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Abstract. Many methods that have been proposed to solve large-scale MILP problems rely 
on decomposition techniques. These methods exploit either the primal or the dual structure 
of the problem, yielding the Benders decomposition or Lagrangian dual decomposition 
methods. We propose a new and high performance approach, called Benders dual 
decomposition (BDD), which combines the complementary advantages of both methods. 
The development of BDD is based on a specific reformulation of the Benders subproblem, 
where local copies of the master variables are introduced in the proposed subproblem 
formulation and then priced out into the objective function. We show that this method: (i) 
generates stronger feasibility and optimality cuts compared to the classical Benders 
method, (ii) can converge to the optimal integer solution at the root node of the Benders 
master problem and (iii) is capable of generating high quality incumbent solutions at the 
early iterations of the algorithm. We report encouraging numerical results on various 
benchmark MILP problems. 
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1. Introduction

Mixed-integer linear programing (MILP) is used to model a wide range of engineering and financial prob-

lems (Nemhauser and Wolsey 1988). Owing to the importance and inherent complexities of MILP models,

it has been the subject of intense research since the early 1950s (Beale 1965, Jünger et al. 2009, Newman

and Weiss 2013). In this article, we consider MILP problems of the following generic form

min
y,x
{ f>y+ c>x : By≥ b, Wx+Ty≥ h, y ∈Zn

+, x ∈Rm
+} (1.1)

where f ∈Rn, B∈Rk×n, b∈Rk, c∈Rm, W ∈Rl×m, h∈Rl , T ∈Rl×n. We assume that the above problem is

feasible and bounded. A prominent general approach to solve problem (1.1) relies on partitioning techniques

such as the Benders decomposition method (Benders 1962), especially when part of the input data defined

in the program are stochastic (Ruszczyński 1997, Costa 2005, Birge and Louveaux 2011, Rahmaniani et al.

2017a). To solve problem (1.1) with the Benders decomposition (BD) method , we introduce an auxiliary

variable θ and the following master problem (MP)

MP = min
y,θ
{ f>y+θ : By≥ b, θ ≥ θ̄ , y ∈Zn

+} (1.2)

where θ̄ is a lower bound on θ to avoid unboundedness of the problem. The MP, the solution values of

which define lower bounds for (1.1), is solved in a branch-and-cut method. At each integer node of the

branch-and-bound tree, the solution y∗ is fixed in the following dual subproblem (DSP)

DSP = max
α

{(h−Ty∗)>α : W>
α ≤ c, α ∈Rl

+} (1.3)

If the above problem is unbounded, a direction of unboundedness r is chosen and the feasibility cut (h−

Ty)>r ≤ 0 is added to the MP to exclude all infeasible y solutions satisfying (h−Ty)>r > 0. Otherwise, a

feasible solution to (1.1) is identified (thus allowing the upper bound of the algorithm to be updated), and the

optimality cut (h−Ty)>ᾱ ≤ θ is added to the MP. This procedure is repeated until the algorithm converges

to an optimal solution. Due to the impact that the quality of the starting lower bound has on the size of the

branch-and-bound tree generated by the algorithm, optimality and feasibility cuts can also be generated at

fractional nodes of the tree at the beginning of the solution process to rapidly improve the quality of the
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lower bound. Such a strategy has mainly been applied at the root node, see (McDaniel and Devine 1977,

Naoum-Sawaya and Elhedhli 2013, Adulyasak et al. 2015, Gendron et al. 2016, Bodur et al. 2017).

The BD method has been subject of intense research due to its practical importance in handling various

MILP problems, e.g., production routing (Adulyasak et al. 2015), power generation (Cerisola et al. 2009),

healthcare (Lin et al. 2016), logistics (Cordeau et al. 2006), green wireless network design (Gendron et al.

2016), map labeling (Codato and Fischetti 2006), supply chain management (Santoso et al. 2005), invest-

ment planning (Mitra et al. 2016), network design (Rahmaniani et al. 2017b), and so on. It may however

perform disappointingly without the inclusion of some (problem-specific) acceleration techniques, see the

recent literature reviews by Costa (2005), Rahmaniani et al. (2017a), Fragkogios and Saharidis (2018) and

references therein for a complete information. Generally speaking, as highlighted in these reviews, the poor

performance of the BD method is due to its shortfalls from both dual and primal perspectives.

The performance of the BD method, from a dual perspective, depends on the quality of the cuts chosen

to bound the projected term (Holmberg 1990, Crainic et al. 2016, Fischetti et al. 2016). In particular, if the

underlying LP relaxation of the problem is weak and/or the subproblems are degenerated, the algorithm per-

forms poorly because the cuts and the root node bound are very weak (Magnanti and Wong 1981, Van Roy

1983, Sahinidis and Grossmann 1991, Geoffrion and Graves 1974, Cordeau et al. 2006, Rahmaniani et al.

2017b). Thus, effective selection of the Benders cuts has been the main focus of several studies, e.g., Mag-

nanti and Wong (1981), Wentges (1996), Codato and Fischetti (2006), Papadakos (2008), Fischetti et al.

(2010), Contreras et al. (2011), Sherali and Lunday (2013), among others. In more recent studies, strength-

ening the Benders cuts has been performed by making use of valid inequalities (VIs), see e.g., Bodur et al.

(2017) and Rahmaniani et al. (2017b). Lagrangian techniques have also been used to generate alternative

optimality cuts, particularly when the subproblem includes integrality requirements (Cerisola et al. 2009,

Zou et al. 2017). In fact, it has been shown that the cuts obtained from the Lagrangian dual subproblems

are not only valid for the Benders master problem, they are also generally tighter than the classical ones

(Van Roy 1983, Santoso et al. 2005, Mitra et al. 2016).

From a primal point of view, the BD method has no systematic mechanism to generate high quality upper

bounds. Indeed, it has oftentimes been observed that the evolution of the upper bound throughout the BD
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search process stagnates and finding good quality solutions can be quite a challenge, see (Boland et al.

2016). Thus, problem-specific heuristics have been used to generate a pool of high-quality solutions or to

improve the quality of the master solutions obtained, see e.g. Poojari and Beasley (2009), Rei et al. (2009),

Costa et al. (2012), Pacqueau et al. (2012) and sections 6.3 in Rahmaniani et al. (2017a).

Motivated by the important role that the cuts, the root node bound and the incumbent solution play on the

performance of the BD method, we propose a new and high performance decomposition strategy, referred

to as Benders dual decomposition (BDD), to overcome the aforementioned primal and dual shortfalls. The

development of BDD is based on a specific reformulation of the subproblems where local copies of the

master variables are introduced. This reformulation of the subproblems has been used in previous studies

to generate generalized Benders cuts (Geoffrion 1972, Flippo and Rinnooy Kan 1993, Grothey et al. 1999,

Zaourar and Malick 2014, Fischetti et al. 2016, Zou et al. 2017). In the present case, we apply Lagrangian

duality to the proposed subproblem reformulation to price out the coupling constraints that link the local

copies to the master variables. This allows us to impose the integrality requirements on the copied variables

to obtain MILP subproblems, which are comparable to those defined in Lagrangian dual decomposition

(LDD) (Ruszczyński 1997, Rush and Collins 2012, Ahmed 2013). As a consequence of obtaining these

MILP subproblems, we will show that our proposed strategy efficiently mitigates the primal and dual inef-

ficiencies of the BD method. Also, in contrast to the LDD method, BDD does not require an enumeration

scheme (e.g., branch-and-bound) to close the duality gap. Furthermore, our strategy enables a faster conver-

gence for the overall solution process. In summary, the main contributions of this article are the following:

- proposing a family of strengthened optimality and feasibility cuts that dominate the classical Benders

cuts at fractional points of the MP,

- showing that the proposed feasibility and optimality cuts can give the convex hull representation of the

MP at the root node, i.e., no branching effort being required,

- producing high quality incumbent values while extracting the optimality cuts,

- developing numerically efficient implementation methodologies for the proposed decomposition strategy

and presenting encouraging results on a wide range of hard combinatorial optimization problems.
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The reminder of this article is organized as follows. In section 2 we present the proposed decomposition

strategy and in section 3 we present a toy example to illustrate its benefits. In section 4, the developed

implementation methodologies are presented and discussed. The experimental design and computational

results are, respectively, provided in sections 5 and 6. The last section includes our conclusions and a

discussion of future research directions.

2. The proposed BDD method

The primal Benders subproblem, i.e., the primal form of (1.3), is minx{c>x : Wx ≥ h−Ty∗, x ∈ Rm
+}. By

defining y∗ as the current MP solution, without loss of generality, it can be rewritten as

min
x,z
{c>x : Bz≥ b, Wx+T z≥ h, z = y∗, x ∈Rm

+,z ∈Rn
+}. (2.1)

It should be noted that the constraints Bz≥ b are redundant due to the presence of z= y∗. For a given feasible

solution y∗, by solving problem (2.1), the following optimality cut can be derived

θ ≥ c>x̄+(y− z̄)>λ
∗ (2.2)

where x̄ and z̄, represent the optimal solution of the subproblem (2.1) and λ ∗ are the dual multipliers associ-

ated to the constraints z = y∗. If problem (2.1) for y∗ is infeasible, then the following feasibility subproblem

needs to be solved

min
x,z,v
{1>v : Bz≥ b, Wx+T z+ v≥ h, z = y∗, x ∈Rm

+,z ∈Rn
+, v ∈Rl

+} (2.3)

to generate a feasibility cut of the form

0≥ 1>v̄+(y− z̄)>β
∗ (2.4)

where v̄ define the optimal values of the v variables, β ∗ are the dual multipliers associated to the constraints

z = y∗ and 1 is a vector of ones of size l. The optimality and feasibility cuts (2.2) and (2.4) are often referred

to as generalized Benders cuts (GBC) (Geoffrion 1972, Sahinidis and Grossmann 1991, Grothey et al. 1999,

Fischetti et al. 2016). It should be noted that the dual multipliers associated to the equality constraints z = y∗

define a subgradient of the objective function.
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2.1. Strengthening the optimality and feasibility cuts

To strengthen the optimality cut (2.2), we price out the constraints z = y∗ into the objective function using

the dual multipliers λ . By doing so, the following Lagrangian dual problem of (2.1) is obtained

max
λ∈Rn

min
x∈Rm

+,z∈Rn
+

{c>x−λ
>(z− y∗) : Bz≥ b, Wx+T z≥ h} (2.5)

In the interest of brevity, we henceforth use X := {(x,z) ∈Rm
+×Rn

+ | Bz≥ b, Wx+T z≥ h} and F :=
{

y ∈

Rn
+|{By≥ b}

⋂
{Wx≥ h−Ty : for some x ∈Rn

+}
}

to represent the compact form of the feasible region of

subproblem (2.1) and the set of all feasible solutions y to the LP relaxation of problem (1.1). By applying

this relaxation step, integrality requirements can be imposed on any subset of the variables z, given that they

are no longer set equal to y∗ (i.e., a master solution that is not guaranteed to be feasible).

