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Abstract. In this report we deal with a maintenance scheduling problem rising in the 

onshore wind power industry. We address the problem on a short-term horizon considering 

a multi-skilled workforce. The objective is to schedule the maintenance operations in order 

to maximize the energy production while taking into account wind predictions, multiple task 

execution modes, and daily restrictions on the routes of the technicians. We first introduce 

two integer linear programming formulations of the problem. Then, building on top of one of 

our models, we propose a branch-and-check (B&C) approach that exploits both generic 

Benders cuts and cuts specially crafted for our problem. We report computational 

experiments on a 160-instance testbed proposed on an earlier article. For 80% of the 

instances, our exact approach finds an optimal solution in short execution times. For the 

remaining instances where the 3-hour time limit is reached, our B&C delivers solutions with 

average gaps of 1.7% with respect to upper bounds. The results suggest that our method 

significantly outperforms not only commercial solvers running our integer linear 

programming models but also an existing metaheuristic for the problem. 
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As the energy sector is facing major challenges to produce low-carbon power or carbon-free electricity, the
share of renewable energies has significantly increased in recent years. Boosted by climate change mitigation
and adaptation efforts (e.g., tax incentives, Paris climate change agreement) and the constantly-decreasing
cost of turbines, wind energy is currently the world’s fastest-growing source of electricity (63 GW of new
wind power capacity in 2015), accounting nowadays for around 3.3% of the world electricity production1.

Although wind turbines availability factor tops 95%2, their capacity factor3 is usually around 30-40%
as a result of the intermittency of the wind and of design decisions (for a fixed wind speed, the larger are
the blades the more electricity the turbine can produce). The impact of operational decisions on this value
is also non negligible. As the wind industry is steadily growing, reliability and profitability of wind farms
naturally becomes one of the priorities of the sector. In this context, developing optimization techniques to
efficiently schedule wind turbine maintenance operations is essential to prevent unnecessary downtimes and
excessive operational costs.

Maintenance planning and scheduling has been widely studied in the electricity industry. Most, or all,
the contributions of Operations Research target thermal power plants and for the purpose of brevity, we refer
the reader to Froger et al. (2016a) for a comprehensive review. The solution methods are inapplicable to
the wind power industry where maintenance decisions are very specific. The consequence of shutting down
an equipment on the power production depends on an uncontrollable factor, the weather, and this latter has
a direct impact, due to safety concerns, on the possible concrete realization of the maintenance operations.
Concerning the wind energy sector, studies related to maintenance optimization are primarily focused on
reliability-centered maintenance (RCM). RCM is a methodology incorporating reactive, preventive and
condition-based maintenance decisions. These decisions, essentially taken under financial considerations,
are mostly based on monitoring and on the use of failure prediction models. Studies usually focused on a
single turbine or a single wind farm and answer questions such as why failures happens, what should be done
when it happens, how to predict or prevent each failure in order to determine the most effective maintenance
approach. We refer the reader to Ding et al. (2013) for a survey since this topic is beyond the scope of this
work. Using the results of these studies as valuable inputs to define the preventive maintenance operations
that need to be perform in the short term and considering a fine-grained resource management result in
building detailed maintenance plans that can be used on a daily or weekly basis. It also provides more
accurate estimates of turbine downtimes and loss of production. Indeed, producing a maintenance plan in
which no operations generate a loss of production (e.g., is scheduled during time periods where the wind
speed is below 3.5 m.s´1, which is too low to produce electricity) can almost never be achieved in practice,
since human resources are a major bottleneck.

To our knowledge, only few studies have addressed this problem. Kovács et al. (2011) considered fine-
grained resource management while scheduling maintenance operations on wind turbines on a one-day
horizon. These authors aimed to minimize lost production due to maintenance and failures. They solved
an integer linear programming (ILP) formulation of the problem with a commercial solver. With regard
to offshore wind farms, Irawan et al. (2016) optimized a maintenance routing and scheduling problem
minimizing labor, travel and penalty costs. They proposed a solution method based on Dantzig-Wolfe
decomposition in which all the feasible routes for each vessel are generated a priori.

In this paper, we consider the wind turbine maintenance scheduling problem introduced in (Froger et al.
2016b). The problem – focusing on onshore wind farms – is to provide a maintenance plan on a short term-
horizon that maximizes the wind electricity production while taking into account a fined-grained resource
management involving task assignments to a multi-skilled workforce. To tackle this problem, Froger et al.
(2016b) introduced several models based on both ILP and constraint programming (CP). They found that

1The Global Wind Energy Council - Global wind report annual market update 2015 - http://www.gwec.net/wp-
content/uploads/vip/GWEC-Global-Wind-2015-Report Avril-2016 22 04.pdf, last accessed: 2016-09-15

2the percentage of the time that the wind turbine is available to provide energy to the grid (mostly related to the downtime
due to unexpected breakdowns and maintenance)

3the ratio of the net electricity generated, for the time considered, to the energy that could have been generated at continuous
full-power operation during the same time period
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size; therefore they designed a CP-based large neighborhood search approach (CPLNS) as a solution method.
Another way to address this complex combinatorial problem may come from decomposition techniques

that allow to decouple a large scale problem into several problems that are easier to solve. Based on
this idea, the primary contribution of this paper is to propose an efficient exact approach for solving this
wind turbine maintenance scheduling problem. The problem is decomposed into a task scheduling problem
and a technician-to-task assignment sub-problem, and solved using a branch-and-check approach. More
specifically, while solving the task scheduling problem, we discard, by means of cuts all along the branch-
and-bound tree, maintenance plans that cannot be performed by the technicians. In addition to the generic
Benders cuts, we introduce problem-specific cuts and demonstrate they are key to speed up the convergence
of the approach.

The remainder of this paper is organized as follows. In Section 1 we describe the problem. In Section 2
we introduce new ILP formulations of the problem. In Section 3 we present a branch-and-check approach as
an exact solution method. In Section 4 we report and discuss computational experiments on the 160-instance
testbed proposed by (Froger et al. 2016b). Finally in Section 5 we present our conclusions and we outline
research perspectives.

1. Problem statement

The aim of the problem is to schedule a set I of maintenance tasks during a discrete and finite planning
horizon T while maximizing the revenue from the electricity production of a set W of wind turbines.

The wind turbines are geographically spread across a set of locations L (consisting primarily of wind
farms and possibly home depots). We denote lw P L the location of wind turbine w PW and li the location
where task i P I has to be performed.

The time horizon is a totally ordered set partitioned into |T | time periods of identical length. T spans
over several days from a set D. We denote Td the time periods that belongs to day d P D. Moreover, since
the execution of a task can impact the production during non-working hours, we introduce a special time
period (hereafter referred to as a rest time period) between two consecutive days to represent, for example,
a night or a weekend. Maintenance tasks are non-preemptive, but, obviously, they are interrupted during
rest time periods if they overlap different consecutive days (e.g., a technician can start a task at the end of
one day and complete it at the beginning of the next day).

Although we do not include rest time periods in T , we count in the objective function the loss of
production generated by tasks overlapping these specific time periods. In more detail, we define the impact
of the tasks on the availability of the turbines with two parameters. First, binary parameter bwi takes the
value 1 if and only if task i P I shuts down turbine w PW when technicians are effectively working on the
task. Second, binary parameter rbwi takes the value 1 if and only if task i additionally shuts down turbine
w during the rest time periods it overlaps. It must be noted that parameters bwi and rbwi are equal to 0 if
turbine w is not located at the location where the task i has to be performed (i.e., if li ‰ lw). Even if it is
rather rare in practice, it is noteworthy that a maintenance task can shut down more than one turbine in a
wind farm.

To execute the maintenance tasks, we have a finite set R of technicians. Each technician masters one
or multiple skills from a set S. We express technician skills by a binary vector λr over S such that λrs “ 1
if and only if technician r masters skill s P S. We consider that a technician cannot perform more than
one task during a given time period. Each task i P I requires technicians with a specific skill si P S. For
convenience, we define as Ri the set of technicians that can perform task i (i.e., Ri “ tr P R | λrsi “ 1u.

To avoid expensive travel times and save valuable time, we constraint technicians to work during a single
day on tasks at compatible locations. Compatible locations are simply those that can be reached from each
other in travel times that are negligible with respect to the duration of a time period in T . Let us assume
that tmax is the maximum travel time between two locations that we can consider “negligible” with respect
to the duration of a time period. The top of Figure 1 then shows the locations that are compatible with
l1 (i.e., l2 and l3). To model these daily location-based incompatibilities, we introduce binary parameter σll1
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 ���� �� ���t���� l and l1 are compatible (naturally σll1 “ σl1l). The bottom of
Figure 1 shows the 4 sets of compatible locations in our example. During a single day, one should observe
that a technician can only execute tasks at l1 and l2 or l3 but not both. It is worth mentioning that wind
turbine maintenance tasks usually span along hours (if not days), and therefore technicians tend to travel
between very few locations during a single working day.
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Figure 1: Illustration of the daily location-based incompatibilities

Each technician r P R has also an individual availability schedule expressed by a binary vector πr, with
πt
r “ 1 if and only if r is available during time period t P T . The availability schedule of every technician

is related to training times, personal holiday times, and assignments to tasks (not part of the optimization)
that have been already started or that are performed along with external companies. When the technician r

is not available during a time period t, his or her location is fixed to ltr P L. For technician personal holidays
and training sessions, this parameter is set to a dummy location l˚ such that @l P L, σl˚l “ 1. Notice that
we assume that all the technicians work the same shift, which is a common practice in this industry.

Multiple execution modes are available for each task. For each execution mode of a task, there are
an associated task duration and a number of required technicians. It is noteworthy that switching modes
after starting the execution of a task is forbidden. Moreover, an important feature of the problem is that a
technician assigned to a task has to work on it from the beginning to the end, even if the task overlaps one
or multiple rest time periods.

Tasks can only be executed during some specific time periods. These take into account spare parts
availability, safety work conditions (e.g., a technician cannot perform certain tasks on a turbine when the
wind is too strong), and external restrictions imposed by the operator and/or the owner of wind farms. We
also impose non-overlapping constraints on each subset of tasks that belongs to the set ov pIq.

The objective of the problem is to determine a schedule that maximizes the revenue generated by the
electricity production of the wind farms while meeting the constraints previously described. We denote as
gtw the value of the revenue generated by wind turbine w if it can produce electricity during time period
t P T . Similarly, we denote as rgdw the revenue generated by wind turbine w if it can produce electricity
during the rest time period following day d P D. These revenue are estimated according to the forecasted
wind speed.

One particularity of this problem is the possibility to postpone the scheduling of some tasks until the
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value of this penalty is fixed according to the relative degree of priority of the tasks. This priority depends
on reliability consideration (the more a maintenance operation is delayed, the higher is the probability of
failure) and contract commitments. If a task is postponed, it obviously does not impact the production of
any wind turbines, and thus the value of the revenue. Therefore, if a task needs to be scheduled during
the time horizon, this penalty has to be fixed in connection to the revenue in order to ensure that the
postponement of this task is non-profitable. This penalty includes an estimation of the loss of revenue
induced by the schedule of the corresponding task, to which may be added outsourcing costs (the decision
maker then being responsible for the choice of outsourcing a task rather than postponing it). If the penalties
are high enough, postponing a task is just triggered to overcome a possible lack of technicians. In short, the
objective function to be maximized in the problem always corresponds to the difference between the revenue
and the postponing penalties.

It is rather direct to note that the wind turbine maintenance scheduling problem (WTMSP) previously
described includes various central scheduling problems as particular cases. Before analyzing more formally
its complexity, we define the decision problem WTMSPdec associated with WTMSP. In this problem, a
parameter G P ❘ is given as a lower bound on the value of the objective function computed as the difference
between the revenue and the penalties incurred due to postponed tasks. The problem WTMSPdec is to
decide whether there exists a schedule of the tasks such that the objective value is greater than or equal to
G. By polynomially reducing the cumulative scheduling problem4 – known to be NP-complete in the strong
sense (Baptiste et al. 1999) – to WTMSPdec, we easily prove that WTMSP is strongly NP-hard. In some
particular cases, notice that solving WTMSP is trivial. For instance, if the postponement penalties are all
equal to 0, the solution consisting in delaying all the tasks is always optimal. A rather similar observation
is that each task having a postponement penalty equal to 0 can be set to be delayed, without affecting the
value of the optimal solution, prior to the optimization.

2. Integer linear programming formulations

In this section, we propose an ILP model that will serve as a baseline for the exact approach. This
formulation is broadly inspired by the model introduced in (Froger et al. 2016b). We then propose an
alternative formulation of the problem to have a more relevant basis for comparison.

