

An Adaptive Large Neighborhood
Search for the Multi-Pickup and
Delivery Problem with Time Windows

Salma Naccache
Jean-François Côté
Leandro C. Coelho

May 2017

CIRRELT-2017-25

Document de travail également publié par la Faculté des sciences de l’administration de l’Université Laval,
sous le numéro FSA-2017-003.

An Adaptive Large Neighborhood Search for the Multi-Pickup and
Delivery Problem with Time Windows

Salma Naccache1, Jean-François Côté1,2,*, Leandro C. Coelho1,2

1 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT
2 Department of Operations and Decision Systems, 2325 de la Terrasse, Université Laval, Québec,

Canada G1V 0A6

Abstract. This article investigates multi-pickup and delivery problem with time windows

where a set of vehicles is used to collect and deliver a set of items defined within client

requests. In this paper we formally describe, model and solve this problem. An adaptive

large neighbourhood search heuristic is developed to solve the studied problem. Several

new insertion operators are developed to tackle the special precedence constraints.

Computational results are reported on different types of instances to study the performance

of the developed heuristics in different parameter settings.

Keywords. Vehicle routing problem, multi-pickup and delivery problem with time windows,

sequential ordering problem.

Acknowledgements. This research was partly supported by grants 2014-05764 and 2015-

04893 from the Natural Sciences and Engineering Research Council of Canada (NSERC).

This support is gratefully acknowledged.

Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily
reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: Jean-Francois.Cote@cirrelt.ca

Dépôt légal – Bibliothèque et Archives nationales du Québec
 Bibliothèque et Archives Canada, 2017

© Naccache, Côté, Coelho and CIRRELT, 2017

1 Introduction

In many applications, vehicles must perform several sequential pickups of one or different
commodities, and once all pickups are performed, the vehicle must deliver all of them
to a given location. This type of problem arises, for example, in the online (phone or
internet) food ordering, in which a request consists of a set of orders to be collected from
multiple restaurants to be delivered to one single client location. Another application we
have observed in practice arises in the collection of cash from parking tolls: an employee
leaves the depot with a key that only allows access to the cash of some tolls to be dropped
in a given delivery location. He can then visit the tolls in any order, but must visit them
all before delivering all the cash, which must happen before he can have access to another
key.

In this paper we consider a multi-pickup and delivery problem with time windows
(MPDTW), in which a set of requests is satisfied by a capacitated vehicle fleet. In each
request, items are required to be picked up from different locations to be shipped and
unloaded at one common delivery location. In addition, a time window (TW) is associ-
ated with each node, such that pickups and deliveries can only be performed within the
node’s start and end times. The depot in which the vehicles are housed also contain TWs
representing its opening hours. The goal is to obtain feasible vehicle tours fulfilling the
requests for pickups and deliveries, while minimizing the overall costs associated with the
routing of a set of requests.

In the MPDTW, a request must be fulfilled by a single vehicle. This means that
all pickups and the corresponding delivery must be performed by a single tour, possibly
combined with other requests. Moreover, vehicle tours have to be developed with respect to
precedence constraints, while reducing the overall routing cost. The first set of precedence
constraints is associated with the order in which nodes associated with a given request
are visited. These constraints do not incur a direct precedence between the last visited
pickup and delivery nodes. It is rather required for a vehicle fulfilling a given request to
visit all its pickup locations before reaching the corresponding delivery node. The second
set of precedence constraints is related to the departure from the depot: upon departure
from the depot, the vehicle must perform a pickup. Finally the last set of precedence
constraints concerns the end depot, where all requests assigned to the vehicle tour have
to be performed before reaching the end depot node.

The MPDTW problem discussed in this paper shares some characteristics with prob-
lems previously studied in the literature, namely the pickup and delivery problem with
time windows (PDPTW) and the sequential ordering problem (SOP). These are briefly
reviewed next.

[30] review the main VRP problem families including VRP with time windows (VRPTW),
pickup and delivery problems for goods or people transportation, stochastic VRPs, VRPs
with profits and dynamic VRPs. [18] presents the main exact and heuristic algorithms de-
veloped for solving VRPs. Exact algorithms include branch-and-bound, dynamic program-
ming, vehicle or commodity flow formulations and their respective solution algorithms, set
partitioning formulations and algorithms. The classical heuristics are savings algorithms
inspired from [4], set partitioning, cluster-first route-second heuristics in addition to local
search based heuristics and improved heuristics used to post optimize VRP solutions. In
[27], a tabu search based method is used for solving capacitated VRPs with delivery time

1

An Adaptive Large Neighborhood Search for the Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2017-25

windows and heterogeneous fleet. [6] introduced a parallel iterated tabu search heuristic for
solving the classical VRP, the periodic VRP, the multi-depot VRP and the site-dependant
VRP. In order to solve the split-delivery vehicle routing problem with time windows, [7]
proposes a new exact branch-and-price-and-cut method. [25] proposed a generic adaptive
large neighborhood search (ALNS) algorithm for several classes of VRPs: capacitated,
multi-depot with time windows, site-dependant and its open versions, in addition to the
VRPTW. Finally, [24] presented a solution approach for the PDPTW, which is the closest
formulation to the MPDTW investigated in this paper. A number of real-life applications
of VRPs can be found in [5].