In the following proposition, it is shown that problem (2.5) with z ∈ Zn
+ can be used to produce a valid

optimality cut:

PROPOSITION 1. For any solution y∗ ∈ F, let λ ∗, x̄ and z̄ be optimal solutions obtained by solving the

following max-min MILP problem

max
λ∈Rn

min
(x,z)∈X

{c>x−λ
>(z− y∗) : z ∈Zn

+}, (2.6)

then

θ ≥ c>x̄+(y− z̄)>λ
∗ (2.7)

is a valid optimality cut for the Benders master problem.

Proof. See Appendix A.1.

We observe from the previous proof that, when considering an integer solution y∗ ∈ F
⋂
Zn

+, the opti-

mality cut (2.7) is at most as strong as the classical Benders optimality cut. However, when applied using

a fractional solution to the master problem, the cut (2.7) provides an added advantage which is studied

in the following Theorem. This is an important observation to make, given that the LP relaxation of the

MP is often solved first to quickly obtain valid cuts which enable the Benders method to perform more

efficiently (McDaniel and Devine 1977, Naoum-Sawaya and Elhedhli 2013). The next result reports the

improvement that is obtained regarding the lower bound provided through the use of the optimality cuts

(2.7) when compared to the lower bound provided by (2.2).
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THEOREM 1. Given the dual multiplier λ̂ ∈Rn obtained from problem (2.1), the optimality cut (2.7) is

parallel to optimality cut (2.2) and at least σ ≥ 0 units tighter, where

σ = min
(x,z)∈X : z∈Zn

+

{c>x− λ̂
>z} − min

(x,z)∈X
{c>x− λ̂

>z} (2.8)

Proof. See Appendix A.2.

As a direct implication of Theorem 1, the optimality cuts (2.7) are at least as strong than (2.2). If we use

the dual multipliers obtained from solving subproblem (2.1), then according to Theorem 1 we can lift the

optimality cut by an amount equal to the duality gap of the inner minimization problem. We refer to such

cuts as strengthened Benders cut. If we optimize the Lagrangian problem (2.6) to generate an optimality

cut, then we refer to such cut as Lagrangian cut (Zou et al. 2017).

The same strategy can also be used to strengthen the Benders feasibility cuts (2.4). In this case, the

following Lagrangian dual for problem (2.3) is used to evaluate z = y∗

max
β∈Rn

min
(x,z,v)∈Rm

+×Rn
+×Rl

+

{1>v−β
>(z− y∗) : Bz≥ b, Wx+T z+ v≥ h} (2.9)

Following Proposition 1, it might appear natural to impose integrality requirements on the z variables.

However, given that the constraint set Bz ≥ b may not be satisfied, this approach does not guarantee that a

valid feasibility cut will be obtained. Therefore, in the following proposition, a modified Lagrangian dual

problem is proposed to generate a valid and lifted feasibility cut for the MP.

PROPOSITION 2. For an arbitrary y∗ /∈ F, let β ∗, v̄, ū, x̄ and z̄ be the optimal solution of

max
β∈Rn

min
(x,z,v,u)∈Rm

+×Zn
+×Rl

+×Rk
+

{1>v+1>u−β
>(z− y∗) : Bz+u≥ b, Wx+T z+ v≥ h} (2.10)

then,

0≥ 1>v̄+1>ū+(y− z̄)>β
∗ (2.11)

is a violated valid feasibility cut to the master problem.

Proof. See Appendix A.3.
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From last part in the proof of Proposition 2, it is clear that the proposed feasibility cut dominates the classical

one if the duality gap of the minimization problem is non-zero. Thus, the results of Theorem 1 directly

apply to this case as well.

To conclude this section, we study in Theorem 2 the root node bound of the BD method when the

proposed optimality and feasibility cuts are used. To ease the exposition of the result, we henceforth use

H := {(x,z,v,u) ∈Rm
+×Rn

+×Rl
+×Rk

+| Bz+u ≥ b, Wx+T z+ v ≥ h} to represent the feasible region of

problem (2.10) and Y := {y ∈Rn
+| By≥ b} to indicate the domain of the relaxed y variables.

THEOREM 2. Let ZIP and ZLP
BD be, respectively, the optimal objective value of problem (1.1) and the root

node bound of the Benders MP with the proposed Lagrangian optimality and feasibility cuts, then ZIP = ZLP
BD.

Proof. See Appendix A.4.

From the proof of Theorem 2, one observes that our method is closely related to the LDD method (see

Appendix B for more details on this method). This decomposition approach has been successfully applied in

the context of solving stochastic programs (Ahmed 2013), where it is referred to as scenario decomposition.

As shown in Ahmed (2013), Lagrangian dual decomposition enables a stochastic program to be separated

via the scenarios, allowing lower bounds to be computed more efficiently within a general search process.

In the present case, as demonstrated in Theorem 2, when applied in the context of the Benders algorithm,

this decomposition strategy strengthens the cuts generated while solving the LP in such a way as to close the

gap at the root node. While solving (2.6) and (2.10) each time to optimality to generate the associated cuts

may not be computationally efficient, the previous theoretical results nevertheless provide clear guidelines

defining how Benders cuts can be lifted to improve the quality of the lower bound generated at each iteration

of the algorithm. Furthermore, it should be noted that the proposed cut generation strategy is applicable to

a wider range of problems. Specifically, from the definitions of problems (2.6) and (2.10), it is clear that the

generation of optimality and feasibility cuts is independent of the specific structure of set X . Thus, set X

could include nonlinear constraints and integer requirements on the variables.

3. Example

To illustrate the benefits of the proposed method, consider following toy problem:

min
y∈{0,1}, x≥0

{x : x+15y≥ 8,3x+10y≥ 13,x+10y≥ 7,2x−10y≥−1,2x−70y≥−49} (3.1)
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The optimal solution to this problem is y = 0, which has a cost of 8 units. We solve the LP relaxation

of this problem using the (i) classical, (ii) strengthened and (iii) Lagrangian cuts. The detailed results of

each iterative procedure can be found in Appendix C. In Figure 1, we have graphically depicted the cuts

generated at each iteration of these methods in the (y,θ )-space.

Figure 1 Performance of different cuts in cutting the solution space of LP master problem

In solving the LP relaxation of the master problem with the classical Benders cuts, after 5 iterations the

method converges to the optimal LP solution y= 0.58 and its objective value of 2.4 units. If the strengthened

Benders cuts are used, then the first two iterations of the algorithm generate the same cuts as the classical

ones. The reason for this is that the y solutions for these two iterations are integer and as a result the

Benders cuts are the strongest. At the third iteration, solving the MP produces the solution y = 0.65. For

this solution the associated strengthened Benders cut is parallel to the classical Benders cuts but tighter

by 6.125 units. At this point, the proposed method with the strengthened cuts converges. For the master

solution y = 0.65, the Lagrangian cut provides the convex hull representation of the MP and, consequently,

the algorithm converges to the optimal integer solution. As demonstrated in the previous section, in this

case, while solving the LP relaxation of the MP, the optimal integer solution to the problem (3.1) is obtained.

4. Implementation details

As clearly shown in section 2 and numerically illustrated on a simple example in section 3, the proposed

method reduces the number of required cuts for convergence and significantly tightens the root node bound.

However, this is achieved at the cost of solving one (or several) MILP subproblem(s), which may create
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a numerical bottleneck for the Benders algorithm (especially when solving large-scale optimization prob-

lems). Therefore, in this section, we develop a series of strategies that aim to apply the proposed method in

a computationally efficient manner.

4.1. Multi phase implementation

To alleviate the computational burden of optimizing the Lagrangian dual problem (2.6) for numerous iter-

ations, we propose to implement a three-phase strategy to generate the Benders cuts. This is motivated by

the fact that, at the initial iterations of the Benders algorithm, the master solutions are usually of very low

quality. At this point, the derived cuts provide a poor approximation of the value function at the optimal

region of the problem. In turn, it may not be worthwhile to invest the effort of lifting these cuts. However, as

the Benders algorithm progresses and more and more cuts are added to the MP (thus improving the quality

of the lower bound provided by the MP and guiding the search process towards more promising areas of the

feasible region), then a lifting strategy may be applied to accelerate the convergence of the algorithm. The

proposed multi phase implementation works as follows.

Phase 1. To quickly derive valid cuts, we first solve the LP relaxation of the MP with the classical cuts

(2.2) and (2.4), which is a strategy that was originally proposed by McDaniel and Devine (1977). Given

that this strategy has become one of the main methods used to efficiently apply the Benders algorithm on

numerous applications, see (Rahmaniani et al. 2017a), we thus apply it in this phase of our implementation.

Phase 2. We then generate the strengthened optimality Benders cuts by first fixing the dual multipliers

λ to the optimal values obtained by solving the problem (2.1). Using the obtained λ values, the inner

minimization problem in (2.6) (i.e., the Lagrangean dual subproblem) is then solved to find the values of x̄

and z̄, which are then used to generate a strengthened optimality Benders cuts. Similarly, if the MP solution

is infeasible at this point, a strengthened feasibility cut is generated by first fixing the dual multipliers β to

the optimal values obtained by solving the problem (2.3). Using values β , the inner minimization problem

in (2.10) is then solved to find the values of v̄, ū and z̄, which are then applied to produce a strengthened

feasibility cut. Overall, this second phase starts the lifting process of the proposed cut generation strategy.

