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Abstract. In this paper we model and solve the multi-depot fleet size and mix vehicle 
routing problem (MDFSMVRP). This problem extends the multi-depot vehicle routing 
problem and the fleet size and mix vehicle routing problem, two logistics problems that 
have been extensively studied for many decades. This difficult transportation problem 
combines complex assignment and routing decisions under the objective of minimizing 
fixed vehicle costs and variable routing costs. We first propose five distinct formulations to 
model the MDFSMVRP. We introduce a three-index formulation with an explicit vehicle 
index and a compact two-index formulation in which only vehicle types are identified. 
Other formulations are obtained by defining aggregated and disaggregated loading 
variables. The last formulation makes use of capacity-indexed variables. For each 
formulation, we propose sets of known and new valid inequalities to strengthen them, 
including symmetry breaking, lexicographic ordering, routing and rounded capacity cuts, 
among others. We then implement branch-and-cut and branch-and bound algorithms for 
these formulations. We compare the bounds provided by the formulations on a commonly 
used set of instances in the MDFSMVRP literature, containing up to nine depots and 360 
customers, and on newly generated instances. Our in-depth analysis of the five 
formulations shows which formulations tend to perform better on each type of instance. 
Moreover, we have considerably improved the lower bounds on all instances and 
significantly improved the quality of the upper bounds that can be obtained by means of 
currently available exact methods.  
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1 Introduction

Distribution problems are central to the performance of many industries. The area of

transportation has been widely studied, notably the vehicle routing problem (VRP) [42]

which has attracted the interest of many researchers over more than 50 years [23] and is

still among the most prominent and widely studied combinatorial optimization problems.

Several different exact and heuristic algorithms have been proposed since the seminal

paper of Dantzig et al. [10], and in the past decade a myriad of practical applications

have emerged, describing many variants of the classical capacitated VRP [9]. These

variants often incorporate ad hoc decisions or constraints to address challenging problems

observed from practice and are referred to as rich VRPs [21]. They call for novel models

and algorithms capable of solving new practical logistics problems.

In this paper we model and solve one of these variants, namely the multi-depot fleet size

and mix vehicle routing problem (MDFSMVRP). This problem is a direct generalization

of the classical VRP by considering multiple depots to serve a set of customers with

known demands, and different types of vehicles. The problem combines three decisions

simultaneously: selecting the number of vehicles of each type, planning vehicle routes

and assigning routes to depots. Each vehicle is characterized by a fixed usage cost and a

variable cost proportional to the traveled distance. The number of available vehicles of

each type is assumed to be unlimited. The simultaneous optimization of the best fleet

composition, the best vehicle routes and the depot choice substantiates the richness of

this problem. The MDFSMVRP consists of designing a set of vehicle routes, each starting

and ending at the same depot, visiting each customer exactly once, and respecting the

capacity of the vehicles. The objective is to minimize the total fixed and variable routing

costs.

The literature dealing with the MDFSMVRP is rather scarce. We are aware of three

works focusing on this particular variant. A seminal work on the MDFSMVRP is due

to Salhi and Sari [38]. The authors propose a multi-level composite heuristic based on
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integrating and modifying efficient heuristics designed for the single depot fleet size and

mix vehicle routing problem (FSMVRP). Their method relies on switching to a more

powerful and expensive neighborhood when moving to a superior level. The authors

integrate reduction tests and refinement modules in the heuristic to speed up some of its

steps. Seventeen years later, Salhi et al. [39] propose a mixed integer linear program to

formulate the problem and a set of valid inequalities to tighten it. They also propose a

variable neighborhood search metaheuristic. The method distinguishes between customers

served from their nearest depots and borderline customers and makes use of local search

heuristics and Dijkstra’s algorithm to determine the optimal sequencing. They derive

lower and upper bounds using a three-hour execution of CPLEX and provide percentage

gaps computed using the best known bounds. Recently, Vidal et al. [43] propose a unified

algorithmic framework tackling different classes of multi-depot VRPs with and without

fleet mix. They introduce a bidirectional dynamic programming approach embedded in

a multi-start iterated local search and a hybrid genetic search with advanced diversity

control. The three published works assess the performance of their methods on the same

testbed.

On the other hand, many books and book chapters have been devoted to study separately

the two straightforward reductions of the MDFSMVRP. For focused and recent surveys

for the FSMVRP we refer to Baldacci et al. [3], Irnich et al. [16], Koç et al. [19], and for the

multi-depot VRP (MDVRP) to Montoya-Torres et al. [27]. More intricate and extended

variants of this problem have also been studied. Mancini [26] and Rahimi-Vahed et al.

[36] consider a closely related problem with multiple periods. Time related constraints

have also received increased attention in the last few years, e.g., Bettinelli et al. [4], Xu

and Jiang [44] and Koç et al. [18].

The MDFSMVRP is an NP-hard combinatorial problem since the VRP is NP-hard. Sev-

eral authors explicitly outline the toughness of solving to optimality either the FSMVRP

instances or the MDVRP instances, or even finding stronger bounds [33, 39].

Our contributions lie in adapting and proposing new formulations for the MDFSMVRP, as
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well as many valid inequalities. We compare five formulations against the one proposed by

Salhi et al. [39]. Specifically, we propose a model based on a three-index VRP formulation

introduced by Laporte and Nobert [24], to which we include new dimensions to account

for each vehicle type. We then present a compact formulation derived from the two-

index VRP model of Laporte [22], in which we create copies of the graph for each vehicle

type, but we do not identify individual vehicles. Our third formulation is derived from

the commodity flow model proposed in Salhi and Rand [37] and Yaman [45], which we

modify to consider multiple depots. This formulation makes use of loading variables to

model capacity and subtour elimination constraints. We obtain our fourth formulation by

disaggregating the loading variables by vehicle type, as in Yaman [45]. Finally, the last

formulation we propose is derived from the model of Pessoa et al. [33] for the FSMVRP,

which is compact enough to enumerate all variables and constraints, and to which we

incorporate new procedures to reduce the number of variables. We compare these five

formulations in order to provide tighter bounds for this rich and difficult transportation

problem. A subproduct of this research is to identify the origins and give credits to the

main ideas used by our community to formulate many distribution problems. Thus, for

each proposed formulation we provide the main references that put forward the modeling

techniques and the valid inequalities that we use. This survey can greatly serve other

researchers and students.

The remainder of this paper is organized as follows. In Section 2 we provide a formal

description of the MDFSMVRP, followed by the presentation and introduction of the five

mathematical models in Section 3. The algorithms used to solve these formulations are

briefly presented in Section 4. The results of extensive computational experiments are

presented in Section 5. Section 6 is devoted to our conclusions.
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2 Problem description

The MDFSMVRP is formally defined on a directed graph G = (V ,A), where V is the

vertex set and A is the arc set. The vertex set V is partitioned into two subsets Vd =

{1, . . . ,m} representing m depots, and Vc = {m+1, . . . ,m+n} representing n customers,

such that V = Vd∪Vc. Each customer i ∈ Vc is associated with a non-negative demand qi,

while qi = 0, i ∈ Vd. The distance between nodes i and j ∈ V is represented by βij, thus

the arc set A is composed of {(i, j) : i, j ∈ V}. A set K = {1, . . . , K} of heterogeneous

vehicle types is available at each depot d ∈ Vd. The fleet size is unlimited. For ease

of notation, let ak represents the number of vehicles of type k, bounded by ak = 0 and

ak = n. We define a set H = {1, . . . , H} including n copies of each vehicle type k, which

are all available at each depot d, with H = akK. Each vehicle type k ∈ K is associated

with a capacity Qk, a fixed cost F k and a variable cost αk per unit of distance.

