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Abstract. When inventory management, distribution and routing decisions are determined 

simultaneously, implementing a vendor-managed inventory strategy, a difficult 

combinatorial optimization problem must be solved to determine which customers to visit, 

how much to replenish, and how to route the vehicles around them. This is known as the 

inventory-routing problem. We analyze a distribution system with one depot, one vehicle 

and many customers under the most commonly used inventory policy, namely the s,S, for 

different values of s. In this paper we propose three different customer selection methods: 

big orders first, lowest storage first and equal quantity discount. Each of these policies will 

select a different subset of customers to be replenished in each period. The selected 

customers must then be visited by a vehicle in order to deliver a commodity to satisfy the 

customers' demands. The system was analyzed using public benchmark instances of 

different sizes regarding the number of customers involved. We compare the quality and 

the robustness of our algorithms and detailed computational experiments show that our 

methods can significantly improve upon existing solutions from the literature. 
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1 Introduction

Supply chain performance, coordination and integration are some key success factors in

obtaining competitive advantages [17]. Inventory and distribution management are two

main activities towards that integration, and are said to account for more than 60% of

the total logistics costs [12]. The integration of inventory and distribution decisions gives

rise to the inventory-routing problem (IRP), which has been studied for the past few

decades and has received much attention lately [9]. However, most of these studies focus

on optimizing a problem for which all information is known a priori, which is often not

the case in practice.

The demand information in an IRP can be static when customers demand are known

before the planning, or dynamic, which means it is gradually revealed over time [5, 10].

The dynamic and stochastic IRP (DSIRP) aims not at providing a static output, but

rather a solution strategy that uses the revealed information, specifying which actions

must be taken as time goes by [4]. Recently, Bertazzi et al. [5], Solyalıet al. [23] and

Coelho et al. [10] have solved DSIRPs with the goal of minimizing the total inventory,

distribution and shortage cost. They considered at least one of the classical inventory

policies, i.e., maximum level or order-up-to-level (OU). They tested their algorithms on

instances containing several customers and periods.

In what follows, we review some relevant papers that solve problems similar to the one

addressed in this paper. Moin et al. [18] consider a deterministic scenario and develop

a hybrid genetic algorithm for the multi-product multi-period IRP. The algorithm is

designed to work in two steps: the first to pickup commodities from a supplier, and the

second to plan visits and deliveries to the customers. Salhi et al. [21] solved a multi-depot

IRP using a giant tour for each depot which was later improved by local search. This

algorithm was compared to a truncated execution of CPLEX which provided bounds for

the solution. Bertazzi et al. [5] have formulated the SIRP as a dynamic program and

have solved it by means of a heuristic rollout algorithm, sampling unknown demands and

solving a series of deterministic instances Finally, Coelho et al. [10] proposed a rolling

horizon algorithm to solve the DSIRP. Demand was forecasted based on historical data,
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an adaptive large neighborhood search algorithm selected customers for replenishments,

and a network flow model was solved to determine optimal delivery quantities. These

authors allowed the use of transshipments and direct deliveries to avoid stockouts after

the realization of the demand. The setting of our problem description follows that of this

paper.

The choice of which inventory policy to apply largely influences the cost of the optimized

function. Typically, an inventory policy uses three key parameters: when replenish, how

much to replenish, and how often the inventory level is reviewed. For the periodic review

inventory system, Wensing [24] describes three policies. One is the OU which refers to a

(t, S) system. Here, in each period t, the quantity delivered is that to fill the inventory

capacity up to S. Other policies are the (t, s, S) and the (t, s, q). In the former, the

customer is served if the inventory level is less than s. In the latter, the replenishment

level q is flexible but bounded by the storage capacity. The policies should be articulated

with strategies for clients selection, because sometimes it is not possible to serve all clients

due to vehicle capacities, and in such cases, it is necessary to prioritize some of them.

