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Abstract. The Benders decomposition method is a widely used approach in addressing 

stochastic integer programs with recourse. The available parallel variants of this method are 

based on a synchronized master-slave implementation in which the slave processors wait 

until the master problem is solved, and vice versa. This parallelization may, however, suffer 

from significant load imbalance, particularly when an iteration of the master problem can 

take hours. We thus propose parallelization strategies for the Benders decomposition 

algorithm in a branch-and-cut framework. To further reduce the idle times, we relax the 

synchronization requirements among the master and slave processors. However, the 

combination of the asynchronous communications and branch-and-cut implementation 

results in an algorithm for which we are unable to prove its global convergence and it may 

even underperform the sequential algorithm. Therefore, we study the convergence of the 

algorithm and propose various acceleration strategies to obtain an effective parallel method. 

We conduct an extensive numerical study on benchmark instances from stochastic network 

design problems. The results indicate that our asynchronous algorithm reaches higher 

speedup rates compared to the conventional parallel methods. We also show that it is 

several orders of magnitude faster than the state-of-the-art solvers. 
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1. Introduction

Stochastic integer programming (SIP) offers a powerful tool to deal with uncertainties in planning

problems where the distribution of the uncertain parameters is assumed to be known and often

characterized with a finite set of discrete scenarios (Birge and Louveaux 1997). We consider here

the special two-stage case of SIPs where decisions are made in two stages. In the first-stage the

decision maker must make a decision now, while not knowing the exact outcome of the uncertain

parameters. In the second-stage when the parameters have become known, the decision maker can

take recourse actions to adjust his/her plan accordingly.

SIP models are usually very large in size and very difficult to solve due to the data uncertainty

and their combinatorial nature (Ahmed 2010). However, they exhibit special structures amenable

to decomposition methods (Ruszczyński 1997). Therefore, efforts have been made to design vari-

ous decomposition-based algorithms for these problems, e.g., Benders decomposition (BD) (Ben-

ders 1962) also known as L-shaped method (Van Slyke and Wets 1969), stochastic decomposition

(Higle and Sen 1991), nested decomposition (Archibald et al. 1999), subgradient decomposition

(Sen 1993), scenario decomposition (Rockafellar and Wets 1991), and disjunctive decomposition

(Ntaimo 2010), etc. Among these methods, the BD has become a prominent methodology to address

stochastic programs with recourse (Ruszczyński 1997, Uryasev and Pardalos 2013).

In the BD method the model is projected onto the subspace defined by the first-stage variables.

The projected term is then replaced by its dual counterpart. Accordingly, an equivalent model is

built by iteratively enumerating the extreme points and rays of the dual program, referred to as the

subproblem (SP). At each iteration, one solves a master problem (MP), which initially includes no

constraints except for those imposed on the first-stage variables. The obtained solution is fixed in

the SP. If the resulting SP is feasible, the corresponding optimal extreme point is used to generate

an optimality cut. Otherwise, an extreme ray is extracted to generate a feasibility cut. The generated

cut is then added to the MP and this process repeats until an optimal solution is found. If the

MP is a mixed-integer program, the algorithm is commonly cast into a branch-and-cut (B&C)

framework in order to avoid solving an integer problem from scratch at each iteration. Thus, a

single branch-and-bound tree is build and the cuts are generated at the integer (and possibly some

fractional) nodes (Rahmaniani et al. 2017a).

The SP decomposes by scenario. Solving these scenario SPs at each iteration usually corresponds

to the most time-consuming part of the algorithm, because a large number of scenarios are often

required to properly set the value of uncertain parameters. These SPs are disjoint and can be solved

in parallel. Thus, parallel computing appears very promising to effectively accelerate solution of

SIP problems when the BD method is used (Linderoth and Wright 2003, Li 2013).

2

The Asynchronous Benders Decomposition Method

CIRRELT-2018-07



Although parallel processing saves time, the processors at some point require to exchange infor-

mation and consolidate the results to create work units for next iteration. In the parallel BD

methods of the literature, these points are implemented using synchronized communications among

the processor that solves the MP and the processors that solve the SPs. This, however, causes hav-

ing one or several idle processors at any given time, particularly when an iteration of the MP can

take hours (Yang et al. 2016). In this case, the efficiency of the parallel execution may decrease as

the number of the processors increases. It is thus important to design new parallelization schemes

for the BD method to obtain a high-performing algorithm for the SIPs.

