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Abstract. The progressive hedging algorithm is to date one of the most popular scenario 

decomposition methods in multi-stage stochastic programming. While it achieves full 

decomposition over scenarios, its efficiency remains sensitive to some implementation 

choices. In particular, the algorithm performance is highly sensitive to the penalty 

parameter value, and various authors have proposed different strategies to update it over 
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that aims to better follow the algorithm process. Preliminaries numerical experiments on 

linear multi-stage stochastic test problems suggest that most of the existing techniques 
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1 Introduction

Optimization problems involving uncertainty occur in almost all areas of science
and engineering. This stimulates interest of formulating, analyzing and solving
such problems. Today, stochastic programming offers a variety of models to
address the presence of random data in optimization problems, such as two-
and multi-stage models (Kall and Wallace, 1994; Birge and Louveaux, 2011;
Wallace and Ziemba, 2005). In scenario analysis, the uncertain parameters or
components of the problems are modelled by a finite number of scenarios or
possible representations of data (Rockafellar and Wets, 1991). Due to often
very large dimensions of problems in scenario analysis, decomposition method
is an option to solve this kind of problems and track their specific structures.
Then, it is possible to split a large problem into manageable pieces corresponding
scenarios, solve them and then come up with a good combined solution to the
underlying large problem. Rockafellar and Wets (1991) proposed the progressive
hedging algorithm (PHA) that achieves full decomposition over scenarios, and
allows solving the scenario subproblems in parallel, while progressively enforcing
the nonanticipativity (NA) constraints. The method uses a quadratic penalty
term for the violation of NA constraints. Rockafellar and Wets (1991) briefly
discussed the effect of the penalty parameter on the performance of PHA and the
quality of the solution, but did not provide any indication on how to choose it.
Various values for this parameter have been proposed, but they tend to differ
with the application under consideration. The idea of updating the penalty
parameter over the iterations was first introduced by Mulvey and Vladimirou
(1991a,b), who noticed that the PHA convergence rate was extremely sensitive
to the penalty parameter value. Hvattum and Løkketangen (2009) suggested
a controlling approach for updating the parameter in order to ensure a stable
progress toward both primal and dual convergence. In their method, if the
progress in primal space is negative, they decrease the penalty parameter, and
if the progress in dual space is negative, they increase it. More recently, Zéphyr
et al. (2014) proposed to define the penalty parameter as a function of the
solution state. To do so, they introduced an adaptive learning update with
respect to the progress of optimality gap and also to the balance between NA
gap and optimality gap in the PHA.

The choice of penalty parameter is therefore a recurrent question in the appli-
cation of the PHA. We therefore aim to compare the various proposed strategies,
and explore if we can improve them. The PHA maintains an approximation of
the NA constraints, and can be viewed as a proximal point method. This sug-
gests to adaptively update the penalty parameter based on the progress in both
primal and dual spaces, increasing the parameter to enforce convergence when
the NA constraints are properly represented, decreasing it when the approxima-
tion is not satisfactory. Consequently, we propose a new update strategy and
numerically validate it on some test problems taken from the literature.

The paper is organized as follows. We briefly introduce multi-stage stochas-
tic problems and the progressive hedging algorithm in Section 2. Then, we
discuss about current strategies for updating the penalty parameter and intro-
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duce a novel adaptive approach in Section 3. Some numerical experiments are
presented in Section 4 in order to compare the various approaches. We present
some conclusions and research avenues in Section 5. We finally provide a short
mathematical proof of the equality that motivates our the adaptive update and
detailed numerical results in Appendix.

2 Progressive hedging algorithm

In many optimization problems, some data may be considered uncertain. Here,
we assume that data uncertainty can be represented as a random vector ξ of
finite support Ξ ⊆ Rq, and we consider the optimization problem

min
x

Eξ[f(x, ξ)]

s.t. x ∈ X (ξ),
(1)

where for all x, f(x, .) : Ξ → R is a measurable objective function, and X (·) :
Ξ → 2R

n

is a measurable multivalued mapping representing (event-dependent)
constraints. We denote a realization of ξ by ξ.

In a multi-stage stochastic problem, uncertainty is gradually revealed over
time and decisions are made sequentially, at each stage where more informa-
tion is available. The random vector vector ξ can be represented as ξ =
{ξ1, ξ2, . . . , ξT }, where by convention ξ1 = ξ1, as the first stage is determin-
istic. We also denote by ξ̄t = (ξ1, ξ2, . . . , ξt) as the history of realizations up to
stage t. The possible realizations of ξ are also called scenarios, and we denote
a specific scenario as

s =
(
ξ
(s)
1 , ξ

(s)
2 , · · · , ξ(s)T

)
,

associated to the probability ps = Pξ[ξ = s]. The set of scenarios is S =
{1, . . . , S}.

In contrast with (1), we now denote by x(s) = (x
(s)
1 , . . . , x

(s)
T ) the sequence of

decisions over time under scenario s, and by x̄
(s)
t = (x

(s)
1 , . . . , x

(s)
t ) as the decision

history up to stage t under scenario s. We now define x as (x(1), x(2), . . . , x(S)).
(1) can then be rewritten as

min
x

∑
s∈S

psf
(
x(s), ξ(s)

)
s.t. x(s) ∈ X (s),

x
(s)
t is nonanticipative, t = 1, . . . , T.

(2)

Mathematically speaking, the NA constraints can be expressed as x
(s)
t = x

(s′)
t

if ξ̄
(s)
t = ξ̄

(s′)
t , for all s, s′ ∈ S and t = 1, . . . , T . In other terms, the decisions

associated to two scenarios must coincide as long as the scenarios share the same
history. The NA condition can be rewritten as

x
(s)
t = E

[
x
(s′)
t

∣∣ s′ ∈ S(s)t

]
, (3)
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where S(s)t =
{
s′
∣∣ ξ̄(s)t = ξ̄

(s′)
t

}
. (3) can be reformulated as

x
(s)
t = x̂

(s)
t ,

with

x̂
(s)
t =

∑
s′∈S(s)

t
ps′x

(s′)
t∑

s′∈S(s)
t
ps′

. (4)

(2) would be separable by scenarios if the NA constraints, that link all the
scenarios, were ignored. Rockafellar and Wets (1991) suggest to consider the
augmented Lagrangian

L(x, λ, ρ) = E

[
f
(
x(s), ξ(s)

)
+

T∑
t=1

(
λ
(s)
t

′ (
x
(s)
t − x̂

(s)
t

)
+
ρ

2

∥∥∥x(s)t − x̂(s)t ∥∥∥2)
]
,

where λ is the Lagrange multipliers vector associated to the NA constraints,
and ρ > 0 is a penalty parameter. Given λ, the augmented Lagrangian program
is

min
x

L(x, λ, ρ)

s.t. x(s) ∈ X (s), s ∈ S.
(5)

In order to achieve full separability, Rockafellar and Wets (1991) moreover pro-

pose to fix x̂
(s)
t in (5), and repeatedly solve the program by updating the La-

grange multipliers vector and the value of x̂
(s)
t between consecutive resolutions.