Several other exact and metaheuristic methods have been used to find feasible solutions

for this problem and its variants. Simic and Simic [22] argue that for complex optimization

problems such as the IRP, hybrid methods with techniques such as artificial neural net-

works, genetic algorithms, tabu search, simulated annealing and evolutionary algorithms

can be successfully applied. Some of the techniques used to solve IRPs are summarized

next. Genetic algorithms have been employed by Christiansen et al. [6] and Liu and

Lee [15], who clustered customers in geographical areas to serve them together. Local

search operators were explored by Javid and Azad [13] and Qin et al. [19], who changed

the delivery schedule for customers and adjusted the quantities delivered accordingly. Li

et al. [14], Liu and Lin [16] and Sajjadi and Cheraghi [20] used simulated annealing to

integrate location decisions into the IRP. Adaptive large neighborhood search [8] and a

hybrid of mathematical programming and local search [3] have also been used.. Finally,

exact methods relying on branch-and-cut [2, 7] and branch-cut-and-price [11] have also

been developed.
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In this paper we study a DSIRP in which decisions must be made without future infor-

mation about the demand, which is gradually revealed over time. In this situation, we

developed adaptive policies in order to select customers to be replenished in each period.

We propose a new three-step solution algorithm, which is flexible enough to consider

several different inventory replenishment policies. We are then able to evaluate and com-

pare the performance of our policies on demand satisfaction, average inventory kept at

the customers’ site, transportation cost, and total cost. Moreover, we show the effect

of integrating tactical and operational decisions into the same solution algorithm. We

compare the performance of our algorithm on benchmark instances available in the litera-

ture, and our results show that the right combination of inventory replenishment policies

and customer selection can yield significant savings over the best-known solutions from a

competing algorithm.

The remainder of this paper is organized as follows. In Section 2 we formally describe

the problem. In Section 3 we present our solution procedure which includes customer

selection, quantities determination, and vehicle routing. In Section 4, we present the

results of extensive computational experiments and we analyze the trade-off between

inventory and transportation costs. We describe how we can identify dominated solutions

under a multi-objective optimization approach, and we compare our solutions against the

ones from the literature. In Section 5 we present our findings and conclusions.

2 Problem description

The IRP under study consists of one supplier and several retailers as depicted in Figure 1.

We assume that the supplier has enough inventory to satisfy the demand of its customers.

Customers demand are gradually revealed over time, thus it is said to be dynamic and

unknown to the decision maker at the time all decisions are made. The problem is defined

over several periods, typically days, and without loss of generality we assume the demand

becomes known at the end of the period. This demand can encompass a set of products

organized in a pallet, and we will then treat a single commodity as it is done in other
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IRPs. The supplier has a single capacitated vehicle to distribute the products and to

satisfy the final demand of the customers.

Supplier Retailers
Final

Customers

Information Flow
Product Flow

1

2

n

.

.

.

Figure 1: A typical IRP instance with one supplier, n retailers, and a set of final customers

representing the demand of the retailers

The IRP is defined on a graph G = (V ,A), where V = {0, . . . , n} is the vertex set and

A = {(i, j) : i, j ∈ V , i 6= j} is the arc set. Vertex 0 represents the supplier and the

remainder vertices of V ′ represent n retailers. The problem is defined over a finite time

horizon H = {1, . . . , p}.

The costs incurred is the total of inventory and transportation costs. Inventory costs

include the inventory holding and shortage penalties. A transportation cost is paid for

each arc traversed by the vehicle. The transportation cost is based on a symmetric

distance matrix.

Let n represent the number of customers, each with an initial inventory I0i , and let the

demand of customer i in period t be dti. Each customer has a maximum inventory capacity

Ci, and incurs a unit holding cost hi per period. Shortages are penalized with z per unit

per period.

A single vehicle with capacity Q is available at the depot. The depot has an initial
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inventory I00 , and inventories incur a unit holding cost h0. A symmetric transportation

cost cij is known. We denote by I t0 the inventory level at the depot in period t, I ti the

inventory level at customer i at the end of period t, and lti its lost demand. Let qti be the

quantity of products delivered to customer i in period t. At the end of each period t, the

inventory level I ti for each customer i is updated based on its demand dti, its lost sales lti,

the inventory level at previous period I t−1i , and the quantity qti delivered to it.

A solution to the problem determines the periods in which each customer must be visited,

how much to deliver to each of them, and how to create vehicle routes that start at the

supplier visit all customers selected to receive a delivery in the period, and return to the

depot.