2.1. Baseline formulation

The baseline formulation relies on the prior generation for each task of all the possible combinations –
according to the time periods during which it can be executed– of a starting time period and an execution
mode. Such a combination is called a plan. Since the number of time periods is assumed to be short and
there are only a few execution modes, the total number of plans is not so large. We denote P as the set
of plans, ip as the task involved in plan p P P, and conversely Pi as the set of all plans involving task i

(i.e., Pi “ tp P P|ip “ iu). For each task i, we also create a plan p0i P Pi representing the postponement of
the task. For a plan p, execution time periods of ip are expressed by a binary vector ap over T such that
atp “ 1 if and only if ip is executed during time period t P T . We also denote Sp and Cp the starting and
completion time periods of plan p (i.e., Sp “ mintPT atpt and Cp “ maxtPT atpt). Similarly, we introduce

another binary vector rap over D such that radp “ 1 if and only if ip overlaps the rest time period following
day d P D. We also denote Dp as the set of days overlapped by the plan p. For convenience and with a slight

abuse of notation, we introduce parameters sp, lp, bwp, and rbwp equal to sip , lip , bwip , and
rbwip respectively.

Moreover, we denote Rp the set of technicians that can be assigned to plan p. More specifically, Rp contains
all technicians r P Rip such that for every time period t we have πt

r ě atp and for every day d P Dp and
every time period t P Td, we have πt

r “ 1 or both πt
r “ 0 and σlpltr

“ 1. We also define qp as the number

4A instance of the cumulative scheduling problem consists of a single resource with a given capacity C and a set J of n jobs
where each job j P J has a release date rj , a deadline dj , a processing time pj and a capacity resource requirement aj . The
problem is to decide whether there exists a schedule of all the jobs satisfying the timing and the resource capacity constraints.
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 t� 	n	�t	 ���� p. Finally, parameter op is the penalty incurred if plan p is selected
(note that @i P I,@p P Piztp

0
i u, op “ 0 and op0

i
“ oi).

The integer linear formulation relies on several types of decision variables. Binary variable xp is equal
to 1 if and only if plan p P P is selected. Regarding the availability of the wind turbines, binary variable f t

w

is equal to 1 if and only if wind turbine w P W can produce energy during time period t P T , and binary
variable rfd

w is equal to 1 if and only if turbine w can produce energy during the rest time period following
day d P D.

The fundamental difference between our model and that of Froger et al. (2016b) is that our model
does not assign technicians to plans. Clearly, technicians can be indifferently assigned to plans sharing
the same starting and completion time periods, the same location and the same skill. These previous four
parameters define what we call a pattern. Directly assigning technicians to patterns results in a smallest
number of assignment variables. We denote H and hp respectively the set of all patterns and the pattern
linked to plan p P P. We also define as Ph the set of plans sharing the same parameters than pattern
h P H. For convenience, for a pattern h, we introduce parameters sh, lh and Rh that respectively define:
its required skill, its location, and the set of technicians that can be assigned to it. Conversely, we define
Hl “ th P H | lh “ lu the set of patterns associated with location l P L. For a pattern h, we express its
active time periods by a binary vector ah over T such that ath “ 1 if and only if h is active during time
period t P T (Sh and Ch are used to represent the starting and completion time periods of the pattern).
Subsequently, for each pattern h P H and each technician r P Rh, we introduce binary variable yrh that is
equal to 1 if and only if technician r is assigned to pattern h. Lastly, we define binary variable vtrl that is
equal to 1 if and only if technician r is at location l during time period t.

The baseline formulation is then defined as the following integer linear program denoted as rP1s.

rP1s max
ÿ

wPW

˜
ÿ

tPT

gtwf
t
w `

ÿ

dPD

rgdw rfd
w

¸
´

ÿ

pPP

opxp (1)

subject to:
ÿ

pPPi

xp “ 1 @i P I, (2)

ÿ

iPB

ÿ

pPPi

atpxp ď 1 @B P ov pIq ,@t P T , (3)

f t
w `

ÿ

pPPi

bwpa
t
pxp ď 1 @w PW,@i P I,@t P T , (4)

rfd
w `

ÿ

pPPi

rbwpradpxp ď 1 @w PW,@i P I,@d P D, (5)

ÿ

iPI|siPS̄

ÿ

pPPi

atpqpxp ď |R
t
S̄
| @t P T ,@S̄ Ă S, (6)

ÿ

rPRh

yrh “
ÿ

pPPh

qpxp @h P H, (7)

ÿ

hPHl

athyrh ď πt
rv

t
rl @r P R,@l P L,@t P T , (8)

ÿ

lPL

vtrl “ 1 @r P R,@t P T , (9)

vtrltr “ 1 @r P R,@t P T s.t.πt
r “ 0, (10)

vtrl `
ÿ

l1PL|σll1“0

vt
1

rl1 ď 1 @r P R,@d P D,@pt, t1q P Td ˆ Td, t ‰ t1,@l P L, (11)

xp P t0, 1u @p P P, (12)

f t
w P t0, 1u @w PW,@t P T , (13)
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rfd
w P t0, 1u @w PW ,@d P D, (14)

yrh P t0, 1u @h P H,@r P Rh (15)

vtrl P t0, 1u @r P R,@l P L,@t P T . (16)

The objective in (1) is defined as the difference between the revenue generated by the wind turbines
and the penalties related to the postponement of some tasks. Constraints (2) ensure that at least one plan
involving each task is selected (i.e., each task is either executed or postponed). Constraints (3) are the
non-overlapping constraints. Constraints (4) and (5) compute the impact of the tasks on the availability
of the turbines to produce electricity. Constraints (7) ensure that the technician requirements are fulfilled.
Constraints (8) couple the technicians location to the tasks they perform. Constraints (9) prevent technicians
to perform multiple tasks during the same time period. When technicians are not available, constraints (10)
ensure compliance with their known locations. Constraints (11) define the incompatibilities between the
locations a technician can visit within a day. Finally, constraints (12)-(16) state the binary nature of the
decision variables.

To strengthen the formulation rP1s, we also add the cumulative scheduling constraints (6), even if they are
redundant since they can be deduced from constraints (7) and (8). To build these constraints, we introduce
for each time period t P T the bipartite graph Gt “ ppS,Rtq ,U tq in which, with a slight abuse of notation,
vertices from S represent skills, vertices fromRt indicate technicians available during time period t (i.e., Rt “
tr P R|πt

r “ 1u), and edges from U t are defined as follows: @s P S,@r P Rt ps, rq P U t if and only if λrs “ 1.
Applying a generalization of König-Hall theorem, the constraints (6) thus correspond to necessary and
sufficient condition of the existence of a maximum cardinality b-matching from S to Rt where function b

is defined for every vertex s that belongs to S by bpsq “
ř

iPI|si“s

ř
pPPi

atpqpxp, and by bprq “ 1 for every

vertex r that belongs to Rt. To express these constraints, we denote Rt
S̄
“ tr P R|Ds P S̄, λrs “ 1^πt

r “ 1qu
the set of technicians available during time period t and mastering at least one skill in subset S̄ Ă S. Last
but not least, the number of these constraints are exponential

`
2|S| ´ 1

˘
ˆ|T |). In our experiments, however,

the number of these constraints tends to be small; we therefore add all these constraints to our model.

2.2. Alternative formulation

A potential improvement of the previous model concerns the space-time tracking of the technicians.
Observing that the number of constraints (11) is usually very large, we attempt to develop an alternative
technician management strategy. This new strategy is based on finding all the maximal cliques (cliques that
cannot be enlarged) in a graph where each vertex represents a location, and there exists an edge between
two vertices if the underlying locations l and l1 can be visited during the same day by the same technician
(i.e., we have σll1 “ 1). Figure 2 illustrates the computation of these maximal cliques. For the purpose of
finding all the maximal cliques, we use the algorithm introduced by Bron and Kerbosch (1973).

F%456) 78 9:�"#') !0 .!- "�:%"�' *'%;5), �6) *!"#5$)<

Denoting K the set of all maximal cliques in the previous graph, we define Kd
r as the set of cliques to

which technician r can be assigned during day d. More specifically, Kd
r is equal to tk P K | @t P Td, π

t
r “

1 _ pπt
r “ 0^ ltr P kqu. We then introduce binary variable ud

rk that takes value 1 if and only if during day
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d P D technician r P R can only performed tasks at locations included in clique k P Kd
r . Denoting dt as

the day to which time period t belongs, we can track the location of the technicians with the following
constraints:

ÿ

kPKd
r

ud
rk “ 1 @r P R,@d P D, (17)

ÿ

hPH|rPRh

athyrh ď πt
r @r P R,@t P T , (18)

ÿ

hPHl

athyrh ď
ÿ

kPK
dt
r |lPk

udt

rk @r P R,@l P L,@t P T , (19)

ud
rk P t0, 1u @r P R,@d P D,@k P k P Kd

r (20)

Constraints (17) state that a technician is assigned to only one clique on each day. This ensures the
compliance with the location-based incompatibilities. Constraints (18) prevent a technician to be assigned
to multiple tasks during a given time period and constraints (19) couple assignment and space-time tracking
variables.

For the sake of clarity, we define as rP2s the model resulting from replacing constraints (8), (9), (10),
(11), and (16) by constraints (17), (18), (19), and (20) in the baseline formulation rP1s.

3. An exact solution approach

3.1. Problem decomposition

The exact approach presented in this section takes advantage of the intrinsic decomposition of the problem
into a task scheduling problem and a technician-to-task assignment sub-problem. The task scheduling
problem consists in selecting a plan for each task in order to maximize the revenue from the wind electricity
production. In this problem, technician considerations have been partially dropped. If we assume a fixed
selection of plans, the technician-to-task assignment sub-problem (hereafter occasionally referred to simply
as the sub-problem) checks if the technicians requests can be satisfied while meeting the daily location-based
incompatibilities and coping with individual resource availability time periods. The aim of our approach is
thus to design a coordination procedure between these two problems. Note that an optimal solution to the
scheduling problem leading to a feasible technician-to-task assignment sub-problem is optimal for the whole
problem.

First, let us introduce the scheduling problem. An initial formulation rShP1s of this problem reads:

rShP1s max
ÿ

wPW

˜
ÿ

tPT

gtwf
t
w `

ÿ

dPD

rgdw rfd
w

¸
´

ÿ

pPP

opxp (21)

subject to:

(2), (3), (4), (5), (6), (12), (13), (14)

Let us now assume a fixed selection px̄pqpPP of plans (hereafter referred to simply as x̄) solution to

rShP1s. An ILP formulation rSP2px̄qs of the technician-to-task assignment sub-problem reads:

rSP2px̄qs min
ÿ

hPH

θh (22)

subject to:
ÿ

rPRh

yrh ` θh “
ÿ

pPPh

qpx̄p @h P H, (23)

ÿ

hPH
s.t. rPRh

yrh ď 1 @r P R,@H P Cmax pGq , (24)
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=h ě 0 @h P H, (25)

yrh P t0, 1u @h P H,@r P Rh (26)

We introduce slack variables pθhqhPH for the technicians requirement constraints (23). Notice that the
unavailability time periods of each technician are respected by definition of the setRh. The clique constraints
(24) ensure that the technician-task assignments comply with the daily location-based incompatibilities.
More specifically, set Cmax pGq contains all the maximal cliques in a graph G where each vertex represents
a pattern in H, and there exists an edge between two vertices if the underlying patterns h and h1 cannot be
visited by the same technician. More precisely, this edge exists if the following clause holds:

pSh1 ď Ch ^ Sh ď Ch1 q _
`
pDd P D, Td X tSh, ..., Chu ‰ H ^ Td X tSh1 , ..., Ch1 u ‰ Hq ^ σlhlh1 “ 0

˘
(27)

One can visualize graph G as an extended version of an interval graph. To define the sub-problem for a
given solution x̄ (and therefore to compute all the maximal cliques), we only need to consider the patterns
of set Hpx̄q “ th P H |

ř
pPPh

qpx̄p ą 0u. This allows to significantly reduce the number of variables in
rSP2px̄qs and the number of clique constraints (24) since we consider a sub-graph of G.

It is worth noting that the technician-to-task assignment sub-problem is NP-complete. This can be
proved by its equivalence to a L-coloring problem. Nonetheless, under certain assumptions, the sub-problem
becomes solvable in polynomial time. For the sake of clarity, we do not present any details here. We refer
the reader to Appendix A for a thorough discussion on the complexity of the sub-problem.

Notice also that the cumulative scheduling constraints (6) in rShP1s help to speed-up the convergence of
a coordination procedure between the two problems. Indeed, solving the task scheduling problem without
any information regarding the availability of the technicians would result in selection of plans that would
unlikely lead to a feasible technician-to-task assignment sub-problem.