The resulting algorithm is known as the PHA, summarized below

Step 0. Set x̂(s),0 =
(
x̂
(s),0
1 , . . . , x̂

(s),0
T

)
and k = 0. Choose λ(s),0 = 0, ρ0 > 0.

Step 1. Compute x(s),k+1 = (xs,k+1
1 , . . . , xs,k+1

T ), s = 1, . . . , S, by solving each
scenario subproblem

min
x(s)

f
(
x(s), ξ(s)

)
+

T∑
t=1

(
λ
(s)
t

′ (
x
(s)
t − x̂

(s),k
t

)
+
ρk

2

∥∥∥x(s)t − x̂(s),kt

∥∥∥2)
s.t. x(s) ∈ X (s).

(6)

Step 2. For s = 1, . . . , S, t = 1, . . . , T , set

x̂
(s),k+1
t =

∑
s′∈S(s)

t
ps′x

(s′),k+1
t∑

s′∈S(s)
t
ps′

.

Step 3. Set ρk+1 and

λ
(s),k+1
t = λ

(s),k
t + ρk

(
x
(s),k+1
t − x̂(s),k+1

t

)
, t = 1, . . . , T, s ∈ S.
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Step 4. Stop if convergence is achieved. Otherwise, set k ← k + 1 and return
to Step 1.

Several practical issues arise. A first question is the choice of the stopping
criteria in Step 4. Rockafellar and Wets (1991) propose to stop if√∑

s∈S
ps‖x(s),k+1 − x̂(s),k+1‖22 +

∑
s∈S

ps‖x̂(s),k+1 − x̂(s),k‖22 ≤ ε,

or equivalently if √∑
s∈S

ps‖x(s),k+1 − x̂(s),k‖22 ≤ ε, (7)

as it can be easily proved (see Appendix A) that∑
s∈S

ps‖x(s),k+1−x̂(s),k‖22 =
∑
s∈S

ps‖x(s),k+1−x̂(s),k+1‖22+
∑
s∈S

ps‖x̂(s),k+1−x̂(s),k‖22.

(8)
A second question concerns the initialization of the primal variables. As dis-

cussed in Chiche (2012), Chapter 6, various strategies have been considered but
the most popular is to set x(s),0, s = 1, . . . , S as the solution of the subproblem
associated to s, without the NA constraints:

min
x(s)

f
(
x(s), ξ(s)

)
s.t. x(s) ∈ X (s),

and x̂s,0 is computed using (4). dos Santos et al. (2009) compared this procedure
to other initializations, but did not find significant improvements.

3 Penalty parameter update

3.1 Existing strategies

Rockafellar and Wets (1991) analyzed the progressive hedging algorithm and es-
tablished its convergence with a penalty parameter constant over the iterations.
However, many authors have observed that in practice, the choice of penalty
parameter value will greatly impact the numerical behavior of the algorithm.
Considering the stopping criterion (7) Helgason and Wallace (1991) commented
that the penalty parameter should be as small as possible but large enough to
guarantee the convergence, more specifically to produce a monotone decrease in
the criteria. Mulvey and Vladimirou (1991a,b) showed that the overall conver-
gence rate of the PHA is particularly sensitive to the choice of ρ. Small values of
the penalty parameter tend to produce a fast initial progress in primal sequence
{x̂k} with a slower progress in dual space, i.e. the sequence {λk}, while large
values lead to an opposite behavior. They first suggested to consider a larger
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penalty parameter when the nonanticipavity constraints are more restrictive,
and introduced the idea to dynamically update the parameter, increasing the
value over the PHA iterations. However, they also noticed that a sudden in-
crease in penalty parameter can drive the algorithm toward ill-conditioning or
a suboptimal solution, suggesting to increase the penalty parameter smoothly.
They also proposed to implement a sudden reduction to improve the convergence
in primal space, if the dual convergence is already achieved. Chun and Robinson
(1995) used two predefined values: they initialized the parameter with a large
value and then changed it to a small value, if there was enough improvement in
dual sequence. Jonsbr̊aten (1998) decided to maintain the penalty parameter
to zero, and defined a dynamically updated step size to compute the Lagrange
multipliers. Some authors considered the possibility to use different penalty pa-
rameters, depending on the affected variables. In particular, Somervell (1998)
suggested to use predefined fixed bundle-stage wise values, while Watson et al.
(2007) proposed to set penalty parameters proportionally to the cost coeffi-
cient in the objective function, when dealing with linear functions. Fan and
Liu (2010), inspired by Chun and Robinson (1995) and Watson et al. (2007),
explored the use of two fixed values and cost-proportional values.

Following the idea of dynamic update, Reis et al. (2005) decreased the
penalty over the iterations, while other authors, as Crainic et al. (2011); Car-
pentier et al. (2013), chose to increase the penalty parameter. Hvattum and
Løkketangen (2009) suggested a controlling approach based on criteria (7) for
updating the penalty parameter. They reduced ρ if

∑
s∈S ps‖x̂s,k+1 − x̂s,k‖22

does not decrease, and they increased ρ if
∑
s∈S ps‖xs,k+1 − x̂s,k+1‖22 does not

decrease. They also considered a node-cost proportional update. Inspired by
them, Gul (2010) suggested to dynamically update the penalty parameter, in-
creasing the parameter if no progress is observed for the dual variables, and
decreasing it if no progress is observed for the primal variables. Gonçalves et al.
(2012) used an increase factor proportional to the NA violation. They also
insisted that the initial penalty parameter should be chosen small enough, for
instance with a value of 10−4. Zéphyr et al. (2014) dynamically updated the
penalty parameter using coefficients based on optimality and NA indicators,
allowing to increase or decrease the parameter.

