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Abstract. Statistical models predicting stem diameter distributions have found many 

applications in forestry. Our objective is to develop a methodology that can be used to derive 

a stem diameter distribution model for any combination of species and cover type in 

Quebec, Canada, using readily- available data from the government-run permanent sample 

plot inventory program. We test 25 truncated distributions from the generalized beta family 

to a large dataset of stems inventoried from permanent fixed-area plots in the province 

of Quebec, Canada, using a non-linear least-squares parameter-fitting algorithm. We 

describe a two-stage parameter-fitting methodology that produces improved estimates of 

parameter estimation error and parameter correlation for input data with bounded domain. 

We report best-fit distribution, best-fit parameter estimates (with standard error on 

parameter estimates), and AICc for each of 30 subdatasets covering the entire province of 

Quebec (representing all combinations of 10 species groups and 3 cover types). Best-fit 

results are clearly dominated by the four distributions in the generalized gamma family. 
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1 Introduction

Stem diameter distributions (i.e. stand tables) have long played an important
role in forestry (Bailey and Dell, 1973; Hyink and Moser, 1983). Published
models tend to be specific to a given combination of species, stand structure,
geographic area, and inventory sampling method. No stem diameter distribu-
tion models have been published to date for the province of Quebec, Canada.
Furthermore, no generalized methodology has been published to model stem
diameter distributions from permanent sample plot (PSP) data, documenting
how to correctly estimate best-fit parameter uncertainty and correlations for
the common case where observed diameter data has a priori bounded domain
(e.g. only merchantable stems of a certain minimum diameter are inventoried
and trees never grow beyond a certain maximum diameter). The present study
fills these gaps in the literature.

The most commonly-used statistical model used to describe stem diameter
seems to be the Weibull distribution (Bailey and Dell, 1973; Liu et al., 2002;
Cao, 2004; Coomes and Allen, 2007). Other models include the gamma (Nel-
son, 1964), exponential (Meyer and Stevenson, 1943) and SB (Johnson, 1949)
distributions. The Weibull, gamma and exponential distributions are all deriva-
tives of the generalized gamma distribution, which is itself a member of the of
generalized beta family of statistical distributions.

We fit 25 truncated distributions from the generalized beta family to a
large dataset of stems from government-compiled permanent fixed-area plots
in the province of Quebec, Canada. We describe a two-stage distribution-fitting
methodology that correctly handles parameter estimation error and correlations
for input data with bounded domain. We present best-fit distributions for 30
combinations of species group and cover type.

Our best-fit distribution results cover all combinations of species and cover
types in Quebec, and could be used directly. Alternatively, our methodology
can be easily replicated using readily-available PSP data, for example to derive
models for different aggregations of species and cover type, or for a different
geographic extent of plot data used as input. The two-stage parameter-fitting
methodology is potentially applicable to any context where trunctated data is
fitted to standard-form statistical distributions.

The remainder of this paper is organized as follows. We describe our method-
ology in §2. Results are presented in §3, followed by discussion in §4.

2 Methods

Ducey and Gove (2015) document three parent distributions in the generalized
beta family that can be used to derive several other distributions. These parent
distributions are the generalized beta distribution of the first kind (GB1), the
generalized beta distribution of the second kind (GB2), and the generalized
gamma distribution (GG). The probability density functions (PDF) of GB1
and GB2 distributions have the following forms (adapted from Ducey and Gove,
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2015)

GB1(x; a, b, p, q) =
|a|xap−1 [1− (x/b)a]

q−1

bapB(p, q)
, 0 < xa < ba, b > 0, p > 0, q > 0

(1)
and

GB2(x; a, b, p, q) =
|a|xap−1xq−1

bapB(p, q) [1− (x/b)a]
p+q , a > 0, b > 0, p > 0, q > 0

(2)
defined for x > 0, where B(p, q) represents the beta function (not to be con-
founded with the beta, or generalized beta, distributions), which is given by

