(3, 2), (4, 3)(5, 4), and (2, 1)(7, 1), in that order, for a
total of 4× 3 + 4× 2 + 3× 4 + 1× 1 = 33 solutions.

The cost of replacing single labels by lists, both in time and space, is a multiplicative factor corresponding
to the number of pairs in these lists. Since there is no point in storing amounts of cumulative deviation
larger than what is allowed by the constraint and since individual deviations vary in integral steps (even
though deviation values may be fractional), that number of pairs is at most ∆max + 1. That factor will tend
to grow linearly with n (since ∆ corresponds to a sum over the variables).

Theorem 4. Left and right lists of labels for layered graph G can be computed in O(n2d[D]∆max) time.

Proof. As in Algorithms 1 and 2, the outer loops of Algorithm 3 visit each arc of the graph once, but here
the appropriate lists of labels must then be traversed.

Theorem 5. Given labeled layered graph G, Algorithm 4 computes the solution density of variable-value
pair (xi, v) in O(n[D]∆max) time for the dispersion constraint with fixed mean.

Proof. The number of steps to process a single arc in Algorithm 4 is in O(∆max) and the number of relevant
arcs for a given variable-value pair (xi, v) is bounded above by the number of vertices in layer i, which is in
O(n[D]) as we already saw in the proof of Theorem 2.

4 Empirical Evaluation

In this section we evaluate both the filtering and the search guiding capabilities of our proposal. All experi-
ments were run on Dual core AMD 2.1 GHz computers with 8 GB of memory, running Linux FC13 64 bits
and using IBM ILOG Solver 6.7 and OscaR 1.0 (on top of Scala 2.10) (OscaR Team 2012).

Achieving Domain Consistency and Counting Solutions for Dispersion Constraints
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We evaluate the impact of using our domain-consistency algorithm for dispersion instead of the
bounds(Z)-consistency algorithms previously proposed by solving instances of two benchmark problems
from the literature and an extensive set of randomly generated instances for a synthetic problem in which
the dispersion constraint is prominent. We also compare a branching heuristic based on solution densities,
maxSD, to other generic branching heuristics as well as to some tailored heuristics. For each variable-value
pair maxSD collects solution densities from the problem constraints offering such information and in which
that variable appears, labels that pair with the maximum of the collection, and branches on the variable-
value pair with the largest label (Zanarini and Pesant 2009). In our experiments only the dispersion

constraint will provide solution densities (the other global constraints featured in our models are gcc and
binpacking but currently we do not have implementations of solution density computation for them) so we
simply branch on the variable-value pair with the highest solution density according to that constraint. We
focus on measuring the size of the search tree but also address running time.

4.1 Synthetic Instances

For these experiments, we generated instances by starting with identical domains for variables and then
randomly removing between a third and a half of the values in each domain. We varied both the number of
variables (10, 20, 40) and the original domain size (10, 20, 30), and generated 50 instances for each of the nine

combinations. The cp model consists of a dispersion constraint on the n variables with µ = bD
max+Dmin

2 c
(an integer value in the middle of the original domain of the variables), and of a gcc constraint (global
cardinality constraint (Régin 1996)) on the variables requiring that any value appear at most n

5 times.
In order to challenge our filtering algorithms and branching heuristics we aimed for a mix of satisfiable
and unsatisfiable instances through a careful choice of the deviation upper bound following some initial
experiments: we set ∆ ≤ 2n for the L2-deviation and ∆ ≤ 1.2n for the L1-deviation. We use a 30-minute
time limit.

