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Abstract. Station-based bike sharing systems provide an inexpensive and exible 
supplement to public transportation systems. However, due to spatial and temporal demand 
variation, stations tend to run full or empty over the course of a day. In order to establish a 
high service level, that is, a high percentage of users being able to perform their desired 
trips, it is therefore necessary to redistribute bikes among stations to ensure suitable time-
of-day all levels. As available resources are scarce, the tactical planning level aims to 
determine efficient master tours periodically executed by redistribution vehicles. We present 
a service network design formulation for the bike sharing redistribution problem taking into 
account trip-based user demand and explicitly considering service times for bike pick-up 
and delivery. We solve the problem using a two-stage MILP-based heuristic and present 
computational results for small real-world instances. In addition, we evaluate the 
performance of the master tours for multiple demand scenarios. 
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1 Introduction

Station-based bike sharing systems (BSS) enhance the public transportation system in
several cities by offering bike rentals. After registration, users can perform trips between
any pair of stations scattered in the service area. Bike rentals are usually free of charge
for the first (half) hour, additional driving time incurs fees. Thus, BSS have become a
valid and inexpensive approach for the ”last mile” between the metro/bus station and
the final destination. For a review of the history of BSS, see [1].

The percentage of users who can successfully perform desired trips, defining the service
level, is an important measure for the reliability of a BSS. For a high reliability, a sufficient
number of bikes and free bike racks need to be provided at stations within the day. Still,
given spatial and temporal demand variation, together with different trip purposes such
as commuting, leisure and tourism, ensuring a high service level is a challenging task
[2]. For instance, stations near to working areas run full in the morning peak hour and
empty in the afternoon peak hour. Full and empty stations may negatively affect the
service level since users cannot return or rental bikes at them, respectively. To ensure
availability of bikes and free bike racks when demanded, bikes need to be redistributed
among stations. Resources such as vehicles, fuel and drivers are available to realize the
necessary redistribution operations. Unlimited resources would fulfill user demand by
setting up many redistribution operations with few bikes involved e.g., see [3]. However,
given that due to the offered free-of-charge user trips, the revenues produced by BSS
are limited, the resources available for redistribution operations are scarce. In fact,
redistribution operations incur the most significant operational costs, putting on risk the
bike sharing’s profitability [4].

Information systems provide real-time status of BSS, including fill levels, user trips,
and weather conditions. In addition, external information systems can be used for sup-
porting the operation of vehicles, see e.g. [5, 6]. Although future user demand is unknown,
it is possible to obtain estimates through the analysis of historical trip data, see e.g. [2].
Outputs of such analyses are used to anticipate at which time of day the rental or return
rate is critical at particular stations. Although user demand varies between days, days
with similar characteristics, e.g. commute activitiy during workdays in a summer season
exhibit very similar demand patterns . Given these recurring patterns, it makes sense
to think about a ”redistribution master plan” indicating how the redistribution vehicles
should be regularly operated and forming the backbone for the operational redistribution
planning.

In recent years, shared mobility systems have attracted a considerable amount of
research regarding e.g. the location of stations, fill level at stations, user incentives,
as well as the car/bike redistributions (for a review, see [7]). The BSS redistribution
problem is related to the traditional inventory routing problem [8] since at stations,
inventory decisions regarding the fill levels are made. A challenging feature of BSS is
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that bikes can be moved several times by both users and distribution vehicles. In the
majority of related articles, however, it is assumed that repositioning only occurs during
the night when user demand and traffic are considered as negligible; see for example
[9, 10, 11].

Contrastingly, publications dealing with intra-day bike redistribution are still scarce.
Most of these publications assume perfect knowledge of the user demand and consider
the redistribution decisions in terms of bike flows through a time space network. They
differ, however, in the way of handling user demand and in the considered objective
functions. The approach presented in [12] assumes that nodes of the time space network
can be partitioned into rental and return nodes, avoiding that both situations occur
simultaneously. In other words, the user demand is not defined in terms of bike flows, but
is associated at the nodes of the time space network as a rental or return request. Bikes
are artificially added or removed when demand is not fulfilled, leading to an imbalance
of the number of bikes in the system. Redistribution costs for operating vehicles are
not considered in this approach. In [13], a multi-objective approach is proposed. User
demand at stations is represented in terms of a expected accumulated demand over time.
The expected unfulfilled demand is counted and penalized. A mismatch between initial
and final fill levels for the given time horizon is also penalized. However, the initial
fill level is not an output of the approach but selected arbitrarily. In [14], a cluster-
first route-second approach is proposed, classifying stations according to user demand
into pick-up or delivery stations. In [3], time-dependent origin-destination matrices are
proposed for the resource allocation problem. The approach yields station-to-station
redistribution decisions without considering the fact that these need to be performed
by vehicles in a connected tour. In all papers described above, the service times for
(un)loading bikes from the vehicle are neglected or assumed to be constant without
regard to the number of (un)loaded bikes. To sum up, in the current literature, we
identify a lack of properly representing critical issues such as time-dependent bike fill
levels, service times incurred by redistribution decisions and user demand for the (intra-
day) BSS redistribution problem in an optimization-based decision support system.