A solution to the problem must determine routes that minimize the total costs such that

each route must start and end at the same depot, each customer is visited exactly once,

and the total demand of each route does not exceed the capacity of the selected vehicle.

3 Mathematical formulations

We now provide five different formulations for the MDFSMVRP. In Section 3.1 we present

a model which explicitly considers all arcs, vehicles and depots. In Section 3.2 we show

an adaptation of the compact two-index formulation, notably extending it to handle an

heterogeneous fleet. Section 3.3 presents a commodity flow formulation in which capacity

and subtour elimination constraints are expressed using flows. In Section 3.4 we introduce

a model based on disaggregated loading variables by vehicle type. Finally, in Section 3.5

we present a capacity-indexed formulation for the problem at hand.
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3.1 Explicit formulation

We first provide a three-index vehicle flow formulation for the symmetric case with an

explicit vehicle index. The extension to an asymmetric version is straightforward. This

model is based on the three-index vehicle flow formulation proposed by Laporte and

Nobert [24] for the asymmetrical multi-depot VRP with homogeneous fleet, and on the

model proposed by Toth and Vigo [41] for the single depot VRP. We define routing

variables xkdij equal to one if edge (i, j) is traversed by vehicle k housed at depot d, and

equal to two for a round trip to customer j. Binary variables ykdi are equal to one if node

i is visited by vehicle k from depot d. Note that in formulation F1 k refers to the vehicle

index, not the vehicle type since all the available vehicles are explicitly considered. Note

also that the set A contains only arcs with i > j, thus becoming an edge set, as required

for this symmetric case. The problem can then be formulated as follows:

(F1) minimize
∑
i∈Vd

∑
k∈H

∑
d∈Vd

F kykdi +
∑
i∈V

∑
j∈V,i>j

∑
k∈H

∑
d∈Vd

αkβijx
kd
ij (1)

subject to ∑
k∈H

∑
d∈Vd

ykdi = 1 i ∈ Vc (2)

∑
j∈V,i>j

xkdij +
∑

j∈V,j>i

xkdji = 2ykdi i ∈ V , k ∈ H, d ∈ Vd (3)

ykdi ≤ ykdd i ∈ Vc, k ∈ H, d ∈ Vd (4)

ykdd ≤
∑
i∈V

∑
j∈V,i>j

xkdij k ∈ H, d ∈ Vd (5)

2ykdd ≤
∑
i∈Vc

xkdid k ∈ H, d ∈ Vd (6)

∑
i∈Z

∑
j∈Z,i>j

xkdij ≤
∑
i∈Z

ykdi − ykdz Z ⊆ Vc, |Z| ≥ 2, z ∈ Z, k ∈ H, d ∈ Vd (7)

∑
i∈Vc

qiy
kd
i ≤ Qk k ∈ H, d ∈ Vd (8)

xkdij = 0 i ∈ Vc, j ∈ Vd, j 6= d, k ∈ H, d ∈ Vd (9)
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xkdij ∈ {0, 1} i, j ∈ Vc, i > j, k ∈ H, d ∈ Vd (10)

xkdij ∈ {0, 1, 2} i ∈ Vc, j ∈ Vd, k ∈ H, d ∈ Vd (11)

ykdi ∈ {0, 1} i ∈ V , k ∈ H, d ∈ Vd. (12)

The objective function (1) minimizes the total cost composed of fixed vehicle costs and

variable routing costs. Constraints (2) impose that all customers must be visited exactly

once. Constraints (3) are degree constraints and constraints (4) impose that if a customer

is served by vehicle k housed at depot d, then vehicle k must leave the depot. Constraints

(5) and (6) link the two types of variables of the problem. They ensure that if a vehicle k

of depot d is used, then at least one customer i must be visited by this vehicle. Constraints

(7) forbid subtours. Constraints (8) impose vehicle capacities, while constraints (9) remove

some infeasible variables from the problem, namely ensuring that the vehicles leave and

return to the same depot. The domain of the variables is enforced by constraints (10)–

(12). This formulation has nmH(1 + m + n
2

+ m
n

) binary variables, n + mH(3 + 2n +

m+n(m−1)) linear constraints and O(2n) subtour elimination constraints whose number

grows exponentially with n. This is a large formulation which strongly depends on the

number of available vehicles.

Model F1 is sufficient to represent the MDFSMVRP, however we can add some valid

inequalities and lift some constraints to strengthen it. Equalities (13) remove unnecessary

variables from the problem by forbidding trips between depots. Constraints (14) enforce

restrictions related to the vehicle use. Specifically, each vehicle k housed at depot d is

allowed to perform at most one trip.

xkdij = 0 i, j ∈ Vd, i > j, k ∈ H, d ∈ Vd (13)

∑
j∈Vc

xkdjd ≤ 2 k ∈ H, d ∈ Vd. (14)

To avoid symmetries due to the presence of identical vehicles at each depot, we introduce

vehicle symmetry breaking constraints. Observe that (15) and (16) are only valid if the

fleet is homogeneous. We define the set Ht ⊂ H containing only the homogeneous vehicles
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of type t. Thus, constraints (15) state that vehicle k can only be dispatched if vehicle k−1

is already dispatched. Constraints (16) rank identical vehicles according to the index of

the customers visited. These constraints are defined for each depot. They are inspired by

those presented in Adulyasak et al. [1], Coelho and Laporte [7, 8] and Lahyani et al. [20].

ykdd ≤ yk−1,dd k ∈ Ht\{Ht
1},Ht ⊂ H, t ∈ K, d ∈ Vd (15)

ykdi ≤
∑

j∈Vc,j<i

∑
h∈Vd

yk−1,hj i ∈ Vc, k ∈ Ht\{Ht
1},Ht ⊂ H, t ∈ K, d ∈ Vd, (16)

where Ht
1 represents the first element of Ht.