Phase 3. In this last phase, Lagrangian cuts are generated. To do so, we heuristically solve the Lagrangian

dual problem (2.6). Therefore, to generate an optimality cut and assuming that a series of values x̄v and z̄v,
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for v = 1,2, . . . , t − 1, have been obtained via the process by which a strengthened cut is generated (i.e.,

solving the inner minimization problem (2.6) for a series of values λ v, for v = 1,2, . . . , t−1), the following

regularized problem is solved to update the dual multipliers λ :

max
λ∈Rn,η∈R1

η− δ

2
||λ t−1−λ ||22 (4.1)

η ≤ c>x̄v +(y− z̄v)>λ ∀v = 1,2, . . . , t−1. (4.2)

The objective function (4.1) seeks to maximize the value by which the cut is lifted (i.e., value η) minus

the distance value
δ

2
||λ t−1− λ ||22. The latter component of the objective function, which defines a trust-

region for the Lagrangean multipliers, is included to stabilize the updating process for a given prefixed value

δ ∈R1
+ that represents the stabilization parameter. It thus enables a new vector λ t of values to be found that

is close to the one obtained in the previous iteration (i.e., λ t−1). As for the constraints (4.2), they provide

an inner approximation of the Lagrangian dual subproblem. Given the new Lagrangian multiplier values

λ t , the inner minimization problem in (2.6) is instantiated and then solved to obtain x̄t and z̄t . At this point,

the constraint η ≤ c>x̄t +(y− z̄t)>λ is added to (4.2) and the updated regularized program is solved. This

process is repeated until either the new multiplier values fail to lift the cut by at least γ% when compared to

the previous iteration, or, a maximum number of iterations (i.e., defined as parameter κ) is reached. Finally,

it should be noted that the same procedure is applied to generate Lagrangian feasibility cuts by simply

interchanging the appropriate programs.

4.2. Partially relaxed subproblems

To further reduce the computational burden of solving one or several MILP subproblems to generate a

single cut, we suggest in this section two relaxation strategies that can be applied. The first strategy applies

the integrality requirements only on a subset of the z variables following the relaxation of the constraint set

z= y∗. We thus partition the variables as follows: z>= [zI,zJ]
> using two sets I and J such that I⊂{1, . . . ,n},

I ⊂ {1, . . . ,n}, I∩J = /0 and I∪J = {1, . . . ,n}, where zI and zJ represent the subvectors of z that include the

variables whose indexes are included in the subsets I and J, respectively. The integrality requirements are

then imposed solely on the variables of the subvector zI . Therefore, the formulation of the cut generation
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problem becomes: maxλ∈Rn
{

λ>y∗+min(x,z)∈X{c>x− λ>I zI − λ>J zJ : zI ∈ Z|I|+}
}

. Given that the integrality

constraints on the variables zJ are relaxed, this problem provides an optimality cut that is weaker than the

Lagrangian cut. However, it remains stronger when compared to the Benders cut. At each iteration of the

Benders algorithm, to define the subsets I and J we apply the following procedure: we initially set I = /0

and J = {1, . . . ,n}; then if a master variable ya (where a ∈ {1, . . . ,n} is the index associated with a variable

in the y vector) takes a fractional value such that ε0 + by∗ac ≤ y∗a ≤ dy∗ae− ε1, where y∗ is the current master

solution and the non-negative values ε0 and ε1 are two preset parameters such that ε0 + ε1 < 1, then a is

removed from J and added to I. Therefore, parameters ε0 and ε1 are used to adjust the width of the fractional

interval that is used to identify the variables on which the integrality restrictions will be imposed.

As a follow-up to the previous approach, a second relaxation strategy is proposed. This strategy, which

is problem specific, is based on the idea of fixing variables in the Lagrangian subproblems. To apply it, we

need to assume that fixing a z variable to its upper limit in the inner minimization problem of (2.6) widens

the solution space, i.e., min(x,z)∈X{c>x : z = y∗} ≥min(x,z)∈X{c>x : z≥ y∗}. Such an assumption can be made

in a wide gamut of applications, particularly in cases where capacity constraints are imposed. When this

assumption is observed, then the following result can be applied:

PROPOSITION 3. Let y∗ be the current master solution and λ̂ be the corresponding dual multiplier

obtained from linear program (2.1). Furthermore, let I′ be a subset of I such that y∗a ≥ uba− ε̃ and λ̂a ≥ υ

for every a ∈ I′ and for given values ε̃ ≥ 0 and υ ≥ 0, where uba is the upper bound on variable ya. Then,

the following restricted Lagrangian dual problem

max
λ∈Rn

{
min

(x,z)∈X :zI∈Z
|I|
+

{c>x−λ
>(z− y∗) : zI′ = ubI′} : λI′ = λ̂I′

}
, (4.3)

can be used in replacement of (2.6) to generate approximate Lagrangian cuts, where ubI′ is the vector of

upper bounds associated with the variables whose indexes are in I′.

Proof. See Appendix A.5

Given that the Lagrangian dual problem needs to be solved several times per iteration, we expect that these

strategies will noticeably enhance the overall numerical performance of the Benders algorithm. However,
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relaxing the subproblems will weaken the optimality cuts derived. Therefore, careful consideration must be

given to the specific values to which the different parameters defining the strategies will be fixed. In the

case of the second strategy, it should be noted that the parameters ε and υ define the conditions by which

the variables whose indexes will be included in subset I′ are chosen. Subset I′ is then used to instantiate the

restricted Lagrangian dual problem (4.3), which is solved to generate the approximate Lagrangian cuts. The

more y variable indexes are added to subset I′ and the more problem (4.3) is restricted, thus reducing the

numerical burden to produce a cut. However, the larger the restriction that is applied and the weaker the cut

that is derived. Clearly, a trade-off between numerical efficiency and cut strength needs to be established

when applying the strategy on a specific application.

4.3. ε-optimal cuts

In many applications finding optimal solutions for the Lagrangian dual subproblems, even when applying

the aforementioned strategies, may not be easy. In our pilot numerical experiments, we observed that closing

the optimality gap from, for example, 1% to 0% is often the most time consuming part of solving a subprob-

lem. Therefore, in this section, we propose to use ε-optimal solutions of the Lagrangian dual subproblems

to generate approximate cuts. The following results shows the validity of this approach:

PROPOSITION 4. Let y ∈ Y and (x̄(ε), z̄(ε)) ∈ X be an ε-optimal solution of the minimization problem

of the Lagrangian dual. Then, the following cut can be derived:

θ ≥ c>x̄(ε)+(y− z̄(ε))>λ
∗− ε ∀y ∈ Y (4.4)

Proof. See Appendix A.6.

4.4. Upper bounding

In this last section, we detail how the cut generation strategy can also be used to improve the upper bound

that is generated throughout the Benders solution process. We first highlight the fact that solving the inner

minimization problem in (2.6) provides an integer z̄ solution, which is feasible for the original problem

(1.1) given the copied constraints in the proposed reformulation (2.5). Therefore, the cut generation process

produces solutions that can be used as incumbents for the overall problem. Thus, the upper bound can be
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easily updated by evaluating the objective value of these solutions, i.e., f>z̄+c>x̄. If this value is lower than

the current incumbent, then the associated solution is used to generate a classical optimality cut as well.

It should be noted that for cases where there are multiple subproblems (i.e., stochastic models), then the

solution from one subproblem may be infeasible for the overall problem given that it may not satisfy all the

constraints in the other subproblems. Moreover, to obtain the objective value of a solution in this case, all

subproblems associated with the solution need to be evaluated. We thus first propose to record the extracted

z̄ solutions in a pool. From this pool we then merely evaluate those solutions which are generated at least

τ times. This is motivated by the heuristic notion that a solution with a higher level of saturation might

correspond to an optimal one. Finally, if the objective value of the solution is already higher than the current

incumbent value, then it can be simply discarded considering that no improvement is possible.

5. Experimental Design

To study whether our method is numerically beneficial, we complement the theoretical analysis presented

in previous sections with an extensive computational study. In this section, we describe the MILP prob-

lems used to conduct our numerical analyses, the general characteristics of the test instances and how the

algorithms were implemented.

5.1. Problems studied and test instances

We test our method on benchmark instances of three different optimization problems from the scientific

literature. Detailed descriptions of these problems can be found in Appendix D. Here, we provide a high

level summary of these problems and instances.

Our first test instances are related to the fixed-charge multicommodity capacitated network design

(FMCND) problem with stochastic demands. This problem naturally appears in many practical applications

(Klibi and Martel 2012) and it has been numerically shown to be notoriously hard to solve (Crainic et al.

2011). In addition, it lacks the complete recourse property, which entails that the generation of feasibility

cuts is necessary to ensure the convergence of the BD method. We have considered 7 classes of instances

(r04 to r10) from the R set, as developed in Crainic et al. (2001). Each class includes 5 instances with

varying cost and capacity ratios.
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Our second test instances are related to the capacitatied facility location (CFL) problem, which was

introduced by Louveaux (1986) and addressed in Bodur et al. (2017), Fischetti et al. (2016) and Boland

et al. (2016) among others. To avoid the generation of feasibility cuts, which do not contribute towards

the improvement of the lower bound generated by the BD method, the complete recourse property can be

enforced via the inclusion of a constraint in the MP. As for the instances, we use the deterministic CAP

instances (101 to 134), which are part of the OR-Library. These instances include 50 customers with 25

to 50 potential facilities. For the stochastic variant, we have used the scenarios generated by Bodur et al.

(2017) where each scenario includes 250 scenarios. It should be noted that the deterministic instances of

this problem are referred to as “CFL” and the stochastic ones as “CFL-S”.

Fianlly, our third set of benchmark instances are associated to the stochastic network interdiction (SNI)

problem proposed by Pan and Morton (2008). It is important to note that this problem is structurally different

from the previous ones, in the sense that there are no fixed costs associated to the master variables in the

objective function. Moreover, due to the presence of a budget constraint, the variable fixing strategy as

detailed in section 4.2 cannot be applied. Regarding the instances, we have considered those which have

been described and used by Pan and Morton (2008), Bodur et al. (2017) and Boland et al. (2016). All

instances have 456 scenarios and 320 binary master variables associated to the same network of 783 nodes

and 2586 arcs. We specifically consider those instances which are part of the classes referred to as “snipno”

3 and 4 (see Pan and Morton (2008) Tables 3 and 4). Each class includes 5 different instances and for each

instance we have considered varying budget limits (i.e., 30, 40, 50, 60, 70, 80 and 90 units).

5.2. Parameter settings and implementation details

All algorithms (both the BDD and Benders methods) are implemented in a branch-and-cut framework,

i.e., a branch-and-bound tree is built and Benders cuts are generated only at the root node and whenever a

potential incumbent solution is found. We apply our proposed strategy exclusively at the root node of the

branch-and-bound tree. To optimize the Lagrangian dual in the LDD method, we use the same technique as

the one previously discussed in section 4.1.