3 Solution algorithm

Our algorithm works by decomposing the problem into smaller parts and by solving them

using specialized algorithms. The first part of our solution methodology determines which

customers to be visited in each period. This can be done in different ways depending on

which inventory replenishment strategy is used. We describe the details of this algorithm

in Section 3.1. The second part of the solution algorithm determines how much to deliver

to each customer in each period. At this phase, the selection of customers is already done,

and one must then respect the capacity of the vehicle. The details on how we determine

delivery quantities are described in Section 3.2. The third and last part of our algorithm

is to create vehicle routes. This problem can be solved by different algorithms. Here, we

use a specialized exact algorithm. It is briefly described in Section 3.3. A flowchart of our

solution method to the problem is depicted in Figure 2.

3.1 Selecting customers to replenish

The selection of customers to replenish on a given period depends on the inventory policy

used. In what follows we enumerate several different policies organized in four groups in
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Inventory
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Transportation
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Compute
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Routing
constraints

Who,Pwhen
andPhowPmuch

toPreplenish

OutputsConstraintsPhasesPofPthePalgorithmInputs

Figure 2: Overview of the main parts of our solution algorithm

Table 1. They are described next.

1. Fixed quantity policy: in this policy, the customer always receives a fixed quan-

tity. The fixed quantity for each customer is defined as a fraction θ of its maximum

inventory level, i.e., their inventory capacity. In our experiments, we have set θ =

{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. We note that for θ = 0.0, nothing

is shipped and in case of θ = 1.0 this policy coincides with the order-up-to (OU)

one. Anything in between yields a maximum level (ML) policy.

2. OU policy: the decision maker enforces an OU policy, meaning that whenever a

customer is visited, the quantity delivered is that to fill its inventory capacity.

3. Look ahead: the decision maker knows a one-step ahead demand. In this case, the

delivery quantity is equal to the forthcoming demand.

4. (s, S): the decision maker implements an (s, S) inventory policy. The value of S

is set as the inventory capacity, and the parameter s is used to determine when to

replenish. This (s, S) policy consists in ordering a variable quantity equal to the

difference between S and the current inventory position I ti as soon as the inventory

level is less than s. The parameter s can be set in different ways as follows:

(a) The parameter s is determined for each retailer as one fraction α of the inven-

tory capacity, where α = {0.25, 0.50, 0.75}.

(b) The values of the parameter s are computed for each retailer using the mean

over its historical data.
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(c) The value of the parameter s is calculated for each retailer using the mean plus

a safety stock, computed as s = µH + zβσH , where β is the probability of a

stock-out and zβ is the order quantile of the demand distribution. Here, 1− β

usually refers to the service level.

(d) The value of the parameter s is equal to the one-step ahead demand.

Table 1: Different possible inventory policies

Group Variant Policy Decision

1 qit = θCi ML and OU ML, if I ti + qi < Ct
i

OU, otherwise

2 qit = Ct
i − I ti OU OU, if Ct

i − Ii > 0

0, otherwise

3 qit = Dt
i ML and OU ML, if I ti +Qi < Ct

i

OU, otherwise

4 si = αSi (s, S) Si − I ti , if I ti < si

si = µHi
(s, S) 0, otherwise

si = µHi
+ σHi

zβ (s, S)

si = dti (s, S)

Under policies 1–3 of Table 1, all retailers are set to be visited in every period, and under

the policies of group 4 only those whose inventory level is below the reorder point s are

selected. In our tests, we have chosen policies 1 and 4a as they are representative of all

the possible combinations of parameters and policies.

3.2 Determining delivery quantities

It is possible that after having selected the customers and an inventory policy, the capacity

of the vehicle is not sufficient to guarantee that the policy is fully respected. Different

strategies can be applied in order to rectify the situation. In this work, three different
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strategies are studied. Note that in all cases, the only information required is the size of

the potential order (determined previously) and eventually the information regarding the

capacity of the customers.

1. Big Orders First (BOF): under this strategy we prioritize customers requiring more

products.

2. Lowest Storage First (LSF): here, we prioritize customers with the low storage

capacity.

3. Equal Quantity Discount (EQD): in this strategy, we subtract the same amount to

all orders until all customers can be served.