We also introduce a set of logical inequalities that enforce the relationships between

routing and visiting variables. They are defined as follows:

ykdd ≤
∑
i∈Vc

ykdi k ∈ H, d ∈ Vd (17)

xkdid ≤ 2ykdi i ∈ Vc, k ∈ H, d ∈ Vd (18)

xkdij ≤ ykdj i, j ∈ Vc, i > j, k ∈ H, d ∈ Vd (19)∑
j∈Vc

ykdj ≤
∑
i∈V

∑
j∈V,i>j

xkdij k ∈ H, d ∈ Vd (20)

2ykdj ≤
∑
i∈Vc

xkdid j ∈ Vc, k ∈ H, d ∈ Vd (21)

∑
j∈V,i>j

∑
k∈H

∑
d∈Vd

xkdij +
∑

j∈V,i<j

∑
k∈H

∑
d∈Vd

xkdji = 2 i ∈ Vc (22)

⌈ ∑
i∈Vc qi

max{Qk}

⌉
≤
∑
i∈Vc

∑
k∈H

∑
d∈Vd

xkdid . (23)

Constraints (17)–(22) are referred to as routing cuts. The first ones replace the right

hand side of constraints (5) by enforcing that at least one customer must be visited by

vehicle k of depot d if this vehicle is used. We also note that constraints (17) are the sum

over the customers in inequalities (4). Constraints (18) remove all edges (i, d) if customer

i is not visited by vehicle k of depot d. Constraints (19) further remove variables by

forbidding the use of edge (i, j) if customer j is not visited by vehicle k housed at depot

d. Constraints (20) impose that the sum of customers visited by vehicle k is less than or

Alternative Formulations and Improved Bounds for the Multi-Depot Fleet Size and Mix Vehicle Routing
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equal to the sum of edges traversed by vehicle k. Constraints (21) impose the condition

that if vehicle k of depot d is not used, then customer j cannot be visited by this vehicle.

Equations (22) further define the degree constraints by imposing that each customer is

visited once. Finally, constraints (23) are referred to as rounded capacity cuts [28, 33].

They impose a lower bound on the number of used vehicles. However, in the case it is

not necessary to use the vehicle with the biggest capacity in one trip and if there is a

considerable difference between max{Qk} and the capacity of the used vehicle, then the

left hand side of constraints (23) may give a poor lower bound.

Constraints (24) and (25) are lexicographic ordering constraints. They are inspired from

the ones defined in Sherali and Smith [40] and Adulyasak et al. [1]. Given the large

coefficients that arise when dealing with large instances, these constraints are only added

for small and medium size instances containing up to 60 customers.

j∑
i=m+1

2(j−i)ykdi ≤
j∑

i=m+1

2(j−i)yk−1,di j ∈ Vc, k ∈ Ht\{Ht
1},Ht ⊂ H, t ∈ K, d ∈ Vd (24)

∑
i∈Vc

2(m+n−i)ykdi ≤
∑
i∈Vc

2(m+n−i)yk−1,di k ∈ Ht\{Ht
1},Ht ⊂ H, t ∈ K, d ∈ Vd. (25)

3.2 Compact formulation with implicit vehicle index

Formulation F1 has the drawback that the number of variables and constraints increases

when the number of vehicle variables increases. These variables are linearly dependent

on the number of customers in the instance because ak = n.

We now propose a formulation with implicit vehicle assignment as proposed in Laporte

[22], Toth and Vigo [41] for the single depot VRP.

This formulation uses the same type of variables defined in Section 3.1, however the index

k now (and for the remainder of this paper) refers to vehicle types instead of individual

vehicles. This has the advantage of having one type of variable per vehicle type, instead of

creating one variable per vehicle of each type. For the sake of briefness, we do not restate

the whole definition of the variables, and refer to the ones already defined when the

Alternative Formulations and Improved Bounds for the Multi-Depot Fleet Size and Mix Vehicle Routing
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interpretation is straightforward. This compact formulation with implicit vehicle index

can then be defined as follows:

(F2) minimize
∑
j∈Vc

∑
k∈K

∑
d∈Vd

0.5F kxkdjd +
∑
i∈V

∑
j∈V,i>j

∑
k∈K

∑
d∈Vd

αkβijx
kd
ij (26)

subject to (2)–(6), (9)–(12) and to

∑
i∈S

∑
j∈S,i>j

xkdij ≤ |S| − r(S) S ⊆ Vc,S 6= ∅, k ∈ K, d ∈ Vd. (27)

When using a compact variables definition, the objective function (26) must be expressed

by the variables xkdij . Constraints (27) simultaneously replace constraints (7) and (8).

They correspond to generalized subtour elimination constraints, and prevent capacity

violation on each vehicle. This formulation has nmK(1 + m + n
2

+ m
n

) binary variables,

n + mK(2 + 2n + m + n(m − 1)) linear constraints and a number of linear subtour

elimination constraints growing exponentially with n. F2 is much more compact than F1

since it depends on the number of vehicle types.

Several of the valid inequalities previously defined remain valid, namely (17)–(23). Al-

ternatively, we can reinforce subtour elimination (27) by introducing inequalities (7).

Constraints (7) are known to be efficient when solving the problem with a branch-and-cut

algorithm. Both families of constraints (7) and (27) have a cardinality growing exponen-

tially with n.

Vehicle symmetry breaking constraints and lexicographic ordering constraints no longer

hold for this compact formulation because they require distinguishing between vehicle

index and not vehicle types.

3.3 Compact formulation with loading variables

A main disadvantage of model F2 presented in Section 3.2 is that capacity constraints are

not explicitly defined, requiring cuts to be added dynamically. This might lead to weak
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bounds at the early stages of its optimization. To overcome this situation, formulation F3

proposed in this section makes use of stronger constraints to handle capacity restrictions.

We define additional continuous variables to help control the load of the vehicles. This

model is based on the commodity flow formulation proposed by Garvin et al. [11] for an oil

delivery problem and later extended by Gavish and Graves [12] to VRP variants. A similar

formulation for the single depot VRP is given in Toth and Vigo [41]. Later, Baldacci et al.

[3] extended this formulation for the VRP with heterogeneous fleet, Salhi and Rand [37]

and Yaman [45] extended it for the FSMVRP, Salhi et al. [39] modified it to handle a

VRP with multiple depots, and Koç et al. [18] amended it for the fleet size and mix

location-routing problem with time windows. The formulation proposed in this section is

quite different from the one proposed in Salhi et al. [39] for the MDFSMVRP as we define

new routing variables ykdi in addition to xkdij . Indeed, Bosch and Trick [5] highlight that

adding variables and/or constraints to a formulation may strengthen the linear relaxation

and provide improved formulations. They also state that for many problems, the use of

integer variables, even when it is not required, may expand the capability of the model

and help find an optimal solution.

The formulation is derived using the same four-index binary variables xkdij and the visiting

binary variables ykdi defined in Section 3.1 on a directed graph. We define new continuous

variables zij representing the remaining load on the vehicle when traversing arc (i, j), i.e.,

after visiting node i and before visiting node j. Note that the loading variables could

be defined only for the asymmetric version of the problem since the complete graph is

considered. In what follows, we restate all the constraints of the problem dealing with

routing variables xkdij , since they are expressed differently from the constraints defined in

models F1 and F2, despite having the same role. The formulation is defined by:

(F3) minimize
∑
i∈Vc

∑
k∈K

∑
d∈Vd

F kxkddi +
∑
i∈V

∑
j∈V

∑
k∈K

∑
d∈Vd

αkβijx
kd
ij (28)

subject to (2), (4) and to:∑
j∈V

xkdij +
∑
j∈V

xkdji = 2ykdi i ∈ Vc, k ∈ K, d ∈ Vd (29)

Alternative Formulations and Improved Bounds for the Multi-Depot Fleet Size and Mix Vehicle Routing
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∑
i∈V

xkdij =
∑
i∈V

xkdji j ∈ V , k ∈ K, d ∈ Vd (30)

ykdd ≤
∑
i∈V

∑
j∈V

xkdij k ∈ K, d ∈ Vd (31)