A similar problem is the special ordering set (SOP), which consists of building a Hamil-
tonian path in order to solve the asymmetric traveling salesman problem (ATSP) with
precedence constraints: the visit of a given node has to be done after visiting a required
set of direct and/or indirect predecessors. The SOP differs from the pickup and deliv-
ery problem as a node can have multiple direct predecessors [1, 15]. Moreover, a single
node can be the direct predecessor of several other nodes, resulting into a tree-like route
structure. This problem was introduced in [9] to design heuristics for production planning
systems. It has been extended into the constrained SOP (CSOP) [10] to include additional
precedence relationships between nodes, such as time windows, where a release date and
a deadline are associated with each visited node.

The SOP is used to model real-world problems within production planning in flexi-
ble manufacturing systems and for vehicle routing and transportation problems [11]. It
has been applied to helicopter routing, job sequencing in flexible manufacturing, stacker
cranes in automatic storage systems [2], single vehicle routing with pickup and delivery
constraints [12, 26], multicommodity one-to-one pickup and delivery TSP problems [13, 17]
and dial-a-ride problems in which items or people are picked up at some points and de-
livered to others [3]. According to [8] a variety of techniques based on restrictions, e.g.,
precedence constraints, are used in order to reduce the network size. Several approaches
have been adopted to solve the SOP. [26] developed local search algorithms based on the
k-exchange concept. [3] used time separation algorithms for solving problems arising in
both scheduling and delivery routing problems. [2] used an integer program solved by a
branch-and-cut. [15] proposed a sequential solution approach through a parallel version
of the heuristic rollout algorithm, while [28] adopted a hybrid genetic algorithm. [1] used
a lagrangian relaxation-based scheme for obtaining lower bounds on the optimal solution.
Finally, [20] provided a multi-commodity flow formulation for the SOP and the CSOP.

While the MPDTW is associated with many model characteristics of the CVRP, the
VRPTW, the PDPTW and the SOP, to our knowledge, this problem has not received
any attention in the literature. This paper introduces a problem formulation of MPDTW
taking into account the additional multi-pickup characteristics. Moreover, each vehicle
route in a MPDTW can be interpreted as an ATSP, in which the distance between two
nodes is different depending on the sequence in which the nodes are visited. For example
given two locations l1 and l2, the travel time from l1 to l2 may be different from the travel
time from l2 to l1. Travel times can differ because of road length, traffic congestion or
driving speed limits. Given the precedence constraints on request nodes and on vehicle
start and end depots, the vehicle routes are similar to a constrained ATSP. Moreover,
we design and implement an ALNS algorithm tailored for the MPDTW. We propose new
insertion operators handling the multi-pickup characteristics of the requests defined within

2

An Adaptive Large Neighborhood Search for the Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2017-25

the problem. These operators are also new in the literature and can help solve other types
of similar problems.

The remainder of this paper is organized as follows. Section 2 describes MPDTW
and introduces a formulation inspired from the PDTW and the SOP. The general ALNS
solution method is presented in Section 3 while Section 4 presents the new request insertion
procedure. Computational results are reported in Section 5 and Section 6 concludes the
paper with main findings and future research avenues.

2 Problem description

A problem instance of the MPDTW contains n requests and m vehicles. Let P = {1, ..., p}
be the set of pickup nodes, and D = {p+ 1, ..., p+ n} be the set of delivery nodes where
|D| = n and p ≥ n. Let R = {r1, ..., rn} be the set of requests to be routed. Each request
r ∈ R is represented by a set of pickup nodes Pr ⊆ P and a delivery node dr ∈ D. Let
N = P ∪ D be the set of customer nodes. Let r(i) be the request associated with node
i ∈ N . Let K = {1, . . . ,m} be the set of available vehicles.

The graph G = (V,A) consists of the nodes V = N ∪ {0, p + n + 1} where 0 and
p+ n+ 1 are the starting and ending depot. Each node i ∈ V has a service time si and a
time window [ai, bi]. Given the time window, a vehicle can visit node i if it arrives before
the start time ai, or within the time window such that the service of i is finished before
bi. A vehicle has to wait if its arrival time at i is earlier than the time window start ai.

The set of arcs A = V × V minus arcs that lead to infeasible solutions: we omit arc
(i, j) if i is a pickup node and j is its delivery node if bj > ai + si + tij . A distance dij ≥ 0
and a travel time tij ≥ 0 are associated with each arc (i, j) ∈ A. Let A+(i) and A−(i) be
the sets of incoming and outgoing arcs from node i ∈ V .

Figure 1 illustrates two requests R1 and R6 and a route associated with vehicle k.
For example in R6 two pickups nodes p3 and p4 have to be visited to collect items to
be delivered to d6. R1 and R6 are inserted in route k where precedence constraints
are respected. Note that node p1 is not directly visited after p2 from the same request.
Moreover, the delivery node of request R1 is visited after all items have been collected
from p1 and p2. The same applies for R6.

Figure 1: Requests R1 and R6 inserted into route k

A solution to the MPDTW is a set of feasible routes obtained by assigning all requests
to the vehicles of the fleet. As the MPDTW is an extension of PDTW and SOP, it is
thus an NP-Hard problem. The formulation described next is inspired from the PDTW

3

An Adaptive Large Neighborhood Search for the Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2017-25

and the SOP. The problem can be mathematically formulated with the following decision
variables:

• xkij is 1 if arc (i, j) is traversed by route k, 0 otherwise;

• yrk is 1 if request r is visited by vehicle k, 0 otherwise;

• Si indicates the beginning of service at node i ∈ V .