In this article we aim at developing effective parallelization strategies for the B&C implemen-

tation of the BD method. To the best of our knowledge, this is the first article to consider paral-

lelization of the BD method in a B&C framework. It is important to note that in this case, the

resulting parallel algorithm is different from the existing parallel B&C algorithms. In the parallel

B&C methods the main emphasis is on parallelizing the branch-and-bound tree and the cuts are

only to accelerate the convergence (Ralphs et al. 2003, Crainic et al. 2006). While in the parallel

BD methods the main emphasis is on parallelizing the SPs and the cuts are necessary for the

convergence. Thus, the parallelization strategies of the B&C algorithms cannot easily be translated

into parallel BD methods and, we focus on the strategies in which the SPs are optimized in parallel

on various slave processors and the MP is solved sequentially on a single master processor.

To realize our goal, we relax the synchronization requirements among the master and slave

processors. This means that the algorithm waits only for a small portion of the cuts at each (integer)

node of the branch-and-bound tree. Although this significantly reduces the idle times, it results in

an algorithm for which we are unable to prove its global convergence. This happens because, in

absence of a rigid synchronization, the necessary cuts at the integer nodes may not be generated

at the right moment. We thus study this issue and show that with an appropriate B&C design

the algorithm can converge. On the other hand, the asynchronous algorithm may execute a large

amount of redundant work since the MP executes its next iteration with a partial feedback from

the SPs. This can cause serious efficiency issues such that the algorithm may even underperform

the sequential variant. Therefore, we propose various acceleration techniques to obtain an efficient

asynchronous BD algorithm. The main contributions of this article are thus severalfold:

• Proposing an effective Benders-based asynchronous parallel B&C algorithm for two-stage SIP

problems. We also present the synchronized algorithm and an hybrid of the two algorithms;

• Studying the convergence of these algorithms and proposing strategies to accelerate their

numerical performance. In this regard, we revisit some of the classical acceleration techniques

to properly fit into our parallel frameworks and we propose novel ones;
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• Presenting extensive numerical results on benchmark instances to assess the proposed strate-

gies and algorithms. We provide guidelines on how to properly use the parallelization tech-

niques and discuss various fruitful research directions.

The remainder of this article is organized as follows. In section 2, the problem of interest and the

sequential BD algorithm are presented. In section 3, we classify and review parallel BD methods.

We present our synchronized, asynchronous, and hybrid parallel algorithms in sections 4, 5, and

6, respectively. We discuss the implementation details and numerical results in sections 7 and 8.

Finally, conclusions and future remarks are summarized in the last section.

2. The Benders Decomposition Method

In this section, we first recall the two-stage stochastic problem of interest. Then, we present a

sequential BD algorithm to solve it.

2.1. Two-Stage Stochastic integer programming

In two-stage stochastic programming, the uncertainty is observed only once and decisions are made

before and after observing the uncertainties. The common practice is to approximate the probability

distribution of random variables by a discrete probability distribution with a finite support. This

gives a finite set of scenarios, each representing a possible realization of the random events. Given

the scenario set S and occurrence probability ρs > 0 for each s ∈ S such that
∑

s∈S ρs = 1, a

canonical representation of a two-stage stochastic program is:

z∗ := min
y
{f>y+

∑
s∈S

ρsQ(y, s) : By≥ b, y ∈Y} (1)

where for each scenario s∈ S

Q(y, s) = min
x
{c>s x :Wsx≥ hs−Tsy, x∈X} (2)

with f ∈Rn, B ∈Rk×n, b∈Rk, cs ∈Rm, Ws ∈Rl×m, hs ∈Rl, Ts ∈Rl×n. Here, X ⊆Rm and Y ⊆Rn

are nonempty closed subsets which define the nature of the x and y decision variables in terms

of sign and integerality restrictions. In this article we assume that Y = Zn+ and X =Rm+ . In this

program, y represents the first-stage decisions and x represents the second-stage decisions. We

thus seek a feasible solution that minimizes the first-stage cost f>y plus the expected cost of the

second-stage decisions.

