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1 Introduction

Stochastic programming is a particular subarea of mathematical programming used to model op-
timization problems that involve uncertain parameters. These parameters are modeled by random
vectors whose probability distributions are generally inferred from available data. As for the objec-
tive function to be maximized, it is often modeled as an expectation of a revenue or utility function;
see, e.g., King and Wallace [19]. Stochastic programming problems are found in various fields of
optimization, we refer for instance to Yu et al. [41] and Ziemba [42] for applications in finance;
Bertocchi et al. [4] and Kovacevic et al. [21] for applications in energy production and trading; Pow-
ell and Topaloglu [32] and Yen and Birge [40] for applications in transport and logistic; Beraldi et al.
[3] and Colvin and Maravelias [6] for applications in medicine. For a general presentation on the
theory and the solution methods in stochastic programming, we refer to Prékopa [33], Ruszczyński
and Shapiro [36], and Birge and Louveaux [5].

Stochastic programming problems are generally highly computationally challenging to solve
exactly, as shown in Dyer and Stougie [8] and Hanasusanto et al. [10]. A way to address them at
smaller computational cost consists in constructing an approximate problem with a finite subset of
realizations obtained by discretizing the random parameters. These realizations are called scenarios
and this solution approach is known as the scenario-tree generation. The generation of scenario trees
is subject to a trade-off: on the one hand, scenario trees must include a number of scenarios small
enough so that the approximate problem can be solved by optimization tools in a reasonable time;
on the other hand, this number must be large enough so that the approximate problem estimates
accurately the optimal value and solutions of the original problem. This trade-off is fairly easy to
satisfy if the problem has a reasonable size; by “size” we mean the number T of stages at which
random information is revealed to the decision-maker and the dimension dt of the random vector at
each stage. However, as the size of the problem increases, the trade-off is more and more difficult
to manage, and, currently, problems with large T or dt are typically out-of-scope of scenario-tree
generation methods. An important challenge in stochastic programming is therefore the design of
efficient scenario trees for large size problems.

Many methods have been proposed to generate scenario trees, we refer in particular to the
following works: Shapiro and Homem-de Mello [38] and Shapiro [37] on Monte Carlo methods; Pen-
nanen [27], Koivu [20], and Leövey and Römisch [23] on quasi-Monte Carlo methods and numerical
integration rules; Høyland and Wallace [15] and Høyland et al. [16] on moment matching methods;
Pflug [28] and Pflug and Pichler [31] on optimal quantization methods; Dupačová et al. [7], Heitsch
and Römisch [11], and Growe-Kuska et al. [9] on scenario reduction methods. These methods have
their own theoretical or practical justifications. For instance, Monte Carlo and quasi-Monte Carlo
methods for two-stage problems are justified by several results about the asymptotic consistency of
the methods, which prove that the optimal-value error decreases to zero as the number of scenarios
increases to infinity; see, e.g., Shapiro and Homem-de Mello [39], Homem-de Mello [14], Mak et al.
[24], and Bastin et al. [1]. The asymptotic consistency of discretization methods in the multistage
setting has been studied first by Olsen [25], and more recently by Pennanen [26] who provides
conditions under which the optimal value and solutions of the approximate problem converge to
those of the original problem (property known as epi-convergence). The optimal-value error has
also been extensively studied using probability metrics, which measure the distance between the
true probability distribution of the random parameters and its scenario-tree approximation sitting
on finitely many scenarios; see Pflug and Pichler [29] for a review on probability metrics. Bounds
on the optimal-value error by means of probability metrics, also known as stability results, have
been derived for instance in Heitsch and Römisch [12] and Pflug and Pichler [30]; see also Römisch
[35] for a detailed analysis on stability. As for the assessment of scenario-tree generation methods
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through the quality of the decisions rather than the optimal-value error, little work has been done
in that direction, as it is difficult to quantify the error related to the implementation of the optimal
decisions of the approximate and original problems; a general approach to do so is proposed in
Keutchayan et al. [17].

As of today, the use of scenario-tree generation methods for problems with many stages or high-
dimensional random vectors is limited by the fast growth of the scenario-tree size. We think that this
limitation arises because scenario trees are often not suitable for the problem they intend to solve.
Indeed, the current methods focus mostly on the discretization quality of the random parameters,
with little or no regard to the structure of the problem itself, namely, its objective function and
constraints. But it is reasonable to doubt that a particular way to generate scenario trees can suit
most problems regardless of their structures. For this reason, we think that it is necessary to identify
classes of problems (i.e., problems with similar structure) and generate scenario trees tailored to
each class.

The goal of this paper is therefore to provide the ground for a systematic approach to build
scenario trees better suited to problems, in order to broaden the class of solvable problems. With
that goal in mind, we study the optimal-value error that results from approximately solving a general
stochastic programming problem with a scenario tree. We derive specifically two main results: an
optimal-value error decomposition and an optimal-value error upper bound, both written as a sum
of lower-level errors made at each node of the scenario tree. The latter errors are called low-level
because they concern each individual node, as opposed to the optimal-value error which is high-level
because it concerns the whole scenario tree. Our two main results show how this high-level error
emerges as a combination of the low-level errors, and therefore, provide insight into the way the
former can be kept small by acting appropriately on the latter. In particular, the upper bound can
be viewed as a stability result for multistage problems. However, our result differs from the two main
multistage stability results derived in Heitsch et al. [13] and Pflug and Pichler [30] by the fact that
we do not mean to bound the optimal-value error by a distance between probability distributions
because, in our view, this hides relevant information about the structure of the problem.

The remainder of this paper is organized as follows: Section 2 contains the preliminaries of the
two main results; in particular, Section 2.1 introduces the notation for the stochastic programming
problem along with five conditions that the problem should satisfy to ensure that the two main
results hold; Section 2.2 introduces a more concise notation for the quantities described in Sec-
tion 2.1, which will simplify the following mathematical developments; and Section 2.3 introduces
the notation for the scenario tree and the approximate problem. Sections 3 and 4 contain the error
decomposition and the error bound, respectively, and Section 5 shows how these results can be used
to improve scenario-tree generation. Finally, Section 6 concludes the paper.

2 Preliminaries

We consider a stochastic programming problem where decisions are made at discrete time stages
t = 0, 1, . . . , T ∈ N+, where N+ stands for the positive integers. Multistage problems correspond
to the case T ≥ 2, while two-stage problems correspond to T = 1. For the sake of conciseness, all
results in this paper are formulated for T ≥ 2, but the reader can easily deduce the corresponding
results for two-stage problems.

2.1 Stochastic programming problem formulation

Stochastic programming problems deal with random parameters that are represented by a discrete-
time stochastic process of the form (ξ1, . . . , ξT ), defined on a probability space (Ω,A,P). Each
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random vector ξt contains the random parameters revealed during the period (t−1, t), its probability
distribution has a support Ξt ⊆ Rdt with dt ∈ N+. Throughout this paper, random vectors are
distinguished from their realizations by writing the former in bold font. We denote by Ξ..t the
support of ξ..t := (ξ1, . . . , ξt), and by Ξt(ξ..t−1) the conditional support of ξt given the event {ω ∈
Ω : ξ..t−1(ω) = ξ..t−1} ∈ A. We emphasize that no specific form of probability distribution is
assumed for the stochastic process, hence the latter can be discrete or continuous (or a combination
of both).

The decision vector yt at stage t ∈ {0, . . . , T} satisfies the constraints of the problem if it
belongs to the feasible set Yt ⊆ Rst with st ∈ N+. For the sake of clarity, and without loss of
generality, we assume throughout this paper that st = s and dt = d for all t. When t ≥ 1, we
also denote the feasible set by Yt(y..t−1; ξ..t) to emphasize that it possibly depends on the decisions
y..t−1 := (y0, . . . , yt−1) ∈ Rst and on the realization ξ..t ∈ Ξ..t up to stage t. We consider specifically
feasible sets represented as the solutions of finitely or countably many equality and inequality
constraints:

Condition 1. (i) The decision vector y0 belongs to Y0 if and only if y0 satisfies g0,i(y0) = 0 for
i ∈ I0 and g0,i(y0) ≥ 0 for i ∈ J0, where g0,i : Rs → R is continuous for i ∈ I0 and upper semi-
continuous for i ∈ J0 and I0, J0 are some finite or countable index sets. (ii) For each t ∈ {1, . . . , T}
and ξ..t ∈ Ξ..t, define Zt(ξ..t) := {y..t ∈ Rs(t+1) : y..t−1 ∈ Zt−1(ξ..t−1), yt ∈ Yt(y..t−1; ξ..t)}, where
Z0 := Y0. The decision vector y..t belongs to Zt(ξ..t) if and only if y..t satisfies gt,i(y..t; ξ..t) = 0 for
i ∈ It and gt,i(y..t; ξ..t) ≥ 0 for i ∈ Jt, where gt,i : Rs(t+1)×Ξ..t → R is a Carathéodory integrand for
i ∈ It and a normal integrand for i ∈ Jt and It, Jt are some finite or countable index sets.