For the first and second strategies, it is important to notice that the last customer selected

will be replenished with the remaining capacity of the vehicle. Note also that the same

policy should be applied throughout the whole algorithm, so that all selected customers

are subject to the same policy.

3.3 Computing vehicle routes

The remaining step in our algorithm is to create vehicle routes of minimum distance,

leaving the supplier, visiting all selected customers in each period, and returning to the

supplier. This problem is an instance of the traveling salesman problem (TSP) [1], a

classical combinatorial optimization problem. Solutions for the TSP can be obtained by

a myriad of heuristic and exact algorithms. One of these, Concorde [1], is a publicly

available algorithm for solving TSPs to optimality. We use this algorithm to obtain

solutions for the TSPs arising in our solution method.

At this point, our overall algorithm determines the inventory level of each customer, all

the incurred costs, and the procedure is repeated for the next period of the planning

horizon.
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4 Computational experiments

We have implemented our algorithm in Matlab 2009b running under Windows 8.1. All

computations were performed on a personal computer equipped with an Intel Core i3-

2370M running at 2.40GHz and with 8GB of RAM memory. In Section 4.1 we describe

the instances used to evaluate our algorithm and the comparisons described later. In

Section 4.2 we describe the results of the multi-objective optimization, followed in Section

4.3 by the computational results of the optimization based on total cost minimization.

4.1 Instances description

We have used the large dataset of instances from Coelho et al. [10]. A brief description of

their generation follows, and for details the reader is referred to their paper. The dataset

can be downloaded from http://www.leandro-coelho.com/instances/.

The instances follow some standards defined by the deterministic IRP instances of Archetti

et al. [2, 3], namely the mean customer demand, initial inventories, vehicle capacity and

geographical location of the vertices. Each instance contains 50 past periods of demand

information before the future p periods such that it can be used as historical data. The

demand follows a normal distribution whose mean is generated as an integer random

number following a discrete uniform distribution in the interval [10, 100], and standard

deviation as an integer random number following a discrete uniform distribution in the

interval [2, 10]. Maximum inventory capacities are a multiple of the average demand, and

initial inventories are equal to the maximum capacity minus the average demand. Holding

costs are randomly generated from a continuous uniform distribution in the interval [0.02,

0.10], and the shortage penalty cost equals 200 times the holding cost.

For early tests we have used the large instances containing 20 periods, ranging from five

to 200 customers, for a total of 10 instances. They are identified as IRP -n-p-i, indicating

n customers, and p periods. Each instance was tested under the two proposed inventory

policies (with 10 different values for the parameter θ and three values for the parameter

α), and for each one of three customer selection strategies.
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4.2 A multi-objective optimization analysis

The inventory-routing problem is intrinsically bi-objective because the solution is a trade-

off between inventory and distribution costs. Pareto optimal solutions, i.e., the set of non-

dominated solutions, are those where no improvement in one objective function is possible

without deteriorating the other. This information can give insights to decision makers.

The trade-off is implemented in the weights used to integrate the costs associated with

inventory and transportation. Multi-objective optimization aims at finding the Pareto

optimal set.

We have solved the instances of the problem using the different methods proposed in this

paper. Non-dominated solutions obtained by the procedure were drawn as points in a

plane, with the Y axis representing the transportation cost and the X axis representing

the inventory costs. In what follows, each figure depicts the Pareto frontier points with

annotations for the total average cost, delivery quantity strategy and inventory policy.

In Figure 3 we show the dominant solutions for the fixed quantity policies. We observe

that we have reduced the vehicle capacity by half, since the original one did not yield

any alternative solutions. In Figure 3 we show the dominant solutions under the BOF

and LSF delivery strategies. For BOF, three possibilities of replenishment to customers

are obtained. The one with q = 0.3C provides a lower inventory cost than those with

q = 0.9C and q = 1.0C, although the latter yields a lower transportation cost. For

the LSF strategy we see five distinct solutions. The EQD policy did not yield different

solutions.