Then, the MPDTW can be formulated as follows:

min
∑
k∈K

∑
(i,j)∈A

cijx
k
ij (1)

s.t.
∑

j∈A+(i)

xkij = yr(i)k k ∈ K, i ∈ N (2)

∑
j∈A−(i)

xkji = yr(i)k k ∈ K, i ∈ N (3)

∑
j∈A+(0)

xk0j = 1 k ∈ K (4)

∑
k∈K

yrk = 1 r ∈ R (5)

ai ≤ Si ≤ bi i ∈ V (6)

Sj ≥ Si + si + tij −M(1−
∑
k∈K

xkij) (i, j) ∈ A (7)

Sdr ≥ Si + si + tidr i ∈ Pr, r ∈ R (8)

xkij ∈ {0, 1} (i, j) ∈ A, k ∈ K (9)

yrk ∈ {0, 1} r ∈ R, k ∈ K. (10)

The objective function (1) is to minimize the overall transportation cost. Constraints
(2) and (3) are degree constraints. They also ensure that all nodes of a request belong
to the same vehicle. Constraints (4) ensure that all vehicles are used in the solution.
Constraints (5) force a request to be served by only one vehicle. Constraints (6) and
(7) guarantee schedule feasibility with respect to time windows. The precedence order is
preserved via constraints (8). Constraints (9) and (10) impose the nature and the domain
of the variables. M is usually a big enough number and can be set to the maximal return
time at the depot bp+n+1.

3 Adaptive large neighborhood search heuristic for MPDTW

The ALNS heuristic is an extension of the large neighbordhood search (LNS) introduced by
[29]. The ALNS framework presented in [24] and [25] was applied to five variants of VRPs,
namely the VRPTW, the CVRP, the multi-depot VRP, the site-dependant VRP and the
open VRP. The ALNS has been recently applied to a wide variety of VRPs. For instance

4

An Adaptive Large Neighborhood Search for the Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2017-25

it was used to solve the two-echelon VRP (2E-VRP) [14, 16], two 2-echelon multi-trip
VRO with satellite synchronization [14], the location routing problem, which is modeled
as a 2E-VRP [16], VRPs with stochastic demands and weight-related costs [22], VRPs
arising in an integrated single-vendor multi-buyer inventory-transportation synchronized
supply chain [19], and a real-life multi-depot multi-period VRP with a heterogeneous fleet
[23]. Due to the use of ALNS in particular for solving PDPTW [23], we anticipate the
efficiency of an approach exploiting it to solve the MPDTW. We adapt ALNS for solving
the MPDTW as follows.

This section presents our ALNS heuristic to solve the MPDTW. Its pseudocode is
presented in Algorithm 1.

Algorithm 1 Adaptive large neighborhood search

Require: S: initial solution

Require: RO: set of removal operators

Require: IO: set of insertion operators

1: Sbest ← S

2: while stop criterion not met do

3: S′ ← S

4: q ← Generate a random number of requests to remove

5: ro← Select at random an operator from RO

6: io← Select at random an operator from IO

7: Remove q requests from S′ by applying ro

8: Insert removed requests into S′ by applying io

9: if f(S′) < f(Sbest) then

10: Sbest ← S′

11: end if

12: if acccept(S′, S) then

13: S ← S′

14: end if

15: end while

The initial solution S is generated through a simple construction heuristic in which
requests are progressively inserted within an available vehicle, at its minimum insertion
cost position. In line 1, the best solution is initialized with the initial solution. Then,
the algorithm iterates from lines 2 to 14 until a stop criterion is met, namely a number of
iterations that is set as an input.

Each iteration starts by creating a temporary solution S′ from solution S. Then a ran-
dom number q of requests to remove is drawn between min {0.1α, 30} and min {0.4α, 60}
(line 4) in line with to the specifications of the ALNS framework detailed in [24], while we
set α as the number of customer nodes already assigned to a route.

5

An Adaptive Large Neighborhood Search for the Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2017-25

Request removal and insertion operators ro and io are then randomly selected from
the sets RO and IO in lines 5 and 6, through two distinct roulette wheel selection [24].
The selection of an operator depends on its score: the score of an operator is incremented
each time it is used and it improves the solution, to increase the probability for selecting it
in the next iterations. In line with [24] and [25] we consider two removal operators within
the set RO, namely the Shaw removal and the random removal heuristics, while we allow
IO to include a basic greedy heuristic and regret heuristics with different regret degrees.
In particular, we consider four regret heuristics as follows:

• The regret degree is set to three and no insertion noise is applied,

• The regret degree is set to the number of available vehicles m and no insertion noise
is applied,

• The regret degree is set to three and the use of the insertion noise is allowed,

• The regret degree is set to the number of available vehicles m and the use of the
insertion noise is allowed.

The insertion noise value is used in Algorithm 3 and is discussed in details in Section
4.

Solution S′ is destroyed by removing q requests by applying ro (line 7). The solution
is then repaired by the application of io (line 8). The condition in line 9 states that if
the objective function is improved in S′, in comparison with Sbest, it is set as the current
best solution. At the end of the iteration, if a simulated annealing acceptance criterion
is verified (line 12), the solution S is set to S′. The acceptance criterion is such as
that a candidate solution S′ is accepted given the current solution S with a probability
e−(f(S′)−f(S))/T , where T is the temperature that decreases at each iteration according to
a standard exponential cooling rate [24].

The ALNS heuristic presented in Algorithm 1 describes a general approach to explore
the neighborhoods of an MPDTW solution through removing and inserting requests until
an stop criterion is verified. Each insertion operator (i.e., greedy or regret) handles multiple
nodes from each request r while looking for best insertion positions within a route. For
example, in Figure 2, the insertion of request R3 requires inserting the nodes p5, p6, p7 and
d3 within route k previously presented in Figure 1. The resulting route will be explained
later.