Table 2 reports the number of instances solved in each set using L1-deviation for the dispersion con-
straint and several combinations of consistency level and branching heuristic. The first two columns give
the number of variables and the size of the original domains, respectively. The next seven columns give the
number of instances solved using each combination, broken down into satisfiable and unsatisfiable, the last
number representing unsolved instances. “DC” indicates our domain consistency algorithm for dispersion
whereas “BC” refers to the light-weight linear-time bounds consistency algorithm described in Schaus et al.
(2007b) which we implemented in IBM ILOG Solver (that algorithm requires µ to be an integer, which is
why we used an integral mean for our synthetic instances). As for branching heuristics: “lex/lex” stands
for lexicographic variable and value selection, a static heuristic; “dom/lex” stands for smallest-domain-first
variable selection and lexicographic value selection; “dom/µ” is as the previous one except that values are
selected from the mean outwards, a sensible heuristic given the upper bound on global deviation from the
mean; and “maxSD” applies the maxSD generic branching heuristic. Note that there is no “BC maxSD”
combination since the computation of solution densities requires the data structures put in place to enforce
domain consistency so we already pay the price for that stronger inference. Every other aspect is identical
in each variant and since IBM ILOG Solver was used throughout we know precisely what is being measured.

Table 3 reports the number of instances solved in each set using L2-deviation for the dispersion con-
straint but on fewer combinations. Here a comparison is more delicate because the DC implementation is
written in IBM ILOG Solver whereas we use the BC implementation of L2-deviation available in OscaR
through their spread constraint and therefore run our experiments for that variant on a different solver.

Inference. Looking first at Table 2 and comparing pairs of BC/DC variants allows us to measure the
impact of the level of consistency being enforced. Every 10-variable instance is solved within the time limit
by each combination. Figure 4 reports the total number of backtracks required in each case. The lex/lex
combinations provide us with a static branching heuristic that will therefore not be influenced by the level of
inference being applied: we note that search effort is increased by about 50% if we apply bounds consistency
instead of domain consistency. That percentage remains about the same for the other two dynamic branching
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Table 3: Number of synthetic instances solved (L2-deviation). Entry “a/b/c” means that a instances were
shown to be satisfiable, b instances were shown to be unsatisfiable, and c instances could not be solved within
the 30-minute time limit.

n [D] BC dom/lex DC dom/lex DC dom/µ DC maxSD
10 10 49/1/0 49/1/0 49/1/0 49/1/0

20 46/4/0 46/4/0 46/4/0 46/4/0
30 48/2/0 48/2/0 48/2/0 48/2/0

20 10 46/0/4 50/0/0 50/0/0 50/0/0
20 44/2/4 48/2/0 48/2/0 48/2/0
30 41/4/5 45/5/0 45/5/0 45/4/1

40 10 49/0/1 48/0/2
20 38/0/12 39/0/11
30 43/0/7 46/0/4

Figure 4: Total number of backtracks on all instances of a set using L1-deviation. The difference in search
effort between bounds and domain consistency is shown for three branching heuristics.
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Figure 5: Total number of backtracks on solved instances of a set using L1-deviation. Three branching
heuristics are evaluated with our domain consistency algorithm. Satisfiable and unsatisfiable instances are
reported on separately.

heuristics. Although not shown in the figure, a comparison of the dom/µ variants on the 20-variable instances,
for which both variants solved exactly the same instances, reveals that search effort on satisfiable instances
grows to about an 8-fold increase.

On 20-variable instances we note that for the less successful lex/lex and dom/lex heuristics, bounds
consistency solves more instances than domain consistency. This is probably because the bounds consistency
algorithm, specialized for L1-deviation and an integral mean, is very fast: we estimate that it leads to about
seven times more backtracks per second on the 20;10 instances whereas the increase in search effort is about
3-fold for lex/lex. The 40-variable instances were considered out of reach for the latter heuristics but for the
dom/µ variants we observe that BC starts solving fewer instances than DC.

Turning to Table 3, comparing the two variants of dom/lex reveals that starting with 20-variable instances,
DC solves more instances (keep in mind though that different solvers are used). However it also requires about
one order of magnitude fewer backtracks on satisfiable instances and does almost as well on unsatisfiable
instances (see Figure 6). Here too the 40-variable instances were out of reach.

Search. For L1-deviation and the three dynamic branching heuristics with DC (see Table 2 and Figure
5), dom/lex trails the other two from the start whereas dom/µ, a problem-specific heuristic, starts falling
behind generic heuristic maxSD in number of backtracks (20-variable instances) and ultimately in number
of instances solved (40-variable instances). Note that maxSD is backtrack-free on every satisfiable 10;30
instance and across all satisfiable instances it backtracks on at most a few instances in each set of 50.