2ykdd ≤
∑
j∈Vc

xkdjd +
∑
j∈Vc

xkddj k ∈ K, d ∈ Vd (32)

xkdij = 0 i ∈ Vc, j ∈ Vd, j 6= d, k ∈ K, d ∈ Vd (33)

xkdij = 0 i ∈ Vd, i 6= d, j ∈ Vc, k ∈ K, d ∈ Vd (34)∑
i∈V

zij −
∑
i∈V

zij = qj j ∈ Vc (35)

∑
i∈Vd

∑
j∈Vc

zij =
∑
j∈Vc

qj (36)

zij ≤
∑
k∈K

∑
d∈Vd

(Qk − qi)xkdij i ∈ V , j ∈ Vc (37)

xkdij ∈ {0, 1} i, j ∈ V , k ∈ K, d ∈ Vd (38)

ykdi ∈ {0, 1} i ∈ V , k ∈ K, d ∈ Vd (39)

zij ≥ 0 i, j ∈ V . (40)

The objective function (28) minimizes the total routing costs. Equations (2) enforce

that each customer must be visited exactly once. Constraints (29) and (30) replace the

flow conservation constraints (3) defined in model F1. Constraints (4), (31) and (32) are

equivalent to constraints (4)–(6) in model F1. They enforce that only used vehicles may

serve customers. Similarly, constraints (33) and (34) are equivalent to constraints (9).

They guarantee that a vehicle leaves and returns to the same depot. Constraints (35)–

(37) are specific to the commodity flow formulation. They impose both the connectivity of

the solution and the vehicle capacity constraints. In particular, constraints (35) guarantee

that each customer demand is satisfied. Summing up these constraints yields constraint

(36) which states that the total load leaving all depots must be equal to the total customers

demands. Constraints (37) bound the load on each arc (i, j), i.e., after visiting node i the

load on arc (i, j) plus the demand of node i cannot exceed the capacity of the vehicle used.
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Constraints (38)–(40) define the domain and nature of the variables. Formulation F3 has

mK(|A|+n+m) binary variables, |A| continuous variables and 1+n(2+n+m)+mK(2+

3n+m+ 2n(m− 1)) constraints. It has the advantage that the connectivity constraints

are initially polynomial in size, unlike models F1 and F2 which require a branch-and-cut

algorithm to dynamically add subtour elimination constraints which are exponential in

number.

Because of the way new variables zij are defined, it is possible to further tighten this

formulation. We introduce bounding constraints and we remove unnecessary variables

from the problem, as in Salhi et al. [39]. Constraints (41) impose a lower bound on

loading variables. They state that the total load of arc (i, j) must be at least equal to the

demand of node i. We fix some variables to zero in equalities (42)–(46). Constraints (42)

impose that a vehicle returns to the depot empty and constraints (43) and (44) forbid

carrying a load between depots or between a customer and itself. Constraints (45) and

(46) remove arcs between depots and between a customer and itself.

zij ≥
∑
k∈K

∑
d∈Vd

qjx
kd
ij i ∈ Vc, j ∈ Vc (41)

zij = 0 i ∈ Vc, j ∈ Vd (42)

zij = 0 i, j ∈ Vd (43)

zii = 0 i ∈ Vc (44)

xkdij = 0 i, j ∈ Vd, k ∈ K, d ∈ Vd (45)

xkdii = 0 i ∈ V , k ∈ K, d ∈ Vd. (46)

Constraints (47) and (48) enhance the flow conservation of the problem by imposing that

the total flow entering a node must equal to the total flow leaving the node. Karaoglan

et al. [17] have introduced several classes of valid inequalities for the location-routing

problem with simultaneous pick-up and delivery. Some of these constraints have been

extended to the fleet size and mix location-routing problem with time windows in Koç

et al. [18]. We adapt these constraints in (49)–(51) to the MDFSMVRP. They exclude
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illegal vehicle routes that do not start and end at the same depot. Constraints (52)

represent a special case of subtour elimination constraints on 2-node sets. Constraints

(53) bound the number of vehicles trips.∑
i∈V

∑
k∈K

∑
d∈Vd

xkdij = 1 j ∈ Vc (47)

∑
j∈V

∑
k∈K

∑
d∈Vd

xkdij = 1 i ∈ Vc (48)

∑
k∈K

xkdid ≤
∑
k∈K

ykdi i ∈ Vc, d ∈ Vd (49)

∑
k∈K

xkddi ≤
∑
k∈K

ykdi i ∈ Vc, d ∈ Vd (50)

∑
k∈K

xkdij +
∑
k∈K

ykdi +
∑
k∈K

∑
h∈Vd,h6=d

ykhj ≤ 2 i, j ∈ Vc, i 6= j, d ∈ Vd (51)

xkdij + xkdji ≤ 1 i, j ∈ Vc, k ∈ K, d ∈ Vd (52)⌈ ∑
i∈Vc qi

max{Qk}

⌉
≤
∑
i∈Vc

∑
k∈K

∑
d∈Vd

xkddi . (53)

3.4 Compact formulation with disaggregated loading variables

In this section, we propose a more detailed formulation based on F3 for the MDFSMVRP,

referred to as F4. The motivation is to carry information related to the vehicle type on

each arc by disaggregating the loading variables zij. We define new continuous variables

zkij, such that zij =
∑

k∈K z
k
ij. This model is inspired from the work of Yaman [45] for the

FSMVRP. The model is defined by minimizing (28) subject to (2), (4), (29)–(34), (38),

(39) and to:

∑
i∈Vd

∑
j∈Vc

∑
k∈K

zkij =
∑
j∈Vc

qj (54)

∑
i∈V

zkij −
∑
i∈V

zkij =
∑
d∈Vd

qjy
kd
j j ∈ Vc, k ∈ K (55)

zkij ≤
∑
d∈Vd

(Qk − qi)xkdij i ∈ V , j ∈ Vc, k ∈ K (56)

Alternative Formulations and Improved Bounds for the Multi-Depot Fleet Size and Mix Vehicle Routing
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zkij ≥ 0 i, j ∈ V , k ∈ K. (57)

Constraints (54)–(56) have a similar meaning as constraints (35)–(37) of model F3. The

only exception is that they provide more precision on the vehicle type carrying the load

on arc (i, j). Formulation F4 has a few more variables and constraints compared to

F3. It contains (n + n(n + m))(K − 1) more constraints due to constraints (55)–(56)

and |A|(K − 1) more continuous variables. If K < n, both formulations have O(n2m2)

constraints. However, F4 has O(n|A|) continuous variables while F3 has O(|A|).

Model F4 can also be strengthened by (45)–(53), while constraints (41)–(44) must be

replaced by:

zkij ≥
∑
d∈Vd

qjx
kd
ij i ∈ Vc, j ∈ Vc, k ∈ K (58)

zkij = 0 i ∈ Vc, j ∈ Vd, k ∈ K (59)

zkij = 0 i, j ∈ Vd, k ∈ K (60)

zkii = 0 i ∈ Vc, k ∈ K. (61)

3.5 Capacity-indexed formulation

In this section, we propose a novel formulation to model VRPs, referred to as capacity-

indexed formulation. This type of formulation has only appeared a few times for basic

variants of VRPs. A seminal paper proposing a capacity-indexed formulation for the time-

dependent traveling salesman problem is due to Picard and Queyranne [34]. Godinho

et al. [15] used it for the case of unitary demands. Later, Pessoa et al. [32] and Poggi de

Aragão and Uchoa [35] propose a similar formulation for the asymmetric VRP, and Pessoa

et al. [31] and Pessoa et al. [33] extend this model to handle the asymmetric VRP with

heterogeneous fleet.