It is fairly easy to observe that rSP2px̄qs always admits a feasible solution thanks to the slack variables
pθhqhPH. However, we can conclude that the technician-to-task assignment sub-problem is feasible only if
the value of the optimal solution is equal to zero.

Let rSPLR
2 px̄qs be the linear relaxation of formulation rSP2px̄qs. Constraints (26) of rSP2px̄qs are sub-

stituted in rSPLR
2 px̄qs by the following constraints:

yrh ď 1 @h P H,@r P Rh, (28)

yrh ě 0 @h P H,@r P Rh, (29)

Because the constraint matrix of rSPLR
2 px̄qs is not totally unimodular, integrity constraints (26) on variables

yrh cannot be relaxed while ensuring they will be satisfied by any optimal solution to rSP2px̄qs.
When the cost of a solution to rSP2px̄qs is strictly positive (i.e., the technician-to-task assignment sub-

problem is infeasible), we therefore use a combinatorial Benders cut as introduced in (Codato and Fischetti
2006) to invalidate the current solution x̄ in the scheduling problem rShP1s. Note that these cuts are similar
to the cuts defined in the Logic-based Benders decomposition by Hooker and Ottosson (2003) and share
some similarities with the integer optimality cuts introduced by Laporte and Louveaux (1993) for the integer
L-shaped method. Using the binary variables pxpqpPP , we can define such a cut as follows:

ÿ

pPP|x̄p“0

xp `
ÿ

pPP|x̄p“1

p1´ xpq ě 1 (30)

Clearly, this cut states that, in the next iteration, at least one of the variables related to the selection of
plans in the scheduling problem rShP1s must change its value with respect to x̄. This cut is also known as
a no-good cut. Observing that a solution contains always |I| non-zero variables xp since exactly one plan
has to be selected per task, we can then replace inequality (30) by the following cover inequality (denoting
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Ppx̄q “ tp P P|x̄p “ 1u):

ÿ

pPPpx̄q

xp ď |I| ´ 1, (31)

Hereafter, we refer to the combinatorial Benders cuts (31) as CB cuts.
Since the feasible region of our problem is bounded, the number of integer points satisfying all the

constraints of rShP1s is finite and, thus, the same holds for the number of combinatorial Benders’ cuts. Let
us denote F̄ the set of all solutions x̄ to rShP1s that lead to an infeasible technician-to-task assignment
sub-problem. The whole maintenance scheduling problem can therefore be reformulated as the following
master problem rP s:

rP s max
ÿ

wPW

˜
ÿ

tPT

gtwf
t
w `

ÿ

dPD

rgdw rfd
w

¸
´

ÿ

pPP

opxp

subject to:

(2), (3), (4), (5), (6), (12), (13), (14)
ÿ

pPPpx̄q

xp ď |I| ´ 1 @x̄ P F̄ (31)

In the remainder of the document, we denote rRMP s a restricted master problem of problem rP s that
contains none or only a small subset of constraints (31).

3.2. Cut generation procedure

For every solution x̄ to the restricted master problem rRMP s, we need to check the feasibility of the
technician-to-task assignment sub-problem. We can directly solve rSP2px̄qs to optimality using a commercial
solver. Nevertheless, this approach has two major drawbacks. First, since rSP2px̄qs is a pure ILP model,
solving the model may be too time-consuming. Second, if the cost of the solution is strictly positive, the
resulting CB cut (31) may be too weak because it does not identify the causes of the infeasibility of the
technician-to-task assignment sub-problem. Indeed, the infeasibility is likely to be caused by only a subset
of the selected plans. To overcome these drawbacks and to build up stronger cuts, we propose 3 different
cut generation strategies based on different approximations to the sub-problem.

3.2.1. Benders feasibility cuts

First, we can generate cuts based on solving the linear relaxation rSPLR
2 px̄qs of the formulation rSP2px̄qs.

Since a solution x̄ to rRMP s is feasible for the whole problem only if the optimum of rSPLR
2 px̄qs is zero, x̄

is feasible for the whole problem only if the optimum of the dual rDSPLR
2 px̄qs of rSPLR

2 px̄qs is less or equal
to zero (duality theorem). Let us associate the dual variables ιh, ̺

H
r , and ϕrh to constraints (23),(24), and

(28), respectively. The objective function of rDSPLR
2 px̄qs, denoted as Θx̄pι, ̺, ϕq, reads:

Θx̄pι, ̺, ϕq “
ÿ

hPH

˜
ÿ

pPPh

qpx̄pιh `
ÿ

rPRh

ϕrh

¸
`

ÿ

rPR

ÿ

HPCpHq
s.t. rP

Ť
hPH

Rh

̺Hr (32)

Let D be the polyhedron defined by the constraints of the dual problem rDSPLR
2 px̄qs. Since rSPLR

2 px̄qs
always admits a feasible solution, the dual problem rDSPLR

2 px̄qs is bounded and achieves its optimum on an
extreme point of D. Denoting η1, η2, ..., ηn (with ηk “ pιk, ̺k, ϕkq) the finite set of extreme points of D, by
weak duality theorem, the following inequalities must hold to ensure the existence of a zero value solution
to rSPLR

2 pxqs:

Θxpι
k, ̺k, ϕkq ď 0 @k P t1, ..., nu (33)
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solution to rSPLR
2 px̄qs is not guaranteed to be a solution to rSP2px̄qs, a cut generation algorithm responsible

for identifying violated constraints (33) will therefore not, in general, retrieve a feasible solution to rP s.
Nevertheless, identifying violated BF cuts may help to generate less CB cuts. The advantages are that: i)
BF cuts are faster to compute than CB cuts since we only need to solve a continuous linear model and ii)
they may discard more solutions than just the current solution to the restricted master problem rRMP s.
One persistent drawback of BF cuts is that they are generic, and therefore likely to be weak.

The efficiency of a coordination procedure between the two problems relies primarily on finding reduced
subsets of plans causing the infeasibility of the technician-to-task assignment sub-problem. In the following
subsections, we then describe two different problem-specific procedures to find these reduced subsets, and
we show how we build up stronger problem-specific cuts.

First, we introduce the following notation to refer to the constraints of the sub-problem:

[C1] The technician requirements for each task have to be fulfilled by technicians mastering the desired
skill.

[C2] A technician cannot perform more than one task during a given time period.

[C3] The technician assignments must not violate the daily location-based incompatibilities.

[C4] Each technician has an availability schedule which must be respected.

[C5] A technician assigned to a task has to work on it from the beginning to the end, even if the task
overlaps some rest time periods.

Obviously, the sub-problem is feasible if and only if constraints [C1], [C2], [C3], [C4], and [C5] are all
satisfied.

Second, to simplify the discussion, we introduce the concept of jobs that, hereafter, simply refer either
to patterns or to technician unavailability time periods. We define a job j with the following notation
plj , Sj , Cj , sj ,Rj , qjq where lj denotes the location where j is executed, Sj its starting time period, Cj its
completion time period, Sj a set of skills such that a technician should master at least one of these skills
in order to perform j, Rj the set of technicians who can perform j, and qj the number of technicians
required for executing job j. For every unavailability time period of a technician r P R occurring at a time
period t (t P T such that ρtr “ 1), we build an artificial job defined by the vector pltr, t, t,Sr, tru, 1q where
Sr “ ts P S|ζrs “ 1u is the set of skills mastered by technician r. If a technician is unavailable during
contiguous time periods and if he or she is assigned each time at the same location (with regard to ltr), we
associate only one job for his or her unavailability time periods. We denote as JR the set of jobs associated
with technician unavailability time periods. We also associate with each solution x̄ to the restricted master
problem rRMP s a set J px̄q of jobs. We build this set following two steps. First, we add to J px̄q all the
jobs of JR. Then, for every pattern h P H such that qhpx̄q ą 0 (with qhpx̄q “

ř
pPPh

qpx̄p), we create a job

defined by the vector plh, Sh, Ch, tshu,Rh, qhpx̄qq. Hereafter, we denote as JHpx̄q the set of jobs associated
with patterns. We also define the parameter hj as the pattern associated with job j P JHpx̄q.

3.2.2. Maximum cardinality b-matching cuts

In this section, we aim to extend the idea used to generate constraints (6) by partially taking into
account the constraints [C3] and [C5] while fully taking into account the constraints [C1], [C2], and [C4].
More precisely, when building the potential assignments of the technicians to the tasks, we consider the
unavailability time periods of the technicians and the restriction of not switching technicians during the
execution of a task. We then show that the sub-problem can be approximated solving a series of maximum
cardinality b-matching problems (as many as the length of the time horizon).

First, for a fixed time period t P T of the time horizon and for a given solution x̄ to the restricted master
problem rRMP s, we introduce an undirected graph qGtpx̄q composed of:

• a set of vertices qVt where qVt “ qVt
J Y

qVt
R
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{ qVt
J : for each job j P J px̄q such that Sj ď t ď Cj , we add a vertex in qVt

J . Parameter jν denotes

the job associated with a vertex ν P qVt
J . Conversely νj denotes the vertex associated with job j.

– qVt
R: a vertex of qVt

R represents a technician r P R during time period t. We denote rv the

technician associated with a vertex ν P qVt
R.

• a set of edges qU t defined such that @ν1 P qVt
J ,@ν2 P qVt

R: pν1, ν2q P qU t ô rν2 P Rjν1

We now formally describe in Proposition 3.1 and Corollary 3.1 the link between the technician-to-task
assignment sub-problem and a series of maximum cardinality b-matching problems defined in the graphs
previously introduced.

Proposition 3.1. Let x̄ be a solution to the restricted master problem rRMP s and assume that constraints
[C3] and [C5] are relaxed. The technician-to-task assignment sub-problem for x̄ is equivalent to a series of

|T | maximum cardinality b-matching problems in graph qGtpx̄q where for each time period t P T function b

is defined by bν “ qjν for every vertex ν P qVt
J and by bν “ 1 for every vertex ν P qVt

R.

Proof. Notice that since constraints [C3] and [C5] are relaxed, the sub-problem can be independently solved for each
time period of the planning horizon.

Assuming that during each time period t we can find a maximum cardinality b-matching in each of the graphs
Gtpx̄q with a cardinality equal to

ř
jPJ px̄q ✶tSjďtďCjuqj , we can immediately build a solution to the technician-to-task

assignment sub-problem from the selected edges by making the underlying assignments.

Assume now that we know a feasible solution to the technician-to-task assignment sub-problem. For each time

period t, we can build a b-matching in qGtpx̄q from the working schedule of each technician during this specific time

period. If a technician r P R is assigned to a pattern h P H during time period t, we select the edge pν1, ν2q P U where

jν1 “ jh (jh denoting the job associated with the pattern h) and rν2 “ r. This construction ensures the building of a

b-matching. Moreover, since all the requirements are fulfilled, this b-matching has the maximum possible cardinality.

Corollary 3.1. If we assume that constraints [C3] and [C5] are relaxed, the technician-to-task assignment
sub-problem is feasible for a solution x̄ to the restricted master problem rRMP s if and only if the maximum

cardinality b-matching in graph qGtpx̄q for each time period t P T contains
ř

jPJ px̄q

✶tSjďtďCjuqj edges of qU t.

Proof. This is a direct consequence of Proposition 3.1.

Let us assume a fixed time period t. Solving the maximum cardinality b-matching in qGtpx̄q from qVt
J to

qVt
R is equivalent to solving a maximum flow problem in a slightly modified version of this graph. We use

this equivalence to derive new cuts. We denote pGtpx̄q this new directed graph and pVt and pU t the new sets

of vertices and arcs. We build graph pGtpx̄q as follows:

1. We define pVt as pVt “ qVtYtωt, ωtu where the two new vertices ωt and ωt represent the source and the
sink vertices.

2. For every directed arc pν1, ν2q P pU t, we denote as γmax
ν1ν2

its maximal capacity and as fν1ν2 the number

of units of flow on the arc. We formally define pU t as follows:

• @ν1 P qVt
J ,@ν2 P qVt

R: pν1, ν2q P pU t ô rν2
P Rjν1

and γmax
ν1ν2

“ `8

• @ν P qVt
J : pωt, νq P pU t and γmax

ωtν
“ qjν

• @ν P qVt
R: pν, ωtq P pU t and γmax

νωt “ 1

Let us denote f˚pt, x̄q the value of the maximum flow in pGtpx̄q. If f˚pt, x̄q ă
ř

νPqVt
J

qjν then the jobs of

J px̄q overlapping t cannot be fully scheduled during this time period. We therefore have to to discard the

solution x̄. We first compute the minimum flow cut in graph pGtpx̄q (see Figure 3). The minimum flow cut
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can be described by the sets pVtp`q and pVtp´q that are composed as follows: pVtp`q “ tωtuY qVt
J p`qY

qVt
Rp`q

and pVtp´q “ qVt
J p´q Y

qVt
Rp´q Y tω

tu with qVt
J “

qVt
J p´q Y

qVt
J p`q and

qVt
R “

qVt
Rp´q Y

qVt
Rp`q.