B(p, q) =

∫ 1

0

tp−1(1− t)q−1dt. (3)

The PDF of the generalized gamma GG distribution has the following form

GG(x; a, β, p) =
axap−1e−( xβ )

a

βapΓ(p)
, a > 0, β > 0, q > 0 (4)

defined for x > 0, where Γ(p) represents the gamma function (not to be con-
founded with the gamma, or generalized gamma, distributions), which is given
by

Γ(p) =

∫ ∞
0

xp−1e−xdx. (5)

We can define the PDFs for 22 different distributions in the generalized beta
family in terms of one of the three parent distributions, as follows (adapted from
Ducey and Gove, 2015)
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IB1(x; b, p, q) = GB1(x;−1, b, p, q) (6)

UG(x; b, d, q) = lim
a→∞

GB1(x; a, b, d/a, q) (7)

B1(x; b, p, q) = GB1(x; 1, b, p, q) (8)

B2(x; b, p, q) = GB2(x; 1, b, p, q) (9)

SM(x; a, b, q) = GB2(x; a, b, 1, q) (10)

Dagum(x; a, b, p) = GB2(x; a, b, p, 1) (11)

Pareto(x; b, p) = GB1(x;−1, b, p, 1) (12)

P(x; b, p) = GB1(x; 1, b, p, 1) (13)

LN(x;µ, σ) = lim
a→0

GG(x; a, (σ2a2)1/a, (aµ+ 1)/(σ2a2)) (14)

GA(x;β, p) = GG(x; 1, β, p) (15)

W(x; a, β) = GG(x; a, β, 1) (16)

F(x;u, v) = GB2(x; 1, v/u, u/2, v/2) (17)

L(x; b, q) = GB2(x; 1, b, 1, q) (18)

IL(x; b, p) = GB2(x; 1, b, p, 1) (19)

Fisk(x; a, b) = GB2(x; a, b, 1, 1) (20)

U(x; b) = GB1(x; 1, b, 1, 1) (21)
1
2N(x; 0, σ) = GG(x; 2, σ2, 1/2) (22)

χ2(x; p) = GG(x; 1, 2, p) (23)

EXP(x;β) = GG(x; 1, β, 1) (24)

R(x;β) = GG(x; 2, β, 1) (25)

1
2 t(x; df) = GB2(x; 2,

√
df, 1/2, df/2) (26)

LL(x; b) = GB2(x; 1, b, 1, 1) (27)

We use a weighted non-linear least squares (NLLS) algorithm to fit target
distributions to PSP inventory data binned into 26 size classes of uniform width
W .

The objective function value of the NLLS problem minimizes the sum of
squares of the residual terms

Z
(
f(x; P̂ )

)
= min

∑
i∈{I|ŷi>0}

e (f(xi;P ), ŷi)
2

(28)

with
e (f(xi;P ), ŷi) = wi [f(xi;P )− ŷi] (29)

where xi is the diameter corresponding to the center of bin i ∈ I, f(xi;P ) is
the value of the PDF of the target distribution at xi ∈ X (given a vector of
parameters P ). ŷi ∈ Ŷ represents the estimated stem density in bin i, which
corresponds to the average of plot-wise stem density measurements.
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Note that residual terms are scaled by a weight factor wi = 1−min(Eŷi ŷ
−1
i , 1),

which dampens the impact of ŷi on Z as a function of the relative margin of
error Eŷi ŷ

−1
i . We cap relative margin of error at 1 (negative values of wi would

have the effect of rewarding large residual value f(xi;P )− ŷi, which would make
NLLS algorithm results unnecessarily difficult to interpret). Thus, wi converges
to 1 as relative margin of error approaches 0, and wi = 0 if Eŷi ŷ

−1
i ≥ 1. Note

that if sampling error is high enough for all bins (due to insufficient sample size),
such that wi = 0,∀i ∈ I, the objective function value is 0 regardless of values of
input data vector Ŷ and the NLLS optimisation problem becomes meaningless.