2.2. Sequential Benders decomposition method

For a tentative value of the first-stage variables ȳ, the recourse problem Q(ȳ, s) is a continuous

linear program. Given a dual variable α associated with constraint Wsx ≥ hs − Tsȳ, the dual of

Q(ȳ, s) is

(SP (ȳ, s)) Q(ȳ, s) = max
α
{(hs−Tsȳ)>α : Ws

>α≤ cs, α∈Rl+} (3)
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The above program is either unbounded or feasible and bounded. In the former case, the ȳ solution

is infeasible and thus there exists a direction of unboundedness rq,s, q ∈ Fs that satisfies (hs −

Tsy)>rq,s > 0, where Fs is the set of extreme rays of (3). To assure the feasibility of the y solutions,

we need to forbid the directions of unboundedness through imposing (hs − Tsy)>rq,s ≤ 0, q ∈ Fs,

on the y variables, which gives

z∗ = min
y∈Zn+
{f>y+

∑
s∈S

ρsQ(y, s) : By≥ b, (hs−Tsy)>rq,s ≤ 0 ∀s∈ S, q ∈ Fs} (4)

In the latter case, the optimal solution of the SP is one of its extreme points αe,s, e ∈Es, where

Es is the set of extreme points of (3). We can thus rewrite program (4) in an extensive form by

interchanging Q(y, s) with its dual, i.e., SP (y, s)

min
y∈Y

{
f>y+

∑
s∈S

ρsmax
e∈Es
{(hs−Tsy)>αe,s} : (hs−Tsy)>rq,s ≤ 0 s∈ S, q ∈ Fs

}
(5)

where Y = {y :By≥ b, y ∈Zn+}. If we capture value of the inner maximization in a single variable θs

for every s∈ S, we can obtain the following equivalent reformulation of (1), called Benders master

problem (MP):

MP (E1, ...,E|S|;F1, ...,F|S|) := min
y∈Y

f>y+
∑
s∈S

ρsθs (6)

(hs−Tsy)>αe,s ≤ θs s∈ S, e∈Es (7)

(hs−Tsy)>rq,s ≤ 0 s∈ S, q ∈ Fs (8)

Enumerating all the extreme points Es and extreme rays Fs for each SP s∈ S is computationally

burdensome and unnecessary. Thus, Benders (1962) suggested a delayed constraint generation

strategy to generate the optimality (7) and feasibility (8) cuts on the fly. In the classical BD

method, the MP is solved from scratch at each iteration. However, nowadays, this method is usually

implemented in a B&C framework to avoid solving a MP at each iteration (Naoum-Sawaya and

Elhedhli 2013, Rahmaniani et al. 2017b). Moreover, the LP relaxation of the MP is often solved

first to quickly tighten the root node which enables the Benders method to perform more efficiently

(McDaniel and Devine 1977). Algorithm 1 presents the pseudo-code of this algorithm.

The algorithm is applied in two phases. It first starts with solving the LP relaxation of the

MP which initially includes no optimality and feasibility cuts (lines 1 and 2). Thus, for a certain

number of iterations, it sequentially solves the MP and SPs to generate optimality and feasibility

cuts. In the second phase, a branch-and-bound tree is created (line 3), where the root node is the

MP with the generated cuts at the first phase. At each iteration, the algorithm selects and solves a

node from the pool L (lines 5 and 6). If the obtained solution is fractional and the node cannot be

5

The Asynchronous Benders Decomposition Method

CIRRELT-2018-07



Algorithm 1 The sequential Branch-and-Benders-cut method

1: Create the MP which is the LP relaxation of program (6)-(8) with Es = ∅ and Fs = ∅, ∀s∈ S
2: Iteratively solve the MP and add cuts

3: Add the obtained MP into tree L, set UB =∞, LB =−∞, and εopt to the optimality tolerance

4: while UB−LB > εopt and L 6= ∅ do

5: Select a node from L

6: Solve this node to get an optimal solution ȳ with objective value of ϑ∗

7: if node was infeasible or ϑ∗ ≥UB then

8: Prune the node and go to line 4

9: if ȳ is integer then

10: while a violating cut can be found and the ȳ is integer do

11: for s∈ S do

12: Solve SP (ȳ, s)