Therefore, many strategies for updating the penalty parameter have been
considered, highlighting the sensitivity of the PHA to its value, but no clear
consensus exists to date. We summarize the main approaches in Table 1. More
recently, Chiche (2012) highlighted that a dynamic update strategy can even
lead to a complete failure of the PHA. She provided an example where an
apparently genuine choice of the penalty parameter results in a cyclic behavior
of the PHA between two solutions, none of them satisfying the NA constraints.
In her example, the penalty parameter oscillates between two inverse values.
Therefore, while the use of a fixed penalty parameter is usually associated with
a slow convergence, care must be exercised when designing a dynamic update
strategy if we want to improve the PHA performance. In the following, we
propose a novel approach that aims to learn from the algorithm process, while
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remaining simple and independent of the application.

3.2 Adaptive penalty parameter update

As pointed by Takriti and Birge (2000), the PHA is a proximal point method
producing the contraction of a sequence of primal-dual pairs {(x̂s,k, λs,k)} around
an optimal saddle point. The primal convergence can be monitored by consider-
ing the expectation of the changes between consecutive NA solution

∑
s∈S ps‖x̂s,k+1−

x̂s,k‖2 while, from Step 3. of the PHA,
∑
s∈S ps‖xs,k+1−x̂s,k+1‖2 gives the order

of the change in dual variables. Recall that from (8),∑
s∈S

ps‖xs,k+1 − x̂s,k‖22 =
∑
s∈S

ps‖x̂s,k+1 − x̂s,k‖22 +
∑
s∈S

ps‖xs,k+1 − x̂s,k+1‖22,

i.e. the PHA aggregates the primal and dual changes. In constrast to many
papers that monitors the values of

∑
s∈S p

s‖xs,k+1 − x̂s,k+1‖22 to decide to in-

crease or decrease the penalty parameter ρ, we first check the changes in {x̂k},
i.e.

∑
s∈S p

s‖x̂s,k+1 − x̂s,k‖22. The main motivation is to avoid to enforce the
NA constraints when we have not yet identified the correct NA solution, or in
other terms the approximation of the NA is not accurate enough. Otherwise,
we could converge to a suboptimal solution, as also noticed by Chun and Robin-
son (1995). Therefore, if the primal variables significantly change, we avoid to
increase the penalty parameter. Simultaneously, we aim to keep a balance be-
tween the Lagrangian function and the quadratic penalty. If the NA solution
seems to stabilize, but we observe larger NA constraints violations, we slightly
increase the penalty parameter if the new violations are significantly more im-
portant, otherwise, we keep the penalty parameter fixed. We do not expect this
case to often happen, but if it occurs, we try to stabilize the process. Finally, if
none of the previous situations is appearing, we deduce that we have achieved
convergence in the primal space, so we force convergence in the dual space by
increasing the penalty parameter value. The procedure is summarized below.

Step 0. Set γ1, γ2, γ3 ∈ (0, 1), α, ν, σ ∈ (0, 1), 1 < θ < β < η.

Step 1. If the change in {x̂k} is large enough, i.e. if

E
[∥∥x̂(s),k+1 − x̂(s),k

∥∥2
2

]
max

{
E
[∥∥x̂(s),k+1

∥∥2
2

]
, E
[∥∥x̂(s),k∥∥2

2

]} ≥ γ1,
or if the quadratic penatly term is important compared to the Lagrangian
function, i.e. if

ρkE

[∥∥∥x(s),k+1 − x̂(s),k+1
∥∥∥2
2

]
≥ σE

[∣∣∣f (x(s),k+1, ξ(s)
)

+ λ(s),k
′ (
x(s),k+1 − x̂(s),k

)∣∣∣] ,
then

Penalty Parameter Update Strategies in Progressive Hedging Algorithm
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Strategy Penalty parameter update

Fixed value (Rockafellar and
Wets, 1991)

ρ = a > 0

Dynamic increase with possibly
a sudden reduction (Mulvey and
Vladimirou, 1991a)

ρk+1 = (τρρ
k)µ, τρ ≥ 1, 0 < µ ≤ 1,

ρk+1 = ρε, ρε > 0, small

Fixed to two predefined positive
values with reduction (Chun and
Robinson, 1995)

ρ = α > 0, if the convergence in dual space is
not achieved, otherwise ρ = β > 0, with β < α

Bundle-stage wise value
(Somervell, 1998)

ρ
(s′)
t , for s′ ∈ S(s)

t and t = 1, · · · , T

Cost-proportional value (Watson
et al., 2007)

ρ(i) = c(i)

maxs{x(s),0−mins x(s),0+1} or

ρ(i) = c(i)

max{
∑

s ps|x(s),0−x̂0|,1}

Decreasing values (Reis et al.,
2005)

ρk = 1
α+βk

, α, β ∈ (0, 1)

Increasing values (Crainic et al.,
2011)

ρk+1 = τρρ
k, τρ ≥ 1

Dynamic update, convergence-
and cost-proportional node-
wise values (Hvattum and
Løkketangen, 2009)

ρv = cvδ(v)ρk+1 for node v ∈ V, where
ρk+1 = τincρ

k with τinc > 1, if the progress
toward dual convergence is negative,
ρk+1 = τdecρ

k with 1 > τdec > 0, if the
progress toward primal convergence is nega-
tive, for some discount factor δ(v)

Dynamic update, convergence-
proportional values by predefined
multipliers (Gul, 2010)

ρk+1 = δρk, if the progress toward dual con-
vergence is negative,
ρk+1 = 1

δ
ρk, if the progress toward primal con-

vergence is negative, with δ > 1

Increasing values, with
NA-proportional multiplier
(Gonçalves et al., 2012)

ρk+1 = ρk
{
αE

[∑
t

(
‖x(s),kt −x̂k‖2

x
(s),k
t,max−x

(s),k
t,min+1

)]
+ 1

}
,

α > 1,

Dynamic update, bounded values
based on optimality and NA indi-
cators (Zéphyr et al., 2014)