The above functions gt,i, for t ∈ {0, . . . , T} and i ∈ It ∪ Jt, model the constraints of the
stochastic programming problem. For the definitions of normal and Carathéodory integrands, we
refer to Rockafellar and Wets [34], Definition 14.27 and Example 14.29, respectively; note that, since
in this paper we consider a maximization problem, normal integrands are upper semi-continuous by
convention. The motivation for Condition 1 is the fact that it implies that the set Z0 is closed and
that the set-valued mapping ξ..t ⇒ Zt(ξ..t) is closed-valued and measurable; see [34, Theorem 14.36].

We also require a boundedness condition on Z0 and Zt(ξ..t), which, together with Condition 1,
imply that Z0 and Zt(ξ..t) are compact sets for every ξ..t.

Condition 2. The set Z0 is bounded in Rs and so is Zt(ξ..t) in Rs(t+1) for every t ∈ {1, . . . , T} and
ξ..t ∈ Ξ..t.

We restrict our attention to stochastic programming problems that have a non-empty feasible
set and a relative complete recourse at every stage, as expressed in Condition 3:

Condition 3. The set Y0 is non-empty and so is Yt(y..t−1; ξ..t) for every t ∈ {1, . . . , T}, ξ..t ∈ Ξ..t,
and y..t−1 ∈ Zt−1(ξ..t−1).

We introduce a revenue function q : Rs(T+1) × Ξ..T → R. The value q(y..T ; ξ..T ) represents all
the revenues obtained from stage 0 to T with the decisions y..T = (y0, . . . , yT ) in the realization
ξ..T . Given the stochastic process, the feasible sets, and the revenue function, we can now define
the stage-t expected recourse function Q̃t and optimal recourse function Q̃∗t , which characterize the
stochastic programming problem. These functions are defined recursively by the following stochastic
dynamic programming equations:

Q̃∗t (y..t−1; ξ..t) := sup
yt∈Rs : (y..t−1,yt)∈Zt(ξ..t)

Q̃t(y..t; ξ..t), ∀t ∈ {0, . . . , T}, (1)

Q̃t(y..t; ξ..t) := E[Q̃∗t+1(y..t; ξ..t, ξt+1) | ξ..t = ξ..t], ∀t ∈ {0, . . . , T − 1}, (2)
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where at t = T the equation (1) is initialized by setting

Q̃T (y..T ; ξ..T ) := q(y..T ; ξ..T ), ∀ξ..T ∈ Ξ..T , ∀y..T ∈ Rs(T+1), (3)

and at t = 0 the arguments y..t−1 and ξ..t are removed, i.e.,

Q̃0(y..0; ξ..0) = Q̃0(y0) and Q̃∗0(y..0−1; ξ..0) = Q̃∗0. (4)

To ensure that the (expected and optimal) recourse functions are well-defined, we add the
following two conditions on the revenue function.

Condition 4. The function q(·; ξ..T ) is upper semi-continuous for every ξ..T ∈ Ξ..T and q(·; ·) is
B(Rs(T+1)) ⊗ Σ-measurable, where B(Rs(T+1)) is the Borel σ-algebra of Rs(T+1) and (Ξ..T ,Σ) is a
complete measurable space with respect to the distribution of ξ..T .

Condition 4 directly implies that the revenue function is a normal integrand by [34, Corol-
lary 14.34].

Condition 5. There exists a measurable function h : Ξ..T → R such that |q(y..T ; ξ..T )| ≤ h(ξ..T ) for
all ξ..T ∈ Ξ..T and y..T ∈ ZT (ξ..T ), where h satisfies E[|h(ξ..T )|] <∞ and E[|h(ξ..T )| | ξ..t = ξ..t] <∞
for all t ∈ {1, . . . , T − 1} and ξ..t ∈ Ξ..t.

Note that Condition 5 requires that the conditional integrability of h(ξ..T ) given ξ..t = ξ..t holds
for any ξ..t ∈ Ξ..t, and not merely for almost every ξ..t ∈ Ξ..t. The reason is that we want the stage-t
(expected and optimal) recourse functions to be defined everywhere on Ξ..t, which will guarantee
that the node errors and the subtree errors, introduced in Section 3, are well-defined even if the
scenarios are chosen in a non-random fashion.

We shall show now that the five conditions above guarantee the existence of optimal decision
vectors at every stage and the finiteness of the (expected and optimal) recourse functions. We do
so by proving recursively, from stage T to 0, the existence of optimal solutions for the optimization
problem at the right-hand side of (1). In the following, we denote by δC(·) the function defined
as δC(x) = 0 if x ∈ C and δC(x) = −∞ otherwise. Through this notation, we can express the
fact that the supremum of a real-valued function f over a set C ⊆ Rs is written equivalently as
the supremum of the extended -real-valued function f + δC over Rs; see [34, Chapter 1] for detailed
developments on extended real analysis.

Take an arbitrary t ∈ {1, . . . , T} and suppose that the stage-t expected recourse function
(y..t; ξ..t) 7→ Q̃t(y..t; ξ..t) is a normal integrand and that its effective domain

dom Q̃t(· ; ξ..t) := {y..t ∈ Rs(t+1) : Q̃t(y..t; ξ..t) > −∞}, (5)

includes Zt(ξ..t) for every ξ..t ∈ Ξ..t.
It follows from the above induction hypothesis and the properties of measurability and com-

pactness of Zt(ξ..t) that the mapping

(y..t; ξ..t) 7→ Q̃t(y..t; ξ..t) + δZt(ξ..t)(y..t), (6)

is a normal integrand too and, moreover, is level-bounded in yt locally uniformly in y..t−1 for each
fixed ξ..t ∈ Ξ..t; see [34, Example 14.32, Definition 1.16]. Thus, the stage-t optimal recourse function,
defined as

Q̃∗t (y..t−1; ξ..t) = sup
yt∈Rs

{Q̃t(y..t−1, yt; ξ..t) + δZt(ξ..t)(y..t−1, yt)}, (7)
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is a normal integrand by [34, Proposition 14.47]. Moreover, take an arbitrary ξ..t ∈ Ξ..t and consider
the following two cases: (i) if y..t−1 ∈ Zt−1(ξ..t−1), then Zt(ξ..t) 6= ∅ by Condition 3, and hence the
supremum in (7) is attained, Q̃∗t (y..t−1; ξ..t) is finite, and an optimal solution y∗t =: x∗t (y..t−1; ξ..t)
exists, where we introduce the notation x∗t (y..t−1; ξ..t) to emphasize that this optimal solution de-
pends on y..t−1 and ξ..t; (ii) if y..t−1 6∈ Zt−1(ξ..t−1), then the supremum in (7) equals −∞, and this
value is consistent with the fact that such y..t−1 is not a vector of feasible decisions. Therefore, for
every ξ..t ∈ Ξ..t we have that

Q̃∗t (y..t−1; ξ..t)

{
∈ R if y..t−1 ∈ Zt−1(ξ..t−1);

= −∞ otherwise.
(8)

This concludes the analysis of the equation (1).
As for the equation (2), we shall prove that the stage-(t− 1) expected recourse function

Q̃t−1(y..t−1; ξ..t−1) = E[Q̃∗t (y..t−1; ξ..t−1, ξt) | ξ..t−1 = ξ..t−1], (9)

is a normal integrand and that dom Q̃t−1(· ; ξ..t−1) includes Zt−1(ξ..t−1) for every ξ..t−1 ∈ Ξ..t−1.
This will allow the above arguments to be repeated at stage t − 1, and hence will complete the
proof since the initial stage-T expected recourse function is a finite-valued normal integrand by
(3) and Condition 4. Take an arbitrary ξ..t−1 ∈ Ξ..t−1 and consider the following two cases: (i) if
y..t−1 ∈ Zt−1(ξ..t−1), then it follows from Condition 5 and an application of Lebesgue’s dominated
convergence theorem that Q̃t−1( · ; ξ..t−1) is finite-valued and upper semi-continuous at y..t−1; (ii)
if y..t−1 6∈ Zt−1(ξ..t−1), then we have by (8) that Q̃∗t (y..t−1; ξ..t−1, ξt) = −∞ for all ξt ∈ Ξt(ξ..t−1),
and hence Q̃t−1(y..t−1; ξ..t−1) = −∞. Since ξ..t−1 ⇒ Zt−1(ξ..t−1) is closed-valued and Q̃t−1 remains
measurable, we deduce from (i)-(ii) that Q̃t−1 is a normal integrand and that its effective domain
satisfies dom Q̃t−1(· ; ξ..t−1) = Zt−1(ξ..t−1) for every ξ..t−1 ∈ Ξ..t−1; see [34, Corollary 14.34].