13: if SP (ȳ, s) was infeasible then

14: Add a feasibility cut and go to line 16

15: else

16: Extract the optimal extreme point es

17: Add new optimality cut(s) using the extreme points obtained in line 15

18: Solve this node again to get an optimal solution ȳ with objective value of ϑ∗

19: if node was infeasible or ϑ∗ ≥UB then

20: Prune the node and go to line 4

21: if ȳ is integer then

22: Set UB = min{UB,ϑ∗}, prune the node, and go to line 4

23: Set LB as the minimum objective values of the nodes in L

24: Choose a fractional variable from ȳ to branch

25: Create two nodes and add them to L.

pruned (line 7), a branching occurs to create and add two new nodes to the pool (lines 24 and 25).

If the node cannot be pruned (line 7) and its solution is integer (line 9), the algorithm iteratively

adds cuts until it can either prune that node, the solution becomes fractional, or no more violated

cut can be found (lines 10 to 20). This process (lines 5 to 25) repeats until the bounds collide or

the node pool becomes empty. Note that in line 22 the upper bound is updated, i.e., the potential

incumbent is accepted, if the ȳ is an integer solution that satisfies all the Benders cuts.

Our developments in this article are based on Algorithm 1, which we refer to as the Branch-and-

Benders-cut (B&BC) method. Various studies have been developed to accelerate the BD algorithm.
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To avoid burdening this article, we refer the reader to Rahmaniani et al. (2017a) for a complete

treatment of this topic.

3. Parallelization Strategies and Previous Work

The BD method lends itself readily to parallelization as it creates a MP and many disjoint SPs.

Thus, efforts have been made to take advantage of parallel computing in accelerating this method.

To the best of our knowledge, all the existing parallel variants of this method follow the master-slave

parallel programming model. We classify and review such methods in this part.

3.1. Master-slave parallelization strategies

The existing parallel BD method can be summarized as follows: The MP is assigned to a processor,

the “master”, which also coordinates other processors, the “slaves”, which solve the SPs. At each

iteration, the solution obtained from solving the MP is broadcast to the slave processors. They then

return the objective values and the cuts obtained from solving the SPs to the master and the same

procedure repeats. Such master-slave parallelization schemes are known as low-level parallelism as

they do not modify the algorithmic logic or the search space (Crainic and Toulouse 1998).

In many cases, the number of the processors is less than the number of the SPs and some SPs

may be more time consuming than others. Therefore, it is important to take into account how

work units are allocated to the processors to avoid having idle processors. To create work units for

next iteration, information must be exchanged among the processors. In a parallel environment,

this necessitates having some sort of communication to share information. The type of communi-

cations strongly influences the design of parallel BD algorithms. For example, if communications

are synchronized, the only difference between the parallel algorithm and the sequential one lies

in solving the SPs in parallel. When communications are asynchronous, the processors are less

interdependent. After broadcasting each MP solution, the master processor waits only for a subset

of the cuts before re-optimizing the MP. For this reason, some SPs may remain unsolved which

results in having a pool of unevaluated SPs. On the other hand, the slave processors continuously

evaluate SPs. As a result, many cuts might be available when the master processor requests cuts.

Therefore, it is important to decide: when to solve the MP, which solution to use in generating

cuts, which SP to solve now, which cut to apply to the MP? We thus define a three-dimension

taxonomy, depicted in Figure 1, that captures all these factors.

• Communication : defines whether the processors at each iteration stop to communicate

(synchronous) or not (asynchronous);

• Allocation/Scheduling : determines how the SPs and the MP are assigned to the processors

and when they are solved. These decisions can be made either in a dynamic (D) or static

(S) fashion. In the former, the decisions regarding when and where to solve each problem are
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Figure 1 Taxonomy of the master-slave parallel Benders decomposition methods

taken during the course of the algorithm. In the latter, the decisions are made beforehand.

Thus, S/D, for example, means static allocation and dynamic scheduling;

• Pool Management implies the strategies used to manage the pool of solutions (denoted

by S1, ..., SI) and the pool of cuts (denoted by C1, ...,CJ), where I and J are the number of

possible strategies to manage each pool, respectively.