ρk+1 = max{0.01,min{100, qk+1ρk}}, where

qk+1 =
(
max{gk+1, hk+1}

) 1
1+0.01(k−1) , where

gk+1 and hk+1 are optimality and NA indica-
tors, respectively

Table 1: Penalty parameter updates

Penalty Parameter Update Strategies in Progressive Hedging Algorithm

CIRRELT-2016-12 7



a) if the change in {x̂k} is dominating the change in {λk} such that

E
[∥∥x̂(s),k+1 − x̂(s),k

∥∥2
2

]
− E

[∥∥x(s),k+1 − x̂(s),k+1
∥∥2
2

]
max

{
1, E

[∥∥x(s),k+1 − x̂(s),k+1
∥∥2
2

]} > γ2,

then decrease the penalty parameter by setting ρk+1 = αρk,

b) else if the change in {λk} is dominating the change in {x̂k} such that

E
[∥∥x(s),k+1 − x̂(s),k+1

∥∥2
2

]
− E

[∥∥x̂(s),k+1 − x̂(s),k
∥∥2
2

]
max

{
1, E

[∥∥x̂(s),k+1 − x̂(s),k
∥∥2
2

]} > γ3,

then increase the penalty parameter by setting ρk+1 = θρk,

c) otherwise, keep the penalty parameter fixed by setting ρk+1 = ρk,

otherwise go to Step 2.

Step 2. If there is no significant change in {x̂k} but the change in the dual
sequence {λk} is getting larger, i.e. the nonanticipative violation increase
over the iterations:

E

[∥∥∥x(s),k+1 − x̂(s),k+1
∥∥∥2
2

]
> E

[∥∥∥x(s),k − x̂(s),k∥∥∥2
2

]
,

then

a) if the increase is large, i.e.

E
[∥∥x(s),k+1 − x̂(s),k+1

∥∥2
2

]
− E

[∥∥x(s),k − x̂(s),k∥∥2
2

]
E
[∥∥x(s),k − x̂(s),k∥∥2

2

] > ν,

then increase the penalty parameter by setting ρk+1 = βρk,

b) else keep the penalty parameter fixed by setting ρk+1 = ρk.

Otherwise, go to Step 3.

Step 3. Increase the penalty parameter by setting ρk+1 = ηρk.

A last point to discuss is the choice of the initial penalty parameter ρ0. As the
Lagrange multipliers vector λ0 is set to zero, the initial augmented Lagrangian
is

E
[
f
(
x(s),0, ξ(s)

))
+
ρ0

2
E

[∥∥∥x(s),0 − x̂(s),0∥∥∥2
2

]
.

This suggests to balance the two terms, leading to

ρ0 =
max

{
1, 2ζ

∣∣E[c′sx0]
∣∣}

max {1, E [‖x0 − x̂0‖22]}
, (9)

with ζ > 0.
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4 Computational study

In order to numerically validate our approach, we compare it with some of the
propositions identified in the literature. We first consider fixed values, dynamic
update with/without dropping from Mulvey and Vladimirou (1991b), a simpli-
fied version of convergence-proportional update by Hvattum and Løkketangen
(2009), excluding problem-dependent aspects, and optimality- and NA-proportional
update by Zéphyr et al. (2014). We do not examine cost-proportional penalties
as some of the test problems present many variables associated to null costs.

We also limit ourselves to linear problems of the form

min
x

∑
s∈S

ps

(
T∑
t=1

c
(s)
t

′
x
(s)
t

)
s.t. H

(s)
1 x

(s)
1 = b

(s)
1 ,∑

j<t

G
(s)
j x

(s)
j +H

(s)
t x

(s)
t = b

(s)
t , t = 2, . . . , T, s ∈ S,

x
(s)
t ≥ 0, t = 1, . . . , T, s ∈ S,

x
(s)
t is nonanticipative, t = 1, . . . , T,

The problems were collected from SMI (http://www.coin-or.org/projects/
Smi.xml) and the problems collection SPLIB proposed by V. Zverovich (https:
//github.com/vitaut/splib). We also created a modified version of KW3R
by adding stochastic in the constraints matrix and we denote this version by
KW3Rb Their characteristics are summarized in Table 2. We used SMI to
parse the SMPS files describing them and we solved their deterministic equiva-
lent formulations using CPLEX 12.5 in order to have reference optimal values.
We implemented the PHA in C++ and the scenario subproblems are solved
with CPLEX. The numerical tests were performed on a cluster of computers
with 2.40 GHZ Intel(R) Xeon(R) E5620 CPU (quad-core) with 2 threads each
and 98 GB of RAM.

Problem #stages #scenarios Optimal value
KW3R 3 9 2613
KW3Rb 3 9 3204
app0110R 3 9 41.96
SGPF3Y3 3 25 -2967.91
Asset Mgt 4 8 -164.74
SGPF5Y4 4 125 -4031.3
wat10I16 10 16 -2158.75
wat10C32 10 32 -2611.92

Table 2: Problems

We compare the use of a fixed penalty parameter (referred as Fixed) with
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several of the identified strategies, namely the dynamic update proposed by
Mulvey and Vladimirou (1991a) with reduction (referred as M&VR) and with-
out reduction (referred as M&V), the controlled dynamic update designed by
Hvattum and Løkketangen (2009) (referred as H&L), the learning update de-
veloped by Zéphyr et al. (2014) (referred as Z&L&L) and the adaptive update
(referred as Adaptive). The initial penalty parameter ρ0 is set as in (9), or

by using the recommended values in the original papers, and we compute x
(s)
0 ,

s = 1, . . . , S, by solving the scenario subproblems without the NA constraints.
We tried three different settings corresponding to different values of ζ, as the
smaller the value of ζ, the less we enforce the initial NA solution. We test
the method with ζ = 0.01 (small), ζ = 0.10 (medium), and ζ = 0.50 (large).
Moreover, the parameters associated to each approach are chosen as described
below. For the M&V update, we set ρk+1 = (τρρ

k)µ, and consider two settings
recommended by Mulvey and Vladimirou (1991a) referring to them by a and
b, respectively. In setting a, we define τρ = 1.1, µ = 0.80, ρ0 = 0.02, and
ρmin = 0.05, while in setting b, we have τρ = 1.25, µ = 0.95, ρ0 = 0.05, and
ρmin = 0.05. To drop the penalty parameter as they suggested, we check if∑
s∈S ps‖xs,k+1 − x̂s,k+1‖22 ≤ εd, with εd = 10−5, is satisfied. For H&L, we set

ρk+1 = δρk, if the progress toward dual convergence is negative, and ρk+1 = 1
δρ
k,

if the progress toward primal convergence is negative, with δ = 1.8 and ρ0 = 0.3,
We follow Zéphyr et al. (2014) recommendations for the implementation of their
strategy. Finally, the adaptive strategy parameters are γ1 = 10−5, γ2 = 0.01,
γ3 = 0.25, σ = 10−5, α = 0.95, θ = 1.09, ν = 0.1, β = 1.1, and η = 1.25.