In this paper, we consider the intra-day BSS redistribution problem at a tactical
planning level. At this planning level, the aim is to efficiently use the limited resources in
order to yield a high expected service level for characteristic user demand patterns, e.g.
for a working day in a given season. Redistribution operations are scheduled in master
tours periodically operated by the redistribution vehicles. It is assumed that master
tours are adjusted in an operational planning level based on the real-time BSS status
by adapting the number of redistributed bicycles and/or by locally changing the route
of the vehicle. The BSS redistribution problem can be addressed by service network
design formulations [15] maximizing the service level while taking both vehicle fleet and
monetary budget limitations into account. Outputs are the time-dependent fill level at
stations and the necessary master tours to achieve these targeted fill levels.

2
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We make the following contributions: First, we present a mixed-integer linear pro-
gramming (MILP) formulation for the service network design of BSS. The MILP inte-
grates the service level, the time-dependent fill levels, the master tours, the redistribu-
tion decisions, and the resources used for redistribution purpose. Second, based on a
”small” real-world BSS, we conduct computational experiments to test different settings
of available resources. Finally, we evaluate the quality of the master tours under different
demand realizations and point to future research opportunities.

2 Problem Description and Model

The tactical BSS redistribution problem to be considered in this paper can be viewed as
a special variant of a service network design problem. In this section, we first describe
the key elements of this problem: The network underlying the BSS, the representation of
fill levels, the tours conducted by the redistribution vehicle, the forecast of user demands
as well as the service level and the costs incurred by the redistribution. This description,
along with the introduced notation, forms the basis for the mathematical formulation of
the problem as a mixed-integer linear program presented at the end of this section.

2.1 The network

The BSS infrastructure is defined on the set N ′ of physical nodes, i.e., the bike stations,
and links connecting them, where the vehicles and users are allowed to drive. Each station
i ∈ N ′ has a capacity of ci bike racks. The vehicles are parked at the depot {0} ∈ N ′

considered as a station with big capacity and no bike demand. A total number of b′ bikes
are distributed among all stations. Theft of bikes, as well as damage of bikes or racks
at stations, are neglected. It is supposed that the redistribution vehicles do not realize
intermediate stops in order to simply represent them in terms of the corresponding vehicle
paths. Figure 1 illustrates a small BSS infrastructure with three bike stations, two bikes
allocated at each station, and the depot where a redistribution vehicle is parked. The
solid line represents vehicle paths whereas the dashed lines are potential user trajectories
between stations.

Let T be the target time horizon, e.g., a day, discretized into T = {t} = {0, ..., TMAX}
chronologically indexed time points; two adjacent time points represent one time period.
We create a time space network represented by the graph G = (N ,AU ∪ AV ∪ AH).
Each node (i, t) ∈ N represents a physical node i ∈ N ′ and a time point t ∈ T . Each
node (i, t) has a successor, i.e., the next time realization of the physical node, defined as
(i, t+ 1), if t < TMAX .

3
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Figure 1: A small BSS infrastructure.