A combination of various alternatives for these components yields a parallel BD algorithm.

Proper strategies in each dimension need to be defined such that the overall idle times and amount

of redundant work is minimized.

3.2. Previous work

Although parallelization of the BD method seems natural, number of the existing parallel variants

of this method are very limited. This is due to the interdependency of MP and SPs, i.e., MP needs

feedback from SPs before being able to execute its next iteration and vice versa. Moreover, due

to dependency of this framework on having multiple SPs, most of the parallel BD algorithms are

developed for stochastic problems. However, since solving SPs is significantly time consuming, it has

proven effective in various cases (Ariyawansa and Hudson 1991, Wolf and Koberstein 2013, Tarvin

et al. 2016). The literature discusses some of the strategies and algorithmic challenges arising from

this parallelization approach.

Dantzig et al. (1991) considered a dynamic work allocation strategy in which the next idle

processor gets the next SP based on a first-in-first-out strategy until all the SPs are solved and

the MP can be recomputed with the new cuts. The efficiency of this parallel algorithm did not

exceed 60% even on machines with 64 processors. Similarly, Li (2013) observed that dynamic work

allocation is superior to static work allocation, because it reduces idle times and also it saves

executing extra work. For example, if a SP is infeasible, the evaluation of the SPs remaining in the

queue will be terminated and the feasibility cut generation scheme will be launched.
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Nielsen and Zenios (1997) exploited the structural similarities of the SPs by applying an interior

point algorithm on a fine-grained parallel machine. They decided to sequentially solve the MP to

optimality from scratch at each iteration because it can easily be handled by means of an interior

point method. Vladimirou (1998) implemented a partial-cut aggregation strategy to reduce the

communication overheads.

In some studies the decomposition has been modified to better suit the parallelization scheme.

Dempster and Thompson (1998) proposed a parallel nested algorithm for multi-stage stochastic

programs. The authors used stage aggregation techniques to increase the size of the nodes and

therefore the time spent on calculations relative to the time spent communicating between proces-

sors. In a similar spirit, Chermakani (2015) observed that when the number of SPs is considerably

larger than the number of available processors, so that some SPs must be solved sequentially, it

may be better to aggregate some of them. Latorre et al. (2009) modified the decomposition scheme

for multi-stage stochastic programs such that the subsets of nodes assigned to each SP may over-

lap. This, unlike former studies, allows to noticeably reduce the dependency among SPs at each

iteration, because they can be solved at the same time.

All the reviewed studies implement a synchronized parallelism. Moritsch et al. (2001) proposed

an prototype for an asynchronous nested optimization algorithm. However, no specific strategy

or numerical results were presented. Linderoth and Wright (2003) implemented an asynchronous

communication scheme in which the MP is re-optimized as soon as a portion of the cuts are

generated. Testing this algorithm on LP stochastic programs with up to 107 scenarios, the authors

observed a time reduction up to 83.5% on a computational grid compared to the sequential variant.

The speedup rates of the low-level parallelizations are often limited. Pacqueau et al. (2012)

observed that solving SPs accounts for more than 70% of the total time requirement, while they

merely observed an speedup ratio up to 45% with 4 processors. Furthermore, low-level parallelism

improves the efficiency if the MP solving does not dominate the solution process. Yang et al. (2016)

observed that the benefit of parallelism fades away with the scale of the problem because the

computational effort is dominated by solving the MP.

Some of the common knowledge for the sequential algorithm may not apply to its parallel

variants. For example, Wolf and Koberstein (2013) pointed out that the single-cut version benefits

from parallelization more than the multi-cut version because more SPs need to be solved in the

former case. They also observed that the single-cut method may outperform the multi-cut variant

because it requires less cuts in general although it executes a larger number of iterations.