The stopping criteria is a normalized version of 7. We stop if√∑
s∈S ps‖xs,k+1 − x̂s,k‖22

max
{

1,
∑
s∈S ps‖x̂s,k‖22

} ≤ ε, (10)

with ε = 10−5, and set the iteration limit to 500 and time limit to 36000
seconds (or 10 hours). We declare convergence if the difference with the optimal
value is less than 0.1% within the time and iteration limits. A summary of our
main results is given in Tables 3–5, where the methods are compared when
the same initial penalty parameter is used, while we present detailed results
in Appendix B, problem by problem. When we reach the time or iterations
limit, we indicate “Limit” if the final solution is within a 0.1% optimality gap,
otherwise we mention “Wrong” if the final solution has an optimality gap greater
than 0.1%, and “Infeasible” if the NA constraints are not satisfied. If (10) is
satisfied within the defined limits, we report the number of PHA iterations
and the optimality gap in brackets in case we have converged to a suboptimal
solution, i.e. the optimality gap is greater than 0.1%.

We also graphically compare the methods by means of performance profiles
Dolan and Moré (2002). In the figures, P designates the percentage of problems
which are solved within a factor τ of the best solver, using the number of
iterations as our performance metric. We first compare the methods for a given
ζ, and then compare the choice of ζ for fixed and adaptive strategies. Figures
1, 2, and 3 exhibit that existing strategies have difficulties to converge towards
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Method KW3R KW3Rb app0110R SGPF3Y3
Fixed 30 Infs. Infs. 9
M&VRa 43 Limit Wrong 12(1.1%)
M&VRb 48 Limit Limit 13(0.3%)
M&Va 27 346 105 12(1.1%)
M&Vb 23 244 92 13(0.3%)
H&L 115 Infs. Infs. 9
Z&L&L 27 261 109 18(1.9%)
Adaptive 25 139 108 10

Method Asset-Mgt SGPF5Y4 wat10I16 wat10C32
Fixed 6 Limit 342 Limit
M&VRa 8 20(7.9%) 43 Infs.
M&VRb 8 18(4.4%) 275 44
M&Va Wrong 20(7.9%) Wrong Wrong
M&Vb 55(0.11%) 18(4.4%) 44(2.6%) 46(2%)
H&L 8 Infs. Infs. Infs.
Z&L&L Wrong 32(11.2%) Wrong Wrong
Adaptive 6 46 48 73

Table 3: Number of PHA iterations with ζ = 0.01

Method KW3R KW3Rb app0110R SGPF3Y3
Fixed 28 373 215 95
M&VRa 28 Limit Limit 11(1.1%)
M&VRb 36 Limit Limit 11(0.4%)
M&Va 28 299 102 11(1.08%)
M&Vb 25 234 86 11(0.4%)
H&L 83 Infs. Infs. 49
Z&L&L 59 265 118 17(1.4%)
Adaptive 24 155 83 62

Method Asset-Mgt SGPF5Y4 wat10I16 wat10C32
Fixed 19 109 Limit 144
M&VRa 23 20(7.9%) Limit 185
M&VRb 21 17(5%) Limit 203
M&Va Wrong 20(7.9%) Wrong Wrong
M&Vb 60(1.2%) 17(5%) 46(4.5%) 45(3.3%)
H&L Wrong Limit 286 95
Z&L&L 179 31(9.7%) Wrong Wrong
Adaptive 16 32 41 62

Table 4: Number of PHA iterations with ζ = 0.1
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Method KW3R KW3Rb app0110R SGPF3Y3
Fixed 44 324 109 467
M&VRa 29 234 126 11(1.2%)
M&VRb 60 Limit Limit 11(0.8%)
M&Va 35 290 99 11(1.2%)
M&Vb 49 267 82 11(0.8%)
H&L 105 Limit Infs. 45(0.4%)
Z&L&L 82 421 137 17(1.34%)
Adaptive 39 189 67 88

Method Asset-Mgt SGPF5Y4 wat10I16 wat10C32
Fixed 90 38 Limit Limit
M&VRa 92 19(7.7%) Limit Limit
M&VRb 92 16(6.6%) Limit Limit
M&Va Wrong 19(7.7%) Wrong Wrong
M&Vb 58(1.5%) 16(6.6%) 50(8.1%) 51(6.8%)
H&L 39(0.39%) Limit 38(0.6%) 359(0.83%)
Z&L&L Wrong 31(9.2%) Wrong Wrong
Adaptive 38 24 56 95

Table 5: Number of PHA iterations with ζ = 0.5

the optimal solution, a fixed parameter strategy being surprisingly more efficient
when the initial penalty parameter is not chosen small enough. For a small initial
penalty parameter (ζ = 0.01), the approach designed by Mulvey and Vladimirou
(1991a) has a slight advantage over the other methods, that disappears when
increasing the initial penalty parameter value. Overall, none of the existing
approaches has been found to significantly outperforms the other ones. The
adaptive strategy proved to be quite efficient, as it is the fastest approach for
most of the problems, whatever the choice of ρ0, and it is the only one to always
deliver the correct solution. It is therefore interesting to explore the influence
of the initial penalty parameter. We draw the performance profile of the fixed
and adaptive strategy in Figure 4. We again see that the adaptive strategy is
more efficient than keeping the penalty parameter fixed, and there is a slight
advantage to start with a small initial value for the penalty parameter. The
fixed approach is more sensitive to the choice of the initial penalty, a medium
penalty being the best compromise in our experiments. The problems set being
limited, we have to remain careful before we can derive strong conclusions, but
the numerical results are nevertheless encouraging.