In order to make the implementations simple and easily replicable, we do not employ any specialized

codes or algorithms. Thus, we solve all the derived problems with a general-purpose solver. Accordingly, we
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also avoid incorporating any acceleration technique in our algorithm in order to perform a fair assessment

of our proposed decomposition method versus the classical one.

In all methods, cuts (both feasibility and optimality) are generated by solving each subproblem within

an optimality gap of 0.5% (i.e., ε = 0.5%). Moreover, to generate the Lagrangian cuts for the FMCND

and CFL instances, we apply the variable fixing strategies defined in section 4.2. To provide a thorough

numerical assessment of our proposed decomposition method, we have implemented the following four

variants of the strategy:

- BDD1: uses the strengthened Benders cuts by imposing the integrality requirements on all the copied

variables in the subproblem, i.e., J = /0 and I = {1, ..,n},

- BDD2: uses the strengthened Benders cuts by imposing the integrality requirements on a subset of the

copied variables in the subproblem according to the strategy detailed in section 4.2

- BDD3: similar to BDD1 but also generates Lagrangian cuts,

- BDD4: similar to BDD2 but also generates Lagrangian cuts.

To set the values for the different search parameters described in section 4, we conducted a series of

preliminary experiments over a small subset of the instances and we have chosen the following values for

the parameters in our algorithms: δ = 1
t+1 10−2, κ = 10, γ = 10−1, ε0 = 10−2, ε1 = 10−1, ε̃ = 10−2, τ = 3,

υ = 102, where t is the iteration counter. As for the stopping criteria, an amount of 10 hours was allotted for

the overall solution of the considered problems. It should be noted that this amount included a time limit of

1 hour to optimize and lift the root node bound. The overall optimality gap to terminate the algorithms was

fixed at 1%.

Finally, all programs were coded in C++, using the CPLEX version 12.7 as the optimization solver. The

codes were compiled with g++ 4.8.1 and executed on Intel Xeon E7-8837 CPUs running at 2.67GHz. with

32GB RAM under a Linux operating system and in a single-thread mode. The branch-and-cut algorithm

was also implemented using the CPLEX callable libraries.

6. Computational results

In this section, we quantify the computational benefits of the proposed decomposition methodology when

solving the instances considered. We first analyze the performance and behavior of the various variants of
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our method (i.e., BDD1, BDD2, BDD3 and BDD4). To do so, we assess the quality of the lower and upper

bounds obtained by our variants at the root node when compared with the classical decomposition methods.

We will then evaluate the convergence behavior of our approach and compare its performance with the

state-of-the-art optimization solver CPLEX.

6.1. Computational results at the root node

In Table 1, both the time requirements and the percentages of the root gap with respect to the optimal

solutions are reported for the BD, LDD and the four variants of our method when these strategies are used

to solve all considered benchmark instances. Recall that these experiments were obtained by allotting a

maximum of 1 hour of running time.

We observe that BDD1 and BDD2 tighten the root node bound by more than 4% for FMCND and less

than 1% for the CFL-S and CFL instances. However, they fail to improve this bound for the SNI instances.

This observation can be explained by the fact that, in SNI the duality gap of the subproblems is very small.

Thus, according to Theorem 1, the strengthened optimality cuts are close to the classical Benders cuts.

This being said, we observe that the Lagrangian cuts are very effective in tightening the root node bound.

The most significant improvements are attained for the CFL-S instances, where the average gap at the root

node is reduced to less than 1.5% from 17.81% by using the Lagrangian cuts (see the results of BDD3 and

BDD4 methods). The same type of significant improvements are also observed for the CFL and FMCND

instances. Even in the case of the SNI instances, where the obtained improvements are less significant, the

root node bound is still tightened by approximately 9%. It should be noted that these stronger root node

bounds are achieved at the cost of higher running times. For example, on average, the time requirement of

BDD3 is more than 30 times higher than the BD method for the CFL-S instances. We thus investigate in

section 6.2 if this additional effort at the root node pays off in the overall performance of the algorithm.

Our method, when applied using the Lagrangian cuts, also outperforms the LDD algorithm considering

that it generates much tighter root node bounds in shorter times. These results can be explained by the fact

that our approach effectively integrates the complementary advantages of both the BD and LDD methods,

i.e., an effective search mechanism coupled with the generation of strong cuts. Regarding these results, it
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Table 1 Average Percentage Gap of the Lower Bound at the Root Node from the Optimal Solution in

Different Methods

Prob. Inst.

Benders

decomposition

Dual

decomposition

The proposed BDD method

BDD1 BDD2 BDD3 BDD4

Gap(%) Time(s.) Gap(%) Time(s.) Gap(%) Time(s.) Gap(%) Time(s.) Gap(%) Time(s.) Gap(%) Time(s.)

FMCND

r04 22.48 6.27 5.89 2479.79 19.52 49.46 19.89 43.95 1.64 900.98 2.25 773.49

r05 17.95 46.68 9.82 2859.31 13.17 239.90 13.78 232.09 1.14 2160.62 1.26 2105.21

r06 20.96 336.02 10.73 3349.31 14.63 1026.42 14.86 960.73 9.72 2977.36 8.86 2965.59

r07 18.56 16.19 5.39 3146.00 16.50 70.10 16.82 61.48 3.58 1048.47 4.62 922.98

r08 20.57 87.14 9.38 3067.86 17.35 376.39 17.44 331.62 7.12 2673.75 6.22 2051.87

r09 23.43 596.56 12.85 3876.46 16.99 1683.00 16.93 1832.72 12.81 3681.55 11.80 3571.77

r10 (45.22) (3600.56) (19.37) (3759.72) - - - - - - - -

Mean 20.66 181.48 9.01 3129.79 16.36 574.21 16.62 577.10 6.00 2240.46 5.83 2065.15

CFL-S

101-104 22.63 16.31 5.17 3588.80 21.38 63.49 21.44 53.15 1.03 696.72 0.76 475.54

111-114 8.45 77.79 5.74 3806.09 7.73 310.84 7.73 283.79 1.05 1582.18 0.97 1955.86

121-124 19.23 77.69 12.50 3650.62 18.38 276.00 18.36 231.65 1.51 3003.90 1.38 2762.77

131-134 24.14 69.67 17.77 3674.22 23.76 172.27 23.75 173.34 2.32 2229.10 1.83 3342.80

Mean 18.61 60.37 10.30 3679.93 17.81 205.65 17.82 185.48 1.47 1877.97 1.23 2134.24

CFL

101-104 23.80 0.44 0.00 0.03 23.10 0.98 23.49 0.83 2.89 16.48 9.80 14.73

111-114 11.22 3.11 0.35 0.16 10.57 6.15 10.55 4.83 2.20 174.14 2.20 226.24

121-124 21.29 2.35 0.00 0.07 21.29 1.18 21.07 1.57 3.41 146.26 2.99 154.51

131-134 24.36 1.29 0.00 0.04 24.36 0.83 24.15 1.24 4.31 112.69 6.12 199.56

Mean 20.17 1.80 0.09 0.08 19.83 2.28 19.82 2.12 3.20 112.39 5.28 148.76

SNI

3-30 22.47 128.20 19.59 3751.47 22.42 162.82 22.42 149.65 14.37 1065.85 14.35 1221.82

3-40 26.21 143.18 23.10 3837.34 26.21 182.12 26.21 170.39 17.35 1362.20 17.35 1377.63

3-50 27.53 155.60 23.46 3827.19 27.53 193.94 27.53 177.32 19.20 1303.32 19.30 1367.68

3-60 28.17 164.83 24.42 3890.09 28.17 204.55 28.17 177.51 22.14 1095.66 22.18 1100.10

3-70 28.88 167.15 25.30 3877.71 28.88 204.70 28.88 173.34 21.90 979.65 22.15 964.42

3-80 30.87 179.76 26.95 3786.87 30.85 212.44 30.85 178.77 20.53 1316.73 20.81 1294.92

3-90 33.13 198.12 28.66 3841.09 33.13 226.75 33.13 173.33 23.95 1056.19 24.24 1100.43

4-30 25.15 82.10 21.80 3815.90 25.14 130.79 25.14 129.57 14.49 1089.79 14.88 1047.74

4-40 28.45 90.05 26.99 4015.53 28.45 144.97 28.45 143.55 18.47 1254.47 18.46 1274.26

4-50 30.54 98.57 27.47 3730.99 30.54 161.58 30.54 147.27 21.29 1195.25 22.11 1054.68

4-60 32.07 97.85 30.44 3790.82 32.07 160.11 32.07 152.50 25.30 1007.63 25.06 979.38

4-70 32.61 102.49 32.50 3808.80 32.61 158.54 32.61 142.50 25.24 830.67 24.94 919.71

4-80 33.27 105.02 33.03 3846.78 33.27 169.71 33.27 143.75 22.76 916.80 22.50 916.77

4-90 36.17 108.51 35.90 3832.19 36.16 163.54 36.16 133.21 22.77 1082.82 21.53 1268.45

Mean 29.68 130.10 27.12 3832.34 29.67 176.90 29.67 156.62 20.70 1111.22 20.70 1134.86
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should be noted that the LDD method solves the deterministic variants of the facility location problem (i.e.,

CFL) very quickly. This is explained by the fact that this specific decomposition strategy when applied on

deterministic problems is equivalent to solving the original problem with CPLEX. Considering that the CFL

instances are of small size, they can be solved in a few seconds. Thus, we exclude the CFL instances from

the numerical analyses conducted in the next sections so as to focus on more challenging problems.

Finally, considering the results obtained on the r10 instances, the LDD method reaches an optimality gap

of 19.37% which is much tighter than that obtained by the BD method (45.22%) or our algorithms (that

fail to produce an optimality gap). For these instances, the four proposed BDD variants require more that

1 hour of computation time to solve the LP relaxation. Thus, our algorithm terminates before generating

any strengthened or Lagrangian cuts. However, if the time limit to solve the root node is increased, then

we observe that the proposed BDD3 and BDD4 variants reach a much tighter bound than the LDD method,

as reported in Table 4. We next specifically analyze the impact of generating strengthened and Lagrangian

feasibility cuts and consider how the upper bound obtained at the root node is affected by the use of the

proposed BDD method.

6.1.1. Impact of the proposed feasibility cuts The results reported for FMCND in Table 1 were

obtained using the classical feasibility cuts. We now assess how the performance of our method is affected

when the proposed strengthened and Lagrangian feasibility cuts are generated in the second and third phase

of the algorithm. These numerical results are presented in Table 2. It should be noted that we have only

presented the results for the BDD1 and BDD3 variants (the results obtained for BDD2 and BDD4 being very

similar to them, respectively).