Figure 2: Request R3 to insert into route k

6

An Adaptive Large Neighborhood Search for the Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2017-25

The insertion of a request within a route requires a procedure to insert the set of
different pickup and delivery nodes. In addition to the insertion of a delivery node dr
at its best position, the algorithm has to precisely determine the insertion position of
each node p ∈ Pr. As the request insertion procedure handles multiple pickup nodes
previously to the delivery node, it needs to specify an order in which the pickup nodes
are processed by the algorithm. To this end, we define different pickup selection methods
namely: cheapest first, most expensive first, simple and random. The general procedure
for inserting a request within a route, in addition to each of the pickup selection methods
are described in Section 4.

4 Request insertion procedure

The general procedure for inserting a request r in a route k is described in Algorithm 2.
This general procedure requires subroutines described in Sections 4.1 and 4.2.

Algorithm 2 Insert a request in a vehicle route

Require: r : Request to insert

Require: k: Current route

1: pickups← Pr

2: while pickups <> ∅ do
3: pi ← selectAPickup(pickups,method)

4: BestPosition(pi, k)← Insert pi at its best insertion position in k

5: pickups← pickups\{p}
6: if BestPosition(pi, k) = null then

7: return Request insertion infeasible

8: end if

9: end while

10: BestPosition(dr, k)← Insert dr at its best insertion position in k

11: if BestPosition(pi, k) = null then

12: return Request insertion infeasible

13: end if

In line 1 of Algorithm 2, pickups initially contains all the pickup nodes Pr. While
there are nodes in pickups, the algorithm selects in line 3 a pickup node pi ∈ Pr through
one of the pickup selection methods described in details in Section 4.2. In line 4, the best
insertion position of pi in k (BestPosition(pi,k)) is found by applying Algorithm 3, and
then it is removed from pickups in line 5. Once all the pickups are inserted, dr is inserted
in line 10 at its best insertion position in k. If the insertion of a node i ∈ {Pr ∪ {dr}}
is not possible, the algorithm is interrupted and exited according to lines 6–8 and 11–13,
where the value BestPosition(i, k) is set to null.

7

An Adaptive Large Neighborhood Search for the Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2017-25

Algorithm 3 Insert i at its best position in k

Require: i : Node to insert

Require: k: Current route

1: ∆k
i
∗ ←∞

2: BestPosition(i, k)← null

3: prev ← the depot node 0

4: next← first customer of route k

5: while prev <> p+ n+ 1 do

6: t← vehicleArrivalT imeAt(k, i)

7: if t > bi then

8: Exit Algorithm 3

9: end if

10: Set tnext the actual arrival time at next

11: t′next ← arrival time at next if i is inserted before

12: addedDuration← t′next − tnext
13: if tnext > bnext OR addedDuration > slacknext then

14: prev ← next

15: next← next customer after next

16: Go to While

17: end if

18: NewCost← Cprev,i + Ci,next − Cprev,next + generateRandomNoise()

19: if NewCost < ∆k
i
∗

then

20: Insert i after prev in current solution to obtain S′

21: if S′ is feasible then

22: BestPosition(i, k)← prev

23: ∆k
i
∗ ← NewCost

24: end if

25: end if

26: prev ← next

27: next← next customer after next

28: end while

29: return BestPosition(i, k)

8

An Adaptive Large Neighborhood Search for the Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2017-25

4.1 Node insertion at its best position in route

In order to determine the best insertion position of node i in route k, Algorithm 3 iterates
through all the nodes already inserted in the route starting from the depot node 0 until
its last customer location. At each step, the algorithm temporarily inserts i after a node
j from k, computing the increase in routing costs, ∆k

i . Assume that Algorithm 3 is
processing the pickup node p6 from request R3, given the nodes already inserted in route
k and illustrated in Figure 2. The algorithm would test the insertion of p6 after 0, p2, p3,
p1, d1, p4 and d6.

In Algorithm 3, the best insertion cost of i in k (∆k
i
∗
) is initially set to an infinite value

in line 1, while the value of the best insertion position of node i is initially set to null in
line 2. At the first iteration of the algorithm, node i is inserted between the depot node
0 and the first customer of route k. To this end, the previous node prev of i is set to the
depot node at line 3, whereas the next node next to be visited after i is set in line 4. Line
6 computes the arrival time of k at i, which is used in lines 7–9 to verify that the vehicle
would visit i before bi given the current insertion. In line 10, tnext is set to the vehicle
arrival time at next assuming that k is not yet including i. Then, in line 11 the vehicle
arrival time at next, namely t′next is computed, assuming that i is inserted in k. The added
duration computed in line 12 is used in lines 13–17 to verify that if node i is visited, the
vehicle would visit next before the its operation end time bnext. Also, the added duration
is compared with the slack at next, that indicates to which extent the vehicle’s visit to
next would be postponed. If one of these conditions is violated, the algorithm moves to
the next iteration, to test the next insertion position in line 16.

If all the conditions are verified, the insertion cost of i in k at the position under
evaluation (NewCost) is computed in line 18 to which a random noise is added. If the
application of a noise is allowed, generateRandomNoise() generates a random value in
[−addedNoise,+addedNoise], where addedNoise is a value that is proportional to the
maximum value in the problem’s distance matrix. In line 19, the temporary NewCost is
compared against ∆k

i
∗

to determine whether the insertion of i in k improves the solution.
If the condition is verified, the feasibility of the new solution is tested by first inserting i
in k to obtain S′ in line 20. If S′ generates a finite cost, the feasibility of the new solution
is verified (line 21) and the best known insertion position of i in k is set to prev in line
22. Then, ∆k

i
∗

is set to the value of NewCost in line 23.
The next insertion position is updated in lines 26 and 27. After iterating through all

customer nodes in k, the algorithm returns the best insertion position of i in k in line 29.