The margin of error corresponds to the product tσŷi of the critical t value

(with α = 0.05 and |Ŷ | − 1 degrees of freedom) and bin-wise sampling error

σŷi =

√√√√∑j∈J (yij − ŷi)2

|Ŷ | − 1
(30)

where yij corresponds to the observed stem density in bin i in sample plot j
(Schreuder et al., 2004).

We normalize our binned data, such that
∑

i∈I Wŷi = 1. The domain of
input data is bounded, such that a ≤ x1−w/2 and x|I|+w/2 ≤ b, where a > 0.
Our dataset intentionally includes only merchantable stems (i.e. a = 9), and
contains very few stems of diameter greater than 61 cm (i.e. b = 61).

The integral of the standard forms of the PDFs described above over the
interval [0,∞] is 1 for any given vector of input parameters P , that is∫ ∞

0

f(x;P )dx = 1. (31)

Fitting the standard forms of f to the normalized binned data will gener-
ally produce poor fits, as the sum of residuals will be positively biased due to
bounded domain (i.e.

∑
i∈I ei > 1), with quality of fit inversely proportional to

b−a. We can obtain a better fit using an augmented PDF f ′(x;P ′) = sf(x;P ).
The global scaling parameter s effectively relaxes the unity constraint on the
integral of f ′. Thus, using f ′, we obtain similar quality fits for any scaling of
bin value vector Ŷ .

The variance σ2
p̂j

of best-fit parameter estimator p̂j ∈ P̂ corresponds to
element j of the diagonal of the covariance matrix. The covariance matrix,
which is automatically calculated by most software implementations of the NLLS
algorithm, corresponds to the inverse of the negative of the expected values
of the Hessian matrix −E[H(P̂ )], where the Hessian H(P̂ ) is the matrix of
second derivatives of the likelihood function L with respect to P̂ . Standard

error σp̂j =
√
σ2
p̂j

of parameter p̂j ∈ P̂ corresponds to the square root of the

variance.
Note that variance estimates are only correct asymptotically. In practice,

fitting algorithms will use numerical approximations of Hessian matrix values.
Quality of finite approximations of the second derivatives of L will tend to be
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proportional to sample size |Ŷ |, inversely proportional to distance from pa-
rameter constraint boundaries, and inversely proportional to the number of
parameters |P̂ |.

Parameter estimation error for augmented function f ′(x;P ′) can be im-
proved, without deteriorating fit quality, by solving the fitting problem in two
stages. In the first stage, we determine P̂ ′ by solving for Z(f ′(x; P̂ ′)). For the
best-case scenario, where f ′(x;P ′) is fitted to an infinitely large sample Ŷ ran-
domly drawn from f ′(x; P̂ ′), the estimated value of scaling parameter ŝ ∈ P̂ ′

will completely eliminate the bias in the sum of residuals
∑

i∈I e(f(xi; P̂ ), ŷi),

such that
∫ b

a
f(x; P̄ ′)dx =

∑
i∈I Wŷi.

In the second stage, we solve for Z(f ′′(x; P̂ , ŝ)), where f ′′ corresponds to
our augmented distribution f ′ with the scaling parameter value fixed at s = ŝ
(i.e. only the original vector of parameters P is optimized by the fitting algo-
rithm).

The shape distributions from both stages are equivalent, such that

Z(f ′(x; P̂ ′)) ' Z(f ′′(x; P̂ , ŝ)). (32)

However, error vector σP̂ and parameter covariance (which can be estimated
from off-diagonal elements of the covariance matrix) estimated in the second
stage will tend to be more reliable.

Our computational experiment dataset consists of 52 192 stems extracted
from a database of PSP data, collected from public forests in Quebec (Canada).
This data was collected by the Ministère de la forêt, de la faune et des parcs
(MFFP) as part of the official government inventory program1, which operates
on a 10-year cycle.