Applying the max-flow/min-cut theorem on graph pGtpx̄q, we can state that:

f˚pt, x̄q “
ÿ

νPqVt
J
p´q

γmax
ωtv `

ÿ

vPqVt
R
p`q

γmax
vωt (34)

If we replace the capacity of each arc by its value, we obtain:

f˚pt, x̄q “
ÿ

νPqVt
J
p´q

qjν ` |qVt
Rp`q| (35)

The valid minimum flow cut (that invalidates x̄) reads:

ÿ

νPqVt
J
p´q

qjν ` |qVt
Rp`q| ě

ÿ

νPqVt
J

qjν (36)

which we can reformulate as follows:

ÿ

νPqVt
J
p`q

qjν ď |qVt
Rp`q| (37)

Note that inequality (37) leads to the following valid constraint (hereafter referred to as a maximum
cardinality b-matching (MCbM) cut) that eliminates the solution x̄ from the feasible region of the restricted
master problem rRMP s:

ÿ

jPJHpx̄q

s.t. νjPqVt
J p`q

ÿ

pPPhj

qpxp ď |qVt
Rp`q| ´

ÿ

jPJR

s.t. νjPqVt
J p`q

qj (38)

We now demonstrate how in some cases it is possible to strengthen the previous MCbM cut by reasoning
about its composition. First, note that |qVt

Rp`q| ‰ |R| because at least one of the cumulative constraints (6)

would be unsatisfied otherwise. This also implies that |qVt
Rp´q| ‰ 0. By definition of the max-flow/min-cut,

the technicians associated with the set qVt
Rp´q are either not connected to any other vertices or they are

assigned to the jobs j P J px̄q such that νj P qVt
J p´q, but they cannot be assigned to any of the jobs j such

that νj P qVt
J p`q. The latter means that either these technicians do not have the required skills to perform

those jobs or they have at least one unavailability time period that prevent them to be assigned to those
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that cannot be performed by any of the technicians associated with a vertex of set qVt
Rp´q. The MCbM cut

(38) can therefore be rewritten as:

ÿ

hPH

Ψt
qVt
R
p´q
phq

ÿ

pPPh

qpxp ď |qVt
Rp`q| ´

ÿ

jPJR

s.t. νjPqVt
J p`q

qj (39)

where Ψt
qVt
R
p´q
phq is equal to 1 if and only if pattern h overlaps time period t and none of the technicians

associated with the set Vt
Rp´q can be assigned to h.

Last but not least, it is noteworthy that the maximum cardinality b-matching problem has only to be
solved for every time period t where at least one technician cannot be assigned to a job because of an
unavailability time period occurring at a time period other than t. Otherwise, constraints (6) are necessary
and sufficient condition of the existence of b-matchings with the desired cardinality.

3.2.3. Maximum-weight clique cuts

Another strategy to check that a given solution x̄ to the restricted master problem rRMP s leads to a
feasible sub-problem relies on proving that it is impossible to assign the technicians to the tasks without
violating the location-based incompatibilities. Since these constraints are defined by day, this search de-
composes into |D| independent searches in which for each day d P D we only consider the jobs of J px̄q that
overlap d. Moreover, since the daily location-based incompatibilities are checked individually for each tech-
nician, they impact the number of available technicians at each location. During the search, it is therefore
necessary to take into account the skills required to perform the different jobs. For a fixed subset S̄ Ă S,
we only consider the jobs j P J px̄q such that Sj X S̄ ‰ H and the technicians mastering at least one skill
of this subset. This procedure increases the likelihood of finding violated daily location-based incompatibil-
ities if the current solution to the restricted master problem does not lead to a feasible technician-to-task
assignment sub-problem. This is particularly true when the ratio between the requirements and the number
of available technicians varies widely across skills.

To look for violated constraints, we solve for each day d and for each subset S̄ Ă S a maximum-weight
clique problem in an undirected graph rGd

S̄
px̄q. The graph rGd

S̄
px̄q is composed of:

• a set of vertices rVd
S̄

such that each vertex maps a job j of set J px̄q that i) overlaps day d (i.e.,
Td X tSj , ..., Cju ‰ H) and ii) requires at least one of the skill in S̄ (i.e., Sj X S̄ ‰ H). We denote jν

the job associated with vertex ν P rVd
S̄
. We associate with every vertex ν a weight equal to the number

of technicians qjν required to perform job jν .

• a set of edges rUd
S̄
where for all vertices ν1, ν2 P rVd

S̄
:

pν1, ν2q P rUd
S̄
ô ν1 ‰ ν2 ^

´`
Sjν2

ď Cjν1
^ Sjν1

ď Cjν2

˘
_ σljν1

ljν2
“ 0

¯

There exists an edge between two vertices ν1 and ν2 in rGd
S̄
px̄q if and only if a technician cannot

be assigned to both jobs jν1
and jν2

with regard to constraints [C2] and [C3]. rGd
S̄
px̄q is a kind of

sub-graph of graph G used to derive the clique constraints (24) in formulation rSP2px̄qs. The only
difference comes from the insertion of jobs related to technician unavailability time periods.

Proposition 3.2 formally describes the link between the resolution of the technician-to-task assignment
sub-problem and the resolution of maximum-weight clique problems.

Proposition 3.2. The technician-to-task assignment sub-problem is feasible for a solution x̄ to the restricted
master problem rRMP s if for each subset S̄ Ă S of skills and for each day d P D the maximum weight of a

clique in graph rGd
S̄
px̄q is less than or equal to |RS̄ |.

Proof. For a fixed day d and a fixed subset of skills S̄, suppose by contradiction that the maximum weight of a

clique in graph rGd
S̄

px̄q is strictly greater than |RS̄ |. By construction of rGd
S̄

px̄q, a technician cannot perform more than
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available, the technician-to-task assignment sub-problem is infeasible.

Let us now assume a fixed day d P D and a fixed subset of skills S̄. Let us also denote Cd
S̄
px̄q the set

of vertices that belong to the maximum-weight clique of graph rGd
S̄
px̄q. If the total weight of the vertices in

rGd
S̄
px̄q is strictly greater than |RS̄ |, the constraint that eliminates x̄ is:

ÿ

νPCd
S̄
px̄q

qjν ď |RS̄ | (40)

The valid constraint (hereafter referred to as a maximum-weight (MWC) cut) that discards a solution x̄

to the restricted master problem rRMP s is therefore:

ÿ

jPJHpx̄q

s.t. νjPC
d
S̄
px̄q

ÿ

pPPhj

qpxp ď |RS̄ | ´
ÿ

jPJR

s.t. νjPC
d
S̄
px̄q

qj (41)

This cut simply states that the number of technicians required by the jobs associated with the vertices of
the clique has to be lower than the number of technicians mastering at least a skill in S̄. We derived this cut
not only for the maximum-weight clique but also for all the cliques that have a weight greater than |RS̄ |.

It is possible to tighten the MWC cut (41) by adding some additional patterns on its left side. More
precisely, we proceed as follows. First, we consider the sub-graph Gsubpx̄q of graph G (graph G is used to
derive the clique inequalities in the formulation rSP2px̄qs) that includes a vertex for pattern h P H if: i)
h P HzHpx̄q (i.e. qhpx̄q “ 0), ii) h overlaps day d, iii) sh P S̄, and iv) in the case that a technician is assigned
to h, he or she cannot be assigned to any job involved in Cd

S̄
px̄q with regard to constraints [C2] and [C3]. We

then solve a maximum clique problem in sub-graph Gsubpx̄q. Let us denote H
“
Cd
S̄
px̄q

‰
the set of patterns

associated with the vertices that are part of the maximum clique of Gsubpx̄q. Observing that a technician
cannot be assigned to more than one of the jobs in Cd

S̄
px̄q or one of the patterns of H

“
Cd
S̄
px̄q

‰
, we can rewrite

the MWC cut (41) as follows:

ÿ

jPJHpx̄q

s.t. νjPC
d
S̄
px̄q

ÿ

pPPhj

qpxp `
ÿ

hPHrCd
S̄
px̄qs

ÿ

pPPh

qpxp ď |RS̄ | ´
ÿ

jPJR

s.t. νjPC
d
S̄
px̄q

qj (42)

For efficiency consideration, we reduce the size of the sub-graph Gsubpx̄q observing that it is sufficient to
only consider one vertex for all the patterns that satisfy two conditions: same location and overlapping of
the same portion of the day. We point out that this remark also applies for graph rGd

S̄
px̄q.

Last but not least, to avoid overloading our algorithm, we solve the maximum-weight clique problem
only if: i) the sum of the weights of the vertices is greater than the number of available technicians and ii)
there exists during a particular day at least two jobs that do not overlap and are executed at incompatible
locations. Otherwise, the cumulative constraints (6) ensure for each day and for each subset of skills the
non-existence of a clique with a weight strictly greater than the number of available technicians. We use
the algorithms introduced in (Österg̊ard 2001) and (Österg̊ard 2002) for solving the maximum clique and
maximum-weight clique problems.

Since the approximations to the sub-problem described in Section 3.2.2 and in Section 3.2.3 can be
decomposed into a series of small problems, we can potentially identify multiple subsets of plans that cause
the infeasibility of the technician-to-task assignment sub-problem. This usually leads to the generation of
multiple cuts, which is known to significantly improve the efficiency of a cut generation process. We can
also think to run the resolution of those small problems in parallel.

For the sake of clarity, we provide three examples in Appendix B to illustrate how we build up the different
cuts previously described. For the approximations described in 3.2.2 and 3.2.3, the first two examples show
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the strongest cuts). The third example is meant to illustrate a case where the two previous approximations
do not find any cut although the technician-to-task assignment sub-problem is infeasible.

3.3. The algorithm: general structure

The decomposition described in section 3.1 can be seen as a Benders decomposition of the problem. To
efficiently solve the problem while exploiting this decomposition, one can easily distinguish two different
implementation approaches. The first approach is the classical implementation of Benders decomposition,
which relies on Kelley’s cutting plane algorithm. The method successively solves a restricted master problem
and one (or multiple) sub-problem(s). New constraints, referred as Benders feasibility cuts, are introduced
in the restricted master problem if the sub-problem(s) is (are) infeasible. When the sub-problem(s) is (are)
not only constraint satisfaction problem(s), we may also have to generate Benders optimality cuts. The
method iterates between a restricted master problem and the sub-problem(s) until it converges or concludes
that there is no solution. This method has been successfully applied to (the list is not exhaustive): power
systems (Shahidehopour and Fu 2005), hub network design (Cordeau et al. 2006), cargo shipping (Agarwal
and Ergun 2008).

One noticeable disadvantage of the classical implementation of Benders decomposition is that the re-
stricted master problem is repeatedly solved to optimality. Moreover, the time needed to solve the restricted
master problem tends to increase with each iteration. To overcome this drawback, as an alternative ap-
proach, Benders cuts can be generated on the fly while solving a restricted master problem. The sub-problem
is then solved during the search for a solution to the master problem. More specifically, at each integer node
of the branch-and-bound tree, the corresponding solution is sent to the sub-problem in order to generate the
Benders cuts. This implementation approach is referred to as a Benders-based branch-and-cut algorithm in
(Naoum-Sawaya and Elhedhli 2010) or as a branch-and-Benders-cut method in (Gendron et al. 2014). It has
been used to solve several types of problems: hub location (De Camargo et al. 2011), production routing
under demand uncertainty (Adulyasak et al. 2015), location-design (Gendron et al. 2014), facility location
and network design (Naoum-Sawaya and Elhedhli 2010), and hop-constrainted survivable network (Botton
et al. 2013). Botton et al. (2013) reported a significant improvement using this alternative approach instead
of the classical implementation of Benders decomposition, while Gendron et al. (2014) outlined the benefits
of the Benders-based branch-and-cut in terms of solution quality, scalability, and robustness.

The difference between the two implementation approaches previously described is rather similar to the
difference between two methods primarily used for linear programming (LP) and CP hybridization: the
Logic-based Benders decomposition introduced by Hooker (2000) and the branch-and-check (B&C) frame-
work described by Thorsteinsson (2001). Similarly to the Benders-based branch-and-cut, the B&C frame-
work method solves only once a restricted master problem. Thorsteinsson (2001) applied it to a planning
and scheduling problem, while Sadykov (2008) used it for a complex scheduling problem on a single machine.
We refer the reader to (Beck 2010) for a more comprehensive survey.