4.2 Pickup selection

Here we present the simple and random pickup selection methods. We also describe
in details the algorithms of our cheapest first and most expensive first pickup selection
methods. The simple pickup selection method selects the pickup nodes according to the
order in which it is saved in the computer’s memory or within the datafile describing
the problem. The example depicted in Figure 3 illustrates how the pickups from the
request R3 are inserted within the route k with the simple method. The algorithm starts
by inserting P5 at its best insertion position, then P6 and P7. In the random method
the index of a pickup node from pickups is randomly generated in [1.. |pickups|]. In the

9

An Adaptive Large Neighborhood Search for the Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2017-25

example illustrated in Figure 4, the random method results into inserting P7, P5 then P7

at their respective best insertion positions.

Figure 3: Insertion of R3 in route k with the simple method

Algorithm 4 contains the pseudocode of the cheapest first method. The algorithm is
initiated by setting the best insertion cost ∆ to an infinite value in line 1. Then, ∆k

p
∗

is
computed for each p ∈ pickups and the algorithm returns the index of the node that has
the lowest best insertion cost. In Figure 5, at the first iteration node P6 is inserted from
R3’s pickup nodes, as it results into ∆8

P6

∗
= 501 versus ∆8

P5

∗
= 1027 and ∆8

P5

∗
= 728.

In the second iteration of the algorithm, P7 is inserted as ∆8
P7

∗
= 728 is superior to the

∆8
P5

∗
= 1125, both updated at iteration 2 given the insertion of p6 in route k . Finally P5

is inserted at its best insertion position at Step 3.
Algorithm 5 contains the pseudocode of the most expensive first method, which is

similar to Algorithm 4.

Figure 4: Insertion of R3 in route k with the random method

10

An Adaptive Large Neighborhood Search for the Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2017-25

Algorithm 4 selectAPickup(pickups, cheapest first)

1: ∆←∞
2: for all p ∈ pickups do

3: ∆k
p
∗ ← Compute the best insertion cost of p in k

4: if ∆k
p
∗
< ∆ then

5: ∆← ∆k
p
∗

6: i← p

7: end if

8: end for

9: return i

Figure 5: Insertion of R3 in route k with the cheapest first method

Algorithm 5 selectAPickup(pickups, most expensive first)

1: ∆← 0

2: for all p ∈ pickups do

3: ∆k
p
∗ ← Compute the best insertion cost of p in k

4: if ∆k
p
∗
> ∆ then

5: ∆← ∆k
p
∗

6: i← p

7: end if

8: end for

9: return i

11

An Adaptive Large Neighborhood Search for the Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2017-25

5 Computational experiments

In this section we describe our computational experiments. Section 5.1 introduces the
characteristics of the MPDTW problem test instances and the different ALNS parameter
values. The results of detailed and extensive computational experiments are then presented
in Section 5.2.

5.1 Test instances and ALNS parameters

The test instances were built upon existing PDTW instances from [21]. For each PDTW
instance, pickup and delivery nodes are first separated into distinct lists. Then, two main
instances are created having respectively short (maximum of 4 nodes) and long (maximum
of 8 nodes) requests. These are created and categorized as follows.

The developed heuristic is tested against a set of instances classified according to the
characteristics presented in Table 1. Each instance type is characterized by a time window
type, the maximum length of the requests and the number of nodes (instance size). An
instance is defined as Without, with Normal or with Large TWs. For each instance, the
minimum size of a request is equal to two, as it includes one delivery point. Depending on
the instance type, it can include at most 4 (Short requests) or 8 (Long requests) pick-up
and delivery nodes. Finally, our instances contain 50, 100 or 400 nodes. For each of the
18 instance types, we have generated five instances, resulting into a total of 90 instances
in our test bed. For example, the instances of type L 4 50 represent Large TW, short
requests, 50 nodes and are denoted L 4 50 1 to L 4 50 5.

Without TW Normal TW Large TW
Instance Short Long Short Long Short Long

Size Requests Requests Requests Requests Requests Requests
50 W 4 50 W 8 50 N 4 50 N 8 50 L 4 50 L 8 50
100 W 4 100 W 8 100 N 4 100 N 8 100 L 4 100 L 8 100
400 W 4 400 W 8 400 N 4 400 N 8 400 L 4 400 L 8 400

Table 1: Instance types

According to the type of requests within an instance, the length k of a request is
randomly generated between 2 and 4 for short requests and between 2 and 8 for long
requests. k − 1 nodes are randomly drawn from the list of pickup nodes, while a delivery
node is randomly selected from the delivery node list.

Then for each window type (Without TW, Normal TW and Long TW) and for each
instance size (50, 100 or 400 nodes), a request is randomly selected. The TW of the nodes
within the request is modified according to the window type:

• The TW is deleted, if the nodes in the instance to generate are Without TW,

• The TW is kept the same as in the original PDTW instance, to obtain an instance
with Normal TW,

• The TW is increased by 300 for an instance with Large TW.

The feasibility of the request is tested by inserting it in a route through the cheapest
first insertion method. The request is rejected if it is not feasible. Request generation for

12

An Adaptive Large Neighborhood Search for the Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2017-25

a given instance is repeated until reaching the desired instance size. The procedure just
described above is executed five times to obtain the 90 test instances.