We define new binary variables xkdqij equal to one if and only if vehicle type k housed at

depot d traverses arc (i, j) with a load of q units. This variable indicates the current load

of a given vehicle type housed at a given depot on a given arc, unlike the commodity flow

Alternative Formulations and Improved Bounds for the Multi-Depot Fleet Size and Mix Vehicle Routing
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formulations (F3 and F4) that require the definition of continuous variables to convey

similar information. This model can then be formulated as follows:

(F5) minimize
∑
i∈Vc

∑
k∈K

∑
d∈Vd

Qk∑
q=1

F kxkdqdi +
∑
i∈V

∑
j∈V

∑
k∈K

∑
d∈Vd

Qk∑
q=0

αkβijx
kdq
ij (62)

subject to

∑
j∈V

∑
k∈K

∑
d∈Vd

Qk∑
q=1

xkdqji = 1 i ∈ Vc (63)

∑
i∈Vc

Qk∑
q=1

xkdqdi =
∑
i∈Vc

xkd0id k ∈ K, d ∈ Vd (64)

∑
j∈V

xkdqji =
∑
j∈V

x
kd(q−qi)
ij i ∈ Vc, k ∈ K, d ∈ Vd, q = {qi, . . . , Qk} (65)

xkdqij = 0 i ∈ Vc, j ∈ Vd, k ∈ K, d ∈ Vd, q = {1, . . . , Qk} (66)

xkdqij = 0 i ∈ V , j ∈ Vc, k ∈ K, d ∈ Vd, q = {0, . . . , qj − 1} (67)

xkdqij = 0 i ∈ Vc, j ∈ Vd, j 6= d, k ∈ K, d ∈ Vd, q = {0, . . . , Qk} (68)

xkdqij = 0 i ∈ Vd, i 6= d, j ∈ Vc, k ∈ K, d ∈ Vd, q = {0, . . . , Qk} (69)

xkdqij ∈ {0, 1} i, j ∈ V , k ∈ K, d ∈ Vd, q = {0, . . . , Qk}. (70)

The total routing costs are minimized in (62). Equations (63) are in-degree constraints.

They ensure that each customer is visited exactly once. Constraints (64) ensure flow

conservation and guarantee that if a vehicle of type k leaves a depot d with a load q then

it must return to this depot with a load equal to 0. The connectivity of the solution and

the vehicle capacity requirements are ensured due to constraints (65). If vehicle k carrying

a load qi ≤ q ≤ Qk enters a node i, then it must leave it with a load equal to q − qi.

Infeasible and unnecessary variables are removed with equalities (66)–(69). Constraints

(66) forbid vehicles to return to the depot with a load different from zero. Constraints

(67) state that a vehicle k traversing an arc (i, j) must not carry a load q lower than

the demand of node j. Constraints (68) and (69) are equivalent to constraints (9) in

models F1 and F2 and to constraints (33) and (34) in models F3 and F4. They ensure
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that a vehicle route must start and end at the same depot. Constraints (70) define the

domain of the capacity-indexed variables. Formulation F5 has m|A|(
∑K

k=1(Q
k+1)) binary

variables and n + mK(1 +
∑

i∈Vc(Q
k − qi + 1) + (n + m)

∑
i∈Vc qi) + nm(m

∑K
k=1Q

k +

2(m− 1)
∑K

k=1(Q
k + 1)) linear constraints.

In order to reduce the research space when using capacity-indexed variables, one can fur-

ther remove unnecessary variables. We eliminate variables related to vehicle k traversing

an arc (i, j) with an irrelevant load, i.e., after visiting a node i the vehicle should not carry

a load between Qk− qi and the capacity of vehicle k, Qk. Those unnecessary variables are

removed with equalities (71). We also remove infeasible arcs as in the previous models,

through equations (72) and (73).

xkdqij = 0 i ∈ V , j ∈ Vc, k ∈ K, d ∈ Vd, Qk − qi < q ≤ Qk (71)

xkdqii = 0 i ∈ V , k ∈ K, d ∈ Vd, q = {0, . . . , Qk} (72)

xkdqij = 0 i, j ∈ Vd, k ∈ K, d ∈ Vd, q = {0, . . . , Qk}. (73)

Solving the MDFSMVRP directly with this formulation is practical only for small values

of Qk. We derive new valid inequalities in the form of balance and capacity constraints

and routing constraints, which impose bounds on the binary variables. Constraints (74)

and (75) are inspired from those proposed in Pessoa et al. [33]. They impose a lower bound

on the number of vehicle routes and the number of variables, respectively. Equations (76)

are balance constraints. They state that if vehicle k traversing arc (i, j) enters node i

then the load delivered to node i must be exactly qi.⌈ ∑
i∈Vc qi

max{Qk}

⌉
≤
∑
i∈Vc

∑
k∈K

∑
d∈Vd

Qk∑
q=qi

xkdqdi (74)

∑
i∈Vc

qi ≤
∑
i∈V

∑
j∈Vc

∑
k∈K

∑
d∈Vd

Qk∑
q=qi

qxkdqij (75)

∑
j∈V

∑
k∈K

∑
d∈Vd

Qk−qj∑
q=qi

qxkdqji −
∑
j∈V

∑
k∈K

∑
d∈Vd

Qk−qi∑
q=qj

qxkdqij = qi i ∈ Vc. (76)
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Constraints (77)–(79) are referred to as routing constraints, as a way to ensure that if

there is an arc (i, j) related to vehicle k and linking two customers i and j, i.e., (77) holds,

then there must be at least one arc traversed by k and returning to depot d, i.e., (78)

holds. Equalities (79) are outgoing edges, they reinforce equations (63).

Qk−qi∑
q=qj

xkdqij ≤
∑
h∈Vc

xkd0hd i, j ∈ Vc, k ∈ K, d ∈ Vd (77)

xkd0hd ≤
∑
i∈V

∑
j∈Vc

Qk−qi∑
q=qj

xkdqij h ∈ Vc, k ∈ K, d ∈ Vd (78)

∑
j∈V

∑
k∈K

∑
d∈Vd

Qk∑
q=0

xkdqij = 1 i ∈ Vc. (79)

4 Solution algorithms

The formulations presented in Sections 3.3, 3.4 and 3.5 can be explicitly generated and

one can enumerate all its variables and constraints. These can then be fed into a general

purpose solver and solutions are obtained by branch-and-bound. However, the models

presented in Sections 3.1 and 3.2 cannot be fully generated due to constraints (7) and

(27) which are in the order of O(2n). Thus, one needs to dynamically generate them only

if they are found to be violated in a partial solution. The exact algorithm we present is

then a classical branch-and-cut which works as follows. At a generic node of the search

tree, a linear program including a subset of the subtour elimination constraints is solved,

a search for violated constraints is performed, appropriate valid inequalities are added

to eliminate subtours, and the current subproblem is then reoptimized. This process is

reiterated until a feasible or dominated solution is reached, or until no more cuts can be

added. At this point, branching on a fractional variable occurs. We provide a sketch of

the branch-and-cut scheme in Algorithm 1.