To conclude this part, we summarize the literature in Table 1. We observe that the litera-

ture on parallel BD algorithms is sparse. Few studies consider integer programs and no one has
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Table 1 Summary of the Benders-based parallel algorithms

Reference
Problem class Implementation Communication Work allocation Scheduling Pool management
LP MIP Classic B&C Syn. Asyn. Dynamic static Synamic Static Solution Cut

Chermakani (2015) + + + + +
Dantzig et al. (1991) + + + + +

Dempster and Thompson (1998) + + + + +
Latorre et al. (2009) + + + + +

Li (2013) + + + + +
Linderoth and Wright (2003) + + + + + + +

Moritsch et al. (2001) + + + + + +
Nielsen and Zenios (1997) + + + + +

Pacqueau et al. (2012) + + + +
Vladimirou (1998) + + + + +

Wolf and Koberstein (2013) + + + + + +
Yang et al. (2016) + + + + +

implemented the parallel algorithm in the B&C format. Moreover, only two studies consider asyn-

chronous communications and these are developed for linear continuous problems. Also, we realized

that synchronized parallelism is suitable if the MP can be solved quickly and the SPs constitute the

major computational bottleneck of the algorithm. Thus, the reviewed strategies are not directly

applicable to develop an efficient parallelization of the BD method when an iteration of the MP

can take hours.

4. Synchronized Parallel Benders Decomposition Algorithm

In the parallel synchronous version of Algorithm 1, each time the MP finds a new solution to

generate cuts, it is broadcast to all other processors. The master processor waits for the slave

processors to solve their assigned SPs. When the current solution is evaluated, the cuts are added

to the MP. Then, the master processor continues with the next iteration until it finds another

appropriate solution to generate cuts for which the same process is repeated. Thus, the only

difference of this parallel algorithm with the sequential one lies in solving the SPs in parallel, i.e.,

the for-loop in line 11 of Algorithm 1.

To assign the SPs to the processors, given |P| slave processors and |S| scenario SPs, we group SPs

and assign each group to a processor such that each processors receives a roughly equal number of

SPs. This follows from the fact that in two-stage stochastic programming, the SPs have usually the

same level of resolution difficulty. Thus by equally distributing them among the slave processors,

load-balancing strategies are not required. In addition, we try to assign similar SPs to a processor,

because this helps to more effectively take advantage of the re-optimization tools of our LP solver.

The similarity is measured as the Euclidean distance of random parameters.

4.1. Cut aggregation

When the number of SPs is larger than number of the first-stage variables, it is not numerically the

best strategy to add to the MP a cut per SP as in line 17 of Algorithm 1 (Trukhanov et al. 2010).

Thus, we group the SPs into |D| clusters using the k-mean++ algorithm (Arthur and Vassilvitskii

2007), where D is the set of clusters with cardinality |D|. Note that the number of SPs in each
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cluster may not be equal. Then, for each cluster we define a single recourse variable and aggregate

the generated cuts in that cluster into a single cut.

4.2. Upper bound from fractional points

The upper bounds obtained from fractional master solutions (e.g., line 2 of Algorithm 1) are not

valid for the original problem. Due to high importance of the upper bound value in pruning nodes

of the branch-and-bound tree, we suggest a practical strategy to extract valid incumbent values

from fractional solutions. This strategy requires the following assumptions: (i) fi ≥ 0, (ii) for a

given feasible ȳ, ŷ is also feasible if ŷi ≥ ȳi for all i∈ {1, ..., n}, and (iii) Q(ȳ, s)≥Q(ŷ, s), s∈ S.

Proposition 1. Given a feasible fractional master solution ȳ, i.e., ȳ ∈ Y
⋂
s∈S{Wsx≥ hs−Tsȳ,

for some x∈Rm+} and the associated recourse costs ν∗s for every s∈ S, a global upper bound can be

obtained from f>dȳe+
∑

s∈S ρsν
∗
s , where de is a roundup function.

Proof. See Appendix A.

4.3. Cut generation

Conventionally, generating cuts at fractional nodes of the B&BC algorithms, except for the root

node, is ignored. This is, to a very large extent, due to the excessive time required to generate them

(Botton et al. 2013). However, in parallel B&BC methods we have more computational power at

disposal. Thus, we study some strategies to generate cuts at fractional nodes of the branch-and-

bound tree that we refer to as cut generation strategies.

The first strategy is to generate Benders cuts at the fractional nodes. Accordingly, we generate

cuts for the first Γ fractional nodes, where 0 < Γ ≤∞ and 0 being the root node for which we

always generate cuts. There are two possibilities at each fractional node: (i) generate at most one

round of cuts per node or (ii) call upon the cut generation module as long as the local bound at

the current node improves by more than τ%.