In order to assess the performance of our ALNS heuristic for solving the MPDTW we
use the following parameters for the algorithm. Each test presented in Table 2 defines
an initial temperature, the number of iterations required to fulfil the algorithm’s stopping
criterion in addition to the pickup selection method.

Test type Test Initial Iteration Pickup selection
(T) # temperature # method

1 Cheapest first
2 Most expensive first

1 3 0 25000 Random
4 Simple
5 Cheapest first
6 Most expensive first

2 7 3000 25000 Random
8 Simple
9 Cheapest first
10 Most expensive first

3 11 3000 100000 Random
12 Simple

Table 2: ALNS test parameters

5.2 Computational results

The experiments reported here have been performed on a desktop computer equipped
with a 2.67 GHz Intel processor operating under the Scientific Linux 6.3. For each test
reported in Table 2 (t = 1 to 12), the algorithm is executed three times for each test
instance. The aim of the replication of the algorithm is to account for the variability
induced by the randomness at several stages of the heuristic, such as the noise included in
the computation of a node’s insertion cost within a route or the selection of an operator.
The average values of the solution cost and time for each method, each instance and each
test type T=1 to 3 are computed and used to assess the performance of each method.

The statistics reported in Tables 3 and 6 are used to evaluate the performance of our
ALNS heuristic for solving the MPDTW, while exploiting each of the pickup selection
methods discussed in Section 3.

In order to provide easily interpretable performance indicators, the average deviation
from the best known solution is reported in Table 3 as Avg Cost for each test (from 1
to 12). The results are aggregated according to the instance TW type, that generate
indicators highly representative of the results, i.e., the average deviation of costs obtained
by (t, i) in a test T are close to the aggregated average cost obtained by t for all the
instances having the same window type as i. The Freq indicator reported in Table 3 is
computed for each test and each instance group as the percentage of instances for which
the method obtained a solution with the lowest cost. Finally Avg Sol Time is the average
solution time in seconds spent by a test t for solving instances with a given TW type.

According to the Freq indicator in Table 3, we observe that as the ALNS temperature
and iteration count are increased, the solution methods tend to generate better solutions
more often. Besides, the Cheapest first and Random insertion sequence methods obtain
solutions with the lowest overall costs, while a poor performance is obtained by Most

13

An Adaptive Large Neighborhood Search for the Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2017-25

Without Normal Large
TW TW TW

Test Pickup
Selection Avg. Avg. Avg. Avg. Avg. Avg.
(t) method Cost Freq. Sol. Cost Freq. Sol. Cost Freq. Sol.

(%) (%) Time (s) (%) (%) Time (s) (%) (%) Time (s)
1 2.0 20.0 753.7 0.4 20.0 632.9 0.5 30.0 673.2
5 Cheapest 0.8 46.7 768.7 0.3 23.3 642.8 0.4 43.3 690.2
9 first 0.8 43.3 3229.2 0.2 43.3 2693 0.3 50.0 2915.4

Average 1.2 36.7 1583.9 0.3 28.9 1322.9 0.4 41.1 1426.3
2 Most 1.7 20.0 687.6 6.7 40.0 600.7 59.2 33.3 625.2
6 expensive 1.4 20.0 757.2 6.7 50.0 634.2 59.0 30.0 673.1
10 first 1.1 33.3 3106.3 6.6 36.7 2876.8 59.0 30.0 2805.4

Average 1.4 24.4 1517 6.7 42.2 1370.5 59.1 31.1 1367.9
3 0.9 30.0 734.7 0.2 26.7 618 0.4 26.7 649.2
7 Random 0.6 43.3 734.8 0.1 40.0 615.5 0.3 50.0 652.9
11 0.5 50.0 3377.7 0.0 50.0 2665.2 0.2 50.0 2828.6

Average 0.7 41.1 1615.7 0.1 38.9 1299.5 0.3 42.2 1376.9
4 1.5 33.3 707 37.3 26.7 612.1 52.7 33.3 639.6
8 Simple 1.0 43.3 693.1 37.1 36.7 601.5 52.6 40.0 642.1
12 1.3 43.3 2937.3 37.0 40.0 2393.5 52.4 40.0 2667.1

Average 1.3 40.0 1445.8 37.1 34.4 1202.3 52.5 37.8 1316.3

Table 3: Method performance by type of time windows

expensive first and Simple methods.
For instances without TWs we observe that for T = 1, the Random insertion method

performs better than Cheapest first in terms of solution costs and best solution frequency
(30% in t = 3 versus 20% in t = 1). Besides, when the initial temperature is set to 3000
the performance of Cheapest first improves in tests t = 5 and t = 9, as the value of Avg
Cost decreases below 1%.

For the instances containing normal TWs, we note that regardless of the ALNS initial
temperature and iteration count, the Cheapest first and Random methods obtain the lowest
average deviations from best cost (respectively 0.3% and 0.1% on average). Regardless of
the parameters, the Random method yields the best solution more often for 38.9% of the
instances on average versus 28.9% for the Cheapest first.

Finally, for instances with large TWs, the results indicate that the Cheapest first and
Random methods perform equally well with averages of 0.4% and 0.3% are respectively
obtained for Avg Cost. In addition, the Random method leads to solutions with the best
costs while solving 42.2% of the instances followed closely by the Cheapest first method,
for which Freq = 41.1%. Finally, in the settings T = 3 both methods obtain the best
costs for 50% of the instances.