Finally, the model presented in Section 3.5 can be fully enumerated for most small and

medium size instances. However, it is easy to observe that some variables are never used in
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Algorithm 1 Pseudocode of the proposed branch-and-cut algorithm

1: At the root node of the search tree, generate and insert all valid inequalities into the program.

2: Subproblem solution. Solve the LP relaxation of the node.

3: Termination check:

4: if there are no more nodes to evaluate then

5: Stop.

6: else

7: Select one node from the branch-and-cut tree.

8: end if

9: while the solution of the current LP relaxation contains subtours do

10: Identify connected components as in Padberg and Rinaldi [29].

11: Determine whether the component containing the supplier is weakly connected as in Gendreau

et al. [13].

12: Add violated subtour elimination constraints.

13: Subproblem solution. Solve the LP relaxation of the node.

14: end while

15: if the solution of the current LP relaxation is integer then

16: Go to the termination check.

17: else

18: Branching: branch on one of the fractional variables.

19: Go to the termination check.

20: end if
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the model, e.g., the ones for which some values of q cannot be obtained by any combination

of demands. These variables can be generated and fed to the solver, which will set them to

zero in any feasible solution. If one can identify these variables beforehand, it is possible

to set them to zero and remove then from the model at a preprocessing phase. Thus, one

can (substantially) decrease the size of the model and the memory usage by preprocessing

the model and the instance a priori, identifying the subset of variables that should not

be generated. We have then implemented a subset sum algorithm to identify all possible

values of q from 1 to Qk that can be achieved by any combination of demands qi. The

ones that are found not to be feasible are not generated and we could reduce the size of

the model substantially. Details regarding the improvements provided by this algorithm

are presented in Section 5.3.

5 Computational experiments

In this section we provide details on the implementation, benchmark instances, and de-

scribe the computational experiments we have performed. Implementation and hardware

information is provided in Section 5.1. The description of the existing and new bench-

mark instances we have used are presented in Section 5.2, followed by the results of our

extensive computational experiments in Section 5.3.

5.1 Implementation details

All the formulations described in Section 3 were implemented in C++ and solved with IBM

CPLEX Concert Technology 12.5.1. The separation of the subtour elimination constraints

was performed with the Concorde package of Applegate et al. [2] and the CVRPSEP

package of Lysgaard et al. [25].

We have run all instances described in the next section using all models described in

Section 3 with a time limit of three hours and a maximum of 96 Gb of memory. The
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machines used are all equipped with Intel Xeon™ processors running at 2.66 GHz with 96

GB of RAM installed per node, with the Scientific Linux 6.1 operating system.

5.2 Description of the instances

In order to compare the performance of our models and algorithms, we have used a

set of 14 test instances proposed by Salhi and Sari [38] for the MDFSMVRP. These

instances were inspired from older benchmarks for other distribution problems proposed

by Gillett and Johnson [14], Perl and Daskin [30] and Chao et al. [6]. They are commonly

used in the VRP literature. They have been used in previous researches to evaluate the

performance of heuristic algorithms, namely the multi-level composite heuristic of Salhi

and Sari [38], the variable neighborhood search of Salhi et al. [39], and the hybrid genetic

search with advanced diversity control of Vidal et al. [43]. The only lower bounds and

solutions obtained with an exact approach existing for these instances were obtained by

a branch-bound algorithm applied to a mathematical model presented in Salhi et al. [39].

These instances contain between 50 and 360 customers, and between two and nine depots.

There are five vehicle types, i.e., K = 5, in all instances. The vehicle capacities are

generated centered around the value of the vehicle capacity (Q̂) of the original instances

designed for of the MDVRP data sets. The vehicle capacities Qk along with the vehicle

variable cost F k and the vehicle fixed cost αk are derived based on the following formulas:

Qk = (0.4 + 0.2k)Q̂, F k = 70 + 10k and αk = 0.7 + 0.1k, with k = 1, . . . , 5.

We have also generated ten smaller instances to better evaluate the performance of the

different formulations in terms of lower and upper bounds, and of running times. These

instances were created by randomly selecting subsets of customers from the smaller in-

stances of Salhi and Sari [38], namely instances 4-55-100 and 4-50-80. Our instances

contain two and three depots, from 10 to 30 customers, five vehicle types and different

demands distribution. Table 1 contains a list of all instances used in this paper and

provides additional information on their origins and sizes.
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Table 1: Configurations of the existing and newly generated instances

Instance Reference Origin # depots # customers Q̂

4-55-100 Salhi and Sari [38] Perl and Daskin [30] 4 55 100

3-85-100 Salhi and Sari [38] Perl and Daskin [30] 3 85 100

3-85-160 Salhi and Sari [38] Perl and Daskin [30] 3 85 160

4-50-80 Salhi and Sari [38] Gillett and Johnson [14] 4 50 80

4-50-160 Salhi and Sari [38] Gillett and Johnson [14] 4 50 160

5-75-140 Salhi and Sari [38] Gillett and Johnson [14] 5 75 140

2-100-100 Salhi and Sari [38] Gillett and Johnson [14] 2 100 100

2-100-200 Salhi and Sari [38] Gillett and Johnson [14] 2 100 200

3-100-100 Salhi and Sari [38] Gillett and Johnson [14] 3 100 100

4-100-100 Salhi and Sari [38] Gillett and Johnson [14] 4 100 100

2-80-60 Salhi and Sari [38] Chao et al. [6] 2 80 60

4-160-60 Salhi and Sari [38] Chao et al. [6] 4 160 60

6-240-60 Salhi and Sari [38] Chao et al. [6] 6 240 60

9-360-60 Salhi and Sari [38] Chao et al. [6] 9 360 60

2-10-60 New Salhi and Sari [38] 2 10 60

2-15-60 New Salhi and Sari [38] 2 15 60

3-20-80 New Salhi and Sari [38] 3 20 80

3-25-80 New Salhi and Sari [38] 3 25 80

3-30-80 New Salhi and Sari [38] 3 30 80

2-10-60 New Salhi and Sari [38] 2 10 60

2-15-60 New Salhi and Sari [38] 2 15 60

3-20-100 New Salhi and Sari [38] 3 20 100

3-25-100 New Salhi and Sari [38] 3 25 100

3-30-100 New Salhi and Sari [38] 3 30 100

5.3 Computational experiments

In this section we describe the results of computational experiments carried out in order

to assess the performance of the proposed models and algorithms. Table 2 recalls the

configurations of the five formulations tested.