Data was collected throughout the province of Quebec, using 11.28 meter ra-
dius circular fixed-area plots. The full dataset contains 1 685 233 stems, sampled
from 12 570 permanent sample plot locations. However, this includes repeated
measures from four decennial inventory cycles, collected from 7 different PSP
networks. We filtered data to include only stems from the most recent inventory
cycle, which ensures that we are not tallying repeated measures on the same
plots. We further filtered data to include only stems from the largest of the
seven PSP networks (codename BAS1 ), which ensures uniform data-collection
standards for all stems.

Our ultimate goal (i.e. beyond the scope of this paper) is to link a long-
term wood supply optimization model with a short-term fibre-procurement op-
timization model. Thus, we are interested in modelling diameter distribution of
merchantable stems in mature (operable), undisturbed stands. We therefore ap-
plied a series of other filters to our stem dataset to exclude plots in disturbed or
immature stands, unmerchantable stems (with DBH less than 9 cm), very large
stems (with DBH greater than 61 cm), and dead or otherwise unmerchantable
stems.

1Detailed information on the PSP inventory program under which our test data was
collected is available from the MFFP web site (http://www.mffp.gouv.qc.ca/forets/
inventaire/).
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A Jupyter Notebook containing Python code implementing these filters and
detailed explanations is available from the corresponding author upon request.
Although we do not have permission to distribute the PSP dataset, it is possible
to request a copy from the Ministère des forêts, de la faune et de parcs (see
footnote for URL).

We segmented the 52 192 stems in our filtered PSP dataset into 30 sub-
datasets, representing combinations of 10 species groups and 3 cover types.
More detailed information on species groups is provided in an appendix. For
each of 30 sub-datasets d ∈ D, we applied our two-stage fitting method on 25
target distributions f ∈ F (i.e. GB1, GB2, and GG parent distributions, and
the 22 special cases of these distributions defined in (6) through (27)).

We used the small-sample form of the Akaike information criterion (AICc)
to evaluate goodness-of-fit for each combination of d ∈ D and f ∈ F . AICc is
given by

AICc = AIC +
2K(K + 1)

n−K − 1
(33)

with

AIC = 2K − n ln

(
χ2

n

)
(34)

where K = |P| + 1 (i.e. the cardinality of the parameter vector P, plus the µ
parameter of the implicit i.i.d. Gaussian error distribution of input data vector
Ŷ), n = |Ŷ|, as recommended in Burnham and Anderson, 2002), and χ2 is the
sum of squared residuals given by

χ2 =
∑
i∈I

e
(
f(xi; P̂ ), ŷi

)2
(35)

For each sub-dataset d ∈ D, we ranked distributions f ∈ F in decreasing
order of AICc, and reported best-fit distribution, best-fit parameter values (with
standard error estimates on parameter values) for first and second stages, and
second-stage AICc.

3 Results

Figures 1 and 2 show best-fit distributions plotted against empirical input data
distribution, binned by diameter class. The name of the best-fit distribution is
identified in the legend for each subplot.

Table 1 reports estimated parameter values, standard error on parameter
estimates, and second-stage AICc for best-fit distributions.

4 Discussion

As predicted, second-stage parameter standard error estimates are systemati-
cally lower than first-stage error estimates. This is attributable to fixing of the
s parameter in the second stage.
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Table 1: Best-fit distributions for each combination of species group and cover
type. We report estimated parameter values and standard error for first- and
second-stage fits, and second-stage AIC.