5 Conclusion

The PHA remains a popular scenarios decomposition method, but practical is-
sues are still often observed. In particular, the choice of the penalty parameter
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value significantly influences the speed of convergence. A low value can produce
a very slow convergence, while a large value will allow faster convergence, but
the returned solution can be suboptimal. In order to circumvent these problems,
many researchers have proposed heuristics to update the penalty parameters,
but the study of their efficiency and robustness is often limited, and valid for
the application under consideration only. In this paper, we have reviewed sev-
eral approaches proposed in the literature, and observed that even for simple
problems, we can face convergence issues. We then propose a dynamic update
that allows to increase or reduce the penalty parameter value, aiming to enforce
the NA constraints only when they are correctly identified. While the proposed
approach is still heuristic, we have observed a large improvement over the other
strategies for the test problems, the method being fast and robust. More re-
search would however be needed to offer better theoretical guarantees, and to
assess its performance on larger classes of problems, especially with respect to
proximal-penalization techniques.
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A Proof of equality (8)

In this appendix, we develop the proof of the equality (8)∑
s∈S

ps‖xs,k+1 − x̂s,k‖22 =
∑
s∈S

ps‖xs,k+1 − x̂s,k+1‖22 +
∑
s∈S

ps‖x̂s,k+1 − x̂s,k‖22.

Consider the space D = {X : S → Rn | X(s) = (X1(s), . . . , XT (s)), Xt : S →
Rnt}, with

∑T
t=1 nt = n, and N = {X ∈ D | Xt is nonanticipative}. We equip

D with the inner product 〈X,Y 〉D = E[X(s) · Y (s)], where · is the component-
wise product, and the associated norm ‖X‖D =

√
E[‖X(s)‖22]. Let J be the

orthogonal projection operator from D on the N , and K = I−J the orthogonal
projection operator on the subspace of D complementary to N , denoted by
M = N⊥ = {X ∈ D | JX = 0}. Then, we have N = {X ∈ D | KX = 0}, To
prove the equality (8), we work on each term separately. We first have∑
s∈S

ps‖xs,k+1−x̂s,k‖22 = ‖xk+1−x̂k‖2D = ‖xk+1‖2D−2〈xk+1, x̂k〉+‖x̂k‖2D. (11)

Similarly,∑
s∈S

ps‖x̂s,k+1−x̂s,k‖22 = ‖x̂k+1−x̂k‖2D = ‖x̂k+1‖2D−2〈x̂k+1, x̂k〉+‖x̂k‖2D, (12)

Moreover, we have∑
s∈S

ps‖xs,k+1 − x̂s,k+1‖22 =
∑
t

∑
Bs

t

∑
s′∈Bs

t

ps
′
‖xs

′,k+1
t − x̂s

′,k+1
t ‖22

=
∑
t

∑
Bs

t

∑
s′∈Bs

t

ps
′
(
‖xs

′,k+1
t ‖22 − ‖x̂

s′,k+1
t ‖22

)
= ‖xk+1‖2D − ‖x̂k+1‖2D,

(13)

Combining (12) and (13), we have∑
s∈S

ps‖xs,k+1−x̂s,k+1‖22+
∑
s∈S

ps‖x̂s,k+1−x̂s,k‖22 = ‖xk+1‖2D−2〈x̂k+1, x̂k〉+‖x̂k‖2D,

that corresponds to (11) as

〈xk+1 − x̂k+1, x̂k〉 = 〈Kxk+1, Jxk〉 = 〈xk+1,KJxk〉 = 0,

since K is an orthogonal projection operator. This concludes the proof.
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B Detailed numerical results

We provide in Tables 6–13 the detailed results of our numerical experimentations
over the eight test problems. For each problem, we compare thirty penalty
parameter update strategies, and provide the final objective value along with
the gap to optimal value in brackets. We also report the number of iterations
and the computation time. In case we reach the iteration or time limit before
declaring convergence, we mention “Limit” in the corresponding cell.

Update Objective value Iterations Time (s)
Fixed-Sml 2613 (0) 30 3.53
Fixed-Med 2613 (0) 28 3.14
Fixed-Big 2613 (0) 44 4.77
M&VRa 2613 (0) Limit 122.22
M&VRa-Small 2613 (0) 43 5.11
M&VRa-Medium 2613 (0) 28 3.18
M&VRa-Large 2613 (0) 29 3.32
M&VRb 2613 (0) 64 8.1
M&VRb-Small 2613 (0) 48 5.7
M&VRb-Medium 2613 (0) 36 4.07
M&VRb-Large 2613 (0) 60 6.94
M&Va 2613 (0) 29 3.56
M&Va-Small 2613 (0) 27 3.1
M&Va-Medium 2613 (0) 28 3.24
M&Va-Large 2613 (0) 35 3.97
M&Vb 2613 (0) 25 2.88
M&Vb-Small 2613 (0) 23 2.6
M&Vb-Medium 2613 (0) 25 2.97
M&Vb-Large 2613 (0) 49 5.77
H&L 2613 (0) 118 17.6
H&L-Small 2613 (0) 115 16.53
H&L-Medium 2613 (0) 83 11.85
H&L-Large 2613 (0) 105 15.3
Z&L&L 2613 (0) 28 2.53
Z&L&L-Small 2613 (0) 27 3.15
Z&L&L-Medium 2613 (0) 59 7.14
Z&L&L-Large 2613 (0) 82 10.99
Adaptive-Small 2613 (0) 25 2.87
Adaptive-Medium 2613 (0) 24 2.65
Adaptive-Large 2613 (0) 39 4.36