To summarize, the above arguments prove that for every t ∈ {0, . . . , T}, ξ..t ∈ Ξ..t, and y..t ∈
Zt(ξ..t), an optimal decision x∗t (y..t−1; ξ..t) exists and the values Q̃∗t (y..t−1; ξ..t) and Q̃t(y..t; ξ..t) are
finite (with the appropriate change of arguments for t = 0).

2.2 Decision policy formulation

It is more convenient for the future developments in this paper to introduce a single notation for
the stage-t expected and optimal recourse functions defined in (1)-(2). In Section 2.1, we have
introduced x∗t (y..t−1; ξ..t) to denote the optimal decision vector at stage t given as a function of
the decisions y..t−1 and the realization ξ..t up to t. We can generalize this notation to represent
any feasible decision at stage t as a function of (y..t−1; ξ..t). The development below formalizes this
approach and shows the link with the previous formulation.

We model a decision policy x..T := (x0, . . . , xT ) as a collection of a decision vector x0 ∈ Rs and
several decision functions x1, ..., xT such that the value xt(y..t−1; ξ..t) specifies the decision at stage
t as a function of y..t−1 and ξ..t. The fact that xt does not depend on the realizations after stage t
ensures that the policy is non-anticipative.

The feasibility constraints are now modeled using subsets of function spaces. Specifically, we
define for each t ∈ {1, . . . , T} the set Xt of all stage-t feasible decision functions for the stochastic
programming problem as

X1 = {x1 : Z0 × Ξ1 → Rs : ∀ξ1 ∈ Ξ1, ∀y0 ∈ Z0, x1(y0; ξ1) ∈ Y1(y0; ξ1)}, (10)
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and for each t ∈ {2, . . . , T},

Xt =
{
xt :

⋃
ξ..t∈Ξ..t

(Zt−1(ξ..t−1)× {ξ..t})→ Rs : (11)

∀ξ..t ∈ Ξ..t, ∀y..t−1 ∈ Zt−1(ξ..t−1), xt(y..t−1; ξ..t) ∈ Yt(y..t−1; ξ..t)
}
.

At stage 0, we define X0 = Z0, as x0 is a vector and not a function. The set X..t of all feasible
decision policies x..t = (x0, . . . , xt) for the stochastic programming problem up to stage t is given
by X..t := Πt

i=0Xi, where Πt
i=0 denotes the (t+ 1)-fold Cartesian product.

The connection between decision policies and decision vectors is as follows: for a policy x..T ∈
X..T and a realization ξ..T ∈ Ξ..T , the associated vector y..T = (y0, . . . , yT ) is given by

yt =

{
x0 if t = 0;

xt(y..t−1; ξ..t) if t ∈ {1, . . . , T}.
(12)

We introduce the stage-t (generalized) recourse function Qt : X..T × Ξ..t → R for every t ∈
{1, . . . , T} and Q0 : X..T → R at stage 0. The value Qt(x..T ; ξ..t) represents the conditional expec-
tation of revenues obtained by implementing the policy x..T ∈ X..T given the realization ξ..t ∈ Ξ..t
up to stage t. The recourse functions are computed by backward recursion from stage T to 0 by
the relation

Qt(x..T ; ξ..t) := E
[
Qt+1(x..T ; ξ..t+1)

∣∣ ξ..t = ξ..t
]
, ∀x..T ∈ X..T , ∀ξ..t ∈ Ξ..t, (13)

where at stage T the relation is initialized by setting

QT (x..T ; ξ..T ) := q(y..T ; ξ..T ), with y..T given by (12), (14)

and at t = 0 the argument ξ..t is removed, i.e., Q0(x..T ) = E
[
Q1(x..T ; ξ1)

]
.

In this setting, an optimal decision policy for the stochastic programming problem is a policy
x∗..T = (x∗0, . . . , x

∗
T ) ∈ X..T such that the following holds:

• at stage T :

QT (x..T−1, x
∗
T ; ξ..T ) ≥ QT (x..T−1, xT ; ξ..T ), ∀ξ..T ∈ Ξ..T , ∀x..T ∈ X..T ; (15)

• at stage t ∈ {1, . . . , T − 1}:

Qt(x..t−1, x
∗
t , x
∗
t+1..; ξ..t) ≥ Qt(x..t−1, xt, x

∗
t+1..; ξ..t), ∀ξ..t ∈ Ξ..t, ∀x..t ∈ X..t; (16)

• at stage 0:
Q0(x∗0, x

∗
1..) ≥ Q0(x0, x

∗
1..), ∀x0 ∈ X0, (17)

where we use the shorthand x∗t.. := (x∗t , . . . , x
∗
T ). The quantity Q0(x∗..T ) is the optimal value of the

stochastic programming problem.
The inequalities (15)-(17) mean intuitively the following: when one uses x∗t+1.. to make decisions

from stage t + 1 to T , the stage-t decision function x∗t is optimal for the recourse function xt 7→
Qt(x..t−1, xt, x

∗
t+1..; ξ..t) regardless of the policy x..t−1 ∈ X..t−1 used to make decisions from stage 0

to t− 1. This is Bellman’s principle of optimality; see Bellman [2].
It follows from the five conditions introduced in Section 2.1 that both sides of the inequalities

(15)-(17) are well-defined and finite-valued for any feasible policy and random realization.
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2.3 Scenario-tree and approximate problem formulations

The optimal value Q0(x∗) and the optimal policy x∗ of the stochastic programming problem are not
readily available in general. The scenario-tree approach to estimate Qt consists in approximating
the right-hand side of (13) as a weighted average of the values of Qt+1 for a selection of realizations
of ξt+1. In turn, Qt+1 is approximated in terms of Qt+2, and this recursive discretization scheme is
carried out to stage T , where the values of QT are computed directly from the revenue function q.
A tree structure naturally arises from this scheme, in which sibling nodes at stage t + 1 represent
the discrete values of Qt+1 whose weighted average approximates the value of Qt, represented by
their common parent node at stage t. The remainder of this section formalizes the scenario tree
and the approximate problem.

A scenario tree is a rooted tree structure T = (N , E , n0), with N the (finite) node set, E the edge
set and n0 the root node. This structure is such that T edges separate the root from any of the
tree leaves, where a leaf is any node n ∈ N ∗ := N \ {n0} incident to only one edge. We introduce
the notation C(n), p(n), and t(n) to denote, respectively, the set of children nodes of n (i.e., the
nodes linked to n at the next stage), the parent node of n (i.e., the node linked to n at the previous
stage), and the stage (or depth) of n (i.e., the number of edges between n0 and n). We denote by
[n0, n] the unique sequence of nodes from n0 to n (we write (n0,m] when n0 is excluded from that
sequence) and Nt := {n ∈ N : t(n) = t}.