In Figure 4 we show the dominant solutions for the reorder point policies under the

BOF, LSF and EQD delivery strategies. For each delivery policy, three distinct and non-

dominated solutions were obtained. The lowest transportation cost was always achieved

with α = 0.25 at the expense of a very high inventory cost. Alternatively, α = 0.75

provided the lowest inventory costs, but very high transportation costs. Note that the

average solution provided by Coelho et al. [10] is 69349.97, and hence all three new policies

were able to outperform it.
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Figure 3: Pareto frontier for the fixed quantity policy with two different customer selection

strategies. The EQD strategy did not yield different solutions. Vehicle capacity halved.
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Figure 4: Pareto frontier for the reorder point policy with three different customer selection

strategies.
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4.3 Single objective: total cost minimization

In order to minimize the total cost of inventory and distribution, we have tested the same

policies and compared our solutions against those from the literature.

Since this problem allows stockouts, a quick way to find feasible solutions and a benchmark

value other than solutions listed in the literature is the case in which the supplier chooses

not to replenish, and thus pay the stockout costs. This strategy, also called “wait and see”,

coincides with policy number 1 with θ=0.0. We show its cost in Table 2. The total cost

of the system was separated in its inventory, transportation, and stockout components.

Obviously, this policy does not perform well and its costs are significantly higher than

those of Coelho et al. [10].

Table 2: Detailed costs for the first policy θ=0.0 compared with those of Coelho et al. [10]

Instance
Inventory Vehicle

Stockout
Total Coelho et al.

holding routing cost [10]

IRP-5-20 298.37 0.00 45588.00 45886.37 17188.00

IRP-10-20 487.07 0.00 91020.00 91507.07 20182.80

IRP-15-20 842.72 0.00 153808.00 154650.72 33848.20

IRP-25-20 1233.55 0.00 275068.00 276301.55 36455.10

IRP-50-20 2913.80 0.00 506978.00 509891.80 58807.70

IRP-75-20 4025.12 0.00 822502.00 826527.12 77171.90

IRP-100-20 5067.09 0.00 1169380.00 1174447.09 90398.00

IRP-125-20 6870.42 0.00 1349788.00 1356658.42 106242.00

IRP-150-20 7313.46 0.00 1608706.00 1616019.46 114352.00

IRP-200-20 9642.02 0.00 2151808.00 2161450.02 138854.00

Average 3869.36 0.00 817464.60 821333.96 69349.97

The first of our proposed policies rely on the supplier replenishing each retailer with a

predetermined quantity, as computed from policy 1 from Table 1. Observe that we have

evaluated ten different values for the parameter θ. Under these fixed quantity policies,

we note that all strategies of delivery quantities presented in Section 3.2 (BOF, LSF,
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and EQD) yielded the same transportation costs due to the vehicle capacity never being

exceeded. For this reason, the transportation cost is stable throughout the ten values of

θ, whereas stockouts costs are drastically reduced, at the expense of a slight increase on

inventory holding costs. The reduction of the average total cost from the 0.5Ci to 1.0Ci

policies are very similar and yield the best comparison against the results of Coelho et al.

[10]. The difference in these values arises in the average stockout: while in Coelho et al.

[10] there is no stockout, in our policies low values are obtained. Coelho et al. [10] used

transshipments and direct deliveries to mitigate stockouts after deliveries and demand

reealization (similar to a recourse function). Overall, the fixed quantity policy does not

outperform the solutions obtained by Coelho et al. [10].

Table 3: Detailed costs for the fixed quantity policy compared those of Coelho et al. [10]. All

customer selection strategies yielded the same solution.

Policy
Inventory Vehicle

Stockout
Total Coelho et al.

holding routing cost [10]

q = 0.1Ci 3689.84 63028.93 545634.20 612352.97 69349.97

q = 0.2Ci 4616.62 63028.93 275232.80 342878.35 69349.97

q = 0.3Ci 8268.17 63028.93 115060.60 186357.69 69349.97

q = 0.4Ci 9576.26 63028.93 47539.00 120144.19 69349.97

q = 0.5Ci 10712.07 63028.93 1047.80 74788.80 69349.97

q = 0.6Ci 10925.41 63028.93 337.20 74291.54 69349.97

q = 0.7Ci 10935.15 63028.93 182.80 74146.88 69349.97

q = 0.8Ci 10937.22 63028.93 123.00 74089.15 69349.97

q = 0.9Ci 10938.00 63028.93 111.60 74078.53 69349.97

q = 1.0Ci 10938.34 63028.93 109.20 74076.47 69349.97

The second of our proposed policies is based on replenishments triggered by a reorder

point as proposed by item 4a of Table 1. The results obtained are presented in Table 4

for the BOF policy, in Table 5 for the LSF policy, and in Table 6 for the EQD policy.