We observe that the Most expensive first and the Simple methods produce high average
values for Avg Cost when solving instances with large and normal TWs, besides obtaining
results that are comparable to the other methods for instances without them. This is
explained by the very high cost of the solutions for some particular instances as indicated
in Tables 4 and 5. For instance, for tests 4, 8 and 12 the Simple method generated solutions
with average costs that deviate 1014.8% from the best solution obtained for the instance
L 8 50 4, 549% for L 8 100 4 and around 1107% for N 8 50. Also, for tests 2 , 6 and 10,
the Simple method generates solutions whose average costs deviate 1014.8% for instance
L 8 50 4 , around 549% for L 8 100 4 , around 199% for L 8 400 4 and around 191% for
N 8 400 3. Analyses of the algorithm behaviour in these special cases in which the Most

14

An Adaptive Large Neighborhood Search for the Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2017-25

expensive first or the Simple methods are implemented show that the initial solutions
generated by the sequential insertion and used as the input of the ALNS are very costly
in comparison with the initial solutions obtained when the Cheapest first or the Random
methods are implemented.

Instance Instance Test 4 Test 8 Test 12
Type # (%) (%) (%)

L 8 50 4 1014.8 1014.8 1014.8
L 8 100 4 548.7 549.4 549.4
N 8 50 4 1099.4 1106.2 1106.7

Table 4: High deviation from the minimum cost for the Simple method

Instance Instance Test 2 Test 6 Test 10
Type # (%) (%) (%)

L 8 50 4 1014.8 1014.8 1014.8
L 8 100 4 548.7 549.4 549.4
L 8 400 4 199.8 197.9 199.7
N 8 400 3 191.8 191.5 190.4

Table 5: High deviation from the minimum cost for the Most expensive first method

According to Table 3 the best solution times are obtained when the Simple method is
implemented, followed by the Random, the Most expensive and the Cheapest first meth-
ods. According to our analyses, the Random method achieves the best trade-off between
the solution cost and the running time. However, when the quickest Simple method is
implemented, it may provide poor quality solutions in some special cases. Moreover, with
the Cheapest first insertion method, solution costs are comparable to the ones generated
by the Random method, and it requires the highest solution times. Finally the use of the
Most expensive first method is the less promising option for solving the MPDTW, as it
is one of the slowest alternatives and may provide poor quality solutions in some special
cases of instances.

Finally, average solution times in seconds per instance type are reported in Table 6.
Overall, irrespective of the implemented pickup selection methods, the results are not
affected by the initial temperature of the algorithm, as they are similar between test
types T = 1 and T = 2 where the ALNS iteration number is set to 25000 and the initial
temperature is increased from 0 to 3000. Besides when the iteration number is increased
from 25000 to 100000 in T = 3, the solution time is proportionally increased.

6 Conclusion

This paper described a new ALNS implementation applied for the MPDTW problem. Our
new operators are specifically designed to tackle this problem, and can help other local
search algorithms for similar problems, such as the PDP and the SOP, among others. We
have also modeled the problem via an integer programming formulation, and designed
a complete benchmark set of instances inspired from the PDTW ones. The reported
results show that the computational times of our ALNS implementation are at their lowest
while generating solution with lowest costs when the Random pickup selection method is
implemented, in comparison with the other three methods. This means that selecting the

15

An Adaptive Large Neighborhood Search for the Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2017-25

Instance Type T=1 T=2 T=3
W 50 4 30.4 30.5 121.8
W 50 8 36.3 36.4 147.2
W 100 4 107.5 105.0 402.9
W 100 8 184.3 184.5 765.7
W 400 4 1288.2 1279.5 4987.3
W 400 8 2757.6 2794.7 12550.9
N 50 4 27.9 28.2 116.1
N 50 8 34.5 34.8 141.3
N 100 4 111.0 110.8 465.2
N 100 8 201.1 204.1 898.1
N 400 4 1246.4 1274.0 5298.6
N 400 8 2118.8 2089.0 9023.3
L 50 4 30.0 30.1 121.0
L 50 8 35.5 35.7 144.2
L 100 4 112.1 112.0 447.6
L 100 8 209.8 212.5 903.2
L 400 4 1277.9 1290.8 5194.4
L 400 8 2278.6 2306.5 10014.4

Table 6: Average solution time per instance type and per test type (seconds)

sequence of nodes to insert in a solution in random order tends to be more beneficial than
using other criteria such as lowest or highest costs, or to to use the sequence in which
these nodes appear.

We have provided the first solutions for this problem, and we hope that it motivates
other researchers in developing competing algorithms and on developing methods to pro-
vide lower bounds for this problem. Moreover, this work could be extended by considering
an heterogeneous fleet with different capacities or with special loading condition features.

Acknowledgments

This research was partly supported by grants 2014-05764 and 2015-04893 from the Cana-
dian Natural Sciences and Engineering Research Council. This support is gratefully ac-
knowledged.

References

[1] A. Alonso-Ayuso, P. Detti, L. F. Escudero, and M. T. Ortuño. On dual based lower
bounds for the sequential ordering problem with precedences and due dates. Annals
of Operations Research, 124(1-4):111–131, 2003.

[2] N. Ascheuer, M. Jünger, and G. Reinelt. A branch & cut algorithm for the asymmetric
traveling salesman problem with precedence constraints. Computational Optimization
and Applications, 17(1):61–84, 2000.

[3] E. Balas, M. Fischetti, and W. R. Pulleyblank. The precedence-constrained asym-
metric traveling salesman polytope. Mathematical Programming, 68(1-3):241–265,
1995.

16

An Adaptive Large Neighborhood Search for the Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2017-25

[4] G. Clarke and J. W. Wright. Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research, 12(4):568–581, 1964.