Every node n ∈ N ∗ carries a discretization weight wn and a discretization point ζn of ξt(n),
which satisfy

wn > 0 and ζn ∈
{

Ξ1 if n ∈ N1;

Ξt(n)(ζ
..p(n)) if n ∈ N ∗ \ N1,

(18)

where the notation ζ ..n, defined for each n ∈ N ∗, refers to the sequence of discretization points from
n0 to n, i.e., ζ ..n := (ζm)m∈(n0,n]. The value wn represents the weight of node n with respect to its
sibling nodes, i.e., C(p(n)). The weight of n with respect to all the stage-t(n) nodes Nt(n) is given
by the product weight Wn defined as

Wn =

{
1 if n = n0;∏
m∈(n0,n]w

n if n ∈ N ∗.
(19)

Now that we have formalized the scenario tree, we can define the approximate problem that
corresponds to it. To this end, we define for each stage t ∈ {1, . . . , T} the set X̂t of all stage-t
feasible decision functions for the approximate problem by

X̂1 =
{
x1 : Z0 × {ζn : n ∈ N1} → Rs : ∀n ∈ N1, ∀y0 ∈ Z0, x1(y0; ζn) ∈ Y1(y0; ζn)

}
, (20)

and for each t ∈ {2, . . . , T},

X̂t =
{
xt :

⋃
n∈Nt

(Zt−1(ζ ..p(n))× {ζ ..n})→ Rs : (21)

∀n ∈ Nt, ∀y..t−1 ∈ Zt−1(ζ ..p(n)), xt(y..t−1; ζ ..n) ∈ Yt(y..t−1; ζ ..n)
}
.

At stage 0, we define X̂0 = Z0 (hence X̂0 = X0). The set X̂..t of all feasible decision policies
x̂..t = (x̂0, . . . , x̂t) for the approximate problem up to stage t is X̂..t := Πt

i=0X̂i.
It should be noted that in a general setting there is no inclusion relation between Xt and X̂t,

because Xt contains functions defined on Ξ..t, whereas X̂t contains functions defined on {ζ ..n : n ∈
Nt}, and the latter is a strict subset of the former whenever the scenario tree does not include
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all realizations of the stochastic process up to stage t. It is also important to note that a policy
x..T ∈ X..T of the original problem carries more information than a policy x̂..T ∈ X̂..T of the
approximate problem. Indeed, one can use x..T to make decisions in the approximate problem, but
one cannot use x̂..T to make decisions in the original problem. This is true in general, however,
a subtlety arises when the stage-t realization ξ..t coincides with a discretization sequence ζ ..n for
some n ∈ Nt. In this case, any policy x̂..t ∈ X̂.t can be used to make decisions from stage 0 to t in
the approximate and original problems. For this reason, we extend the domain of definition of the
stage-t recourse function Qt( · ; ξ..t) to include this particular case. The new definition is

Qt( · ; ξ..t) :

{
Πt
i=0(Xi ∪ X̂i)×ΠT

i=t+1Xi → R if ξ..t = ζ ..n for some n ∈ Nt;
X..T → R otherwise.

(22)

At stage 0, we still have Q0 : X..T → R.
The scenario tree provides at each node an estimator for the recourse function (13). The node-n

estimator of the stage-t(n) recourse function Qt(n)(x..T ; ζ ..n) is denoted by Q̂n(x..T ) and is computed
recursively from the estimators at node m ∈ C(n) by

Q̂n(x..T ) =
∑

m∈C(n)

wm Q̂m(x..T ), ∀n ∈ N \ NT , ∀x..T ∈ ΠT
t=0(Xt ∪ X̂t), (23)

where at node n ∈ NT the relation is initialized by setting

Q̂n(x..T ) = q(y..T ; ζ ..n), with y..T given by (12) in the scenario ζ ..n. (24)

We emphasize that our formulation of the scenario tree estimators is general, since we do not
assume a specific form for the tree structure and for the discretization points and weights. This
generality allows us to consider essentially all ways to generate scenario trees. For instance, the fact
that the weights wm in (23) need not sum to one can account for the use of importance sampling
or integration rules methods; see, e.g., Shapiro [37] and Pennanen [27], respectively. A well-known
particular case of the scenario-tree estimator is the so-called sample average approximation, which
is obtained from (23) by setting wm = |C(n)|−1 and by getting ζm through Monte Carlo methods.

The optimal decision policy of the approximate problem, denoted by x̂∗..T = (x̂∗0, . . . , x̂
∗
T ) ∈ X̂..T ,

satisfies the discrete counterpart of (15)-(17):

• at stage T :

Q̂n(x..T−1, x̂
∗
T ) ≥ Q̂n(x..T−1, xT ), ∀n ∈ NT , ∀x..T ∈ ΠT

t=0(Xt ∪ X̂t); (25)

• at stage t ∈ {1, . . . , T − 1}:

Q̂n(x..t−1, x̂
∗
t , x̂
∗
t+1..) ≥ Q̂n(x..t−1, xt, x̂

∗
t+1..), ∀n ∈ Nt, ∀x..t ∈ Πt

i=0(Xi ∪ X̂i); (26)

• at stage 0:
Q̂n0(x̂∗0, x̂

∗
1..) ≥ Q̂n0(x0, x̂

∗
1..), ∀x0 ∈ X̂0. (27)

The quantity Q̂n0(x̂∗..T ) is the optimal value of the approximate problem; it is the estimator of

Q0(x∗..T ) and the quantity Q0(x∗..T ) − Q̂n0(x̂∗..T ) is what we refer to as the optimal-value error. It
follows from the five conditions in Section 2.1 that an optimal decision policy exists and that both
sides of (25)-(27) are well-defined and finite-valued for any feasible decision policy and any node in
the scenario tree.

We end this section by a remark on two cases of equality between the recourse functions and
their estimators.
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Remark 2.1. Since the stage-T recourse function QT and its estimator Q̂n at any node n ∈ NT
are both computed directly from the revenue function q, we have that

Q̂n(x..T ) = QT (x..T ; ζ ..n), ∀n ∈ NT , ∀x..T ∈ ΠT
t=0(Xt ∪ X̂t). (28)

Another case of equality is obtained by noticing that the inequality (15) applied at ξ = ζ ..n, for any
n ∈ NT , provides the same optimality condition than (25). Consequently, the decision functions
x̂∗T (·; ζ ..n) and x∗T (·; ζ ..n) can be chosen such that they coincide, and hence

Q̂n(x..T−1, x̂
∗
T ) = QT (x..T−1, x

∗
T ; ζ ..n), ∀n ∈ NT , ∀x..T−1 ∈ ΠT−1

t=0 (Xt ∪ X̂t). (29)

3 Node-by-node decomposition of the optimal-value error

The main result of this section is Theorem 3.5, which provides a node-by-node decomposition of
the optimal-value error Q0(x∗..T )− Q̂n0(x̂∗..T ).

We start by introducing the concepts of (low-level) node errors and (high-level) subtree errors.
It appears from the stochastic dynamic programming equations (1)-(2) that the optimal-value error
results from successive errors made by approximating alternatively the right-hand side of (1) and
(2). We call specifically node optimization error the error made by approximating (1) and node
discretization error the error made by approximating (2), at a particular node in the scenario-tree.
Their explicit definitions below are expressed by means of the decision policy formulation of Section
2.2:

Definition 3.1 (Node optimization error). For each stage t ∈ {1, . . . , T − 1}, we define the opti-
mization error Enopt(x..t−1) at node n ∈ Nt and for a decision policy x..t−1 ∈ Πt−1

i=0(Xi ∪ X̂i) as

Enopt(x..t−1) = Qt(x..t−1, x
∗
t , x
∗
t+1..; ζ

..n)−Qt(x..t−1, x̂
∗
t , x
∗
t+1..; ζ

..n). (30)

At the root node, the optimization error is

En0
opt = Q0(x∗0, x

∗
1..)−Q0(x̂∗0, x

∗
1..). (31)

It follows from the optimality conditions (15)-(17) that the optimization errors are always non-
negative. The node-n optimization error measures the error at stage t(n) made by using the optimal
decision function x̂∗t(n) of the approximate problem instead of the optimal decision function x∗t(n)
of the original problem. The optimization error is not defined at stage T because no optimization
error is made at n ∈ NT (cf. Remark 2.1).

Definition 3.2 (Node discretization error). For each stage t ∈ {0, . . . , T − 1}, we define the dis-
cretization error Endisc(x..t) at node n ∈ Nt and for a decision policy x..t ∈ Πt

i=0(Xi ∪ X̂i) as

Endisc(x..t) = Qt(x..t, x
∗
t+1..; ζ

..n)−
∑

m∈C(n)

wmQt+1(x..t, x
∗
t+1..; ζ

..m), (32)

if t ∈ {1, . . . , T − 1}, and

En0
disc(x0) = Q0(x0, x

∗
1..)−

∑
m∈C(n0)

wmQ1(x0, x
∗
1..; ζ

m), (33)

at the root node.
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The node-n discretization error measures the error made by substituting the conditional expec-
tation by a finite sum over the children nodes of n.