The arc set AU contains the arcs eU = ((i, t), (j, t̄)), t̄ = t+∆U
ij,∀i, j ∈ N ′\{0},∀t, t̄ ∈

T | t̄ > t, where ∆U
ij is the number of periods a that a user requires to drive from station

i to station j. Each arc eU of the set AU models the possibility that users realize trips,
renting a bike from station i at time t and returning it at station j at time t̄. The arc
set AV contains the arcs eV = ((i, t), (j, t̄)), t̄ = t + ∆V

ij ,∀i, j ∈ N ′,∀t, t̄ ∈ T | t̄ > t,
where ∆V

ij is the required number of periods that a vehicle needs to drive from station
i to j. Each arc eV of the set AV models the possibility that a redistribution vehicle
drives from physical node i at time t arriving at physical node j and, in the case that
a bike station is located there, serving it until time t̄. If the physical node j is the
depot, the vehicle park there until time t̄. Finally, the arc set AH contains the arcs
eH = ((i, t), (i, t + 1)), ∀i ∈ N ′,∀t, t̄ ∈ T | t̄ > t. The arc set AH models holding arcs,
i.e., the possibility that a vehicle, loaded or not, stays in a physical node from time t to
time t̄. Holding arcs allow the vehicle to stay at a station for additional time in order
to service the station with more bikes, if necessary. The union of both sets AV ∪ AH

is referred to the set of vehicle arcs. The three type of arc sets allow bike movements
through the time-dependent network. Thus, in the case that bikes are ”moved” by one of
these arcs, these bikes are not available for new purposes from the departure node (i, t),
appearing instantaneously at the destination node (j, t̄).

2.2 The time-dependent fill levels

Let I ti be the number of bikes at physical node i and time point t including both the
bikes allocated at the station located in i and plus the load of the vehicles parked in the
physical node i at time point t. Immediately after t, bikes can either be rented by users,
transported by vehicles, or stay at the station. The number of bikes allocated at station
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i between t and t + 1 is denoted by βt
i , whereas the number of free bike racks available

at station i from time t until time t+ 1 is denoted by γti .

Dealing with the tactical planning level, we assume that the user demand exhibits
similar patterns each day. That means we need to ensure a suitable fill level at the end of
the time horizon, i.e., for the beginning of the new day. For that, we explicitly stipulate
that the absolute value of the mismatch between the initial and final fill level is not
bigger than a value Ψ, i.e., |I0

i − I
TMAX
i | ≤ Ψ. Clearly, the closer Ψ is to zero, the more

redistribution effort is necessary to satisfy this condition.

2.3 The vehicle routing and bike redistribution decisions

The size of the vehicle fleet available during the time horizon is denoted by v ∈ Z+

bounded by a maximal vehicle fleet size VMAX . Each vehicle can transport a maximal
lot size of l bikes. Let ytt̄ij ∈ Z+ be a variable capturing the number of vehicles which
implement the corresponding vehicle arc in AV ∪AH . When a vehicle arc is implemented,
the driver can handle, i.e., pick up or deliver, a maximal number of δtt̄ij ∈ Z+ bikes at

station j until time t̄. Note that δtt̄ij depends on the time left after the driving time
of the vehicle. The number of picked up or delivered bikes at station j until time t̄ is
denoted by ρt̄j ∈ Z+ or σt̄

j ∈ Z+, respectively. Holding arcs allow the bike handling at

stations during several time periods if it is required. xtt̄ij ∈ R+,∀((i, t), (j, t̄)) ∈ AV ∪AH

represents the total load of the vehicle implementing the corresponding vehicle arc eV ,
i.e., the vehicle bike flows. In order to avoid symmetries in the optimization model, the
presented formulation operates with a set of aggregated vehicles. Note that assumption
is only suitable when the master tours are implemented by a homogeneous vehicle fleet.

A time-space diagram is showed in Figure 2 based on the BSS infrastructure presented
above. The vertical axis represents the stations (and the depot), whereas the horizontal
axis represents the time horizon, discretized into 6 time points. At each node (i, t) the
the number of bikes on it, i.e., I ti , is illustrated. The solid lines represents all the vehicle
arcs which describe the master tour operated by the vehicle. Let suppose that the driver
can handle only one bike per time period. Thus, the vehicle starts from the depot at time
point 0, arriving at station 2, and picking up one bike until time point 1. For loading one
additional bike at the vehicle, the driver has to stay at the station one additional time
period, i.e., a holding arc is implemented at station 2 between time points 1 and 2. Thus,
at time point 2, two bikes are still on the physical node 2, but now the load of the vehicle,
whereas the station is actually empty. At time point 2, the vehicle drives from station 2
to station 1, handling one bike from the load of the vehicle to the station. To deliver the
second bike at the station, a holding arc is implemented again. Now, the loaded vehicle
drives from station 2 to station 1, and the delivering process begins. Finally, the vehicle
returns to the depot. Note that for the sake of clarity, Figure 2 does not illustrate user
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Figure 2: Time-space network. One redistribution vehicle operating.

trips through the network.