Species Group Cover Dist. Parameters Parameters AICc
Type Name (Stage 1) (Stage 2) (Stage 2)

Oak-Hickory S EXP β = 20.83±3.22 β = 15.00±2.62 -62
M EXP β = 40.80±15.09 β = 36.27±6.54 -178
H W a = 2.67±0.20 a = 2.67±0.16 -250

β = 27.09±0.80 β = 27.10±0.74
Fir-Spruce-Pine-Larch S GA β = 2.35±0.04 β = 2.35±0.01 -336

p = 4.97±0.09 p = 4.97±0.02
M W a = 1.25±0.06 a = 1.25±0.01 -302

β = 10.63±0.44 β = 10.63±0.13
H GA β = 4.09±0.32 β = 4.09±0.09 -253

p = 2.42±0.27 p = 2.42±0.04
Sugar Maple S EXP β = 6.34±1.44 β = 5.20±0.35 -79

M W a = 1.33±0.14 a = 1.35±0.06 -274
β = 19.13±0.99 β = 19.20±0.89

H W a = 1.42±0.06 a = 1.42±0.02 -328
β = 19.06±0.38 β = 19.06±0.35

White Birch S EXP β = 6.24±0.39 β = 6.23±0.17 -163
M GG a = 2.78±0.57 a = 2.77±0.22 -289

β = 23.60±2.57 β = 23.57±0.56
p = 0.25±0.14 p = 0.25±0.03

H W a = 2.55±0.08 a = 2.55±0.05 -238
β = 17.67±0.18 β = 17.67±0.17

Poplar S GA β = 4.85±1.41 β = 4.73±0.85 -170
p = 4.46±1.17 p = 4.55±0.79

M W a = 2.76±0.07 a = 2.76±0.05 -311
β = 26.06±0.23 β = 26.06±0.22

H W a = 3.03±0.15 a = 3.03±0.12 -285
β = 28.77±0.50 β = 28.77±0.48

Pine S GG a = 5.17±2.62 a = 5.15±2.39 -277
β = 50.91±3.40 β = 50.83±2.40
p = 0.20±0.14 p = 0.20±0.12

M EXP β = 49.73±12.38 β = 46.81±5.81 -264
H EXP β = 9.94±1.58 β = 9.93±1.16 -159

Other Hardwoods S GA β = 0.42±0.11 β = 0.43±0.07 -101
p = 28.54±7.58 p = 28.08±4.80

M EXP β = 9.15±0.49 β = 9.15±0.34 -208
H EXP β = 9.38±0.67 β = 9.41±0.48 -253

Other Maples S χ2 p = 5.95±0.21 p = 5.95±0.18 -145
M GA β = 3.35±0.19 β = 3.35±0.09 -288

p = 4.45±0.26 p = 4.45±0.12
H GA β = 4.91±0.48 β = 4.90±0.20 -258

p = 3.18±0.33 p = 3.18±0.13
Yellow Birch S EXP β = 20.20±2.75 β = 20.04±2.61 -223

M B1 b = 60.60±3.82 b = 60.62±3.41 -300
p = 0.39±0.15 p = 0.40±0.02
q = 1.73±0.30 q = 1.74±0.16

H EXP β = 16.60±1.34 β = 16.60±1.31 -269
Eastern White Cedar S W a = 1.70±0.07 a = 1.70±0.04 -317

β = 20.42±0.37 β = 20.42±0.36
M GG a = 2.87±0.94 a = 2.83±0.45 -307

β = 37.52±4.50 β = 37.34±1.28
p = 0.16±0.13 p = 0.17±0.03

H EXP β = 7.75±0.87 β = 7.67±0.49 -182
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Four distributions (GG, GA, W, EXP) dominate our best-fit model selection
experiment, taking first place for 28 out of 30 combinations of species group and
cover type. The χ2 and B1 distributions had the lowest AICc value for the other
two cases.

This confirms previous results in the forestry literature reporting success us-
ing GG, GA, W, and EXP distributions to model stem diameter distribution
from stem tally data. If analytic resources are highly constrained, we recom-
mend limiting the list of candidate distributions these four. Note that in most
cases many of the other 21 distributions were rejected altogether, either because
the NLLS algorithm did not converge, or because fitting results were deems un-
stable (due to extremely high parameter values, or extremely high or otherwise
unreliable parameter error estimates). GA, W, and EXP distributions are all
derivatives of the GG distribution, with one or more of its three parameters
fixed to a value of 1. It is not surprising that the GG distribution generally had
slightly better fit (i.e. lower χ2), however results show that AICc recommends
selecting a more parsimonious model in most (but not all) cases.