When analyzing the results in Table 2, it is clear that generating strengthened and Lagrangian feasibility

cuts has less impact on tightening the root node bound, when compared to the inclusion of the proposed

optimality cuts. This was to be expected given that feasibility cuts do not bound the θ variables in the master

problem. Moreover, the generation of the proposed feasibility cuts increases the time requirements. For

these reasons, a deterioration of the obtained root node gaps is observed. One can thus anticipate that the

proposed feasibility cuts will be most beneficial for problems where finding feasible solutions is a challenge.

However, given the marginal impact of these cuts in the present case, we henceforth only use the classical

feasibility cuts to solve the FMCND instances.

19

The Benders Dual Decomposition Method

CIRRELT-2018-03



Table 2 Performance of the Proposed Feasibility Cuts versus the Classical Ones

Classical Feasibility Cuts Proposed Feasibility Cuts

BDD1 BDD3 BDD1 BDD3

Gap(%) Time(s.) Gap(%) Time(s.) Gap(%) Time(s.) Gap(%) Time(s.)

r04 19.52 49.46 1.64 900.98 19.36 43.84 1.50 892.88

r05 13.17 239.90 1.14 2160.62 13.87 228.36 1.00 2281.52

r06 14.63 1026.42 9.72 2977.36 14.45 1004.79 10.18 3055.83

r07 16.50 70.10 3.58 1048.47 16.21 74.50 4.18 1034.03

r08 17.35 376.39 7.12 2673.75 17.45 303.84 7.55 2667.76

r09 16.99 1683.00 12.81 3681.55 16.74 1567.31 12.90 3842.33

r10 - - - - - - - -

Mean 16.36 574.21 6.00 2240.46 16.35 537.11 6.22 2295.72

6.1.2. Quality of the upper bound We now assess the quality of the upper bounds obtained from

solving MIP subproblems at the root node when the different BDD variants or the LDD method are used.

The percentage gaps of the obtained upper bounds with respect to the optimal solutions are summarized in

Table 3. It should be noted that the computation times required to obtain these upper bounds were reported

in Table 1. Also, we again recall that, in the case of the r10 instances, no results are reported for the different

BDD variants given that the methods were unable to solve the LP relaxations in the maximum allotted time

of 1 hour.

From Table 3, we observe that the obtained upper bounds by the BDD3 variant are very close to the

optimal solutions. When compared to BDD4, BDD3 finds better upper bounds, which can be explained by the

fact that, in this variant, the integer requirements are imposed on all the copied variables in the subproblems.

It thus generates more integer solutions. Similarly, given their respective definition, BDD3 and BDD4 yield a

much larger pool of integer solutions when compared to the BDD1 and BDD2 variants. Consequently, these

variants greatly improve the quality of the upper bounds generated. Moreover, the upper bounds obtained

by BDD3 and BDD4 (with the exception of the FMCND instances) are much better than those generated by

the LDD method, which clearly indicates that our method provides an improved search mechanism. Last

but not least, the quality of the primal bounds reported in Table 3 shows that the proposed enhancements

significantly alleviate the primal inefficiencies of the BD method.
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Table 3 Average Percentage Gap of the Upper Bound Obtained by Different Method from the Optimal Value

Prob. Inst.
Dual

decomposition

The proposed BDD method

BDD1 BDD2 BDD3 BDD4

FMCND

r04 2.03 24.86 27.70 0.77 3.09

r05 1.74 18.86 22.41 0.36 5.08

r06 2.00 15.13 15.80 3.61 13.58

r07 3.06 29.16 29.99 2.06 5.65

r08 3.29 35.48 35.29 2.59 2.93

r09 5.32 26.01 23.89 4.84 20.79

r10 (22.44) - - - -

Mean 2.91 24.92 25.85 2.37 8.52

CFL-S

101-104 1.34 6.69 6.69 0.07 0.23

111-114 5.37 15.66 15.66 0.06 0.18

121-124 8.61 14.27 14.27 0.08 0.15

131-134 19.00 15.36 15.36 1.41 0.28

Mean 8.58 13.00 13.00 0.40 0.21

SNI

3-30 15.82 24.47 22.71 2.94 3.72

3-40 20.54 28.78 34.13 6.44 6.44

3-50 27.61 40.92 39.50 8.90 7.93

3-60 36.22 46.61 47.13 11.36 11.36

3-70 43.92 44.63 44.41 16.89 16.89

3-80 54.33 46.88 46.43 12.59 12.78

3-90 57.66 47.25 42.23 15.22 19.93

4-30 18.71 37.05 37.05 3.58 5.92

4-40 26.89 51.27 51.27 6.46 6.88

4-50 34.27 61.00 56.89 11.65 11.99

4-60 44.03 78.67 78.67 13.55 13.55

4-70 57.01 78.01 78.01 13.75 14.12

4-80 75.08 82.48 82.48 16.87 17.16

4-90 88.26 76.89 76.89 15.61 16.19

Mean 42.88 53.21 52.70 11.13 11.78
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6.2. Computational results with Branch-and-cut

As previously observed, our method increases the time that is spent at the root node of the branch-and-

bound tree. Thus, to resolve the issue of whether or not it is computationally beneficial to apply the proposed

method, we now compare the variants BDD3 and BDD4 to both the BD and LDD methods by running the

algorithms for a time limit of 10 hours (where at most 5 hours are dedicated to solve the LP at the root

node). These numerical results are summarized in Table 4 where, in addition to the average total running

times and gaps obtained upon completion, the number of solved instances within an optimality gap of 1%

(i.e., column #Sol.) are also reported.

From Table 4, we observe that our algorithms reach much better optimality gaps and solve more instances

in noticeably shorter CPU times. Superiority of the proposed method compared to the classical BD algo-

rithm is without exception. These results are explained by the fact that our method generates considerably

smaller branch-and-bound trees even though a larger amount of time is spent at the root node. Moreover,

the LDD method (due to its slow progression) fails to reach to the same solution quality than both BDD3

and BDD4 obtain at the root node (see Tables 1 and 3).

When comparing the two proposed variants, one observes that BDD3 performs better than BDD4 when

solving the ND and FL instances. These results can be explained by two main reasons. First, when the BDD3

variant is applied, stronger cuts are generated and, due to the integrality requirements being imposed on all

the copied variables in the subproblems, a more extensive pool of integer solutions is obtained. Therefore,

tighter lower and upper bounds are generated at the root node (see Tables 1 and 3). The second reason

explaining these results is that, due to the proposed variable fixing strategy, the time requirements to solve a

subproblem in both BDD3 and BDD4 are quite comparable as a consequence of fixing the indicator variables.

Finally, we observe that BDD4 outperforms BDD3 on the SNI instances. However, the explanation for this

is that the variable fixing strategy, in this case, cannot be applied due to the presence of a budget constraint.

Therefore, when solving the SNI instances, there is an added time requirement that is needed to solve the

subproblems when applying the BDD3 variant, when compared to BDD4.
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Table 4 Comparing the Proposed Decomposition Method to the Classical Primal and Dual Decomposition

Methods

Prob. Inst.
Benders decomposition Dual decomposition BDD3 BDD4

Time(s.) Gap(%) #Sol. Time(s.) Gap(%) #Sol. Time(s.) Gap(%) #Sol. Time(s.) Gap(%) #Sol.

FMCND

r04 6045.47 1.08 5/5 10946.13 2.84 4/5 1233.76 0.88 5/5 952.08 1.06 5/5

r05 21836.23 8.40 2/5 22376.22 1.90 2/5 1994.71 0.81 5/5 2145.48 0.58 5/5

r06 29114.44 11.27 1/5 24045.43 8.30 2/5 17156.79 4.04 3/5 16498.10 3.03 3/5

r07 25743.46 6.03 2/5 22853.89 5.54 3/5 4956.88 0.96 5/5 5350.06 0.98 5/5

r08 36315.18 12.20 1/5 23755.06 7.59 2/5 9188.43 1.57 4/5 8840.45 1.33 4/5

r09 30972.97 14.54 2/5 30686.53 13.81 1/5 23780.16 6.69 3/5 21000.60 5.59 3/5

r10 31445.58 15.73 1/5 33104.18 16.96 1/5 33175.08 11.23 2/5 34025.04 11.10 1/5

Mean 25924.76 9.89 14/35 23966.78 8.14 15/35 13069.40 3.74 27/35 12687.40 3.38 26/35

CFL-S

101-104 36796.25 14.62 0/4 5292.66 1.05 4/4 1100.41 0.75 4/4 645.68 0.64 4/4

111-114 36254.33 8.20 0/4 28951.78 2.27 1/4 2489.96 0.94 4/4 2739.68 0.99 4/4

121-124 36227.73 17.66 0/4 18430.40 1.08 4/4 4278.08 1.04 4/4 4799.71 1.04 4/4

131-134 36294.90 19.87 0/4 31224.45 1.19 2/4 18803.08 1.10 3/4 14031.66 1.26 3/4

Mean 36393.30 15.09 0/16 20974.82 1.40 11/16 6667.88 0.96 15/16 5554.18 0.98 15/16

SNI

3-30 2762.35 1.10 4/5 36471.92 14.67 0/5 2121.51 0.97 5/5 1936.05 1.07 5/5

3-40 30982.14 1.80 0/5 36534.46 18.95 0/5 8639.26 1.10 4/5 9424.96 1.10 4/5

3-50 27298.87 2.47 2/5 36381.64 23.25 0/5 6535.48 1.10 4/5 7963.64 1.06 4/5

3-60 29300.58 2.66 0/5 36466.10 24.93 0/5 4693.26 1.10 4/5 4795.40 1.03 5/5

3-70 32136.92 4.54 0/5 36460.78 29.92 0/5 3896.33 1.06 4/5 4493.22 1.04 5/5

3-80 33614.04 5.32 1/5 36620.18 34.55 0/5 8982.22 1.10 2/5 19887.93 1.14 2/5

3-90 36669.58 8.06 0/5 36496.58 39.25 0/5 16600.52 1.52 3/5 18786.01 1.54 3/5

4-30 2253.55 1.10 3/5 36389.18 15.82 0/5 3060.10 1.10 4/5 2219.62 1.06 5/5

4-40 12231.08 1.10 1/5 36441.30 18.89 0/5 6582.58 1.10 2/5 6281.24 1.10 4/5

4-50 20818.73 2.16 2/5 36291.34 24.05 0/5 7417.27 0.69 5/5 7212.67 1.10 4/5

4-60 21378.10 2.40 1/5 36459.86 28.04 0/5 10257.96 1.10 2/5 9263.12 0.90 4/5

4-70 22587.84 1.72 3/5 36493.82 32.99 0/5 10466.20 0.89 3/5 6048.30 1.10 5/5

4-80 25946.64 1.28 2/5 36648.72 38.75 0/5 4081.00 1.06 5/5 4607.59 0.77 4/5

4-90 21177.38 1.74 1/5 36321.86 41.89 0/5 7831.69 1.10 5/5 14077.00 2.06 3/5

Mean 22796.98 2.67 20/70 36462.70 27.57 0/70 7226.10 1.07 52/70 8356.91 1.15 57/70