For L2-deviation the DC combinations, all enforcing domain consistency and implemented in IBM ILOG
Solver, provide a comparison of branching heuristics (see Table 3 and Figure 6). The number of 10- and
20-variable instances solved by each is practically the same but there is a marked difference between the
number of backtracks for dom/lex and for the other two on satisfiable instances. The overall results are
mixed between generic heuristic maxSD and problem-specific heuristic dom/µ for the smaller instances but
the former dominates on the larger 40-variable instances. Again maxSD is backtrack-free on every satisfiable
10;30 instance and seldom backtracks on satisfiable instances.

As an indication of the increase in computational effort when using heuristic maxSD as opposed to a
much simpler one such as dom/µ, we observed that search with the latter performed about 1.5 times more
backtracks per second, which appears reasonable given that about the same factor is observed between dom/µ
and static heuristic lex/lex.
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Figure 6: Total number of backtracks on solved instances of a set using L2-deviation. Four combinations of
consistency level and branching heuristic are evaluated. Satisfiable and unsatisfiable instances are reported
on separately.

4.2 Nurse to Patient Assignment Problem (npap)

This application of L2-deviation is set in a neonatal intensive care unit and asks for a balanced workload
for nurses being assigned newborn patients requiring various amounts of care (acuity). A nurse’s workload
is the sum of the acuities of the patients assigned to him. Patients each belong to a zone — a nurse can
only work in one zone and there is an upper limit both on the number of patients in his care and on the
corresponding workload (these limits are respectively 3 and 105 for the benchmark instances considered). It
was introduced in Mullinax and Lawley (2002) but the Mixed Integer Programming approach used was not
satisfactory. Schaus et al. (2009) proposed a cp approach using the spread constraint that pre-computes
the number of nurses for each zone and then solves each zone separately. In a follow-up paper they show
that this decomposition strategy produces provably optimal solutions on all but two instances considered
(Schaus and Régin 2013).

The instances we used for benchmarking were randomly generated in Schaus and Régin (2013) using a
realistic statistical model proposed in Mullinax and Lawley (2002). They range from 3 to 20 zones and up
to 102 nurses and 258 patients.

The cp model for this problem uses one variable ni per patient i indicating which nurse it is assigned
to and one variable wj per nurse j indicating his workload. There is also another variable d representing
the L2-deviation from the average of the wj values, to be minimized. On these variables are expressed a
dispersion constraint to link d to the wj variables, a gcc constraint on the ni variables to limit the number
of patients for each nurse, and a binpacking constraint (Shaw 2004) linking the ni and wj variables while
considering patient acuities. We refer the reader to Schaus and Régin (2013) for additional details on the
problem, the benchmark instances, or the model.

To this model Schaus and Régin (2013) add a branching heuristic that chooses the next ni variable to
branch on according to the smallest-domain-first selection criterion and the next value (nurse) to assign to
it by considering nurses already assigned a patient plus one yet-unused nurse, in lexicographic order. This
value selection criterion has the advantage of breaking symmetries among nurses dynamically during search.
We will refer to this heuristic as “SR13”.

We propose a simple static branching heuristic focusing on the load variables: we first select the wj
variables in lexicographic order and then the ni variables in decreasing order of acuity; values are selected
in lexicographic order. We break symmetries among nurses statically by adding constraints wj ≥ wj+1 to

Achieving Domain Consistency and Counting Solutions for Dispersion Constraints
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the model. We also initially bound deviation d from above using a greedy solution obtained by considering
patients in decreasing order of acuity and assigning them to the least loaded available nurse. We will refer to
our heuristic as “static”. As before we refer to implementations enforcing domain consistency on dispersion

as “DC” and to others enforcing bounds consistency as “BC”.
Table 4 reports the number of backtracks on the benchmark instances for the different implementations.

Each line corresponds to an individual instance and the first three columns give the number of zones, nurses,
and patients for that instance.