The second class of strategies rounds the fractional solutions to derive integer ones which can

be used to obtain valid upper bounds and cuts. Specifically: (i) round the fractional values to the

closest integer point; (ii) round upward any value greater than λ and downward otherwise, where

λ is a positive digit in [0,0.5); (iii) solve a restricted MILP program to round the fractional values.

This problem is derived by considering the extensive formulation for a small subset of scenarios

and fixing variables to 1 if their current value is greater than 1−λ and to 0 if it is less than λ̂.

Many of the dispatched solutions to the slave processors are infeasible. Thus, the last strategy

revolves around a repair heuristic to restore the feasibility of such solutions. In many applications

feasibility of the solutions satisfies the following monotonicity property: given a feasible solution ȳ,

ŷ is as well feasible if ŷi ≥ ȳi for i∈ {1, ..., n}. The repair heuristic thus solves a restricted version of
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the problem with objective function of 4(ȳ) :=
∑

i∈{1,...,n}(1− ȳi)yi, where variables are bounded

from below by their current value, i.e., y ≥ ȳ, to maintain the structure of current solution and

solve this problem faster.

4.4. Cut management

The B&BC method, particularly with the cut generation strategies, may generate many cuts which

are not all worth adding to or keeping in the master formulation. Thus, a cut corresponding to a

fractional solution is added to the master formulation if its relative violation (the absolute violation

of the cut divided by the 2-norm of the cut coefficients) is at least 10−3, otherwise it is discarded.

Cut removal can computationally be expensive as it disturbs our LP solver, i.e., CPLEX. Thus,

we execute the following routine only following the termination of the first phase to identify the

dominated cuts. At iteration t, cut (hs − Tsy)>αts is generated to primarily bound the recourse

problem s at solution ȳt. Following a heuristic notion, if there is another generated cut (hs −

Tsy)>αjs, such that j 6= t, that bounds the recourse variable θs tighter at ȳt, i.e., h>s (αjs − αts) +

(αts − αjs)>Tsȳt ≥ 0 , it flags the possibility of removing cut (hs − Tsy)>αts without deteriorating

the approximated value function. We apply the same procedure for the feasibility cuts. Note that

executing this test for all y ∈ Y would yield an exact method to identify dominated cuts (Pfeiffer

et al. 2012). In the second phase, our solver shall remove any cut that might become a slack.

5. Asynchronous Parallel Benders Decomposition Algorithm

The synchronization requirement between master and slave processors increases the overheads

due to the excessive idle times. This is particularly evident when solving any of the problems is

noticeably more time consuming than others. A natural way to overcome this issue is to loosen the

synchronization requirement among the master and slave processors. To achieve this, the master

processor is required to wait only for γ|S|% of the cuts from slave processors before executing its

next iteration (i.e., resolving the MP in the first phase or exploring the tree in the second phase),

where 0≤ γ ≤ 1. However, for any γ < 1, the B&BC method may fail to converge and also, it may

increase the amount of redundant work such that the parallel algorithm might underperform the

sequential algorithm. These are the main issues in developing an effective asynchronous parallel

Benders algorithm which we address them in this section.

5.1. Convergence

To ensure convergence of the B&BC method, the inner while-loop in Algorithm 1 cannot be

stopped prematurely. Otherwise, an incumbent solution might be accepted in line 22 which does

not necessarily satisfy all the Benders cuts. For this reason, the asynchronism may compromise

the convergence of the algorithm as it applies only a subset of the cuts at each iteration of the
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while-loop. In fact, the applied cuts (which can be zero cuts based on the γ value) may not affect

the current integer solution and thus, resolving the associated node in line 18 can cause the algo-

rithm to break the loop. While the cuts which are not yet generated may override the current node

solution by changing it to a fractional solution, rendering it infeasible, generating another inte-

ger solution or changing its cost. Therefore, these uncertainties regarding the potential incumbent

solutions need to be taken into account in order to maintain the global convergence.