6.3. Comparison with a state-of-the-art optimization solver

In this last section, we will assess how our proposed method (i.e., specifically the BDD3 and BDD4 variants)

compares with a state-of-the-art optimization solver (i.e., CPLEX 12.7). To do so, we add a family of
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classical inequalities to the subproblems of the FMCND and CFL-S instances to provide comparable results

to CPLEX which extensively exploits the special structures of these classical problems. These inequalities,

which are redundant in the original models but may help to strengthen the relaxations, take the form of

xk
a ≤ min{dk,ua}ya, for the arcs a in the network. They state that the amount of flow on each connecting

arc a for each customer k has to be lower than the minimum between the customer’s demand dk and the

arc’s capacity ua. It should be noticed that the use of these inequalities does not yield any complication in

our implementations given the presence of both the integer and continuous variables in the subproblems.

Moreover, they do not require a separation and lifting procedure. However, these inequalities are not added

to the extensive formulation, there is an exponential number of them and their inclusion noticeably slows

down the CPLEX solver. The results for this numerical comparison are provided in Table 5. We again report

the average running times, optimality gaps and the number of solved instances by each method.

Before analyzing the results reported in Table 5, a general comparison between these results and those

provided in Table 4 shows that a simple and straightforward use of classical valid inequalities noticeably

improves the performance of our method. The overall insight that can be gained from this comparison is

that the bulk of the literature on the acceleration techniques that have been developed for the BD method

(Rahmaniani et al. 2017a) can be applied here also and one can expect that this would noticeably enhance

the numerical performance of the proposed method.

As for the specific results provided in Table 5, one first observes that the only cases where CPLEX per-

forms better are when it is used to solve the r04 and r07 instances (i.e., CPLEX solves these instances in

less than 10 minutes). For the rest of the instances, CPLEX is not competitive with either the BDD3 and

BDD4 variants, both of which optimally solve a larger subset of the instances and in much shorter computa-

tion times. Moreover, CPLEX fails to solve any of the SNI instances after 10 hours of computational effort,

while the two variants of our proposed method solve more that 74% of these instances in approximately 2

hours. Finally, when directly comparing the two developed variants, one finds that BDD4 generally outper-

forms BDD3 (in terms of the average computation times, gaps obtained and number of instances solved).

Overall, this is explained by the fact that the BDD4 variant is able to solve the root node faster, albeit while
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Table 5 Comparing the Proposed Method to the State-of-the-Art Optimization Solver

Prob. Inst.
CPLEX BDD3 BDD4

Time(s.) Gap(%) #Sol. Time(s.) Gap(%) #Sol. Time(s.) Gap(%) #Sol.

FMCND

r04 258.10 0.57 5/5 410.57 0.44 5/5 385.64 0.71 5/5

r05 1718.28 0.72 5/5 1485.92 0.56 5/5 1168.67 0.56 5/5

r06 16076.07 2.92 3/5 12803.33 0.90 5/5 4897.01 0.61 5/5

r07 699.17 0.89 5/5 1384.93 0.69 5/5 1231.60 0.76 5/5

r08 8529.26 1.72 4/5 7430.11 0.65 5/5 7392.03 0.66 5/5

r09 21741.47 8.28 3/5 17370.16 1.67 4/5 11961.41 1.57 4/5

r10 28973.48 11.52 1/5 28950.08 8.65 1/5 28908.78 6.72 1/5

Mean 11142.26 3.80 26/35 9976.44 1.94 30/35 7992.16 1.66 30/35

CFL-S

101-104 50.09 0.00 4/4 25.14 0.00 4/4 24.15 0.00 4/4

111-114 1252.44 0.05 4/4 647.24 0.01 4/4 421.70 0.01 4/4

121-124 2345.20 0.15 4/4 640.15 0.00 4/4 267.45 0.00 4/4

131-134 1399.11 0.08 4/4 196.53 0.00 4/4 130.22 0.00 4/4

Mean 1261.71 0.07 16/16 377.27 0.00 16/16 210.88 0.00 16/16

SNI

30 36225.72 7.81 0/5 2121.51 0.97 5/5 1936.05 1.07 5/5

40 36168.22 15.60 0/5 8639.26 1.10 4/5 9424.96 1.10 4/5

50 36163.76 19.33 0/5 6535.48 1.10 4/5 7963.64 1.06 4/5

60 36166.40 19.22 0/5 4693.26 1.10 4/5 4795.40 1.03 5/5

70 36155.20 17.61 0/5 3896.33 1.06 4/5 4493.22 1.04 5/5

80 36155.84 20.14 0/5 8982.22 1.10 2/5 19887.93 1.14 2/5

90 36150.18 24.25 0/5 16600.52 1.52 3/5 18786.01 1.54 3/5

30 36183.46 12.00 0/5 3060.10 1.10 4/5 2219.62 1.06 5/5

40 36147.56 17.94 0/5 6582.58 1.10 2/5 6281.24 1.10 4/5

50 36141.76 22.39 0/5 7417.27 0.69 5/5 7212.67 1.10 4/5

60 36136.64 24.92 0/5 10257.96 1.10 2/5 9263.12 0.90 4/5

70 36138.64 42.29 0/5 10466.20 0.89 3/5 6048.30 1.10 5/5

80 36129.26 29.25 0/5 4081.00 1.06 5/5 4607.59 0.77 4/5

90 36133.82 60.29 0/5 7831.69 1.10 5/5 14077.00 2.06 3/5

Mean 36156.89 23.79 0/70 7226.10 1.07 52/70 8356.91 1.15 57/70
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generating weaker cuts when compared to BDD3. However, the inclusion of the valid inequalities mitigates

the latter disadvantage of BDD4 by reducing the overall differences observed between the lower bounds

provided at the root node by the two variants. In turn, when the branch-and-bound process begins, the time

reductions at the root node obtained via BDD4 become the determining factor in providing a more efficient

solution process for our proposed method.

7. Conclusions

In this paper, we have proposed a decomposition method that combines the complementary advantages of

the classical Benders and Lagrangian dual decomposition approaches. It generates cuts that dominate the

classical optimality and feasibility cuts at fractional points of the master problem. The proposed method

also tightens the LP relaxation of the MP problem, which we have shown to be at least as tight as the best

bound obtained by the Lagrangian decomposition method. Another important feature of our method lies in

its enhanced capabilities to find high quality incumbent solutions at early iterations of the algorithm.

We have applied the proposed method to solve a wide range of hard combinatorial optimization instances.

It was observed that, for a reasonable time limit, the proposed method was able to reach much tighter

root node bounds when compared to the Lagrangian dual decomposition approach. Our algorithm was

also capable of finding incumbent solutions very close to the optimal values at the early iterations of the

search process. Furthermore, it was numerically shown that the developed method increases the time spent

on the root nodes when compared to the classical Benders decomposition method. However, this added

effort, which produces significantly tighter bounds at the root nodes, is largely compensated by the fact that

the improved bounds then enable the algorithm to generate smaller branch-and-bound trees to solve the

instances. Finally, we observed that our method also outperforms a state-of-the-art optimization solvers.

Going forward, there are many avenues of research to further improve the proposed algorithm. When

applied on stochastic models, one could first take advantage of parallel computing to solve the subprob-

lems. Furthermore, as originally presented, when our algorithm is used to solve a stochastic model, each

subproblem is defined using a single scenario. However, it has been previously shown that having subprob-

lems defined on clusters of scenarios yields both tighter lower bounds and better incumbent solutions. Thus,
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exploring how different clustering strategies applied on scenarios would impact the overall performance of

our proposed method is definitely an interesting line of inquiry. In addition, there have been numerous stud-

ies dedicated to the improvement of both the Benders and Lagrangian decomposition methods. Investigating

which of these strategies could be incorporated in our method to further enhance its numerical performance

would be of interest. For example, we made use of a simple cutting plane method to update the Lagrangian

multipliers. In this regard, more effective strategies could be employed to significantly improve the pro-

posed algorithm. Last but not least, the proposed method guarantees convergence even when the Benders

subproblems are nonlinear mixed-integer problems. Thus, numerically assessing how the proposed method

would fare against classical algorithms, such as the integer L-shaped and outer approximation methods, is

certainly worthwhile.
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Appendix A: Proof of the Theorems and Propositions

A.1. Proof of Proposition 1

To show the validity of the cut we need to demonstrate that the above inequality holds true for any y ∈ F
⋂
Zn

+, i.e., it

does not cut off any feasible integer solution. We first assume that y∗ is an integer feasible solution, i.e., y∗ ∈ F
⋂
Zn

+.

Accordingly, θ ≥min(x,z)∈X{c>x : z = y∗}= min(x,z)∈X{c>x : z = y∗, z ∈Zn
+} ≥maxλ∈Rn

{
λ>y∗+min(x,z)∈X{c>x−

λ>z : z ∈ Zn
+}
}

for any y∗ ∈ F
⋂
Zn

+ ⊆ F . We thus deduce that θ ≥ λ>y+Q(λ ) for any λ ∈Rn is a valid optimality

cut at any feasible integer solution, where Q(λ ) = min(x,z)∈X{c>x−λ>z : z∈Zn
+}. Thus, if y∗ is fractional and y∗ ∈ F ,

the validity of (2.7) follows from setting λ to an arbitrary maximizer of maxλ∈Rn
{

λ>y∗+Q(λ )
}

.