Since the master problem is a pure ILP model, its resolution is very likely to be time-consuming. There-
fore, it seems better suitable to solve the problem with a B&C approach5. Moreover, one drawback of
applying the classical implementation of Benders decomposition to our problem is that a feasible solution
(and optimal) is only obtained at the end, whereas a B&C approach may provide feasible solutions through-
out the resolution of the master problem. Figure 4 outlines the general structure of our two-stage method:

• Stage 1 (solve a linear relaxation of rP s)):
The purpose of this first stage is to generate potential useful MCbM and MWC cuts while working with
a much easier problem. To this end, we consider rShPLR

1 s the linear relaxation of rShP1s (“Initialization
1”). Using a LP solver, we solve the problem to optimality (“Solve rShPLR

1
s”). We then solve the

approximations to the sub-problem described in Sections (3.2.2) (the maximum cardinality b-matching
becomes a fractional maximum cardinality b-matching) and (3.2.3) (in this stage, we only derive a

5Although we do not use constraint programming, we choose this terminology since the technician-to-task assignment sub-
problem is a feasibility test, and the approximations to this sub-problem yields something rather similar to filtering algorithms.
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1 s (“Solve MWC and MCbM

problems”). If we generate some MCbM and/or MWC cuts, we add them to rShPLR
1 s (”Add cuts to

rShPLRs”) and we re-optimize this problem. Otherwise, we stop this first stage.

Last but not least, to avoid wasting too much time generating cuts that may not be all useful, we
choose arbitrary to stop the resolution (“Stop 1”) after the first 100 iterations if it is not stopped sooner
(“Cuts ? No”). Note also that this stage could have been performed at the root-node of the search tree
defined for the second stage. However, our aim is to take advantage of the preprocessing techniques
embedded in ILP solvers.

• Stage 2 (Solve the master problem rP s):
In the second stage, we first check (“solution to the problem ?”) if the solution x̄˚ obtained during the
previous stage is feasible for rP s (i.e., if x̄˚ is integer and leads to a feasible technician-to-task assign-
ment sub-problem). If it is not the case, we solve the master problem by a branch-and-cut method
implemented in a commercial solver. We initialize the restricted master problem rRMP s with all
the cuts that have been previously generated (“Initialization 2”) and we forward it to the ILP solver.
As long as the solution computed by the solver is continuous (“Solution ? continuous”), we let it make
its own branching decisions to produce integer solutions (“Apply branching procedure”), its own explo-
ration of the search tree (“Choose the next rRMP s problem”), and we let it use its own techniques to
compute feasible solutions and generic cuts which help to reduce the list of active nodes (“Update the

list of rRMP s problems”). For every integer solution x̄ to the current restricted master problem rRMP s
(“Solution ? integer”), we check if x̄ is feasible regarding the technician-to-task assignment sub-problem.
We start by solving the maximum cardinality b-matching and the maximum-weight clique problems
(“Solve MWC and MCbM problems”). If it produces at least one MCbM or MWC cut, we discard the
current solution x̄ by adding the generated cut(s) to rRMP s (“Add cuts to rRMP s”). Otherwise, we
solve the LP formulation rSPLR

2 px̄qs (“Solve rSPLR
2

px̄qs”). If we identify a violated BF cut of type (33),
we add it to rRMP s (“Add cuts to rRMP s”). Otherwise, we cannot directly conclude to the feasibility
of the technician-to-task assignment sub-problem before solving the ILP formulation rSP2px̄qs (“Solve
rSP2px̄qs”). If the solution has a strictly positive cost, we generate a CB cut of type (31) and add it to
the restricted master problem (“Add cuts to rRMP s”). Otherwise, we conclude that x̄ is a new feasible
solution to our problem (“New best solution”). Note that the branch-and-bound scheme ensures that x̄
is strictly better than the best previous solution. We end up this phase (“Stop 2”) with the optimal
solution to rP s or with a feasible solution if a time limit has been reached. Note that if no solution
is found within the time limit, one can always consider the feasible solution in which all the tasks are
postponed.

4. Computational experiments

4.1. Instances

We report computational results on the 160-instance testbed proposed by Froger et al. (2016b). These
instances were randomly generated from the insight on wind prediction and maintenance operations that
they obtained from their collaborators in the wind industry. They considered time horizons of different
lengths (5 days and 10 days with 2 or 4 time periods per day), different number of tasks (20, 40, 80), and
different number of skills (1 or 3). For each combination of parameters, they generated two categories of
instances: 5 instances with a tight technicians-to-work ratio (i.e., technicians can perform the majority of
the tasks during the planning horizon, but they are not guaranteed to be enough to perform all the tasks),
and 5 instances with a regular technicians-to-work ratio (i.e., technicians can perform all the tasks during
the planning horizon). They referred to the former as type A and to the latter as type B. They obtained
32 family of instances as representative as possible of the wide range of situations which may occur. The
cost of postponement is set in every instance in such a way that postponing a task in non-profitable. In the
following, we refer to each family of instance with symbol “a b c d e” where a, b, c, d, and e refer to the
number of time periods in the planning horizon, the number of time periods within a day, the number of
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the instance generation process the reader is referred to Appendix D.

4.2. Results

We implemented our algorithms using Java 8 (JVM 1.8.0.25). We rely on Gurobi 6.5.1 for solving LP
and ILP models. We ran our experiments on a Linux 64 bit-machine, with an Intel(R) Xeon(R) X5675
(3.07Ghz) and 12GB of RAM. We set a 3-hour time limit to solve the different instances (notice that all
CPU times are reported in seconds and rounded to the closest integer). In order to assess the quality of our
results, we computed the gap with respect to the optimal solution when it is known, or to the best upper
bound retrieved by the solver over all the tests reported in this paper.

4.2.1. Exact approaches

We tested four different approaches to exactly solve our maintenance scheduling problem. We present
the computational results for the direct resolution of the two different ILP formulations of the problem
(rP1s and rP2s). To quantify the relevance and the contribution of the problem-specific cuts introduced in
Section 3.2, we present the computational results of the B&C approach presented in Section 3.3 without
(B&C) and with (B&C) the MCbM and MWC cuts. These two approaches only differ according to how
we discard an infeasible solution x̄ to the restricted master problem rRMP s. In Table 1, we report the
average, over all the instances belonging to the same family or sharing a common characteristic, of: the gap
(Gap), the solution time (Time), and the percentage of tasks scheduled in the best solution (%S). We also
report the number of optimal solutions found within the time limit (#Opt). In order to have a meaningful
comparison, the average solution time only takes into account those instances for which an optimal solution
has been found within the time limit. Similarly, the average gap and percentage of tasks scheduled (i.e.,
not-postponed) takes into account only the instances which are not optimally solved. Indeed, since in our
instances postponing a task is non-profitable and heavily penalized, a large gap is often related to a low
percentage of tasks scheduled during the time horizon. This allows a better understanding of the results.
Notice that on average 99% of the tasks are scheduled in the optimal or best-known solutions for our testbed.

First, we observe that formulation rP2s seems to outperform formulation rP1s. Nonetheless, the compari-
son between these two formulations is quite difficult as the best model regarding the gap and solution time if
it is not optimally solved can vary within a family from one instance to another one. We also notice that the
average gap is still considerable for the majority of the family of instances (the solver fails to schedule a large
proportion of the tasks), and when optimality is reached, it is on average with a significant solution time. It
is not very surprising as the formulations involves a large number of binary variables and constraints. We
therefore reach the following conclusion: directly solving the ILP formulations with a commercial solver is
not a suitable exact approach for the problem.

Second, we can state that the performance of the B&C approach is strongly correlated with the cuts
generated from the approximations to the technician-to-task assignment sub-problem. Indeed, including the
problem-specific cuts allows us to find the optimal solution on 63 additional instances. On the remaining
instances, it also significantly reduces the gap from around 4.0%. This highlights the weakness of the generic
Benders cuts, as opposed to the apparent strength of the problem-specific cuts.

Third, we observe that the B&C approach outperforms by far the direct resolution of ILP formulations,
and this for every family of instances. Indeed we are able to solve to optimality 80% of the instances and,
in this case, the solution time is importantly reduced (around 3 minutes on average). Moreover, the overall
average gap when optimality is not reached is relatively small (1.7%).

Lastly, our results suggest that the number of skills does not have a significant impact on the difficulty
of the instances (although we observe that instances with 3 skills appear to be easier to solve). This may be
explain because there are less symmetries among technicians and a shorter number of feasible configurations
to schedule the tasks. On the other hand, the number of tasks seems to have an impact on the difficulty
of the instances when the technicians-to-work ratio is tight. This can be explained by the higher difficulty
of finding a maintenance plan when considering more tasks. For the instances with a regular technicians-
to-work ratio, although the number of plans is larger when considering more tasks, the number of patterns
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Family rP1s rP2s B&C B&C
Gap %S #Opt Time Gap %S #Opt Time Gap %S #Opt Time Gap %S #Opt Time

10 2 1 20 A - - 5/5 598 - - 5/5 152 - - 5/5 2,272 - - 5/5 5
10 2 1 20 B - - 5/5 12 - - 5/5 37 - - 5/5 2 - - 5/5 1
10 2 1 40 A 0.01% 100% 2/5 1,813 0.01% 100% 1/5 7 0.70% 100% 2/5 3,379 - - 5/5 7
10 2 1 40 B - - 5/5 205 - - 5/5 121 - - 5/5 8 - - 5/5 1
10 2 3 20 A - - 5/5 2,635 - - 5/5 1,574 1.0% 97% 2/5 2,871 - - 5/5 162
10 2 3 20 B - - 5/5 31 - - 5/5 18 - - 5/5 94 - - 5/5 2
10 2 3 40 A - - 5/5 3,220 - - 5/5 3,996 2.2% 98% 2/5 4,040 - - 5/5 17
10 2 3 40 B - - 5/5 180 - - 5/5 295 - - 5/5 18 - - 5/5 1
20 2 1 40 A 2.4% 98% 2/5 8,074 1.4% 98% 2/5 2,858 6.4% 96% 1/5 7,301 - - 5/5 230
20 2 1 40 B 0.01% 100% 4/5 232 - - 5/5 2,078 - - 5/5 695 - - 5/5 4
20 2 1 80 A 436% 0% 0/5 - 334% 20% 0/5 - 8.2% 96% 0/5 - 0.02% 100% 4/5 300
20 2 1 80 B 318% 50% 3/5 1,485 229% 49% 3/5 3,823 0.13% 100% 4/5 580 - - 5/5 5
20 2 3 40 A 1.25% 99% 1/5 322 1.2% 99% 3/5 5,534 4.6% 95% 1/5 1,136 2.1% 98% 4/5 40
20 2 3 40 B - - 5/5 376 - - 5/5 155 - - 5/5 525 - - 5/5 3
20 2 3 80 A 257% 20% 0/5 - 156% 39% 0/5 - 3.3% 98% 0/5 - - - 5/5 51
20 2 3 80 B - - 5/5 3,415 196% 50% 3/5 2,456 0.02% 100% 4/5 163 - - 5/5 5
20 4 1 20 A 1.8% 96% 0/5 - 1.3% 97% 0/5 - 2.1% 95% 0/5 - 2.2% 95% 3/5 1,715
20 4 1 20 B - - 5/5 204 - - 5/5 405 - - 5/5 131 - - 5/5 2
20 4 1 40 A 264% 0% 0/5 - 61% 75% 0/5 - 8.6% 93% 0/5 - 1.2% 98% 2/5 1,586
20 4 1 40 B 174% 49% 1/5 5,208 107% 74% 1/5 1,968 0.3% 100% 4/5 630 - - 5/5 6
20 4 3 20 A 1.2% 98% 0/5 - 2.4% 95% 4/5 5,005 3.1% 95% 0/5 - 2.0% 95% 4/5 237
20 4 3 20 B 0.01% 100% 4/5 52 - - 5/5 113 3.1% 95% 4/5 134 - - 5/5 9
20 4 3 40 A 373% 20% 0/5 - 5.3% 95% 0/5 - 6.7% 94% 0/5 - 0.85% 98% 1/5 8,888
20 4 3 40 B 1.5% 99% 2/5 6,112 0.03% 100% 3/5 2,108 0.29% 100% 1/5 1,608 - - 5/5 11
40 4 1 40 A 352% 0% 0/5 - 106% 76% 0/5 - 15.7% 89% 0/5 - 2.1% 98% 0/5 -
40 4 1 40 B 1,594% 40% 0/5 - 3.0% 98% 0/5 - 0.7% 100% 0/5 - - - 5/5 31
40 4 1 80 A 4,948% 0% 0/5 - 4,948% 0% 0/5 - 16.1% 90% 0/5 - 1.5% 99% 0/5 -
40 4 1 80 B 331% 0% 0/5 - 331% 0% 0/5 - 1.8% 99% 0/5 - - - 5/5 89
40 4 3 40 A 1,087% 20% 0/5 - 4.6% 96% 0/5 - 14.6% 90% 0/5 - 1.5% 99% 0/5 -
40 4 3 40 B 477% 20% 0/5 - 0.84% 99% 2/5 2,118 0.3% 100% 0/5 - - - 5/5 36
40 4 3 80 A 2,813% 0% 0/5 - 2,727% 18% 0/5 - 14.3% 90% 0/5 - 2.3% 98% 0/5 -
40 4 3 80 B 3,899% 0% 0/5 - 3,899% 0% 0/5 - 0.96% 100% 0/5 - - - 5/5 86