As stated in Section 4, Formulation F5 can be defined only for the values of q that can be

attained, which can significantly reduce its size. For the existing instances described in

Table 1, the average number of variables of F5 is reduced from 22,395,311 to 19,636,711
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Table 2: Summary of the five formulations

Formulation Objective function and constraints

F1 (1) subject to (2) –(25)

F2 (26) subject to (2)–(6), (7), (9)–(12), (17)–(23), (27)

F3 (28) subject to (2), (4), (29)–(53)

F4 (28) subject to (2), (4), (29)–(34), (38), (39), (54)–(61)

F5 (62) subject to (63)–(79)

when applying the preprocessing step with the subset sum algorithm. We note that

for the largest instance of the testbed, 9-360-60, which contains nine depots and 360

customers, the number of required variables could not be enumerated due to memory

usage (it required more than 100 Gb of RAM memory). We also observe that the efficiency

of the preprocessing phase is highly dependent on the scale and the distribution of the

demands. For example, if all demands are multiples of 20, then the number of variables is

reduced by almost 20-fold; however, if they are all small and some are unitary, then almost

all values of Qk can be obtained by combining the demands of some customers. In this

testbed, the number of generated variables is reduced by more than 16 times for instance

4-55-100, while it remains unchanged for 2-100-100. These values can be observed for all

instances in Table 3.

5.3.1 Linear programming relaxation

Solving the linear programming relaxation (LR) can be quite useful as it provides a bound

on the optimal value of the integer programs, and it highlights the difference between the

formulations. The first experiment we conduct in this section consists of solving the LRs

of the five formulations for both data sets with a time limit of 2 hours. We include all the

valid inequalities presented in the previous sections. Table 4 summarizes the results of this

test. For each model and each solved instance, we provide the LR value and the running

time in seconds. In all tables, if an instance cannot be solved we mention NF indicating
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Table 3: Number of generated variables for model F5 before and after the preprocessing phase

Instance Before preprocessing After preprocessing

4-55-100 7031620 417720

3-85-100 11732160 696960

3-85-160 18701760 998976

4-50-80 4723920 4548960

4-50-160 9389520 9214560

5-75-140 22560000 22400000

2-100-100 10508040 10508040

2-100-200 20912040 20912040

3-100-100 16072635 16072635

4-100-100 21848320 21848320

2-80-60 4101640 4101640

4-160-60 32813120 32813120

6-240-60 110744280 110744280

Average 22,395,311.92 19,636,711.62

not found status, and NC if the number of required variables and constraints could not be

enumerated. The results indicate that the LR of model F1 is quite poor. This is due to the

drawbacks of this formulation mentioned before, particularly the fact of enumerating the

available vehicles. Formulation F1 does not provide a linear relaxation within two hours

for any instance of the first data set. Furthermore, comparing the last four formulations

substantiates that models F3 and F4 perform extremely well on both data sets compared

to model F2. The average of the LR values, only over solved instances (from instance 4-

55-100 to 2-80-60), equals 790.94, 1554.14, and 1649.38 while the average running time is

increasing from 55 to 77 and to 574 seconds for models F2, F3 and F4, respectively. The

average computation time of model F4 is almost seven times the average computation

time of model F3 whereas the difference between the LRs of these two formulations is

small. This implies that disaggregating loading variables requires more computational

time to find slightly better relaxations. Model F5 provides better LR values for all four

solved instances compared to all other formulations. Over all models, the average time

taken to solve the LRs is not negligible. This is due to the high number of variables and
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constraints required to model the problem.

Table 4: Linear programming relaxations for the five formulations

Instance Formulation F1 Formulation F2 Formulation F3 Formulation F4 Formulation F5

Value Time(s) Value Time(s) Value Time(s) Value Time(s) Value Time(s)

4-55-100 NF 7200 574.32 17 1313.54 29 1354.41 58 1359.99 56

3-85-100 NF 7200 841.57 43 2027.98 66 2079.01 456 2094.42 157

3-85-160 NF 7200 631.65 44 1347.39 77 1411.31 505 1435.19 357

4-50-80 NF 7200 642.90 23 1322.30 21 1381.63 58 1416.05 4348

4-50-160 NF 7200 496.07 10 807.47 17 890.99 89 NF 7200

5-75-140 NC 7200 707.52 62 1362.47 102 1478.41 530 NF 7200

2-100-100 NC 7200 966.10 53 2095.84 94 2191.73 816 NF 7200

2-100-200 NC 7200 749.49 54 1262.37 80 1382.34 1021 NF 7200

3-100-100 NC 7200 952.52 84 1990.05 143 2106.65 1074 NF 7200

4-100-100 NC 7200 951.76 166 1993.18 197 2103.29 1422 NF 7200

2-80-60 NC 7200 1186.35 48 1573.03 24 1763.45 287 1790.17 6861

4-160-60 NC 7200 NF 7200 3063.71 1090 NF 7200 NF 7200

6-240-60 NC 7200 NF 7200 NF 7200 NF 7200 NF 7200

9-360-60 NC 7200 NF 7200 NF 7200 NF 7200 NC 7200

2-10-60 268.51 5 268.58 0 399.87 0 409.55 0 422.33 3

2-15-60 355.68 50 356.02 0 600.23 0 627.41 1 650.23 9

3-20-80 333.43 540 334.30 0 594.47 1 626.40 2 640.66 117

3-25-80 395.63 1880 397.93 1 706.59 1 744.38 6 759.54 218

3-30-80 NF 7200 438.25 2 828.87 3 866.25 7 884.23 393

2-10-60 245.29 3 246.38 0 448.59 0 459.77 0 468.59 0

2-15-60 316.37 43 318.53 0 646.36 0 659.91 1 681.01 0

3-20-100 255.55 206 255.41 1 525.82 1 544.05 2 544.71 2

3-25-100 303.23 1299 303.47 1 631.16 1 658.49 4 660.80 3

3-30-100 382.75 2216 383.20 1 784.34 2 820.20 9 824.98 5

5.3.2 Comparison of upper and lower bounds

We now present the computational results of the solutions we have obtained when ap-

plying branch-and-bound and branch-and-cut for the five proposed formulations. Table

5 summarizes the results after three hours of running time with CPLEX. We report the

upper bound (UB) and the lower bound (LB) of each formulation for each instance, if they

are found. We provide the average percentage gaps over the two testbeds. The percentage

gap is given by the ratio (UB−LB
UB

100). We also give the average time in seconds spent to

solve the new testbed. Bold face is used to indicate the best results.

A deeper analysis of the formulations highlights a remarkable improvement over all the

lower bounds and the number of solved instances compared to the LRs results. The results
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clearly show that formulation F1 is outperformed by all the other formulations, even on

small instances. The largest instance size that can be solved by formulation F1 is 4-5-160.