Here, we have tested three different values for the parameter α, and the results show

that α = 0.50S yields the best solution cost across all three policies. Moreover, all three
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policies have outperformed the solutions of Coelho et al. [10], with an average total cost

reduced by about 20%.

Table 4: Detailed costs for the reorder point policy under the BOF customer selection strategy,

compared to those of Coelho et al. [10]

Policy
Inventory Vehicle

Stockout
Total Coelho et al.

holding routing cost [10]

s = 0.25S 6844.48 36718.53 22631.00 66194.01 69349.97

s = 0.50S 8391.94 43360.32 3313.20 55065.46 69349.97

s = 0.75S 10371.04 58312.87 136.40 68820.31 69349.97

Table 5: Detailed costs for the reorder point policy under the LSF customer selection strategy,

compared to those of Coelho et al. [10]

Policy
Inventory Vehicle

Stockout
Total Coelho et al.

holding routing cost [10]

s = 0.25S 6827.28 36601.67 18023.40 61452.35 69349.97

s = 0.50S 8388.97 43249.28 2697.60 54335.85 69349.97

s = 0.75S 10371.04 58312.87 136.40 68820.31 69349.97

Having identified that the reorder point policies are the best ones proposed in this paper,

we have then applied all its variants, comprising three values of the parameter α and three

customer selection strategies, to all instances of the dataset of Coelho et al. [10]. Like

those authors, we also report our findings by grouping instances into small, medium and

large. These are reported in Table 7 and show that our algorithms can always find better

solutions than those of Coelho et al. [10]. It also shows that, as previously expected, the

policy with α = 0.50S yields the best results. All customer selection methods performed

well, but the LSF outperformed the other two by a small margin.

It is relevant to notice that the running times remain low even when the size of the instance

increases, unlike the method of Coelho et al. [10]. The difference in our running times

between small and large instances is less than one second, which represents approximately
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Table 6: Detailed costs for the reorder point policy under the EQD customer selection strategy,

compared to those of Coelho et al. [10]

Policy
Inventory Vehicle

Stockout
Total Coelho et al.

holding routing cost [10]

s = 0.25S 6792.95 37341.31 20012.60 64146.85 69349.97

s = 0.50S 8406.25 43827.92 2632.20 54866.37 69349.97

s = 0.75S 10371.04 58312.87 136.40 68820.31 69349.97

doubling the running time, and never achieving two seconds for the large instances. Those

of Coelho et al. [10] increase significantly faster, reaching more than 400 seconds. Finally,

one can observe that our algorithm can better manage the trade-off between stockout

costs and overall costs. With respect to the competition, our average lost demand is

about four times as high, but the overall cost is significantly decreased.

We have performed sensitivity analyses to identify how the algorithms perform and how

the solutions change when the distribution capacity is drastically reduced. This exper-

iment is motivated by the fact that for the first policy, the vehicle capacity was not

binding. Thus, we have reduced it by 50%. These results are no longer comparable to

those of the literature, and a much higher level of lost demand is incurred. The results of

these new tests indicate that under the fixed quantity policy, serving big orders first gives

significantly better results than prioritizing customers based on their inventory capacities

or on decreasing delivery quantities equally among all customers. Moreover, using the

reorder point method does not yield better results than the fixed order, despite having

some configurations with similar results.

5 Conclusions

In this paper we have solved the Dynamic and Stochastic Inventory-Routing Problem.

This problem appears in the literature as that of managing inventory control and distri-

bution simultaneously, minimizing the total inventory holding, transportation, and stock-
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out costs. Customers demands are revealed dynamically over time, thus one must derive

a policy to serve customers accordingly. We have proposed several policies and tested

different configurations of the fixed quantity and of the reorder point policies. If the

vehicle capacity is not sufficient, we have created three strategies to prioritize some cus-

tomers. We have tested our policies on a large dataset containing up to 20 periods and 200

customers, and our results significantly improve upon those available in the literature.
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