Characteristics rP1s rP2s B&C B&C
Gap %S #Opt Time Gap %S #Opt Time Gap %S #Opt Time Gap %S #Opt Time

|S| “

"
1
3

854% 35% 32/80 1,108 621% 61% 34/80 1,035 6.7% 95% 36/80 957 1.6% 98% 64/80 179
1,036% 39% 37/80 1,677 982% 61% 43/80 1,896 4.9% 96% 29/80 722 1.7% 98% 64/80 186

|T |

|D|
“

"
2
4

179% 56% 57/80 1,383 144% 60% 57/80 1,461 3.9% 97% 51/80 982 1.0% 99% 78/80 49
1,197% 30% 12/80 1,555 1,014% 61% 20/80 1,757 6.5% 95% 14/80 380 1.7% 98% 50/80 390

Type “

"
A
B

878% 38% 20/80 2,618 759% 65% 25/80 2,838 7.8% 94% 13/80 3,106 1.7% 98% 48/80 456
1,059% 35% 49/80 921 802% 53% 52/80 913 0.8% 100% 52/80 288 - - 80/80 18

All 940% 37% 69/160 1,413 773% 61% 77/160 1,538 5.7% 96% 65/160 852 1.7% 98% 128/160 182
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sub-problem. Moreover, our exact approaches suit better to instances with 2 time periods per day as the
solution time is lower and the number of optimal solutions is larger than when considering 4 time periods per
day. A plausible explanation is that the daily location-based incompatibilities are more binding on instances
with more time periods per day. Indeed, a larger number of periods provide a wider choice of task starting
times and therefore more opportunities to move technicians between locations during a single day. Instances
with 4 time periods per day also have a larger number of plans and patterns; this may also explain their
higher difficulty. In conclusion, according to our experiments, the difficulty of an instance increases with
the number of time periods per day and the tightness of the technicians-to-work ratio.

In Table 2, we present a brief description of the average number of cuts generated during the execution of
the B&C approach for each testbed. The average, over all the instances sharing a common characteristic, of
the total number of cuts (#Cuts) is decomposed into the CB, BF, MCbM, and MWC cuts. Detailed results
for each family of instances are available in Appendix C. First, we observe that, on average, 90% of the
cuts are problem-specific cuts whereas the other 10% are generic Benders cuts. These results naturally show
that the approximations are not always able to identify the infeasibility of the technician-to-task assignment
sub-problem. However, when |S| “ 1, it is noteworthy that solving the maximum cardinality b-matching
and maximum-weight clique problems allow almost always to identify the infeasibility of the sub-problem.
We observe that we generate more cuts for instances with 3 skills, 4 time periods per day and a tight
technicians-to-work ratio. This is due to the largest number of patterns in the first two cases and to the
fact that there is less potential configuration to schedule the tasks in the last case. Notice that we never
generate CB cuts. Actually, we observe that the optimal solution to the relaxed sub-problem rSPLR

2 px̄qs is
most of the time integer although the constraint matrix is not totally unimodular6. We can also note that
we generate only few MCbM cuts. On the contrary, we generate many MWC cuts. The reason for this is
that the restricted master problem has no information about the daily location-based incompatibilities at
the beginning of the optimization. It is then more likely that these specific constraints are not satisfied by
the solutions to the restricted master problem.

Table 2: Description of the average number of cuts generated in the B&C approach.

Characteristic #Cuts CB
Other cuts

BF MCbM MWC

|S| “

"
1
3

102 0 0.3 3 98
224 0 28 10 186

|T |

|D|
“

"
2
4

56 0 9 3 44
270 0 19 10 241

Type “

"
A
B

262 0 24 10 229
63 0 4 4 56

All 163 0 14 7 142

Furthermore, we notice that all the components of the B&C approach have a favorable trade-off between
their efficiency and the time spent on it. Since the relaxation of the problem considered in the first stage
only contains continuous variables and no (or few) cuts, this first stage does not require too much time: on
average 1% of the CPU time. Notice also that the limit on the number of iterations during this stage is
never reached in our experiments. The results also show that solving the restricted master problem in the
B&C approach is the most time-consuming part of the second-stage. Indeed, this component is responsible
on average for 99% of the CPU time. This compares with the negligible time spent on solving, for a solution
x̄ to rRMP s, the formulations rSPLR

2 px̄qs and rSP2px̄qs with the commercial solver, or the approximations
to the sub-problem.

4.2.2. A cooperative approach

As a second part of our experiments, we tested the use of the CPLNS introduced in (Froger et al. 2016b)
along with the B&C approach. More specifically, the idea is to run the CPLNS in parallel with the algorithm.

6We found an instance - not part of our testbed - and a solution x̄ of rRMP s where the optimal value of rSPLR
2

px̄qs is equal
to 0 whereas the optimal value of rSP2px̄qs is equal to 1.
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to the solver. If this improves the current lower bound of the ILP solver it may help to prune some nodes
in the branch-and-bound tree. This idea comes from the observation that for the large-sized instances the
solver has sometimes trouble with finding good quality solutions. Table 3 summarizes the results. The last
columns report the average gap for the best solution found by the CPLNS with the same execution time as
the B&C approach (i.e., we stop the CPLNS when the B&C approach finds the optimal solution or when
it reaches the time limit). More detailed results for each family of instances are available in Appendix C.
Since no additional instances are solved to optimality, we conclude that running the CPLNS in parallel with
the B&C approach has no significant effect on its efficacy and efficiency (even if the gap is reduced by 0.4%
for the instances for which optimality is not reached). Above all, these results allow us to state that, if
we are given a 3-hour time limit, the B&C approach significantly outperforms the CPLNS with an average
difference of around 2% between the two gaps. It is mainly due to the difficulty of the CPLNS in scheduling
some tasks when the technicians-to-work ratio is tight. It also highlights the fact that the metaheuristic may
often be trapped in local optima. However, one may find a smaller gap between the efficiency of the CPLNS
and the B&C approach if one imposes another time limit. Lastly, we observe that the characteristics that
make the instances difficult to solve by the B&C approach are the same for the CPLNS.

Table 3: Aggregated computational results of the B&C approach coupled with the CPLNS.

Characteristics B&C CPLNS
Gap #Opt Time Gap1 Gap2

|S| “

"
1
3

1.6% 64/80 183 3.7% 1.2%
1.0% 64/80 195 2.7% 1.0%

|T |

|D|
“

"
2
4

0.09% 78/80 38 3.7% 0.90%
1.4% 50/80 399 3.2% 1.4%

Type “

"
A
B

1.3% 48/80 445 3.2% 1.9%
- 80/80 20 - 0.61%

All 1.3% 128/160 179 3.2% 1.1%

1 Takes into account the instances where the time limit is reached in the B&C approach.
2 Takes into account the instances solved to optimality by the B&C approach.

5. Conclusions and research perspectives

In this study, we have proposed a branch-and-check approach to solve a challenging maintenance schedul-
ing problem rising in the onshore wind industry. This exact method takes advantage of the decomposition
of the problem into a task scheduling problem and a technician-to-task assignment sub-problem. For each
selection of plans, we actually check the existence of an assignment of the technicians to the scheduled tasks
that copies with the availability of every single technician and that meets the travel limitations imposed on
each day. Since the ILP formulation of the sub-problem does not possess the integrity property, we use the
concept of combinatorial Benders cuts to invalidate infeasible maintenance plans to the restricted master
problem, while trying to identify violated classical Benders feasibility cuts beforehand. However the key
part of the algorithm comes from the approximations to the technician-to-task assignment sub-problem as
a series of maximum cardinality b-matching and maximum-weight clique problems. Indeed, according to
the experiments that we conducted on randomly generated instances with technical expertise, the result-
ing problem-specific cuts proves to be very effective speeding up the convergence of the B&C approach.
This latter method finds optimal solutions in short execution times for the large majority of the instances
or delivers high-quality integer solutions in those instances in which optimality is not reached. It signifi-
cantly outperforms the direct resolution of ILP models as well as, in a certain context, a state-of-the-art
metaheuristic approach.

In this research we considered the deterministic version of the problem. An interest perspective is to
consider the inherent uncertainty on wind speed forecasts. Future research will focus on solving the resulting
stochastic optimization problem using stochastic programming and/or robust optimization techniques.
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Appendix A.1. Equivalence to the L-coloring problem

To assess the complexity of the technician-to-task assignment sub-problem, we prove its equivalence to
the L-coloring problem

First, let us associate a color colorr to every technician r P R. For a given solution x̄ to the restricted
master problem rRMP s, let us also introduce the undirected graph :Gpx̄q composed of:

• a set of vertices :V

– For each job j P J px̄q, we add qj vertices in :V. Parameter jν denotes the job associated with

a vertex ν P :V and :Vj the set of vertices associated with job j. Denoting Lν the set of colors
associated with vertex ν, we define Lν “ tcolorrurPRj

.

• a set of edges :U defined such that @ν1 ν2 P :V:

pν1, ν2q P :U ô ν1 ‰ ν2 ^
´`

Sjν2
ď Cjν1

^ Sjν1
ď Cjν2

˘
_ σljν1

ljν2
“ 0

¯

(There exists an edge between two vertices ν1 and ν2 in :Gpx̄q if and only if a technician cannot be
assigned to both jobs jν1

and jν2
with regard to constraints [C2] and [C3])

We prove in Proposition B.1 the equivalence between the technician-to-task assignment sub-problem and
the L-coloring problem in graph :Gpx̄q.

Proposition B.1. Let x̄ be a solution to the restricted master problem rRMP s. The technician-to-task
assignment sub-problem for x̄ is equivalent to the L-coloring problem in graph :Gpx̄q.

Proof. Assume that we know a feasible solution to the technician-to-task assignment sub-problem. This
solution directly yields the list Rass

j of technicians assigned to every job j P J px̄q (in that solution). We can

then build a solution to the L-coloring problem by iterating through the vertices of :Gpx̄q. More specifically,
for each vertex ν P :V, we pick a technician r P Rass

jν
(and remove it from this set) and color the vertex ν

with colorr. By construction of the graph, we are ensured that for a job j the set Rass
j becomes empty only

when every vertex of :Vj is colored. We are also ensured that the graph is L-colorable since each vertex ν P :V
picks up an admissible color in Lν .

Alternatively, assume that we know a solution c to the L-coloring problem in graph :Gpx̄q. This solution
directly yields the list Rass

j of technicians assigned to every job j P J px̄q. More specifically, for each vertex

ν P :V, we add to Rass
j the technician r P R such that colorr “ cpνq. We then induce the underlying

assignment of the technicians to the plans selected in the solution to the restricted master problem. By
construction of the graph :Gpx̄q, the assignments satisfy the location-based incompatibility constraints and
copy with individual technician availability time periods. This produces a feasible solution to the technician-
to-task assignment sub-problem.

Since the graph coloring problem is a specific case of the L-coloring problem, the strong NP-completeness
of the former (Jensen and Toft 2011) implies the strong NP-completeness of the latter. We can therefore state
that the technician-to-task assignments sub-problem is NP-complete in the strong sense. It is noteworthy
that in the case of interval graphs, the L-coloring problem stays NP-complete (Biro et al. 1992) although
the graph coloring problem becomes polynomial.
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Appendix B.1. Example 1

This example (referred to as Example 1 ) illustrates thoroughly how we build the different cuts described
in the report.