Table 6: KW3R problem
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Update Objective value Iterations Time (s)
Fixed-Sml 3197.34 (-0.21) Limit 123.92
Fixed-Med 3204 (0) 373 74.8
Fixed-Big 3204 (0) 324 60.67
M&VRa 3204.25 (0.008) Limit 124.33
M&VRa-Small 3204.93 (0.03) Limit 124.31
M&VRa-Medium 3204.05 (0.001) Limit 123.91
M&VRa-Large 3204 (0) 234 39.58
M&VRb 3204 (0) Limit 122.23
M&VRb-Small 3204.16 (0.005) Limit 121.3
M&VRb-Medium 3204 (0) Limit 120.62
M&VRb-Large 3204.26 (0.008) Limit 118.19
M&Va 3204 (0) 348 69.29
M&Va-Small 3204 (0) 346 69.81
M&Va-Medium 3204 (0) 299 56.12
M&Va-Large 3204 (0) 290 52.48
M&Vb 3204 (0) 244 41.04
M&Vb-Small 3204 (0) 244 40.6
M&Vb-Medium 3204 (0) 234 39
M&Vb-Large 3204 (0) 267 46.39
H&L 3193 (-0.3) Limit 123.75
H&L-Small 3151.08 (-2) Limit 125.7
H&L-Medium 3154.16 (-1) Limit 124.58
H&L-Large 3204 (0) Limit 122.29
Z&L&L 3204 (0) 266 41.92
Z&L&L-Small 3204 (0) 261 44.38
Z&L&L-Medium 3204 (0) 265 44.85
Z&L&L-Large 3204 (0) 421 91.72
Adaptive-Small 3204 (0) 139 20.98
Adaptive-Medium 3204 (0) 155 23.55
Adaptive-Large 3204 (0) 189 29.91

Table 7: Modified KW3R problem
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Update Objective value Iterations Time (s)
Fixed-Sml 39.4 (-6) Limit 424.77
Fixed-Med 41.96 (0) 215 91.35
Fixed-Big 41.96 (0) 109 30.75
M&VRa 41.96 (0) Limit 421.14
M&VRa-Small 42.01 (0.12) Limit 423.34
M&VRa-Medium 41.96 (0) Limit 422.51
M&VRa-Large 41.96 (0) 126 38.72
M&VRb 41.963 (0.007) Limit 407.18
M&VRb-Small 41.96 (0) Limit 430.5
M&VRb-Medium 42 (0.09) Limit 422.19
M&VRb-Large 41.96 (0) Limit 422.97
M&Va 41.96 (0) 105 29.34
M&Va-Small 41.96 (0) 105 29.13
M&Va-Medium 41.96 (0) 102 28.42
M&Va-Large 41.96 (0) 99 25.79
M&Vb 41.96 (0) 88 21.89
M&Vb-Small 41.96 (0) 92 23.03
M&Vb-Medium 41.96 (0) 86 21.41
M&Vb-Large 41.96 (0) 82 20.1
H&L 34.83 (-17) Limit 423.63
H&L-Small 19.25 (-54) Limit 424.79
H&L-Medium 31.47 (-25) Limit 421.84
H&L-Large 37.81 (-9.9) Limit 422.05
Z&L&L 41.96 (0) 125 35.75
Z&L&L-Small 41.96 (0) 109 29.15
Z&L&L-Medium 41.96 (0) 118 34.58
Z&L&L-Large 41.96 (0) 137 43.91
Adaptive-Small 41.96 (0) 108 29.04
Adaptive-Medium 41.96 (0) 83 20.53
Adaptive-Large 41.96 (0) 67 14.48

Table 8: app0110R problem
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Update Objective value Iterations Time (s)
Fixed-Sml -2967.90 (0.0003) 9 6.93
Fixed-Med -2967.90 (0.0003) 95 385.7
Fixed-Big -2967.90 (0.0003) 467 8475.53
M&VRa -2927.3 (1.4) 14 13.64
M&VRa-Small -2935.81 (1.1) 12 11.09
M&VRa-Medium -2935.86 (1.1) 11 9.66
M&VRa-Large -2931.62 (1.22) 11 9.5
M&VRb -2879.93 (3) 15 15.21
M&VRb-Small -2958.85 (0.3) 13 12.3
M&VRb-Medium -2954.63 (0.4) 11 9.93
M&VRb-Large -2943.71 (0.8) 11 9.61
M&Va -2927.30 (1.37) 14 13.52
M&Va-Small -2935.81 (1.08) 12 10.82
M&Va-Medium -2935.86 (1.08) 11 9.83
M&Va-Large -2931.62 (1.22) 11 9.82
M&Vb -2879.93 (3) 15 15.34
M&Vb-Small -2958.85 (0.3) 13 12.38
M&Vb-Medium -2954.63 (0.4) 11 9.64
M&Vb-Large -2943.71 (0.8) 11 9.55
H&L -2895.27 (2.4) 19 21.98
H&L-Small -2967.90 (0.0003) 9 6.81
H&L-Medium -2967.83 (0.003) 49 113.37
H&L-Large -2957.07 (0.4) 45 98.7
Z&L&L -2917.65 (1.7) 17 17.66
Z&L&L-Small -2912.12 (1.9) 18 20.34
Z&L&L-Medium -2926.65 (1.4) 17 18.79
Z&L&L-Large -2928.06 (1.34) 17 18.95
Adaptive-Small -2967.90 (0.0003) 10 8.07
Adaptive-Medium -2967.84 (0.002) 62 176.83
Adaptive-Large -2967.83 (0.003) 88 324.23

Table 9: SGPF3Y3 problem
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Update Objective value Iterations Time (s)
Fixed-Sml -164.74 (0) 6 0.52
Fixed-Med -164.74 (0) 19 1.63
Fixed-Big -164.74 (0) 90 9.93
M&VRa -164.74 (0) 173 25.05
M&VRa-Small -164.74 (0) 8 0.7
M&VRa-Medium -164.74 (0) 23 2.76
M&VRa-Large -164.74 (0) 92 11.35
M&VRb -164.74 (0) 175 20.86
M&VRb-Small -164.74 (0) 8 0.68
M&VRb-Medium -164.74 (0) 21 1.86
M&VRb-Large -164.74 (0) 92 10.12
M&Va -162.57 (1.3) Limit 92.28
M&Va-Small -163.18 (1.0) Limit 94.27
M&Va-Medium -162.84 (1.2) Limit 94.61
M&Va-Large -162.55 (1.3) Limit 93.6
M&Vb -162.12 (1.6) 57 6.21
M&Vb-Small -164.55 (0.1) 55 5.42
M&Vb-Medium -162.72 (1.2) 60 5.67
M&Vb-Large -162.19 (1.5) 58 5.39
H&L -162.09 (1.6) 29 2.25
H&L-Small -164.74 (0) 8 0.68
H&L-Medium -164.16 (0.4) Limit 90.85
H&L-Large -164.17 (0.3) 39
Z&L&L -164.73 (0.006) Limit 95.71
Z&L&L-Small -164.44 (0.2) Limit 89.82
Z&L&L-Medium -164.74 (0) 179 24.1
Z&L&L-Large -163.09 (1) Limit 84.82
Adaptive-Small -164.74 (0) 6 0.51
Adaptive-Medium -164.74 (0) 16 1.36
Adaptive-Large -164.74 (0) 38 3.43