We define now the concept of subtree errors. We call subtree rooted at node n ∈ N the scenario
tree (N (n), E(n), n) obtained by setting n as the root node and by considering only the nodes
that are the descendants of n and the edges connecting them. The subtree rooted at n0 is the
whole scenario tree (N , E , n0). We distinguish between two subtree errors: the optimal subtree
error measures the error between the optimal recourse function (1) and its scenario-tree estimator,
whereas the suboptimal subtree error measures the error between the expected recourse function
(2) and its scenario-tree estimator. Their explicit definitions below are expressed by means of the
decision policy formulation of Section 2.2:

Definition 3.3 (Subtree errors). (a) For each stage t ∈ {1, . . . , T}, we define the optimal subtree
error ∆Qn(x..t−1) at node n ∈ Nt and for a decision policy x..t−1 ∈ Πt−1

i=0(Xi ∪ X̂i) as

∆Qn(x..t−1) = Qt(x..t−1, x
∗
t..; ζ

..n)− Q̂n(x..t−1, x̂
∗
t..). (34)

At the root node, the optimal subtree error is

∆Qn0 = Q0(x∗..T )− Q̂n0(x̂∗..T ). (35)

(b) For each stage t ∈ {0, . . . , T}, we define the suboptimal subtree error ∆Qnsub(x..t) at node

n ∈ Nt and for a decision policy x..t ∈ Πt
i=0(Xi ∪ X̂i) as

∆Qnsub(x..t) =


QT (x; ζ ..n)− Q̂n(x) if t = T ;

Qt(x..t, x
∗
t+1..; ζ

..n)− Q̂n(x..t, x̂
∗
t+1..) if t ∈ {1, . . . , T − 1};

Q0(x0, x
∗
1..)− Q̂n0(x0, x̂

∗
1..) if t = 0.

(36)

The subtree errors ∆Qnsub and ∆Qn are identically zero for every n ∈ NT (cf. Remark 2.1).
In the general setting of the scenario-tree formulation of Section 2.3, we do not know whether
the subtree errors have positive or negative values. The node-n0 optimal subtree error (35) is the
optimal-value error that we want to decompose and bound.

The optimal and suboptimal subtree errors at node n gather implicitly all the node errors
(optimization and discretization) made at each node m ∈ N (n) of the subtree rooted at n. To find
an explicit relation between the subtree errors and the node errors, we need to be able to derive a
closed-form representation of a quantity at node n from a recursive representation of this quantity
over the nodes in the subtree rooted at n. This is the purpose of the following lemma:

Lemma 3.4. Let a real value γn be assigned to every node n ∈ N \ NT of the scenario tree.
(a) The sequence {αn : n ∈ N} satisfies the recurrence relation

αn =

 γn +
∑

m∈C(n)

wm αm if n ∈ N \ NT ; (37)

0 if n ∈ NT , (38)

if and only if αn has a closed-form representation at each node given by

αn = 0 ∀n ∈ NT and αn =
1

Wn

∑
m∈N (n)\NT

Wm γm ∀n ∈ N \ NT , (39)

where N (n) is the node set of the subtree rooted at n.
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(b) If a sequence {βn : n ∈ N} satisfies the recurrence relation

βn ≤

 γn +
∑

m∈C(n)

wm βm if n ∈ N \ NT ; (40)

0 if n ∈ NT , (41)

then βn has an upper bound at each node n ∈ N \ NT given by

βn ≤ 1

Wn

∑
m∈N (n)\NT

Wm γm. (42)

Parts (a) and (b) will be used in deriving the error decomposition theorem and the error bound
theorem, respectively.

Proof. (a) Let {un} and {vn} denote two sequences satisfying the recurrence relation (37)-(38) and
the closed-form (39), respectively. Let us show by backward induction that un = vn holds for every
node n ∈ N \ NT .

Basis. Take an arbitrary n ∈ NT−1. We have that N (n) \NT = {n}, hence it follows from (39)
that

vn =
1

Wn
Wn γn = γn = un. (43)

Inductive step. Suppose that um = vm holds for every m ∈ Nt for a given t ∈ {1, . . . , T − 1},
and take an arbitrary n ∈ Nt−1. Using the following decomposition of N (n) \ NT :

N (n) \ NT = {n} ∪
( ⋃
m∈C(n)

N (m) \ NT
)
, (44)

it follows from (39) that

vn = γn +
1

Wn

∑
m∈C(n)

∑
l∈N (m)\NT

W l γl (45)

= γn +
1

Wn

∑
m∈C(n)

Wm

[
1

Wm

∑
l∈N (m)\NT

W l γl
]

(46)

= γn +
1

Wn

∑
m∈C(n)

Wm vm (47)

= γn +
∑

m∈C(n)

wm um (48)

= un, (49)

where the equality (48) holds by the induction hypothesis and by the relation Wm = Wnwm for
every m ∈ C(n) (cf. (19)). This proves the inductive step and therefore the final result.

(b) Let {αn} and {βn} denote two sequences satisfying the recurrence relation (37)-(38) and
(40)-(41), respectively. Let us show by induction that βn ≤ αn holds for every node n ∈ N \ NT .

Basis. For every n ∈ NT−1, it follows from (40)-(41) that βn ≤ γn = αn.
Inductive step. Suppose that βm ≤ αm holds for every node m ∈ Nt for a given t ∈ {1, . . . , T−1},

and take an arbitrary n ∈ Nt−1. It follows from (40) and the induction hypothesis that

βn ≤ γn +
∑

m∈C(n)

wm αm = αn. (50)
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This proves the inductive step. The inequality (42) follows immediately using part (a) of this
lemma.

We can now state the main theorem of this section:

Theorem 3.5. The scenario-tree optimal-value error can be decomposed into a weighted sum of
node discretization and optimization errors as follows:

∆Qn0 =
∑

n∈N\NT

Wn [Enopt(x̂
∗
..t(n)−1) + Endisc(x̂

∗
..t(n))], (51)

where for n = n0 the term Enopt(x̂
∗
..t(n)−1) corresponds to En0

opt.

Proof. We start by deriving a recurrence relation for the optimal subtree error at node n ∈ N \NT ,
by considering successively the cases t = 0 and t ∈ {1, . . . , T − 1}.

At the root node, using successively (23), (31) and (33), we can write ∆Qn0 as follows:

∆Qn0 = Q0(x∗..T )− Q̂n0(x̂∗..T ) (52)

= Q0(x∗..T )−
∑

m∈C(n0)

wm Q̂m(x̂∗..T ) (53)

= Q0(x∗..T )−Q0(x̂∗0, x
∗
1..) (54)

+Q0(x̂∗0, x
∗
1..)−

∑
m∈C(n0)

wmQ1(x̂∗0, x
∗
1..; ζ

m) (55)

+
∑

m∈C(n0)

wm
[
Q1(x̂∗0, x

∗
1..; ζ

m)− Q̂m(x̂∗..T )
]

(56)

= En0
opt + En0

disc(x̂
∗
0) +

∑
m∈C(n0)

wm ∆Qm(x̂∗0). (57)

For every t ∈ {1, . . . , T − 1} and every n ∈ Nt, using successively (23), (32) and (30), we can write
∆Qn(x̂∗..t−1) as follows:

∆Qn(x̂∗..t−1) = Qt(x̂
∗
..t−1, x

∗
t..; ζ

..n)− Q̂n(x̂∗..T ) (58)

= Qt(x̂
∗
..t−1, x

∗
t..; ζ

..n)−
∑

m∈C(n)

wm Q̂m(x̂∗..T ) (59)

= Qt(x̂
∗
..t−1, x

∗
t..; ζ

..n)−Qt(x̂∗..t, x∗t+1..; ζ
..n) (60)

+Qt(x̂
∗
..t, x

∗
t+1..; ζ

..n)−
∑

m∈C(n)

wmQt+1(x̂∗..t, x
∗
t+1..; ζ

..m) (61)

+
∑

m∈C(n)

wm
[
Qt+1(x̂∗..t, x

∗
t+1..; ζ

..m)− Q̂m(x̂∗..T )
]

(62)

= Enopt(x̂
∗
..t−1) + Endisc(x̂

∗
..t) +

∑
m∈C(n)

wm ∆Qm(x̂∗..t).