Looking first at how well the problem is being solved, Column BC SR13 corresponds to the implementation
of Schaus and Régin (2013) whereas DC static is what we proposed: our search trees are smaller than theirs,
often significantly so. To be fair we also ran SR13 with the same upper bound on deviation we used (denoted
BC SR13?): as expected this reduces the number of backtracks but not enough to be competitive with DC
static except for the 15-zone instance (for DC static the number of backtracks is dominated by one bad zone).
Column DC maxSD corresponds to first branching on the workload variables, as in DC static, but using the
maxSD heuristic (handling ties by favoring a value closest to the mean) and then proceeding as in DC static
i.e. branching on the nurse assignment variables by decreasing acuity and selecting nurses in lexicographic
order: its performance is comparable to that of DC static, neither one dominating the other. As mentioned
before, comparing running times is more delicate since the DC variants are written in ILOG-IBM Solver
whereas the BC ones are written in OscaR. As one indication, DC static solves the largest instance (20 zones)
in 2.73 seconds on a 2, 1 GHz machine whereas Schaus and Régin (2013) report 25.17 seconds for BC SR13
on the same instance (but they do not specify the computer used).

Turning now to branching heuristics, a good opportunity to compare static and SR13 is given by columns
DC static and DC SR13? since both are run on the same solver using exactly the same model, upper bound
on deviation, and consistency level for dispersion: the former is clearly more effective though the results
in Column BC static suggest that static requires domain consistency in order to perform well.

Finally to assess the advantage of domain consistency for this problem, pairs DC static / BC static and DC
SR13? / BC SR13? provide some comparison for two instances of branching heuristics: DC always performs
better in the first case and 8 times out of 13 in the second case.

So in summary we improve the state of the art on this problem, proposing a heuristic that branches
on load variables first and that works very well in combination with domain consistency. A variant of that
branching heuristic that exploits solution densities on load variables performs well but not consistently better
than our tailored heuristic.

4.3 Balanced Academic Curriculum Problem (bacp)

Recall that the bacp asks to assign courses to semesters so as to balance the academic load between semesters,
defined as the sum of the number of credits from courses assigned to a semester. In addition there are a
minimum and maximum number of courses per semester and some courses are prerequisite to others, e.g.
course B must be assigned to a semester occurring after the one to which course A is assigned. In the
literature the L2-deviation is typically used to measure balance.

From the largest instance in Gent and Walsh (1999) 100 instances were generated by randomly assigning
between 1 and 5 credits to courses and by randomly choosing a subset of the prerequisites (Schaus 2009).1

They feature 66 courses, 12 semesters, 50 prerequisite pairs, and use 5 and 7 as the minimum and maximum
number of courses per semester respectively.

The cp model for this problem uses one variable si per course i indicating which semester it is assigned to
and one variable `j per semester j indicating its academic load. There is also another variable d representing
the L2-deviation from the average of the `j values, to be minimized. On these variables are expressed a
dispersion constraint to link d to the `j variables, a gcc constraint on the si variables to limit the number
of courses for each semester, a binpacking constraint linking the si and `j variables while considering course
credits, and a binary inequality constraint between a pair of si variables for each prerequisite relation.

1available from http://becool.info.ucl.ac.be/resources/bacp
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Figure 7: Percentage of instances solved with respect to the number of backtracks during search for the three
variants considered on bacp benchmark instances from Schaus (2009). Solid curves correspond to the full
problem whereas dashed curves solve a relaxed version without the restriction on the number of courses per
semester.

As branching heuristic we choose the next si variable to branch on according to the smallest-domain-first
selection criterion and the next value (semester) to assign to it by favoring the semester currently with the
smallest academic load, as originally proposed in Schaus (2009).

The instances solved in Schaus (2009) and Monette et al. (2013) do not include the original restriction on
the number of courses per semester — we take it into account here, which makes the instances significantly
harder to solve to optimality.