2.4 The representation of the user demand

We assume that the demand can be defined in terms of time-dependent origin-destination
matrices representing expected user bike flows. Let ζtt̄ij ∈ Z+,∀eU ∈ AU be the number

of expected user bike flows for the corresponding arc eU . The decision variable f tt̄
ij ∈

Z+,∀eU ∈ AU . represents the user bike flows actually met. An expected user bike flow
is only met if there is at least one bike at the departure station i and time t and at least
one free bike rack at the destination station j and time point t̄. Otherwise, the expected
user bike flow is not realized.

Note that this demand representation has some limitations: It is assumed that users
know the status at stations by means of information systems and do not realize a desired
trip if they become aware that the trips cannot successfully be realized, even if there are
stations close to the departure and destination stations with available bikes and racks.
If a user bike flow is met, the bike is only available again when it is returned at time t̄.

2.5 The service level

We defined the service level λ as the percentage of successfully realized demand trips
during a time horizon. The service level is calculated as follows:

6
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λ =

∑
((i,t),(j,t̄))∈AU

f tt̄
ij∑

((i,t),(j,t̄))∈AU
ζtt̄ij

(1)

In order to address out approach with a MILP solver, we consider to maximize the
successful user trips. The coefficient φtt̄

ij may be considered in order to prioritize particular
spatial and temporal demand (see Equation 2).

max
∑

((i,t),(j,t̄))∈AU

φtt̄
ij · f tt̄

ij (2)

2.6 The redistribution costs

Regarding the operational expenses ω, a cost F is associated with each redistribution
vehicle used, a fixed cost ktt̄ij is incurred if each a vehicle implements an arc in AV ∪AH

(except the holding arcs when the vehicle stays in the depot) and a variable cost qti
is incurred per picked up or delivered bike at the node (i, t). Operational expenses
are limited by a maximal budget L. The total operational expenses are calculated as
Equation 3.

ω = F · v +
∑

((i,t),(j,t̄))∈AV ∪AH

ktt̄ij · ytt̄ij +
∑

(i,t)∈N |i6={0,TMAX }

qti ·
(
ρti + σt

i

)
(3)

2.7 The model

With the notation introduced above, the optimization model reads as follows:

max z =
∑

((i,t),(j,t̄))∈AU

φtt̄ij · f tt̄ij (4)

subject to

f tt̄ij ≤ ζtt̄ij , ∀((i, t), (j, t̄)) ∈ AU (5)

∑
i∈N ′

I0
i = b′ (6)
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It+1
i = Iti −

∑
((i,t),(j,t̄))

∈AU

f tt̄ij +
∑

((j,t̄),(i,t+1))
∈AU

f t̄,t+1
ji

−
∑

((i,t),(j,t̄))
∈AV ∪AH

xtt̄ij +
∑

((j,t̄),(i,t+1))
∈AV ∪AH

xt̄,t+1
ji , ∀i ∈ N ′, t < TMAX

(7)

Iti −
∑

((i,t),(j,t̄))
∈AU

f tt̄ij −
∑

((i,t),(j,t̄))
∈AV ∪AH

xtt̄ij = βti , ∀i ∈ N ′, t < TMAX (8)

ci − βti −
∑

((j,t̄),(i,t+1))
∈AU

f t̄,t+1
ji −

∑
((j,t̄),(i,t+1))
∈AV ∪AH

xt̄,t+1
ji = γti , ∀i ∈ N ′, t < TMAX (9)

xtt̄ij ≤ l · ytt̄ij , ∀((i, t), (j, t̄)) ∈ AV ∪AH (10)

∑
((i,t),(j,t̄))
∈AV ∪AH

ytt̄ij =
∑

((j,t̄),(i,t))
∈AV ∪AH

yt̄tji, ∀(i, t) ∈ N , t 6= {0, TMAX } (11)

v ≤ VMAX (12)

∑
((0,0),(j,t̄))
∈AV ∪AH

y0t̄
0j =

∑
((j,t̄),(0,TMAX ))

∈AV ∪AH

yt̄TMAX
j0 = v (13)

∑
((0,0),(j,t̄))
∈AV ∪AH

x0t̄
0j =

∑
((j,t̄),(0,TMAX ))