A.2. Proof of Theorem 1

For a given y∗ ∈ F and λ̂ , we have θ ≥ max
λ∈Rn

{
λ
>y∗+ min

(x,z)∈X :z∈Zn
+

{c>x−λ
>z}
}
≥ λ̂

>y∗+ min
(x,z)∈X :z∈Zn

+

{c>x− λ̂
>z} ≥

λ̂
>y∗+ min

(x,z)∈X
{c>x− λ̂

>z}. This gives following two optimality cuts: (i) θ ≥ λ̂>y+ min
(x,z)∈X :z∈Zn

+

{c>x− λ̂
>z} and (ii)

θ ≥ λ̂
>y+ min

(x,z)∈X
{c>x− λ̂

>z}. We observe that the optimality cut (i) is equal to fixing λ to λ̂ in (2.6) to generate cut

(2.7). While the optimality cut (ii) is equal to the cut that we extract from (2.5) by setting λ = λ̂ . The cuts (i) and (ii)

are in parallel since they have the same slope λ . However, the constant part in the former is larger by an amount equal

to the LP gap of the minimization problem which is equal to σ in (2.8).

A.3. Proof of Proposition 2

We first recall that following two formulations are equal

min
(x,z,v)∈Rm

+×Rn
+×Rl

+

{1>v : Bz≥ b, Wx+T z+ v≥ h, z = y∗}= (4.5)

min
(x,z,v,u)∈Rm

+×Rn
+×Rl

+×Rk
+

{1>v+1>u : Bz+u≥ b, Wx+T z+ v≥ h, z = y∗} (4.6)
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given that u = 0 since Bz≥ b is satisfied through z = y∗ and y∗ is the master solution. Thus, following the same steps

as in Proposition (1), we directly conclude that (2.10) provides a valid cut for any β ∈ Rn. To show that the cut is

violated, notice that 1>v̄ > 0 in (4.5) given that y∗ is an infeasible solution for which there is no x ∈ Rn
+ such that

Wx≥ h−Ty∗. Thus,

0 < min
(x,z,v,u)∈Rm

+×Rn
+×Rl

+×Rk
+

{1>v+1>u : Bz+u≥ b, Wx+T z+ v≥ h, z = y∗}=

max
β∈Rn

min
(x,z,v,u)∈Rm

+×Rn
+×Rl

+×Rk
+

{1>v+1>u−β
>(z− y∗) : Bz+u≥ b, Wx+T z+ v≥ h, z = y∗} ≤

max
β∈Rn

min
(x,z,v,u)∈Rm

+×Zn
+×Rl

+×Rk
+

{1>v+1>u−β
>(z− y∗) : Bz+u≥ b, Wx+T z+ v≥ h, z = y∗}

A.4. Proof of Theorem 2

First, recall that due to the Theorem 6.2 in Nemhauser and Wolsey (1988)

max
λ∈Rn

{
λ
>y∗+ min

(x,z)∈X
{c>x−λ

>z : z ∈Zn
+}
}
≡ max

λ∈Rn

{
λ
>y∗+ min

(x,z)∈conv(X̃)
{c>x−λ

>z}
}

and

max
β∈Rn

{
β
>y∗+ min

(x,z′,v,u)∈H
{1>v+1>u−β

>z′ : z′ ∈Zn
+ : z′ ∈Zn

+}
}
≡ max

β∈Rn

{
β
>y∗+ min

(x,z′,v,u)∈conv(H̃)
{1>v+1>u−β

>z′}
}

where X̃ = X ∩{z ∈ Zn
+}, H̃ = H ∩{z′ ∈ Zn

+} and conv(Θ) represents the convex hull of a given set Θ. Notice

that we use z′ to represent the copied variables in the feasibility problem in order to distinguish them from the copied

variables that are included in the optimality problem. We thus have the following reformulation of the LP relaxation

of the MP,

min
θ ,y∈Y

{
f>y+θ : θ ≥ max

λ∈Rn

{
λ
>y+ min

(x,z)∈conv(X̃)
{c>x−λ

>z}
}
, 0≥ max

β∈Rn

{
β
>y+ min

(x,z′,v,u)∈conv(H̃)
{1>v+1>u−β

>z′}
}}

=

min
θ ,y∈Y

{
f>y+θ : θ ≥ λ

>y+ min
(x,z)∈conv(X̃)

{c>x−λ
>z} ∀λ ∈ Eo, 0≥ β

>y+ min
(x,z′,v,u)∈conv(H̃)

{1>v+1>u−β
>z′} ∀β ∈ Er

}
where Eo and Er are the set of extreme points of the Lagrangian dual programs associated to the optimality and

feasibility cuts. Accordingly, we have the following master formulation

min
θ ,y∈Y

{
f>y+θ : θ ≥ λ

>y+ min
(x,z)∈conv(X̃)

{c>x−λ
>z} ∀λ ∈ Eo, 0≥ β

>y+ min
(x,z′,v,u)∈conv(H̃)

{1>v+1>u−β
>z′} ∀β ∈ Er

}
=

min
y∈Y

{
f>y+ max

λ∈Eo

{
λ
>y+ min

(x,z)∈conv(X̃)
{c>x−λ

>z}
}

: 0≥ β
>y+ min

(x,z′,v,u)∈conv(H̃)
{1>v+1>u−β

>z′} ∀β ∈ Er

}
=

min
y∈Y

{
max
λ∈Eo

min
(x,z)∈conv(X̃)

{ f>y+ c>x+λ
>(y− z)} : 0≥ β

>y+ min
(x,z′,v,u)∈conv(H̃)

{1>v+1>u−β
>z′} ∀β ∈ Er

}
It should be noted that for any function g : U ×V → R, the following inequality between max-min and min-max

operators is always satisfied supu∈U infv∈V g(u;v)≤ infv∈V supu∈U g(z;v). Thus,

min
y∈Y

{
max
λ∈Eo

min
(x,z)∈conv(X̃)

{ f>y+ c>x+λ
>(y− z)} : 0≥ β

>y+ min
(x,z′,v,u)∈conv(H̃)

{1>v+1>u−β
>z′} ∀β ∈ Er

}
≥
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max
λ∈Eo

min
y∈Y

{
min

(x,z)∈conv(X̃)
{ f>y+ c>x+λ

>(y− z)} : 0≥ β
>y+ min

(x,z′,v,u)∈conv(H̃)
{1>v+1>u−β

>z′} ∀β ∈ Er

}
=

max
λ∈Eo

min
y∈Y,(x,z)∈conv(X̃)

{
f>y+ c>x+λ

>(y− z) : 0≥ β
>y+ min

(x,z′,v,u)∈conv(H̃)
{1>v+1>u−β

>z′} ∀β ∈ Er

}
≥

max
λ∈Eo

min
y∈Rn

+,(x,z)∈conv(X̃)

{
f>y+ c>x+λ

>(y− z) : 0≥ β
>y+ min

(x,z′,v,u)∈conv(H̃)
{1>v+1>u−β

>z′} ∀β ∈ Er

}
The last inequality is true given that we have removed the constraint set By ≥ b. One should notice that the last

max-min problem is the Lagrangian dual associated with

min
y∈Rn

+,(x,z)∈conv(X̃)
{ f>y+ c>x : y = z, 0≥ β

>y+ min
(x,z′,v,u)∈conv(H̃)

{1>v+1>u−β
>z′} ∀β ∈ Er},

where y = z is priced into the objective function. This problem is equivalent to

min
(x,z)∈conv(X̃)

{ f>z+ c>x : 0≥ β
>z+ min

(x,z′,v,u)∈conv(H̃)
{1>v+1>u−β

>z′} ∀β ∈ Er}.

Recalling that conv(X̃) = X ∩{z ∈Zn
+}, by expanding conv(X̃), we rewrite the previous minimization problem as

min
(x,z)∈Rm

+×Zn
+

{ f>z+ c>x : Bz≥ b, Wx+T z≥ h, 0≥ β
>z+ min

(x,z′,v,u)∈conv(H̃)
{1>v+1>u−β

>z′} ∀β ∈ Er}.

In the above formulation the feasibility cuts become redundant since any z is guaranteed to satisfy Wx+T z ≥ h. We

thus obtain

min
(x,z)∈Rm

+×Zn
+

{ f>z+ c>x : Bz≥ b, Wx+T z≥ h}

which is equivalent to the original problem (1.1).

A.5. Proof of Proposition 3

We have θ ≥ max
λ∈Rn

min
(x,z)∈X

{c>x − λ
>(z − y∗) : z ∈ Zn

+} ≥ max
λ∈Rn

min
(x,z)∈X

{c>x − λ
>(z − y∗) : zI ∈ Z|I|+ } ≥

max
λ∈Rn

{
min

(x,z)∈X
{c>x− λ

>(z− y∗) : zI ∈ Z|I|+ } : λI′ = λ̂I′
}
= max

λ∈Rn

{
min

(x,z)∈X :zI∈Z
|I|
+

{c>x− λ
>(z− y∗)} : λI′ = λ̂I′

}
≥

max
λ∈Rn

{
min

(x,z)∈X :zI∈Z
|I|
+

{c>x−λ
>(z−y∗) : zI′ = ubI′} : λI′ = λ̂I′

}
. Note that the last inequality is true due to our assump-

tion and the condition imposed on λ̂I′ .

A.6. Proof of Proposition 4

Let us assume that (x̄, z̄) is the actual optimal solution of the subproblem and let Q(x̄, z̄) and Q(x̂(ε), ẑ(ε)) be the

objective value of the minimization problem for the optimal and ε-optimal solutions, respectively. Since the solution

(x̄(ε), z̄(ε)) is ε-optimal, we have Q(x̂(ε), ẑ(ε))−Q(x̄, z̄) ≤ ε or equivalently Q(x̄, z̄) ≥ Q(x̂(ε), ẑ(ε))− ε . We know

that θ ≥ Q(x̄, z̄)+ y>λ ∗ for all y ∈ Y and thus θ ≥ Q(x̂(ε), ẑ(ε))− ε + y>λ ∗ = c>x̂(ε)+ (y− ẑ(ε))>λ ∗− ε for all

y ∈ Y .
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Appendix B: Lagrangian dual decomposition method

Without lose of generality, we rewrite problem (1.1) as follows

min
y,x,z
{ f>y+ c>x : By≥ b, Wx+T z≥ h, z = y, y ∈Zn

+, z ∈Zn
+, x ∈Rm

+}

Pricing out the equality constraint z = y into the objective function using dual multiplier λ ∈Rn results into following

Lagrangian dual problem

max
λ∈Rn

min
y,x,z
{ f>y+ c>x+λ

>(y− z) : By≥ b, Wx+T z≥ h, y ∈Zn
+, z ∈Zn

+, x ∈Rm
+}=

max
λ∈Rn

min
y,x,z
{( f +λ )>y+ c>x−λ

>z : By≥ b, Wx+T z≥ h, y ∈Zn
+, z ∈Zn

+, x ∈Rm
+}

for which the minimization problem can be optimized separately over y and (z,x) variables.