Figure 7 reports the percentage of instances that could be solved to optimality within a given number
of backtracks. We set a 20-minute time limit on individual runs. Solid curves BC dom;least loaded and DC
dom;least loaded respectively report the performance of the branching heuristic previously described using
the bounds-consistency or the domain-consistency algorithms for the dispersion constraint: the latter curve
lies above the former and for a given percentage of instances solved, its required number of backtracks is
up to one order of magnitude smaller. We observe that a significant percentage of the instances cannot be
solved within the time limit, which confirms that these instances are challenging: as a baseline, the smallest-
domain-first;lexicographic variable-value branching heuristic (not shown on the figure) only manages to solve
3% of the instances. The looser instances (i.e. without the stated restriction on the number of courses per
semester) previously solved in the literature are significantly easier: as an indication, dashed curve DC
dom;least loaded shows the performance of the domain-consistency version if we allow any number of courses
per semester, solving 98% of the instances within the same time limit.

We also observe that the maximum number of backtracks reached within a fixed time limit is not so
different between the curves, which again shows that the domain-consistency algorithm does not present a
significant computational overhead in practice.

We next consider branching heuristic maxSD / dom;least loaded which first branches on the load variables
using the maxSD heuristic (and handling ties by favoring a value closest to the mean) and then branches
on the semester assignment variables according to the dom;least loaded heuristic. For the looser instances
the dashed curves show the clear superiority of DC maxSD / dom;least loaded over DC dom;least loaded: all
100 instances are solved to optimality in less than a second each, almost all of them within a few hundred
backtracks. In comparison Monette et al. (2013), implementing BC dom;least loaded, report that 33 out of
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100 instances required more that a second to be solved to optimality and even that two instances timed out
after 12 hours.

On the original instances (with the restriction on the number of courses per semester) solid curves DC
maxSD / dom;least loaded and DC dom;least loaded show that, up to a few hundred thousand backtracks,
significantly more instances are solved by first branching on the load variables according to solution densities.
Beyond that limit the relative performance is reversed, albeit to a lesser degree. Given the ease with which
DC maxSD / dom;least loaded solved the looser instances, that behavior is likely due to the tight restriction
on the number of courses — load variables are branched on first, sometimes fixing the number of credits in
each semester into a configuration that may not be feasible and whose refutation tree may be large.

We also noticed that for an optimization problem such as this in which the deviation from a fixed mean
is sought to be minimized, maxSD is helped by the fact that the initial domains of the load variables were
defined with that mean at their centre: otherwise the load values initially recommended by the heuristic
as most frequent in solutions to the dispersion constraint may not coincide at all with values close to the
mean (recall Example 3).

In summary maintaining domain consistency and branching according to solution densities each improve
our ability to solve this problem.

5 Conclusion

In this paper we considered constraints to express balance, important in many combinatorial problems, and
presented new algorithms to eliminate inconsistent variable assignments and to count the number of solutions.
We provided empirical evidence that these can lead to significant practical improvements in combinatorial
problem solving. In particular we improved the state of the art on the Nurse to Patient Assignment Problem
and the Balanced Academic Curriculum Problem.

The contributions of this paper with respect to dispersion constraints are: the first practical algorithm
that achieves domain consistency, an approach that equally applies to spread and deviation constraints or
other metrics, the ability to filter not only from the maximum allowed deviation (as previous contributions
did) but alternately from the minimum allowed deviation, and the possibility of counting the number of
solutions exactly, which can be used in counting-based search heuristics.

Being able to express balance declaratively at the modeling level is very convenient for non-expert users as
it avoids the need to handle it operationally within a hand-crafted search procedure. The present contribution
does not introduce this modeling ability but makes it more powerful by improving its filtering capability.
Arguably the main obstacle of constraint programming technology for non-experts is the need to write a
dedicated search heuristic: existing generic search heuristics often aren’t robust enough to solve industrial
problems reliably. Competing technologies such as sat and mip solvers typically do not require users to
tailor search. Counting-based search heuristics are generic and have shown very promising robustness. Our
contribution with respect to these heuristics is to provide the required counting information for dispersion
constraints, thereby broadening their applicability to solve combinatorial problems.
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