∈AV ∪AH

xt̄TMAX
j0 = 0 (14)

ρti − σti =
∑

((i,t),(j,t̄))
∈AV ∪AH

xtt̄ij −
∑

((j,t̄),(i,t))
∈AV ∪AH

xt̄tji, ∀(i, t) ∈ N , t 6= {0, TMAX } (15)

ρti + σti ≤
∑

((j,t̄),(i,t))∈AV ∪AH

δt̄tji · yt̄tji, ∀(i, t) ∈ N , t 6= {0, TMAX } (16)

F · v +
∑

((i,t),(j,t̄))
∈AV ∪AH

ktt̄ij · ytt̄ij +
∑

(i,t)∈N |
i6={0,TMAX }

qti ·
(
ρti + σti

)
≤ L (17)
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ITMAX
i −Ψ ≤ I0

i ≤ I
TMAX
i + Ψ, ∀i ∈ N ′ (18)

Iti ∈ Z+,∀(i, t) ∈ N , βti , γ
t
i , ρ

t
i, σ

t
i ∈ Z+ ∀(i, t) ∈ N , t 6= {0, TMAX } (19)

ytt̄ij ∈ Z+, xtt̄ij ≥ 0,∀((i, t), (j, t̄)) ∈ AV ∪AH (20)

v ∈ Z+ (21)

As explained above, the objective function (4) maximizes the service level. Con-
straints (5) ensure that the number of realized user trips are not higher than the ex-
pected trips from the demand data. At the beginning of the target time horizon, all
bikes are allocated at the stations (6). Constraints (7) model the bike flow conservation
taking into account the total number of bikes allocated at each station, user trips and
bike relocation activities. The number of allocated bikes and available free bike racks at
a station immediately after a time point is defined by equations (8) and (9). Equations
(10) limit the load of the vehicles. The design-balanced constraints, that is, the vehicle
flow constraints, are presented in (11). Equation (12) limits the size of the redistribution
vehicle fleet. The master tours needs to start at end from the depot (13) with no bikes
on the load (14). Equations (15) relate the number of picked-up and delivered bikes to
the number of incoming and outgoing of bikes due relocation activities. Equations (16)
restrict the handle time that a driver has to pick up or deliver bikes at a station until
a time point. Constraint (17) models the limitation of the total relocation costs to the
provided budget. Similar fill levels are expected at the beginning and end of the time
horizon (18). Finally, all variables are non-negative, whereas the decision of implement-
ing vehicle arcs, as well as the size of the vehicle fleet, are represented as integer variables
(19, 20, 21).

3 Computational Experiments

This section presents computational experiments conducted to test our service network
design formulation based on a ”small” real-world BSS. Section 3.1 describe the input
data, Section 3.2 presents the selected strategies to tackle our BSS instance, whereas
results are reported on Section 3.3.
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Table 1: San Francisco’s Bay Area: instance description

Bike sharing system San Francisco’s Bay Area

Number of stations 35
Min - Max - Avg. bike racks per station 15 - 27 - 19
Year period 01 Mai - 31 Sep
Avg. trips per day 824

Figure 3: Rental and return activity of two Bay Area’s bike stations. On the left, the
San Francisco Caltrain 2 (330 Townsend). On the right, the Townsend at 7th.

3.1 Input data

We use the data of the San Francisco’s BSS ”Bay Area” to generate instances. Although
Bay Area covers more cities, we only consider the data of San Francisco’s service area.
As we are interested in days with similar user demand patterns, we only consider the
bike trips recorded during the summer season 2015, i.e., between May and September,
excluding weekends. The bike sharing’s infrastructure, as well as the recorded user trips,
are presented and described on its website http://www.bayareabikeshare.com/ and
summarized in Table 1.

Analyzing the selected trip data, there are around 824 user trips per day out of which
most happen in the morning and afternoon peak hours. In general, the user trips follow
the activity patterns observed in [2]. To obtain a suitable user bike flow input for our
service network design formulation, we aggregate the user trip data from multiple days
to obtain the demand rate for each time-dependent origin-destination pair corresponding
to the user bike flows utilized in the model. As the mean trip duration is around 12
minutes, we decided to split the time horizon into 15-minute time intervals. We assume
that every user bike flow only takes one time period.