We consider in this example a fixed time horizon made up of 8 time periods of identical length (T “
t1, 2, ..., 8u) and partitioned into two days: time periods 1 to 4 belong to day 1 (i.e., T1 “ t1, 2, 3, 4u) and
time periods 5 to 8 to day 2 (i.e., T2 “ t5, 6, 7, 8u). We have three different locations denoted as l1, l2, and
l3 (i.e., L “ tl1, l2, l3u). Locations l2 and l3 cannot be visited by a technician within the same day (i.e.,
σl2l3 “ 0). We do not define any other daily location-based incompatibilities. We consider 4 tasks to schedule
(I “ tA,B,C,Du), 3 technicians (R “ tr1, r2, r3u), and 3 skills (S “ ts1, s2, s3u). The characteristics of the
tasks and the technicians are defined in Table B.4a and in Table B.4b. For the sake of simplicity, we do not
explicitly introduce all the parameters defining an instance of the problem, we introduce only those which
are useful for the illustration of the cut generation process.

Table B.5 shows a given solution to the restricted master problem rRMP s in which no cuts have been
previously added. According to the selected plans, the table reports the starting and completion time periods
of each task as well as the number of technicians required to perform every task. We refer to this solution
using symbol x̄. Note that x̄ satisfies the cumulative constraints (6) of the restricted master problem7.

Table B.4: Data of Example 1.

I li si
A l1 s1
B l2 s1
C l1 s2
D l3 s3

(a) Characteristics of the tasks.

R ts P S | ζrs “ 1u unavailability time period
r1 ts1u at location l3 during time period 8
r2 ts1, s2, s3u –
r3 ts1, s3u –

(b) Characteristics of the technicians.

Table B.5: A solution to the restricted master problem for Example 1.

I Selected plan p Sp Cp qp Rp

A pA 2 5 1 tr1, r2, r3u
B pB 4 7 2 tr2, r3u
C pC 7 8 1 tr2u
D pD 1 3 2 tr2, r3u

In the following, symbol ur1 refers to the job associated with the unavailability time period of technician
r1. Observing that ur1 and pB both overlaps day 2 and are defined at two incompatible locations l2 and l3,
we can deduce that technician r1 cannot be assigned to plan pB (although he or she has the required skill).

Note that in solution x̄ we have as many patterns as selected plans, and therefore we introduce as many
jobs as plans. Job jA refers then to plan pA, job jB refers then to plan pB , and so on.

First, let us look at the potential generation of MCbM cuts. Figure B.5 describes graph qGtpx̄q for each
time period of the planning horizon for Example 1.

For time period t “ 7, the value of the maximum flow problem in graph pG7px̄q is equal to 2 and so is
the maximum cardinality of a b-matching in G7px̄q. Since qjB ` qjC “ 3, x̄ is an infeasible solution to the

whole problem. We then compute the minimum cut in graph pG7px̄q (see Figure B.6).
From the general expression (38), we build the MCbM cut (B.1).

2xpB
` 1xpC

ď 2 (B.1)

7For instance, at time period 7 we have seven cumulative constraints. Plugging in the values of the variables, we obtain
2 ď 3, 1 ď 1, 0 ď 2, 3 ď 3, 2 ď 3, 1 ď 2, 3 ď 3 when S̄ is respectively equal to ts1u,ts2u,ts3u,ts1, s2u,ts1, s3u,ts2, s3u,ts1, s2, s3u
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Figure B.5: Structure of graphs qGtpx̄q for Example 1 and different values of t P T .

F%456) fh 8 Minimum cut in graph pG7px̄q for Example 1.

Second, let us look at the potential generation of MWC cuts. For illustration purposes, Figure B.7
depicts rGd

S̄
px̄q for every day d P tday 1, day 2u and every subset S̄ Ă S of skills. Looking at Figure B.7,

one can see that the maximum-weight clique is strictly greater than the number of available technicians in
4 different cases. From the general expression (41), we build the MWC cuts (B.2) and (B.3).

1xpA
` 2xpB

` 1xpC
ď 3 (B.2)

2xpB
` 1xpC

ď 2 (B.3)

The cut (B.2) is built from the clique computed either in rG1
ts1,s2,s3u

px̄q or in rG1
ts1,s3u

px̄q. In the same

way, the cut (B.3) is built from the clique computed either in rG2
ts1,s2,s3u

px̄q or in rG2
ts1,s2u

px̄q.

Third, let us solve the formulation rSPLR
2 px̄qs with a commercial solver. Since its optimum value is

strictly greater than zero (equal to 2), we identify the violated BF cut (B.4).

2xpB
` xpC

` 2xpD
ď 3 (B.4)

Fourth, let us directly solve the ILP formulation rSP2px̄qs. As with the linear relaxation, the optimum
value is equal to 2. We then generate the CB cut (B.5).

xpA
` xpB

` xpC
` xpD

ď 3 (B.5)

Table B.6 reports the infeasible sections of plans discarded by the MCbM, MWC, BF and CB cuts.
We denote each selection of plans using a four dimensional vector where the first, second, third and fourth
coordinate refers to the plan selected for task A, task B, task C and task D, respectively. Symbol ”...” simply
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clique is strictly greater than the maximum allowed

Figure B.7: Structure of rGd
S̄

px̄q for Example 1

means that the infeasibility of the plans selection holds for any executing plan selected at the corresponding
coordinate.

Table B.6: The infeasible plans selections discarded in Example 1.

Plans selection CB BF MCbM MWC
ppA, pB , pC , pDq X X X X

ppA, pB , pC , ...q X X

ppA, pB , ..., pDq X X

p..., pB , pC , pDq X X X

p..., pB , pC , ...q X X

p..., pB , ..., pDq X X

For the cut (B.1), notice that we can build a stronger MCbM cut of type (39) as described in Section
3.2.2. Indeed, we can add to the left hand side of the cut (B.1) all the patterns overlapping time period 7 to

which technician r1 cannot be assigned (this is the only technician associated with a vertex of set qVt
Rp´q).

For the MWC cuts (B.2) and (B.3), we can build stronger MWC cuts of type (42) as described in Section
3.2.3. To strengthen MWC cut (B.2), we consider the sub-graph Gsubpx̄q of G that includes the vertices
linked to: i) patterns at location l1 overlapping time periods 3 and 4, ii) patterns at location l2 overlapping
time periods 4, and iii) patterns at location l3 overlapping at least time period 2, 3 or 4. Indeed, one
technician cannot be assigned to any of the previous patterns if he or she is assigned to pattern pA, pB or
pD. We then solve a maximum clique problem in this sub-graph, and we add to the left hand side of the
MWC cut (B.2) all the plans associated with the patterns involved in the maximum clique. We proceed on
a similar way for cut (B.3) by considering the sub-graph Gsubpx̄q of G that includes the vertices linked to:
i) patterns at location l1 overlapping time periods 7 and 8, ii) patterns at location l2 overlapping at least
time period 7 or 8, and iii) patterns at location l3 overlapping at least time period 8. Indeed, one technician
cannot be assigned to any of the previous patterns if he or she is assigned to pattern pB , pD or to the job
ur1 . Again, we solve a maximum clique problem in this sub-graph, and we add to the left hand side of the
MWC cut (B.3) all the plans associated with the patterns involved in the maximum clique. In this example,
it is worth noting that when building the sub-graph, we do not pay a special attention to the skill associated
with the patterns because the MWC cuts (B.2) and (B.3) have been computed with S̄ “ S. Otherwise, only
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of the cuts is based on the total number of technicians mastering at least one skill of S̄).

Example 1 illustrates a case where the approximation described in Section 3.2.3 dominates the approxi-
mation described in Section 3.2.2 (i.e., a case where the MWC cuts are stronger than the MCbM cuts)

Appendix B.2. Example 2

We introduce now a second example (referred to as Example 2 ) to illustrate a case where the approxi-
mation described in Section 3.2.2 dominates the approximation described in Section 3.2.3 (i.e., a case where
the MCbM cuts are stronger than the MWC cuts)

In this example, we consider a fixed time horizon made up of 4 time periods (T “ t1, 2, 3, 4u) and
partitioned into two days: time periods 1 and 2 belongs to day 1 and time periods 3 and 4 belongs to day
2. We consider 1 location (L “ tlu), 2 tasks to schedule (I “ tE,F u), 1 skill (S “ tsu) and 2 technicians
(R “ tr4, r5u). The technician r2 is unavailable during time periods 1 and 3. The characteristics of the
tasks and the technicians are summarized in Table B.7a and in Table B.7b. We denote with symbol ur5 the
jobs associated with the unavailability time periods of technician r5.

Table B.7: Data of Example 2.

(a) Characteristics of the tasks.

I li si
E l s

F l s

(b) Characteristics of the technicians.

R ts P S | λrs “ 1u unavailability time periods
r4 tsu –
r5 tsu at location l during time periods 1 and 3

Table B.8 shows a given solution to the restricted master problem rRMP s in which no cuts have been
previously added. According to the selected plans, the table reports the starting and completion time periods
of each task as well as the number of technicians required to perform every task. Note that x̄ satisfies the
cumulative constraints (6) of the restricted master problem.

Table B.8: A solution to the restricted master problem for Example 2.

I Selected plan p Sp Cp qp Rp

E pE 1 2 1 tr4u
F pF 2 4 1 tr4u

First, let us look at the potential generation of MCbM cuts. Figure B.8 describes graph qGtpx̄q for each
time period of the horizon for Example 2.

if8 %+ &!'< � ,!'5$%!+ $! $.) "�:%"5" *�6<%+�'%$m &l"�$*.%+4 #6!&')"� � 6)*$�+45'�6 <�,.l'%+) &!: ")�+,
that no b-matching with the desired cardinality can be found

Figure B.8: Structure of graphs qGtpx̄q for Example 2 and different values of t P T .

Since technician r2 cannot be assigned to task B because of its personal availability schedule, the maxi-
mum cardinality of a b-matching at time period 2 is equal to 1 whereas the tasks scheduled during this time
period require a total of two technicians. The following MCbM cut is then produced:

xpE
` xpF

ď 1 (B.6)
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Figure B.9: Structure of rGd
S

px̄q for Example 2

We immediately see that solving maximum-weight clique problems does not enable us to produce any
MWC cut for this example. Therefore, Example 2 illustrates a case where the approximation described in
Section 3.2.2 dominates the approximation described in Section 3.2.3.

Appendix B.3. Example 3

This third example (referred to as Example 3 ) is meant to illustrate a case where the problem-specific
approximations do not find any cut although the technician-to-task assignment sub-problem is infeasible.

We consider in this example a fixed time horizon of 8 time periods (T “ t1, ..., 8u) and partitioned into
two days: time periods 1 to 4 belongs to day 1 and time periods 5 and 8 belongs to day 2. We consider
1 location (L “ tlu), 4 tasks to schedule (I “ tG,H, I, Ju), 3 skills (S “ ts6, s7, s8u) and 2 technicians
(R “ tr6, r7u). The characteristics of the tasks and the technicians are summarized in Table B.9a and in
Table B.9b.

Table B.9: Data of Example 3.

(a) Characteristics of the tasks.

I li si
G l s6
H l s6
I l s7
J l s8

(b) Characteristics of the technicians.

R ts P S | λrs “ 1u unavailability time periods
r6 ts6u –
r7 ts6, s7, s8u –

Table B.10 shows a given solution to the restricted master problem rRMP s in which no cuts have been
previously added. According to the selected plans, the table reports the starting and completion time periods
of each task as well as the number of technicians required to perform every task. Again, it is easy to verify
that x̄ satisfies the cumulative constraints (6) of the restricted master problem.

Table B.10: A solution to the restricted master problem for Example 3.

I Selected plan p Sp Cp qp Rp

G pG 2 5 1 tr6, r7u
H pH 4 7 1 tr6, r7u
I pI 7 8 1 tr7u
J pJ 1 3 1 tr7u

First, let us look at the potential generation of MCbM cuts. Figure B.10 describes graph qGtpx̄q for
each time period of the horizon for Example 3. We observe that solving maximum cardinality b-matching
problems does not enable us to produce any MCbM cut for this example.

Second, let us look at the potential generation of MWC cuts. Figure B.11 depicts rGd
Spx̄q for every day

d P tday1, day2u. Similarly, no MWC cuts are produced from this approximation.
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Figure B.10: Structure of graphs qGtpx̄q for Example 3 and different values of t P T .
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Figure B.11: Structure of rGd
S

px̄q for Example 3

However, it is easy to see that the technician-to-task assignment sub-problem does not admit any solution.
This comes from two observations. First, it is clear that technician r7 has to perform tasks I and J. Second,
tasks G and H cannot be performed by the same technician since they overlap. The same holds for tasks G
and J as well as for tasks H and I. The technician-to-task assignment sub-problem therefore does not admit
any solution since technician r7 cannot perform either tasks G, I and J, or tasks H, I and J.

The resolution of formulation rSPLR
2 px̄qs gives an optimum value strictly greater than zero (equal to 1).