Finally, by defining

γn =

{
En0

opt + En0
disc(x̂

∗
0) if n = n0; (63)

Enopt(x̂
∗
..t(n)−1) + Endisc(x̂

∗
..t(n)) if n ∈ N ∗ \ NT , (64)

we see that the sequence {∆Qn : n ∈ N} satisfies the recurrence relation (37)-(38) of Lemma 3.4(a)
(recall that ∆Qn = 0 for every n ∈ NT ; cf. Remark 2.1). Thus, the decomposition (51) follows
directly from (39) applied at the root node.
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4 Node-by-node upper bound on the optimal-value error

The error decomposition of Theorem 3.5, although useful to enlighten the contributions of two types
of errors in the optimal-value error, cannot be directly used to guide the generation of scenario trees.
The reason is that it features node optimization errors, which are difficult to quantity since they
depend on the scenario tree solely via the optimal policy x̂∗. Node discretization errors, conversely,
depend directly on the characteristics of a scenario tree, i.e., the tree structure, the discretization
points and weights. Moreover, discretization errors enjoy a large literature in numerical integration
where they are also referred to as integration errors. In this paper, we use the term “discretization
error” when the integrand is the recourse functions (cf. Definition 3.2) and “integration error” when
the integrand is any integrable function (cf. Definition 4.4).

The main result of this section is Theorem 4.3, which provides an upper bound on the optimal-
value that features only discretization errors. Its derivation does not rely on the decomposition of
Theorem 3.5, it is based on the following two lemmas.

Lemma 4.1. For each stage t ∈ {1, . . . , T}, node n ∈ Nt and decision policy x..t−1 ∈ Πt−1
i=0(Xi∪X̂i),

the following holds:
|∆Qn(x..t−1)| ≤ max

u∈{x̂∗t ,x∗t }
|∆Qnsub(x..t−1, u)|, (65)

and at the root node:
|∆Qn0 | ≤ max

u∈{x̂∗0,x∗0}
|∆Qn0

sub(u)|. (66)

Proof. If ∆Qn0 ≥ 0, then it follows from (17) that

|∆Qn0 | = Q0(x∗..T )− Q̂n0(x̂∗..T ) (67)

≤ Q0(x∗..T )− Q̂n0(x∗0, x̂
∗
1..) (68)

= ∆Qn0
sub(x∗0). (69)

Conversely, if ∆Qn0 < 0, then it follows from (27) that

|∆Qn0 | = −Q0(x∗..T ) + Q̂n0(x̂∗..T ) (70)

≤ −Q0(x̂∗0, x
∗
1..) + Q̂n0(x̂∗..T ) (71)

= −∆Qn0
sub(x̂∗0). (72)

This proves the result at the root node.
Similarly, we show now that the result holds for any t ∈ {1, . . . , T − 1}, n ∈ Nt and x..t−1 ∈

Πt
i=0(Xi ∪ X̂i). If ∆Qn(x..t−1) ≥ 0, then it follows from (16) that

|∆Qn(x..t−1)| = Qt(x..t−1, x
∗
t..; ζ

..n)− Q̂n(x..t−1, x̂
∗
t..) (73)

≤ Qt(x..t−1, x
∗
t..; ζ

..n)− Q̂n(x..t−1, x
∗
t , x̂
∗
t+1..) (74)

= ∆Qnsub(x..t−1, x
∗
t ). (75)

If ∆Qn(x..t−1) < 0, then it follows from (26) that

|∆Q̂n(x..t−1)| = −Qt(x..t−1, x
∗
t..; ζ

..n) +Qn(x..t−1, x̂
∗
t..) (76)

≤ −Qt(x..t−1, x̂
∗
t , x
∗
t+1..; ζ

..n) + Q̂n(x..t−1, x̂
∗
t..) (77)

= −∆Qnsub(x..t−1, x̂
∗
t ). (78)

This proves the inequality (65) for any t ∈ {1, . . . , T − 1}. The inequality for t = T holds trivially
since ∆Qn(x..T−1) = ∆Qnsub(x..T ) = 0 for all n ∈ NT and x..T ∈ ΠT

i=0(Xi∪X̂i) (cf. Remark 2.1).
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Lemma 4.2. For each stage t ∈ {1, . . . , T − 1}, node n ∈ Nt and decision policy x..t−1 ∈ Πt−1
i=0(Xi ∪

X̂i), the following holds:

|∆Qn(x..t−1)| ≤ max
u∈{x̂∗t ,x∗t }

|Endisc(x..t−1, u)|+
∑

m∈C(n)

wm max
u∈{x̂∗t ,x∗t }

|∆Qm(x..t−1, u)|, (79)

and at the root node:

|∆Qn0 | ≤ max
u∈{x̂∗0,x∗0}

|En0
disc(u)|+

∑
m∈C(n0)

wm max
u∈{x̂∗0,x∗0}

|∆Qm(u)|. (80)

Proof. We first prove the result at the root node. Take an arbitrary x0 ∈ X0 (and recall that
X0 = X̂0). Using successively (23), (34) and (33), we can write ∆Qn0

sub(x0) as

∆Qn0
sub(x0) = Q0(x0, x

∗
1..)− Q̂n0(x0, x̂

∗
1..) (81)

= Q0(x0, x
∗
1..)−

∑
m∈C(n0)

wm Q̂m(x0, x̂
∗
1..) (82)

= Q0(x0, x
∗
1..)−

∑
m∈C(n0)

wm
[
Q1(x0, x

∗
1..; ζ

m)−∆Qm(x0)
]

(83)

= En0
disc(x0) +

∑
m∈C(n0)

wm∆Qm(x0). (84)

Combining the above equality with the inequality (66), in the particular case for which x0 ∈ {x̂∗0, x∗0},
and applying the triangle inequality yields the result at the root node.

Similarly, we show now that the result holds for any t ∈ {1, . . . , T − 1}, n ∈ Nt and x..t ∈
Πt
i=0(Xi ∪ X̂i). Using successively (23), (34) and (32), we can write ∆Qnsub(x..t) as

∆Qnsub(x..t) = Qt(x..t, x
∗
t+1..; ζ

..n)− Q̂n(x..t, x̂
∗
t+1..) (85)

= Qt(x..t, x
∗
t+1..; ζ

..n)−
∑

m∈C(n)

wm Q̂m(x..t, x̂
∗
t+1..) (86)

= Qt(x..t, x
∗
t+1..; ζ

..n)−
∑

m∈C(n)

wm
[
Qt+1(x..t, x

∗
t+1..; ζ

..m)−∆Qm(x..t)
]

(87)

= Endisc(x..t) +
∑

m∈C(n)

wm∆Qm(x..t). (88)

From the triangle inequality it follows that

|∆Qnsub(x..t)| ≤ |Endisc(x..t)|+
∑

m∈C(n)

wm|∆Qm(x..t)|. (89)

In the particular case for which x..t = (x..t−1, u), with u ∈ {x̂∗t , x∗t }, we combine the above inequality
with the inequality (65) to obtain

|∆Qn(x..t−1)| ≤ max
u∈{x̂∗t ,x∗t }

|∆Qnsub(x..t−1, u)| (90)

≤ max
u∈{x̂∗t ,x∗t }

|Endisc(x..t−1, u)|+
∑

m∈C(n)

wm max
u∈{x̂∗t ,x∗t }

|∆Qm(x..t−1, u)|. (91)

This proves the result for any t ∈ {1, . . . , T − 1}.
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Theorem 4.3. The scenario-tree optimal-value error is bounded by a weighted sum of node dis-
cretization errors as follows:

|∆Qn0 | ≤
∑

n∈N\NT

Wn max
u∈Π

t(n)
i=0 {x̂∗i ,x∗i }

|Endisc(u)|. (92)

Proof. Take an arbitrary t ∈ {1, . . . , T − 1} and n ∈ Nt. Using the inequality (79) in the particular
case for which x..t−1 ∈ Πt−1

i=0{x̂∗i , x∗i } yields

max
v∈Πt−1

i=0{x̂∗i ,x∗i }
|∆Qn(v)| ≤ max

v∈Πt−1
i=0{x̂∗i ,x∗i }

(
max

u∈{x̂∗t ,x∗t }
|Endisc(v, u)|

)
(93)

+
∑

m∈C(n)

wm max
v∈Πt−1

i=0{x̂∗i ,x∗i }

(
max

u∈{x̂∗t ,x∗t }
|∆Qm(v, u)|

)
= max

(v,u)∈Πt
i=0{x̂∗i ,x∗i }

|Endisc(v, u)| (94)

+
∑

m∈C(n)

wm max
(v,u)∈Πt

i=0{x̂∗i ,x∗i }
|∆Qm(v, u)|.