Figure 3 illustrates the rental and return activity at two Bay Area’s bike stations. On
the left, the San Francisco Caltrain 2 (330 Townsend), a station next to the train station,
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presents a high rental activity in the morning peak hour and a high return activity in the
afternoon peak hour. On the right, the Townsend at 7th, a station located near to work
places and shopping centers, presents the opposite behavior: A high return activity is
observed in the morning peak hour and rental activity in the afternoon peak hour. Both
stations exhibit typical commute activity observed in most BSS. Note, however, that the
user activity at the Caltrain 2 station is clearly higher than at the Townsend at 7th.

After aggregating the data set, we obtain real-valued time-dependent user bike flows.
For a suitable input for out service network design formulation, we need to generate
integer user bike flows based on the real-valued ones. Assuming a Poisson distribution
on the real-valued user bike flows, we generate 100 demand realizations with integer
bike user flows. To obtain the master tours, we run our MILP with only one of the
demand realizations. After that, we evaluate the quality of the master tours for all
demand realizations by fixing the vehicle movements decisions of this solution and solve
the resulting residual formulation once for each demand realization.

In addition, we use the following parameters: Regarding the redistribution vehicles,
having a vehicle available during the time horizon costs 25 e/day. Based on the input
data used in [15], each vehicle movement costs 0.5e/km, whereas the bike handling
costs are 2e/bike between 8 and 17 hours, otherwise 3.5e/bike. The vehicle speed is
1m/s, and the service time is 1min/bike. 665 bikes are distributed among stations at
the beginning of the time horizon. All user bike flows are weighted with the coefficient
φtt̄
ij = 1,∀((i, t), (j, t̄) ∈ AU . Finally, Ψ = 5 is considered as the allowed mismatch

between the initial and final fill levels.

3.2 Solution strategy

Even for small instances, solving the service network design formulation with standard
MILP solvers is not possible within a reasonable amount of computation time. We
propose the following approaches to speed-up the solution. First, we follow the ”Two-
phase solution method” proposed in [9]: In a first step, the integrality constraints for the
fill level and bike flow variables are relaxed in order to obtain vehicle tours with fractional
bike flows. In the second step, the vehicle tour decisions are fixed and the rest of the
problem is solved again, now considering integer fill levels and bike flows.

We test with different number of vehicles by fixing v to 1, 2, or 3. In this first phase,
the monetary budget is considered as unlimited. In the second phase, we aim at finding
the minimal redistribution costs to obtain the optimal service level from the first phase.
Note that it is possible that there exist solutions yielding the same service level with a
fewer use of resources. To check that, we fix the optimal service level by introducing an
additional constraint and select the left hand side of Equation 3 as objective function.
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Table 2: Computational results after 10 h running time per objective

objective MIP gap
v λ ω (e) λ ω

0 90.17% 0.00 - -
1 97.90% 293.46 2.39% 15.73%
2 98.48% 306.23 1.54% 1.62%
3 99.65% 403.71 0.35% 3.04%

The service network design formulation is implemented in Java using the ILOG Con-
cert Technology to access CPLEX 12.5. An Intel Xeon X7559 CPU at 2GHz processor
with 80 RAM was used to run the experiments. All experiments were run for a maximal
running-time of 10 hours per objective function.

3.3 Results

Table 2 shows the results for the Bay Area instance for different numbers of available
vehicles. With one vehicle, a service level λ of 97.90% is obtained, meaning a 7.73%
improvement comparing with a solution where no vehicles are used. Nevertheless, con-
sidering additional vehicles does not increase the service level significantly. For a second
vehicle, only a 0.58% improvement is achieved in comparison to the one-vehicle solution.
With three vehicles, the expected user bike flows are almost completely fulfilled. For the
service level objective, the remaining MIP gap after reaching the time limit is always
under 2.5 %.

The redistribution cost ω obtained after solving for the cost objective with a fixed
service level from the first phase increases with the number of vehicles. Interestingly, the
second vehicle incurs only 12.77e more cost than the one-vehicle solution, whereas the
redistribution cost increases considerably for the third vehicle. Note, however, that the
results for the cost objective suffer from a high variation in the remaining MIP gap. In
particular for the one-vehicle case, the solution quality may be improved considerably –
the lower bound after the time limit is 247.31e.