Model F1 could identify a feasible solution only for three (out of 14) instances, whereas

formulation F2 is able to solve all the instances of the two testbeds. This implies that the

compact formulation, reducing the number of generated variables, has a positive impact

on the model performance. Model F2 provides tighter bounds compared to F1 but is still

uncompetitive compared to the other formulations. The results of Table 5 distinctly show

the performance of the last three formulations to solve the MDFSMVRP. Model F4 could

generally provide better bounds compared to all other formulations, especially on the first

testbed, despite the fact that model F3 yields better UBs. We observe that there is a

difference between models F3 and F4 regarding the overall gaps. The solutions provided

by F4 are 8.2% and 1.2% better than the solutions provided by F3 on the two testbeds,

respectively. Model F4 provides eight best LBs and five best UBs over 14 instances,

while F3 provides eight best UBs on the first testbed. This implies that disaggregating

the commodity flow variables is likely improving the model performance. Model F5 has

better bounds on the first three instances compared to all other formulations and provides

the best gap for instances 2-100-100 and 2-80-60. This is due to the fact that few variables

are generated in these test instances, characterized by a regular distribution of customers

demands and/or a small number of customers. However, even if model F5 provides six

best LBs over 14 instances, its overall average gap is about three times the overall average

gap of model F4. Regarding the small generated instances, F5 outperforms all the other

formulations and provides eight optimal solutions over 10, with an average gap equal to

0.57% and an average running time of 2390 seconds. F4 provides competitive solutions

with slightly better average gap (0.49%) than F5 within less computation time (1832

seconds). However, formulation F4 proves the optimality only for the smallest instance

with two depots and 10 customers. The computation times and the average gaps provided

by formulations F1 and F2 on these small instances are quite high. In particular they

require, on average, 8590 and 8841 seconds to solve instances with up to three depots

and 30 customers. These results point out again that formulations F3, F4 and F5 are the
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most suitable among the five proposed to solve small, medium and large size instances of

the MDFSMVRP.

A transversal analysis over Tables 4 and 5 allows us to remark that the deductions derived

after solving the models with integrality restrictions confirm the preliminary results de-

rived from the LR experiment. In addition, we observe that, on average, the values of the

LR of models F3 and F4 over the first 11 solved instances in Table 4 is equal to almost

0.7 and 0.8 times the UBs of the 3-hour execution of these models. Thereby, one can

conclude that the proposed models, especially the commodity flow formulations are good

enough as they provide strong linear relaxations. Finally, we can derive some comments

on the relative difficulty of the problem. We observe that the average gaps remain large,

especially on instances with more than two depots and 100 customers.

5.3.3 Comparison against the best known solutions

As it was mentioned, the literature devoted to the MDFSMVRP is rather scarce and

the published works on this specific variant are focused on heuristic methods. We are

only aware of the exact bounds recently obtained by the three-hour CPLEX execution of

Salhi et al. [39]. The performance of the proposed formulations is assessed with respect

to the available lower bounds provided in Salhi et al. [39] and to the best upper bounds

given heuristically by Vidal et al. [43].Table 6 presents the results of the best formulations

proposed in Section 3 compared to the state-of-the art methods. For completeness, we

have also reported the percentage gap between the best LBs and UBs obtained over the

proposed formulations in the column Best gap (%). The results in Table 6 show that the

proposed formulations could often identify a feasible solution for all the instances, even

for the largest instance considered with nine depots and 360 customers, unlike the exact

solution method of Salhi et al. [39]. The largest instance solved by this method includes

four depots and 100 customers. Models F3 and F4 yield better optimality gaps than that

work on all instances. Note also that the improvement with respect to the bounds given

by Salhi et al. [39] are significant. We have improved all the LBs and UBs with respect
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to that work. The average LB is increased by 8.63% for the first eleven instances solved by

Salhi et al. [39], and the average UB is reduced by 21.30%. One particular example is that

of instance 3-85-160 for which the gap was 47.29% and is now just 2.13%. The average

gap over all the instances of the first testbed has decreased from 51.00% to 17.84%. The

comparison of our best results against the heuristic of Vidal et al. [43] show that we

could not improve the UBs found heuristically but our gaps are tight. Even though the

quality of the UBs is not improved, the introduction of these different formulations helps

providing very good lower bounds.

5.3.4 Effect of valid inequalities

We now briefly analyze the effect of the valid inequalities proposed for each model. We

study the effect of the whole set of valid inequalities in each model on each upper and

lower bound. We have decided not to study the impact of each valid constraint proposed

in each model because this would lead to a combinatorial and unmanageable comparison

between valid inequalities, which is not the focus of this paper. We have compared the

average gaps between two configurations of each formulation, without and with valid

inequalities, on each testbed, with the maximum computing time limit of three hours.

Table 7 summarizes these results. On average, they clearly show the benefits of using

valid inequalities especially for the explicit formulation. The average gap is reduced by

almost 50% on the new smaller instances. We can also observe that the introduction of

valid inequalities is more relevant for formulations which explicit the index of the vehicle

because it is hard to generate efficient valid inequalities for variables that do not carry at

least the vehicle type traversing an arc, as it is the case of formulation F3.
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6 Conclusions

In this paper we have modeled and solved the MDFSMVRP. We have presented five

different formulations for this difficult distribution problem. The first one is a three-index

VRP formulation with an explicit vehicle index, and the second one is more compact, in

which individual vehicles are not explicitly identified. The third and the fourth models

are commodity flow formulations without a vehicle index. They are based on loading

variables to model capacity and connectivity requirements. The fifth and last model is

a capacity-indexed formulation, which is a based more compact single commodity flow.

We have proposed several valid inequalities to strengthen the formulations and we have

solved them by branch-and-cut and by branch-and-bound.

We compared the bounds of these formulations on existing instances and on newly gen-

erated ones. The results show that the commodity flow formulations and the capacity-

indexed formulation provide better bounds. Our results also show that compact formula-

tions represent a very promising research avenue. On classical benchmark instances our

methods could improve all lower bounds, and we have obtained the best upper bounds

and gaps when compared to another exact method from the literature.
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[19] Ç. Koç, T. Bektaş, O. Jabali, and G. Laporte. Thirty years of heterogeneous vehicle

routing. European Journal of Operational Research, 2015, forthcoming.

[20] R. Lahyani, L. C. Coelho, M. Khemakhem, G. Laporte, and F. Semet. A multi-

compartment vehicle routing problem arising in the collection of olive oil in Tunisia.

Omega, 51:1–10, 2015.

[21] R. Lahyani, M. Khemakhem, and F. Semet. Rich vehicle routing problems: From a

taxonomy to a definition. European Journal of Operational Research, 241(1):1–14,

2015.

[22] G. Laporte. Generalized subtour elimination constraints and connectivity constraints.

Journal of the Operational Research Society, 37(5):509–514, 1986.

Alternative Formulations and Improved Bounds for the Multi-Depot Fleet Size and Mix Vehicle Routing

32 CIRRELT-2015-36



[23] G. Laporte. Fifty years of vehicle routing. Transportation Science, 43(4):408–416,

2009.

[24] G. Laporte and Y. Nobert. Exact algorithms for the vehicle routing problem. In

S. Martello, G. Laporte, M. Minoux, and C. Ribeiro, editors, Surveys in Combi-

natorial Optimization, pages 147–184. North-Holland Mathematics Studies, North-

Holland, 1987.

[25] J. Lysgaard, A. N. Letchford, and R. W. Eglese. A new branch-and-cut algorithm

for the capacitated vehicle routing problem. Mathematical Programming, 100(2):

423–445, 2004.

[26] S. Mancini. A real-life multi depot multi period vehicle routing problem with a hetero-

geneous fleet: Formulation and adaptive large neighborhood search based matheuris-

tic. Transportation Research Part C: Emerging Technologies, 2015, forthcoming.

[27] J. R. Montoya-Torres, J. L. Franco, S. N. Isaza, H. F. Jiménez, and N. Herazo-Padilla.
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