Table 10: Asset problem
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Update Objective value Iterations Time (s)
Fixed-Sml -4031.30 (0) 134 Limit
Fixed-Med -4031.30 (0) 109 24542.4
Fixed-Big -4031.30 (0) 38 3132.49
M&VRa -3573.08 (11.4) 26 1553.29
M&VRa-Small -3711.83 (7.9) 20 897
M&VRa-Medium -3711.38 (7.9) 20 898.47
M&VRa-Large -3722.37 (7.7) 19 818.35
M&VRb -3372.32 (16.3) 25 1447.19
M&VRb-Small -3853.78 (4.4) 18 744.29
M&VRb-Medium -3829.95 (5) 17 661.26
M&VRb-Large -3764.81 (6.6) 16 605.09
M&Va -3573.08 (11.4) 26 1588.28
M&Va-Small -3711.83 (7.9) 20 897.03
M&Va-Medium -3711.38 (7.9) 20 895.65
M&Va-Large -3722.37 (7.7) 19 821.27
M&Vb -3372.32 (16.3) 25 1440.74
M&Vb-Small -3853.78 (4.4) 18 735.41
M&Vb-Medium -3829.95 (5) 17 668.51
M&Vb-Large -3764.81 (6.6) 16 603.77
H&L -3575.56 (11.3) 111 25407.78
H&L-Small -4138.81 (-2.7) 134 Limit
H&L-Medium -4031.30 (0) 134 Limit
H&L-Large -4029.73 (0.04) 134 Limit
Z&L&L -3638.27 (9.8) 32 2318.17
Z&L&L-Small -3578 (11.2) 32 2310.63
Z&L&L-Medium -3640.91 (9.7) 31 2191.27
Z&L&L-Large -3660.43 (9.2) 31 2169.85
Adaptive-Small -4031.30 (0) 46 4551.63
Adaptive-Medium -4031.30 (0) 32 2317.18
Adaptive-Large -4031.30 (0) 24 1318.47

Table 11: SGPF5Y4 problem
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Update Objective value Iterations Time (s)
Fixed-Sml -2158.75 (0) 342 3800.11
Fixed-Med -2158.74 (0.0005) Limit 8003.73
Fixed-Big -2158.74 (0.0005) Limit 8061.06
M&VRa -2134.91 (1.1) Limit 8108.3
M&VRa-Small -2158.74 (0.0005) 43 78.45
M&VRa-Medium -2158.74 (0.0005) Limit 7921.8
M&VRa-Large -2158.74 (0.0005) Limit 7940.46
M&VRb -2148.12 (0.5) Limit 7789.87
M&VRb-Small -2158.75 (0) 275 2476.09
M&VRb-Medium -2158.74 (0.0005) Limit 8026.43
M&VRb-Large -2158.74 (0.0005) Limit 8070.88
M&Va -1931.3 (10.5) Limit 8067.18
M&Va-Small -2013.88 (6.7) Limit 8078.32
M&Va-Medium -2001.70 (7.3) Limit 8094.26
M&Va-Large -1975.13 (8.5) Limit 8086.62
M&Vb -1790.44 (17.1) Limit 7962.29
M&Vb-Small -2102.07 (2.6) 44 80.36
M&Vb-Medium -2061.52 (4.5) 46 86.18
M&Vb-Large -1983.14 (8.1) 50 100.94
H&L -1728.57 (20) 67 172.87
H&L-Small -2251.52 (-4.3) Limit 7983.85
H&L-Medium -2158.75 (0) 286 2687.91
H&L-Large -2145.81 (0.6) 38 62.14
Z&L&L -2100.79 (2.68) Limit 8052.37
Z&L&L-Small -2076.36 (3.8) Limit 8092.45
Z&L&L-Medium -2088 (3.3) Limit 7864.39
Z&L&L-Large -2110.99 (2.2) Limit 8037.98
Adaptive-Small -2158.74 (0.0005) 48 94.54
Adaptive-Medium -2158.71 (0.002) 41 65.97
Adaptive-Large -2158.71 (0.002) 56 121.74

Table 12: wat10I16 problem
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Update Objective value Iterations Time (s)
Fixed-Sml -2611.92 (0) Limit 33954.18
Fixed-Med -2611.92 (0) 144 2930.41
Fixed-Big -2611.87 (0.002) Limit 33785.49
M&VRa -2572.14 (1.5) Limit 34108.57
M&VRa-Small -2612.96 (-0.04) Limit 34040.47
M&VRa-Medium -2611.01 (0.03) 185 4960.15
M&VRa-Large -2610.72 (0.04) Limit 34069.22
M&VRb -2585.06 (1) Limit 34029.37
M&VRb-Small -2611.21 (0.03) 44 289.91
M&VRb-Medium -2611.84 (0.003) 203 5944.1
M&VRb-Large -2611.77 (0.006) Limit 34000.12
M&Va -2377.84 (9) Limit 34112.42
M&Va-Small -2464.55 (5.6) Limit 33858.15
M&Va-Medium -2457.85 (5.9) Limit 33813.32
M&Va-Large -2428.80 (7) Limit 33953.17
M&Vb 2260.01 (13.5) 72 777.52
M&Vb-Small -2558.96 b 46 338.36
M&Vb-Medium -2525.67 (3.3) 45 309.53
M&Vb-Large -2434.35 (6.8) 51 406.14
H&L -2216.59 (15.1) 35 203.9
H&L-Small -2809.08 (-7.5) Limit 34057
H&L-Medium -2611.92 (0) 95 1353.35
H&L-Large -2590.12 (0.83) 359 18151.14
Z&L&L -2564.12 (1.83) Limit 33928.35
Z&L&L-Small -2530.93 (3.1) Limit 33985.33
Z&L&L-Medium -2551.90 (2.3) Limit 34031.9
Z&L&L-Large -2571.58 (1.5) Limit 34090.2
Adaptive-Small -2611.92 (0) 73 795.2
Adaptive-Medium -2611.92 (0) 62 587.24
Adaptive-Large -2611.87 (0.002) 95 1380.99

Table 13: wat10C32 problem
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