At all nodes n ∈ NT the following holds trivially (cf. Remark 2.1):

max
v∈ΠT−1

i=0 {x̂∗i ,x∗i }
|∆Qn(v)| = 0. (95)

Finally, by defining

βn =

 max
v∈Π

t(n)−1
i=0 {x̂∗i ,x∗i }

|∆Qn(v)| if n ∈ N ∗; (96)

|∆Qn0 | if n = n0, (97)

and
γn = max

w∈Π
t(n)
i=0 {x̂∗i ,x∗i }

|Endisc(w)|, for n ∈ N \ NT , (98)

we see that the sequence {βn : n ∈ N} satisfies the recurrence relation (40)-(41) of Lemma 3.4(b).
Thus, the bound (92) follows directly from (42) applied at the root node.

Bound in terms of worst-case integration errors

We want now to express the bound (92) as a weighted sum of worst-case integration errors in
some function sets. To this end, we first introduce the notion of integration error En(f) at node
n ∈ N \ NT , which represents the error made by using a scenario tree to approximate numerically
the conditional expectation of f(ξt(n)+1) given ξ..t(n) = ζ ..n, where f is an appropriately integrable
function. The node integration error generalizes the node discretization error of Definition 3.2 to
the class of all integrable functions.

In the following, L1(Ξ1;R) denotes the set of all functions f : Ξ1 → R integrable with respect
to the distribution of ξ1 and L1(Ξt+1(ξ..t);R) denotes the set of all functions f : Ξt+1(ξ..t) → R
integrable with respect to the conditional distribution of ξt+1 given ξ..t = ξ..t.

Definition 4.4 (Node integration error). For every t ∈ {0, . . . , T − 1}, we define the integration
error En(·) at node n ∈ Nt as

En(f) = E[f(ξt+1) | ξ..t = ζ ..n]−
∑

m∈C(n)

wmf(ζm), ∀f ∈ L1(Ξt+1(ζ ..n);R), (99)
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if t ∈ {1, . . . , T − 1}, and at the root node

En0(f) = E[f(ξ1)]−
∑

m∈C(n0)

wmf(ζm), ∀f ∈ L1(Ξ1;R). (100)

The concept of integration error naturally leads to the concept of worst-case integration error
Enwc(G) which measures the largest integration error at node n ∈ N \ NT for a non-empty function
set G:

Enwc(G) := sup
f∈G
|En(f)|. (101)

The following function sets of recourse functions are of particular interest to express the bound:

Qn0 =
{
Q1(x0, x

∗
1..; ·) : x0 ∈ {x∗0, x̂∗0}

}
, (102)

and for every t ∈ {1, . . . , T − 1} and n ∈ Nt,

Qn =
{
Qt+1(x..t, x

∗
t+1..; ζ

..n, ·) : x..t ∈ Πt
i=0{x̂∗i , x∗i }

}
. (103)

Corollary 4.5 below expresses the bound (92) by means of worst-case integration errors.

Corollary 4.5. Let Gn, for every n ∈ N\NT , be any function sets satisfying Qn0 ⊆ Gn0 ⊆ L1(Ξ1;R)
and Qn ⊆ Gn ⊆ L1(Ξt(n)+1(ζ ..n);R). The scenario-tree optimal-value error is bounded by a weighted
sum of worst-case integration errors as follows:

|∆Qn0 | ≤
∑

n∈N\NT

Wn Enwc(Gn). (104)

Proof. The worst-case integration error (101) and the node discretization error of Definition 3.2 are
linked as follows:

Enwc(Qn) = max
u∈Π

t(n)
i=0 {x̂∗i ,x∗i }

|Endisc(u)|, ∀n ∈ N \ NT . (105)

Thus, Theorem 4.3 directly yields the right-hand side of (104) with Qn in place of Gn. Moreover, by
definition of the worst-case integration error, we have thatQn ⊆ Gn implies that Enwc(Qn) ≤ Enwc(Gn)
for every n ∈ N \ NT , which completes the proof.

5 Scenario-tree generation

We want now to highlight why the bound (104) carries relevant information about the structure of
the problem, namely, the recourse functions, the constraints and the stochastic process, and how it
can be used to smartly design scenario trees.

To facilitate an intuitive interpretation of the decomposition (51) and of the bound (92), we ex-
amine the special case of a stochastic programming problem for which the constraints of Condition 1
have a unique solution, i.e., Z0 and Zt(ξ..t) are singletons. This case is equivalent to a numerical
integration problem, where the expectation of a function is approximated by a finite sum, since the
equation (1) is no longer relevant, as the supremum is trivial, and only equation (2) remains. The
latter computes recursively the expectation of q(z(ξ..T ); ξ..T ) where z(ξ..T ) denotes the only element
in ZT (ξ..T ). In this setting, the decomposition (51) and the bound (92) are written respectively as

∆Qn0 =
∑

n∈N\NT

Wn Endisc(x
∗
..t(n)) and |∆Qn0 | ≤

∑
n∈N\NT

Wn |Endisc(x
∗
..t(n))|, (106)
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because the optimization errors (30)-(31) equal zero for all nodes and the set Πt
i=0{x̂∗i , x∗i } over

which the maximum is computed in (92) is the singleton {x∗..t}.
From this we draw the following conclusion for the case of a numerical integration problem

solved by scenario trees:

(i) what matters for the control of ∆Qn0 is the control of each node-n integration error En(f) for
f ∈ Qn and where Qn contains a unique function for each n ∈ N \ NT .

The statement (i) provides insight into the way scenario trees should be built for an efficient numer-
ical integration. Before explaining this, we remind the reader that fundamental results in numerical
integration state that the magnitude of the integration error En(f) is linked to the discretization
quality of the points and weights as well as to the variability of the integrand f with respect to the
probability distribution. This variability is measured, for instance, by the standard deviation in the
Central Limit Theorem for Monte Carlo sampling or the Hardy-Krause variation in the Koksma-
Hlawka inequality for quasi-Monte Carlo methods. In any case, an integrand with large variability
with respect to the probability distribution typically leads to large integration error, whereas an
integrand with low (or no) variability leads to low (or no) integration error. Thus, when building
a scenario tree, one should identify nodes n where the variability of the integrand f ∈ Qn is large
and assign to them more children nodes C(n) to reduce the integration error, and conversely, assign
fewer children nodes C(m) to the nodes m for which f ∈ Qm has low variability. In the limit where
f ∈ Qm has no variability, only one node is necessary in C(m) to integrate exactly the function
numerically. We illustrate qualitatively this in Figure 1(b). The structures of the recourse functions
and stochastic process are what determine the variability of each integrand f ∈ Qn; indeed, it is
the variation of f as a map from Ξt+1(ζ ..n) to R as well as the conditional variability of ξt+1 given
ξ..t = ζ ..n that make the expectation in (99) difficult or easy to approximate numerically.

Having established that both the stochastic process and the recourse functions should influ-
ence the construction of a scenario tree under the above simplified setting, we consider again the
general setting of stochastic programming problems where both equations (1) and (2) need to be
approximated by the scenario tree. The difference with the previous setting is the fact that the set
Πt
i=0{x̂∗i , x∗i } is no longer reduced to a singleton, hence the point (i) above is now stated as:

(i)’ what matters for the control of ∆Qn0 is the control of each node-n integration error En(f) for
f ∈ Qn and where Qn is a class of several functions for each n ∈ N \ NT .