[5] J. Coelho, L.C. J. Renaud and G. Laporte. Road-based goods transportation: a
survey of real-world logistics applications from 2000 to 2015. INFOR: Information
Systems and Operational Research, 54(2):79–96, 2016.

[6] J.-F. Cordeau and M. Maischberger. A parallel iterated tabu search heuristic for
vehicle routing problems. Computers & Operations Research, 39(9):2033–2050, 2012.

[7] G. Desaulniers. Branch-and-price-and-cut for the split-delivery vehicle routing prob-
lem with time windows. Operations Research, 58(1):179–192, 2010.

[8] G. Desaulniers, J. Desrosiers, A. Erdmann, M. M. Solomon, and F. Soumis. VRP with
pickup and delivery. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem,
pages 225–242. Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2001.

[9] L. F. Escudero. An inexact algorithm for the sequential ordering problem. European
Journal of Operational Research, 37(2):236–249, 1988.

[10] L. F. Escudero and A. Sciomachen. Local search procedures for improving feasi-
ble solutions to the sequential ordering problem. Annals of Operations Research,
43(7):397–416, 1993.

[11] A. Ezzat, A. M. Abdelbar, and D. C. Wunsch. An extended eigenant colony system
applied to the sequential ordering problem. In Swarm Intelligence (SIS), 2014 IEEE
Symposium on, pages 1–7. IEEE, 2014.

[12] M. T. Fiala Timlin and W. R. Pulleyblank. Precedence constrained routing and
helicopter scheduling: heuristic design. Interfaces, 22(3):100–111, 1992.

[13] L. Gouveia and M. Ruthmair. Load-dependent and precedence-based models for
pickup and delivery problems. Computers & Operations Research, 63:56–71, 2015.

[14] P. Grangier, M. Gendreau, F. Lehuédé, and L.-M. Rousseau. An adaptive large
neighborhood search for the two-echelon multiple-trip vehicle routing problem with
satellite synchronization. European Journal of Operational Research, 254(1):80–91,
2016.

[15] F. Guerriero and M. Mancini. A cooperative parallel rollout algorithm for the se-
quential ordering problem. Parallel Computing, 29(5):663–677, 2003.

[16] V. C. Hemmelmayr, J.-F. Cordeau, and T. G. Crainic. An adaptive large neighbor-
hood search heuristic for two-echelon vehicle routing problems arising in city logistics.
Computers & Operations Research, 39(12):3215–3228, 2012.

[17] H. Hernández-Pérez and J.-J. Salazar-González. The multi-commodity one-to-one
pickup-and-delivery traveling salesman problem. European Journal of Operational
Research, 196(3):987–995, 2009.

17

An Adaptive Large Neighborhood Search for the Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2017-25

[18] G. Laporte. Fifty years of vehicle routing. Transportation Science, 43(4):408–416,
2009.

[19] Y. C. E. Lee, C. K. Chan, A. Langevin, and H. W. J. Lee. Integrated inventory-
transportation model by synchronizing delivery and production cycles. Transportation
Research Part E: Logistics and Transportation Review, 91:68–89, 2016.

[20] A. N. Letchford and J.-J. Salazar-González. Stronger multi-commodity flow for-
mulations of the (capacitated) sequential ordering problem. European Journal of
Operational Research, 251(1):74–84, 2016.

[21] H. Li and A. A. Lim. A metaheuristic for the pickup and delivery problem with time
windows. International Journal of Artificial Intelligence Tools, 12(2):160170, 2001.

[22] Z. Luo, H. Qin, D. Zhang, and A. Lim. Adaptive large neighborhood search heuristics
for the vehicle routing problem with stochastic demands and weight-related cost.
Transportation Research Part E: Logistics and Transportation Review, 85:69–89, 2016.

[23] S. Mancini. A real-life multi depot multi period vehicle routing problem with a hetero-
geneous fleet: Formulation and adaptive large neighborhood search based matheuris-
tic. Transportation Research Part C: Emerging Technologies, 70:100–112, 2016.

[24] D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Computers
& Operations Research, 34(8):2403–2435, 2007.

[25] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation Science, 40(4):455–
472, 2006.

[26] M. W. P. Savelsbergh. An efficient implementation of local search algorithms for
constrained routing problems. European Journal of Operational Research, 47(1):75–
85, 1990.

[27] F. Semet and E. Taillard. Solving real-life vehicle routing problems efficiently using
tabu search. Annals of Operations Research, 41(4):469–488, 1993.

[28] D.-I. Seo and B.-R. Moon. A hybrid genetic algorithm based on complete graph
representation for the sequential ordering problem. In Genetic and Evolutionary
Computation Conference, pages 669–680, 2003.

[29] P. Shaw. Using constraint programming and local search methods to solve vehicle
routing problems. In International Conference on Principles and Practice of Con-
straint Programming, pages 417–431, 1998.

[30] P. Toth and D. Vigo, editors. Vehicle Routing. Monographs on Discrete Mathematics
and Applications. MOS-SIAM Series on Optimization, Philadelphia, 2014.

18

An Adaptive Large Neighborhood Search for the Multi-Pickup and Delivery Problem with Time Windows

CIRRELT-2017-25

	Introduction
	Problem description
	Adaptive large neighborhood search heuristic for MPDTW
	Request insertion procedure
	Node insertion at its best position in route
	Pickup selection

	Computational experiments
	Test instances and ALNS parameters
	Computational results

	Conclusion
	CIRRELT-2017-25-abstract-FSA.pdf
	Bibliothèque et Archives Canada, 2017