We then identify the violated BF cut (B.7) (which has here the same expression as a CB cut).

xpG
` xpH

` xpI
` xpJ

ď 3 (B.7)

This example illustrates a case where no MCbM and/or MWC cuts are identified although the technician-
to-task assignment sub-problem is infeasible.
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Table C.11: Description of the average number of cuts generated in the B&C approach.

Family All CB Other cuts
BF MCbM MWC

10 2 1 20 A 21 0 0 2 19
10 2 1 20 B 10 0 0 1 9
10 2 1 40 A 36 0 0 0.8 35
10 2 1 40 B 12 0 0 0.6 12
10 2 3 20 A 153 0 94 9 50
10 2 3 20 B 28 0 7 6 15
10 2 3 40 A 66 0 16 9 41
10 2 3 40 B 17 0 0.2 2 15
20 2 1 40 A 67 0 0 1 66
20 2 1 40 B 28 0 0 1 27
20 2 1 80 A 105 0 0 3 101
20 2 1 80 B 18 0 0 1 17
20 2 3 40 A 144 0 17 7 120
20 2 3 40 B 40 0 5 2 32
20 2 3 80 A 118 0 6 5 107
20 2 3 80 B 31 0 0.6 0.8 30
20 4 1 20 A 94 0 0 5 90
20 4 1 20 B 26 0 0 3 23
20 4 1 40 A 202 0 5 12 185
20 4 1 40 B 57 0 0 3 54
20 4 3 20 A 314 0 34 16 263
20 4 3 20 B 84 0 21 13 50
20 4 3 40 A 392 0 38 26 329
20 4 3 40 B 96 0 20 10 66
40 4 1 40 A 229 0 0 3 226
40 4 1 40 B 91 0 0 2 88
40 4 1 80 A 480 0 0 5 476
40 4 1 80 B 151 0 0 4 146
40 4 3 40 A 672 0 65 19 588
40 4 3 40 B 144 0 9 6 129
40 4 3 80 A 1,106 0 102 33 971
40 4 3 80 B 184 0 5 5 174
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Family B&C CPLNS
Gap #Opt Time Gap1 Gap2

10 2 1 20 A - 5/5 9 - 2.6%
10 2 1 20 B - 5/5 3 - 0.48%
10 2 1 40 A - 5/5 8 - 3.1%
10 2 1 40 B - 5/5 3 - 0.52%
10 2 3 20 A - 5/5 101 - 1.1%
10 2 3 20 B - 5/5 3 - 0.09%
10 2 3 40 A - 5/5 13 - 2.5%
10 2 3 40 B - 5/5 3 - 0.44%
20 2 1 40 A - 5/5 115 - 0.82%
20 2 1 40 B - 5/5 5 - 0.22%
20 2 1 80 A 0.02% 4/5 288 5.3% 1.1%
20 2 1 80 B - 5/5 7 - 0.16%
20 2 3 40 A 0.16% 4/5 35 2.2% 0.28%
20 2 3 40 B - 5/5 4 - 0.07%
20 2 3 80 A - 5/5 57 - 0.72%
20 2 3 80 B - 5/5 6 - 0.15%
20 4 1 20 A 2.1% 3/5 1,130 2.1% 0.29%
20 4 1 20 B - 5/5 4 - 1.2%
20 4 1 40 A 1.3% 2/5 2,188 4.4% 5.1%
20 4 1 40 B - 5/5 8 - 2.7%
20 4 3 20 A 2.0% 4/5 340 2.0% 4.3%
20 4 3 20 B - 5/5 11 - 1.0%
20 4 3 40 A 0.64% 1/5 9,416 3.0% 2.4%
20 4 3 40 B - 5/5 13 - 1.8%
40 4 1 40 A 2.0% - - 2.9% -
40 4 1 40 B - 5/5 30 - 0.19%
40 4 1 80 A 1.4% - - 4.5% -
40 4 1 80 B - 5/5 108 - 0.22%
40 4 3 40 A 0.51% - - 1.1% -
40 4 3 40 B - 5/5 36 - 0.33%
40 4 3 80 A 1.8% - - 4.3% -
40 4 3 80 B - 5/5 70 - 0.20%

1 Takes into account the instances for which the time limit is reached in the B&C approach.
2 Takes into account the instances solved to optimality by the B&C approach.
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An instance of the problem is primarily characterized by:

• a finite time horizon (a finite number of time periods)

• a number of time periods per day (yielding the number of days)

• a set of locations (wind farms + home depot)

• a set of wind turbines distributed over the wind farms

• a set of maintenance tasks to perform at the different locations and that impact the availability of the
turbines

• a set of technicians to perform the tasks

• wind speed for each time period and location

• postponing penalties

The generator is based on the following parameters:

• nT , nD, nI , nS (length of time horizon, number of days, number of wind farms, number of tasks, and
number of skills)

• DnL: probability distribution of the number of locations

• Dlxy: probability distribution of the coordinates associated with each location

• DnL
W : probability distribution of the number of turbines per location

• DnW
I : probability distribution of the number of tasks per turbine

• ∆lmin: minimum distance between two locations

• ∆rmax: maximum distance between two locations such that they can be visited by the a technician
during the same day

• K: set of all types of preventive tasks that we consider

• ppkq: probability of generating a task of type k P K

• Diimpactpkq: probability distribution of the impact of each type of preventive task on the wind turbines

• Didurpkq: probability distribution of the duration of each type of preventive task

• Direqpkq: probability distribution of the number of technicians that can perform each type of preventive
task during any time period

• Dr#skills: probability distribution of the number of skills mastered by a technician

• Dr
 punvq: probability that a technician has some unavailability time periods during the time horizon

• Dr#unv: probability distribution of the number of time periods during which a technician is unavailable

• Drdunv : probability distribution of the duration of the unavailability of a technician (in man-hours)

• Dwpower: probability distribution of the nominal power (in kW) of each turbine

• pφ: average wind speed on each wind farm
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¤ Υsafety
max : maximum wind speed allowed to perform a task

• ∆lmax: maximum distances for the spatial correlation of the wind speed

• δ: number of values used in the moving average for the time-wise dependency between the wind speeds

• α: correlation factor between wind speed

We generate an instance following multiple steps. First of all, the length of time horizon, the number of
days, the number of tasks, and the number of skills are input values. This yields directly the set T of time
periods and the set D of days.

We then start the generation of an instance by building the set L of locations whose cardinality is set
by sampling the DnL distribution. According to the distance ∆lmin, we then generate the coordinates of
each location by sampling the Dlxy distribution. Based on these coordinates and on the distance ∆rmax,
we compute the parameters pδll1qpl,l1qPL2 that enable to define the daily location-based incompatibility con-
straints.

Afterwards, we built the set W of wind turbines. To this end, according to the target number of tasks,
we start by generating a number of wind turbines per locations by sampling the DnL

W distribution. For
each location where there is at least one wind turbine (i.e., this location is a wind farm), we then generate a
nominal power by sampling the Dwpower distribution and we set the nominal power Pw equal to this latter
value for each wind turbine w PW of the wind farm.

After that, we call procedure genTaskspq to create the set I of tasks. Notice that for each task i P I

we build the set Mi of execution modes such that it meets the two following requirements:

• @m,m1 PMi, qim ‰ qim1 ,

• @m,m1 PMi, qim ă qim1 Ñ dim ą dim1 .

Arbitrarily, we build ovpIq considering that overlapping tasks are forbidden on the same turbine. Notice
that, according to some experts in the field, it is reasonably realistic to only consider these subsets. After
the generation of the tasks, we generate the set R of technicians using procedure genTechnicianspq.

The last part of the generator concerns the parameters related to the objective function. For the sake of
convenience, we introduce the set T ` of all time periods formed by the union of set T and the set of rest

time periods that occur between each day. More specifically, we include a rest time period after every
|T |

|D|
consecutive time periods of T .

As it concerns the wind speed at hub height, the main purpose is to use realistic values. First, we
generate wind speed φ̄t

l for every location l P L and every time period t P T ` using a Rayleigh distribution

with a scale parameter equal to pφ
c

2

π
(so that the expected wind speed is pφ). Since space correlation can

be significant, we compute a corrected wind speed ¯̄φt
l for every location l and every time period t as follows:

¯̄φt
l “

ř
l1PL

s.t. ∆ll1ă∆lmax

p∆lmax ´∆ll1q φ̄t
l1

ř
l1PL

s.t. ∆ll1ă∆lmax

p∆lmax ´∆ll1q
.

Wind speeds were generated independently from a time period to another one. However, this time-wise
independence assumption is unlikely to be verified in practice. To smooth out the speed-values, we use a
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1 I ÐH
2 for i P t1, ..., nIu do

; /* Creation of a new task i */

3 Associate randomly a wind turbine to task i by sampling the DnW
I distribution

4 Define the type k P K of the task according to the probabilities ppkq
5 Define the impact of the task on the wind turbines by sampling the Diimpactpkq distribution
6 Draw randomly the skill si required by task i from the set S

7 Set the minimal (qMIN
i ) and the maximal (qMAX

i ) numbers of technicians that can perform task i

at any given time period by sampling the Direqpkq DnW
I

8 Generate a task duration di by sampling the Didurpkq distribution

9 nMi
Ð qMAX

i ´ qMIN
i ` 1

10 Mi ÐH
; /* d

prev
i : duration of the last executing mode created for task i */

11 for m P t1, ..., nMi
u do

12 Create executing mode m for which task i requires qMi technicians and lasts dMi time periods
with:

13 qMi Ð qMAX ´m` 1
; /* We assume that the duration of a working day is 8 hours. */

14 dMi “ maxpdprevi ` 1, t
di|T |

8|D|qMi
` 0.5u

15 Add the created executing mode to Mi

16 d
prev
i Ð dMi

17 end
18 Add the created task i to I

19 end

δ-weighted moving average that yields wind speed φt
l according to the following formula:

φt
l “

¯̄φt
l `

maxp0,t´1qř
t1“maxp0,t´δq

αt´t1

φt1

l

1`
maxp0,t´1qř

t1“maxp0,t´δq

αt´t1

.

The resulting values are rounded to the nearest tenth. From our perspective, they compare well to
realistic data.

Afterwards, for each task i P I and every time period t P T , we compute the binary parameter rϑt
i equal

to 1 if and only if φt
l ă Υsafety

max (i.e. the task i can be scheduled during time period t according to safety
concerns). Arbitrarily, we set each parameter ϑt

i equal to 1 for every task i and every time period t. We
point out here that this choice makes the instances more complicated to solve as there is a wide flexibility
to schedule the maintenance operations. This also matches field observations.

The last step consists in computing the revenue value gtw for every wind turbine w P W during each
time period t P T `. We compute the revenue from the nominal power Pw of the wind turbine and from
the wind speed φt

l . We also use an estimation hoursptq of the number of hours during every time period
t. More specifically, we compute the revenue gtw generated by each turbine w P W that is available during
time period t P T as follows:
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¥�������� genTechnicians

1 Let dunv be the average number of time periods during which a technician is not available according
to Dr#unv and Drdunv .

2 RÐH
3 for s P t1, ..., nSu do

; /* compute the average total request of the tasks RSavg
s */

4 RSavg
s “

ř
iPI
si“s

1

|Mi|

ř
mPMi

qim

; /* ns minimum number of technicians mastering skill s */

5 ns Ð ǫ ¨
RSavg

s

dunv

6 for r P t1, ..., nsu do
7 Create a technician mastering skills s and generate his or her unavailability time periods by

sampling the Dr#unv and Drdunv distributions
8 Add this technician to R

9 end

10 end
11 for r P |R| do
12 Sample the Dr#skills distribution to generate the number of skills mastered by technician r

13 According to the previous value, generate additional skills for technician r

14 end

gtw “ 0.08 ¨ Pw ¨ hoursptq ¨ CF pφt
lw
q.

where

• 0.08: is an approximation to the selling price in euros of 1 kWh of wind energy (this selling price is
guaranteed for the next 10 years in France).

• hoursptq: estimation of the number of hours during time period t P T `

• Pw: nominal power of wind turbine w PW

• φt
lw
: wind speed during time period t at the location of turbine w PW

• CF pφq: the ratio of the net electricity generated according to a wind speed equal to φ to the energy
that could have been generated at full-power operation (this ratio is given by a piecewise linear function
estimated from real data)

Finally, we compute a single postponing penalty set equal for each task. This penalty is equal to the
maximum loss of revenue that can be generated by the scheduling of a task of I plus one. With this
definition, we almost always (if not always) ensure that postponing a task is non-profitable. With this
penalty we therefore almost ensure to schedule the maximum number of tasks according to the total number
of technicians and their availability. This is quite in line with the practice in the field.

Table D.13 presents the detail parameter setting used in the generation process.
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