Figure 4 illustrates the number of available bikes βi,t throughout the day for the
two San Francisco stations discussed above, when one vehicle is used. The San Francisco
Caltrain 2 station on the left almost runs full before the morning peak hour. As expected,
a lot of bike rentals means that the stations is almost empty during the midday – this
is not particularly critical since only few rentals are expected in that time. Moreover,
a low fill level is desired before the afternoon peak hour to enable several bike returns.
A significant decrease of the fill level is observed around 18:00 since bikes are removed
from the station by a vehicle. This avoids that the station runs full, allowing more bike
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returns later on. Finally, low activity is observed during the night. The Townsend at
7th displayed on the right exhibits a completely different pattern. It begins with a low
fill level, running almost full after the morning peak hour due to a large number of bike
returns. In the afternoon peak hour, there is a high decrease of the fill level due to the
large number of rentals. Around 17:00, bikes are delivered to the station to facilitate
additional bike rentals during the evening and to maintain proper fill levels for the next
day.

Figure 4: Available number of bikes within the day for the San Francisco Caltrain 2 (330
Townsend) (on the left) and the Townsend at 7th (on the right).

To evaluate the quality of the master tour obtained for a single vehicle and for a single
of set of demand realizations in presence of different demand scenarios, we fix the master
tour and solve the remaining bike flow problem for different demand scenarios. The results
are depicted in Figure 5 by means of boxplots for the service level and redistribution costs
obtained. The average service level is 95.23%, with a standard deviation of 1.53%. In
fact, for most demand realizations, the service level lies between 94.00% and 96.00%. In
fewer cases, the service level can range between 91% and 98%. A notch is used to show the
95.00% confidence interval. Regarding the redistribution costs, the mean is 218.33e, with
a standard deviation of 44.78e. Most of the redistribution costs are between 175.00e
and 250.00e.

4 Discussion

For the small instances employed in our experiments, using a single redistribution vehicle
already leads to a high service level. In fact, given a comparably small number of stations
with comparably few bike rentals allows serving a high percentage of stations during
the day with a single vehicle. Depending on the BSS infrastructure and daily rentals,
however, more vehicles can have a more significant impact on achieving a higher service
level. Moreover, considering the redistribution costs is critical to evaluate the quality of
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the solutions. For instance, the amount of redistribution costs associated with a given
vehicle gives an indication on its utilization which may help to decide if the extra vehicle
is actually necessary. We also observe that good fill level decisions consider the final fill
level at stations, i.e., the initial fill level for the next time horizon. For instance, a station
with several rental request each morning should dispose with a suitable number of bikes
before the morning peak hours. This condition needs to be modeled explicitly in the
service network design formulation.

Figure 5: Box plots of service level and redistribution costs under different demand
realizations with fixed vehicle movements.

Regarding the solution process, no optimal solution was found after the given running
time. As for most service network design formulations, the design-balanced constraints
necessary to set up the master tours are challenging for a standard MILP solver [16]. In
fact, even solving the linear programming relaxation is very time-consuming and more-
over only yields a weak lower bound for the optimal integer solution. Instances from
bigger BSS with of hundreds of stations are not tractable using the MILP-based solution
approach presented above. Alternative solution approaches are necessary to tackle bigger
instances in an acceptable running-time. Heuristic search techniques should contribute
to select a reduced but promising set of vehicle arcs to set up master tours.

Finally, our experiments show that the master tours are effective under different
demand scenarios with similar characteristics for the selected BSS instance. Thus, master
tours can support short-term operational redistribution decisions dealing with real-time
fill levels and user demand as discussed by [5].

5 Conclusions

In this paper, we present a novel service network design formulation for the bike sharing
redistribution problem. The model aims at obtaining master tours for the redistribution
vehicles and bike redistribution operations in order to establish time-of-day-dependent
station fill levels maximizing the service level. Our model uses a trip-based representation
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of user demand and explicitly considers the time needed for bike pick-up and delivery
operations. The decision maker can evaluate the benefits of using different numbers
of redistribution resources in order to make an informed trade-off between redistribution
costs and service level. For example, our computational experiments show that for certain
numbers of vehicles, an additional vehicle does not significantly improve the service level.

Taking a tactical planning perspective, we assume perfect knowledge of the user
bike flows for the whole time horizon, i.e., a ”deterministic” case. In our experiments
presented in this paper, evaluated the performance of these master tours for multiple
demand scenarios. In future work, we consider to explicitly model demand variations in
our service network design formulation to obtain more robust master tour decisions. In
addition, we aim at developing solution approaches to be able to tackle instances with a
large number of stations.
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