Each class Qn includes 2t(n)+1 integrands as it is the cardinality of the set Π
t(n)
i=0{x̂∗i , x∗i }. Since x∗

is not known in practice and x̂∗ depends on the scenario tree, these classes cannot be determined
exactly and, for this reason, we have to consider larger classes Gn that include Qn as in Corollary
4.5. Each class Gn should include Qn as tightly as possible to ensure that Enwc(Gn) is not much larger
than Enwc(Qn) so that the bound remains tight. How far apart the integrands in Qn are is what
makes the inclusion tight or loose and this depends on the structure of the constraints. Indeed, if
the set Zt(n)(ζ

..n) is narrow for some node n, then the decisions obtained with x̂∗ in the realization
ζ ..n cannot fall too far from those obtained with x∗. In this case, the integrands in Qn are not far
apart and the set Gn can be chosen so that it includes tightly Qn. Conversely, if the set Zt(m)(ζ

..m)
is large for some other node m, then the elements in Qm may be far apart and Gm can only be
chosen in a way that includes loosely Qm. This is qualitatively illustrated in Figure 1(c), which
should be analyzed in comparison with the previous situation of Figure 1(b).

We illustrate in the next example that taking into account the structure of the problem naturally
leads to scenario trees with heterogeneous branching suitable to the problem.
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n0

n1

n2

n3

(a)

Qn3

Qn2

Qn1

(b)

Qn3

Gn3

Qn2

Gn2

Qn1

Gn1

(c)

Figure 1: Subfigure (a): Representation of a 3-stage scenario tree with three stage-1 nodes N1 =
{n1, n2, n3} and heterogeneous branching at stage 2. Subfigure (b)-(c): Representation of the
integrands in each class Qn for n ∈ N1 by markers (?, ×, +) in a plane that represents abstractly a
function space of integrable functions. The origin • of the plane is the function with no variability
and the distance from the origin to some function f is proportional to the variability of f . (b)
describes specifically the setting of numerical integration problems for which each Qn includes a
unique integrand and the node with the most variable integrand (n3) has the most children nodes
whereas the node with the least variable integrand (n1) has the fewest children nodes. (c) describes
the setting of stochastic programming problems for which each Qn includes 4 integrands and each
Gn (the gray area) should include Qn as tightly as possible. Integrands in Qn3 are far apart hence
the inclusion Qn1 ⊆ Gn1 is loose, whereas integrands in Qn1 are close to each other so the inclusion
Qn1 ⊆ Gn1 is tight. The most variable integrand is inside the class Gn3 hence n3 has the most
children node, whereas the most variable integrand inside Gn1 is the least variable of the three
classes so n1 is the node with the fewest children nodes.
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Example 5.1. Consider the following 3-stage stochastic programming problem:

max
(y0,y1,y2)∈[0,1]3

{−ay0 + E[−by1 + ξ2y2] : y1 ≤ y0, y1 ≤ ξ1, y2 ≤ y1}, (107)

where ξ1, ξ2 are random variables (possibly correlated) taking values in [0,∞) and a, b are positive
constant. This problem can be interpreted as follows: at stage 0 a volume y0 of storage space
is reserved at cost a; then at stage 1 a volume y1 of a commodity is purchased at cost b from a
wholesaler and stored in the space reserved previously; the wholesale supply available is random
and given by ξ1; finally at stage 2 the commodity is sold to customers at the random price ξ2.

Suppose that the scenario tree contains N stage-1 nodes N1 = {n1, . . . , nN} indexed such
that ζn1 ≤ · · · ≤ ζnN . Let us compute the optimal number of children nodes |C(ni)| for each
i ∈ {1, . . . , N} given by minimizing the bound (104).

The stage-2 recourse function Q̃∗2 and the set Z1(ξ1) of all feasible decisions up to stage 1 are
given by

Q̃∗2(y0, y1; ξ1, ξ2) = −ay0 − by1 + ξ2y1, (108)

Z1(ξ1) = {(y0, y1) ∈ [0, 1]2 : 0 ≤ y1 ≤ min(y0, ξ1)}. (109)

Since the scenario-tree optimal decisions at nodes (n0, ni) necessarily belong to Z1(ζni), we can
define the class of functions Gni as

Gni := {Q̃∗2(y0, y1; ζni , ·) : (y0, y1) ∈ Z1(ζni)}, (110)

which ensures that Qni ⊆ Gni for all i ∈ {1, . . . , N}. Defined this way, these classes also satisfy
Gn1 ⊆ Gn2 ⊆ · · · ⊆ GnN , which in turn implies that En1

wc(Gn1) ≤ En2
wc(Gn2) ≤ · · · ≤ EnN

wc (GnN ), i.e.,
the structure of the constraints is such that the worst-case integration error at node ni increases
with i. Let us derive the closed-form formula for Eni

wc(Gni). The integration error at node ni is

Eni
(
Q̃∗2(y0, y1; ζni , ·)

)
= E[Q̃∗2(y0, y1; ζni , ξ2)|ξ1 = ζni ]−

∑
m∈C(ni)

wm Q̃∗2(y0, y1; ζni , ζm) (111)

= y1

(
E[ξ2|ξ1 = ζni ]−

∑
m∈C(ni)

wmζm
)
, (112)

where at the second equality we consider that the weights {wm : m ∈ C(ni)} are normalized, i.e.,∑
m∈C(ni)

wm = 1, which allows us to remove the constant terms of Q̃∗2. Suppose that we know a
discretization method that generates points and weights {(ζm, wm) : m ∈ C(ni)} for numerically
integrating the functions in Gni such that the integration error takes the form:∣∣∣E[ξ2|ξ1 = ζni ]−

∑
m∈C(ni)

wmζm
∣∣∣ =
V(ξ2|ζni)

|C(ni)|α
, (113)

where V(ξ2|ζni) measures the conditional variability of ξ2 given ζni (this measure can be the stan-
dard deviation, the Hardy-Krause variation, etc., as discussed above) and α > 0 is the rate of
convergence of the method (typically α = 1/2 for Monte Carlo sampling and α ' 1 in some settings
of quasi-Monte Carlo methods; see, e.g., Lemieux [22]). The worst-case integration error Eni

wc(Gni)
is given by

Eni
wc(Gni) = sup

(y0,y1)∈Z1(ζni )
Eni
(
Q̃∗2(y0, y1; ζni , ·)

)
=
ζniV(ξ2|ζni)

|C(ni)|α
. (114)
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Thus, the optimal number of children nodes Mi := |C(ni)| for a total number of K scenarios given
by minimizing the bound (104) is the optimal solution of

min
(M1,...,MN )∈NN

+

N∑
i=1

wni
ζniV(ξ2|ζni)

Mα
i

subject to

N∑
i=1

Mi ≤ K. (115)

The optimal Mi is therefore determined by the value of the product wniζniV(ξ2|ζni); the larger the
product, the more children nodes in C(ni). If the product is close to zero, then only few nodes are
necessary in C(ni) to keep the integration error Eni(·) at almost zero. This will occur if wni ' 0
(i.e., the node ni is negligible in the scenario tree), or ζni ' 0 (i.e., the wholesale supply available
at node ni is close to zero, hence almost no commodity is sold at stage 2), or V(ξ2|ζni) ' 0 (i.e.,
the value of the price ξ2 conditional to ζni is almost not uncertain). It makes intuitively sense that
in any of the three above situations the discretization at ni should be done with few scenarios.

6 Conclusion

As of today, solving a stochastic programming problem within a given range of error requires a
scenario tree of a size that grows fast with the number of stages and the dimension of the random
vectors. We believe that this occurs because current scenario-tree generation methods focus mostly
on approximating the stochastic process, with little or no regard to the structure of the optimization
problem itself, and often restrict their attention to tree structures with regular branching. This
paper aims at showing that scenario-tree generation methods could be improved by also taking
into account the structure of the problem, namely, the objective function and the constraints, and
by tailoring methods to specific classes of problems. The two theorems on the optimal-value error
derived in this paper pave the way to designing such methods.

The first theorem is an exact decomposition of the optimal-value error as a weighted sum of
discretization and optimization errors made at each node of the scenario tree. It shows that an
inappropriate discretization at a node where the recourse function is ill-behaved (e.g., with large
variability) can contribute to most of the total optimal-value error. The second theorem is an upper
bound on the optimal-value error that features only node discretization errors. It shows that the
optimal-value error can be controlled by designing scenario trees suitable for numerically integrating
classes of functions determined by the structure of the problem. We have illustrated in Example 5.1
how the upper bound can be effectively used to derive scenario trees suitable to the problem, and we
have seen that this naturally leads to tree structures with heterogeneous branching. The branching
is denser at nodes where the recourse functions have more variability and sparser at nodes where the
variability is lower. Based on this observation, a new scenario-tree generation approach is developed
and applied to various types of stochastic programming problems in Keutchayan et al. [18].
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