Overall, fit results are very good, as indicated by relatively low second-stage
parameter standard error estimates. This observation can be confirmed by visual
inspection of fit results in Figures 1 and 2. Relatively small sample sizes in some
combinations of species group and cover type yielded binned datasets with more
erratic values (including empty bins, which were excluded from NLLS algorithm
input data before fitting). Naturally, best-fit parameter standard error and AIC
values are higher for these datasets.

Our input dataset includes a large number of stems, inventoried through-
out the province of Quebec. Our best-fit distribution results could be used to
forecast diameter distribution for mature stands in Quebec, or in other loca-
tions with similar forests. For researchers looking for more customized fits, our
two-stage methodology can easily be replicated on publicly-available inventory
data.
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Appendix

Table 2 lists common and Latin names of species in the species groups used to
segment our PSP data.
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Table 2: Mapping of species group names to species common and Latin names.
Alternate names are shown in parentheses.

Species Group Common Name Latin Name

Other Hardwoods (white, American) ash Fraxinus americana
black ash Fraxinus nigra
(green, red) ash Fraxinus pennsylvanica
(North) American beech Fagus grandifolia
(American, white, water) elm Ulmus americana
slippery elm Ulmus rubra
(rock, cork) elm Ulmus thomasii
American hophornbeam Ostrya virginiana
American linden (basswood) Tilia americana

White Birch grey birch Betula populifolia
(white, paper) birch Beutul papyrifera

Yellow Birch yellow birch Betala alleghaniensis
Oak-Hickory (bitternut, swamp) hickory Carya cordiformis

shagbark hickory Carya ovata
([wild, mountain] black, rum) cherry Prunus serotina
white oak Quercus alba
swamp white oak Quercus bicolor
bur oak Quercus macrocarpa
(northern, eastern) red oak Quercus rubra
(butternut, white walnut) Juglans cinerea

Spruce-Pine-Fir white spruce Picea glauca
black spruce Picea mariana
Norway spruce Picea abies
red spruce Picea rubens
hybrid larch Larix X marschlinsii
Japanese larch Larix leptolepis
([eastern, American] larch, tamarack) Larix larincina
European larch Larix decidua
pitch pine Pinus rigida
([eastern, black] jack, grey, scrub) pine Pinus banksiana
Scots pine Pinus sylvestris
balsam fir Abies balsamea

Other Maples (silver, silverleaf) maple Acer saccharinum
black maple Acer nigrum
red maple Acer rubrum

Sugar Maple (sugar, rock) maple Acer saccharum
Poplar balsam poplar Populus balamifera

eastern cottonwood (poplar) Populus deltoides
(large-tooth, big-tooth) aspen Populus grandidentata
hybrid poplar Populus sp X P. sp.
([quaking, trembling] [aspen, poplar] Populus tremuloides

Pine white pine Pinus strobus
red pine Pinus resinosa

Hemlock-Cedar (eastern, Canadian) hemlock Tsuga canadensis
(eastern, northern) white-cedar Thuja occidentalis
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ŷi

W(x; P̂ )
±tσŷi
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Figure 1: Best-fit distributions are shown with a solid line. Empirical distri-
butions (binned by 2-cm diameter class) are shown with gray circles. Bin-wise
sampling error is shown with light gray error bars. Species group is fixed for a
given row of subfigures, and cover type is fixed for a given column of subfigures.
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ŷi

GG(x; P̂ )
±tσŷi
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Figure 2: (Continued from Figure 1) Best-fit distributions are shown with a
solid line. Empirical distributions (binned by 2-cm diameter class) are shown
with gray circles. Bin-wise sampling error is shown with light gray error bars.
Species group is fixed for a given row of subfigures, and cover type is fixed for
a given column of subfigures.
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