Appendix C: Example

In this part, we provide the details of solving the toy example (3.1) when the strengthened Benders cuts and the

Lagrangian cuts are used.

C.1. Strengthened Benders cuts

Considering the binary variable as the complicating one, we derive the following relaxed LP master problem,

min
y,θ
{θ : 1≥ y≥ 0}, (A.1)

and the following subproblem

min
z,x
{x : x+15z≥ 8, 3x+10z≥ 13, x+10z≥ 7, 2x−10z≥−1, 2x−70z≥−49, z = ȳ, z ∈ [0,1]} (A.2)

where z is a copy of the y variable and ȳ is the current master solution. Solving the master problem (A.1) yields ȳ = 0.

This is an integer point and thus we only generate the (generalized) Benders cut by solving subproblem (A.2) for ȳ= 0.

This gives x = 8 and λ = −15, where λ is the multiplier associated to the constraint z− ȳ = 0. We can thus generate

an optimality cut and updates the master problem (A.1) as follows:

min
y,θ
{θ : θ ≥ 8−15y, 1≥ y≥ 0} (A.3)

In next iteration, solving the master problem (A.3) gives y = 1 and solving the subproblem (A.2) for ȳ = 1 yields

x = 10.5 and λ = 35. Thus, we can generate a new optimality cut and update the master problem as follows:

min
y,θ
{θ : θ ≥ 8−15y, θ ≥−49

2
+35y, 1≥ y≥ 0} (A.4)
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Solving the above master problem we get a lower bound of -1.75 and y = 0.65. We get λ = 5 by solving subproblem

(A.2) for ȳ = 0.65, resulting the Benders cut θ ≥ −0.5+5y. Since the master solution is fractional, we can generate

the strengthened Benders cut by solving the following Lagrangian dual subproblem (obtained from relaxing z = ȳ into

objective function and imposing integrality requirement on the z variable):

min
z,x
{x+5(ȳ− z) : x+15z≥ 8, 3x+10z≥ 13, x+10z≥ 7, 2x−10z≥−1, 2x−70z≥−49, z ∈ {0,1}} (A.5)

the optimal solution of the above problem is z = 1 with objective value of 5.5. This gives the strengthened Benders

cuts θ ≥ 5.5+ 5y which is 6 units tighter than the classical Benders at any master solution. Adding this cut to the

master problem (A.4), we get

min
y,θ
{θ : θ ≥ 8−15y, θ ≥−49

2
+35y, θ ≥ 5.5+5y, 1≥ y≥ 0} (A.6)

with y = 0.125 and the lower bound of 6.125. Executing the next iteration, we observe that this is the best solution that

we can get for the LP relaxation of the master problem.

C.2. Lagrangian cuts

Note from section C.1 that the master problem generates integer solutions for the first two iterations. As we mentioned

earlier, the classical Benders cuts are the tightest at the integer points. We thus start directly from following master

problem to avoid reduplication of the results,

min
y,θ
{θ : θ ≥ 8−15y, θ ≥−49

2
+35y, 1≥ y≥ 0} (A.7)

which gives the lower bound of -1.75 and y = 0.65. To generate the Lagrangian cut, we need to solve the following

Lagrangian dual problem:

max
λ

{
λ ȳ+min

z,x

{
x−λ z : x+15z≥ 8,3x+10z≥ 13,x+10z≥ 7,2x−10z≥−1,2x−70z≥−49,z ∈ {0,1}

}}
(A.8)

To solve (A.8), we use the subgradient method. To initiate the λ value, we solve problem (A.2) with ȳ = 0.65 which

gives λ = 5. For this λ value, we solve the inner minimization problem of (A.8), i.e.,

min
z,x
{x−5z : x+15z≥ 8, 3x+10z≥ 13, x+10z≥ 7, 2x−10z≥−1, 2x−70z≥−49, z ∈ {0,1}}, (A.9)

which gives z = 1 and x = 5.5. Notice that z = 1 is a feasible solution to the original problem and its associated cost

is 10.5 units. We can thus update the upper bound at this step. Given the lower bound of -1.75, upper bound of 10.5,

a step size of 10
49 , ȳ = 0.65, and z = 1, we update the dual multiplier as follows λ = 5− 10

49
(10.5+1.75)
||1−0.65||22

(1−0.65) = 2.5.

We solve again the Lagrangian subproblem (A.9) with the new λ multiplier, i.e.,

min
z,x

{
x−2.5z : x+15z≥ 8,3x+10z≥ 13,x+10z≥ 7,2x−10z≥−1,2x−70z≥−49,z ∈ {0,1}

}
. (A.10)
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This gives x = 8, z = 0, and an optimality cut of θ ≥ 8+2.5y. It is easy to observe that this cut gives the convex hull

representation of the master problem. We thus terminate the subgradient method. Moreover, z = 0 is a new integer

solution which is feasible to the original problem, we can thus update the upper bound value from 10.5 to 8.

Appendix D: The test problems

In this section, we give the mathematical formulation of our test problems.

D.1. Multicommodity Capacitated Network Design

This problem is defined on a directed graph with a set of potential arcs A and the node set N. The goal is to chose

the most appropriate subset of the arcs such that each commodity k, from set K, can flow from its unique origin node

O(k) ∈ N to its unique destination node D(k) ∈ N, while the total cost is minimum. Three parameters are associated to

each arc a ∈ A, i.e., fixed cost fa, capacity ua and flow cost ck
a per unit of flow for commodity k ∈ K. Each commodity

k ∈ K is associated with a stochastic demand characterized by dk
s for each observation of the uncertainty s ∈ S. To

model this problem, we define binary variables ya (equal to 1 if arc a ∈ A is chosen and 0 otherwise) and continuous

variables xa,k
s (to measure the amount of flow on arc a ∈ A under observation s ∈ S for commodity k ∈ K). Thus, the

extensive formulation of this problem is

ND := min
y∈{0,1}|A|, x∈R|A|×|K|×|S|+

∑
a∈A

faya +∑
s∈S

∑
a∈A

∑
k∈K

psck
axa,k

s (B.1)

s.t. ∑
a∈A+(i)

xa,k
s − ∑

a∈A−(i)
xa,k

s = di
s ∀i ∈ N,k ∈ K,s ∈ S (B.2)

∑
k∈K

dk
s xa,k

s ≤ uaya ∀a ∈ A,s ∈ S (B.3)

where A+(i)/A−(i) indicates the set of outward/inward arcs to node i ∈ N, ps is probability of scenario s and di
s is

equal to dk
s
(
−dk

s
)

if i = O(k)
(
D(k)

)
, and 0 otherwise.

D.2. Stochastic Capacitated Facility Location Problem

To define this problem, let N be the set of potential locations for the facilities and M the set of customers. The goal is

to open sufficient facilities to satisfy all the demand at minimum cost. Each customer may be served by one or several

facilities. At each potential location i ∈ N, at most one facility with service capacity of ui can be opened which entails

a fixed cost of fi units. The routing cost from customer j ∈M to facility i ∈ N per unit of flow is ci j. Each customer

j ∈M has a stochastic demand ds
j, where s ∈ S is a specific realization of the uncertainty with probability of ps such

that ∑s∈S ps = 1.
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Let binary variable yi take 1 if a facility is opened at location i ∈ N and 0 otherwise, and let xs
i j ≥ 0 indicate the

amount of flow from customer j ∈ J to facility i ∈ I under realization s ∈ S. We thus use following formulation of this

problem

SFL := min
y∈{0,1}|N|, x∈R|N|×|M|×|S|+

∑
i∈N

fiyi + ∑
s∈S

∑
i∈N

∑
j∈M

psci jxs
i j (B.4)

s.t. ∑
i∈N

xs
i j ≥ ds

j ∀ j ∈M,s ∈ S (B.5)

∑
j∈M

xs
i j ≤ uiyi ∀i ∈ N,s ∈ S (B.6)

∑
i∈N

uiyi ≥max
s∈S

∑
j∈M

ds
j (B.7)

The objective function minimizes the total fixed costs of opening facility plus the expected flow cots. First constraint

set imposes the demand satisfaction for each customer in every scenario. Second constraint set imposes the capacity

restriction on each facility and the last constraint is to add the relatively complete recourse property to the problem.

D.3. Stochastic Network Interdiction

This problem is defined over a directed graph consisting a set of nodes N, arcs A, and a subset of candidate arcs L⊆ A

on which sensors can be installed. The goal is to maximize the probability of catching an intruder that traverses some

path in the network. The first-stage decisions determine whether or not to install a sensor on arc a ∈ L knowing the

probability of the intruder avoiding detection with and without a sensor on this arc (denoted by ra and qa). A scenario

s ∈ S, with probability of ps, corresponds to the origin Os and destination Ds of the intruder. Cost of installing of a

sensor on arc a ∈ D is ca units and there is a total budget of b units to install sensors. In the second-stage the intruder

choses a maximum-reliability path from its origin to the targeted node that maximizes the probability of avoiding

detection. The maximum-reliability path from node j ∈ N to destination Ds is represented by ψ
j

s .

The first-stage binary variables ya takes value of 1 if a sensor is installed on arc a ∈ L and 0 otherwise. The second-

stage variables π i
s, ∀i ∈ N,s ∈ S model the probability of reaching destination Ds from node i without being detected.

The formulation of this problem is as follows:

SNI := min
y∈{0,1}|L|,π∈ℜ

|N||S|
+

∑
s∈S

psπ
Os
s (B.8)

s.t. ∑
a∈L

caya ≤ b (B.9)

π
Ds
s = 1 ∀s ∈ S (B.10)
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π
a+
s −qaπ

a−
s ≥ 0 ∀a ∈ L,s ∈ S (B.11)

π
a+
s − raπ

a−
s ≥ 0 ∀a ∈ A\L,s ∈ S (B.12)

π
a+
s − raπ

a−
s ≥−(ra−qa)ψ

a−
s ya ∀a ∈ L,s ∈ S (B.13)

where a+ and a− indicate the tail and head of arc a. Constraint (B.9) imposes the busted restriction. The remaining

constraints calculate the least probability that the intruder can reach to the destination undetected.
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