To cope with this, we use two techniques. First, we make sure that the global upper bound is

updated only when a reliable value is obtained, e.g., all SPs associated to a potential incumbent

solution have been evaluated. Second, to overcome the uncertainties associated with the integer

nodes for binary master variables, we make use of combinatorial cuts with the following form:∑
i∈{1,..,n}:ȳi=0 yi +

∑
i∈{1,..,n}:ȳi=1(1− yi)≥ 1, to forbid regeneration of the current integer solution

ȳ. This cut eliminates the current solution by (1) making the current node infeasible, (2) generate

another integer solution, or (3) leading to the generation of a new fractional solution. In the first

case, the node can be pruned by the infeasibility rule. This does not affect the convergence because

no other feasible solution can be extracted from that node. The second case is in fact a desirable

situation as it may yield a better upper bound value. In the third case, the node will be added to

the pool of active nodes.

Finally, for general integer master variables, the node uncertainty must be handled through

synchronization. Thus, if the applied cuts do not affect the current integer solution, we need to

wait until a violating cut associated with that solution is generated or all cuts have been applied.

5.2. Search techniques

In this part we propose some strategies to specify the scheduling and pool management decisions.

5.2.1. Solution and cut pool management Considering the previously partially evaluated

solutions and the new one at the current iteration, we need to decide which solution to choose

and evaluate its associated (unevaluated) SPs. At each iteration, the master process broadcasts its

solution to all slave processors. Each slave processor stores this solution in a pool and follows one

of the following strategies to pick the appropriate one:

S1: chooses solutions based on the first-in-first-out (FIFO) rule;

S2: chooses solutions based on the last-in-first-out (LIFO) rule;

S3: chooses solutions in the pool randomly. We experiment with two selection rules: (1) each

solution in the pool has an equal chance to be selected, (2) each solution is assigned a weight

of 1
1+t

, where t is number of the iterations since that specific solution has been generated, so

that more recent solutions have higher chance to be selected.

Moreover, we use the cut improvement notion to identify the solutions which are no longer required

to be evaluated, see Rei et al. (2009) for more information. Finally, we make use of the same

techniques outlined in subsection 4.4 to manage the cut pool.
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5.2.2. Solving SPs We have implemented static work allocation because by equally distribut-

ing the scenario SPs, every process is almost equally loaded. Once the solution is chosen, we need

to decide the order by which the associated SPs will be evaluated, because we may not evaluate

all of them and it is important to give higher priority to those which tighten the MP formulation

the most. The following strategies are considered:

SP1: randomly choose the SPs;

SP2: assign a weight to each SP and then randomly select one based on the roulette wheel rule.

The weights are set equal to the normalized demands for each SP.

SP3: we observe that if a solution is infeasible, we may not need to solve all its SPs. This strategy

first orders the SPs based on their demand sum and then assigns to each SP a criticality

counter which increases by one each time that the SP is infeasible. Then, a SP with the highest

criticality value is selected.

5.2.3. Solving the MP This dimension specifies the waiting portion of the master processor

before it re-optimizes the MP. We have proposed the following strategies:

MP1: the master processor waits for at least γ|S|% new cuts at each iteration;

MP2: the master processor waits for γ|S|% of the cuts associated with the current solution;

MP3: this strategy is the same as the MP2 strategy, but with a mechanism to synchronize the

processors according to the current state of the algorithm. In this regard, if the cuts added

to the MP fail to affect the lower bound and/or regenerate the same solution, the MP waits

until all the cuts associated with the current solution are delivered.

5.3. Cut aggregation

The asynchronous algorithm may only solve a subset of the SPs in each cluster. For this reason,

cut aggregation as introduced in section 4.1 is not applicable in the context of our asynchronous

parallel algorithm. To alleviate this issue, we define a recourse variable for each SP. Then, we add

a cut of the form:
∑

s∈Ŝd
ρsθs ≥

∑
s∈Ŝd

ρs
(
hs−Tsy

)>
αs for cluster d∈D, where Ŝd indicates the set

of evaluated SPs in this cluster at the present iteration. Note that we could update this inequality

in the following iterations when the remaining SPs in cluster d are evaluated. However, this process

requires modifying the MP, which is not computationally efficient. We thus aggregate the cuts for

the current solution separately from those associated with the previous iterations.

5.4. Partial information

In general, the BD method is very sensitive to the feedback on its current solution. The asyn-

chronous variant thus entails a larger number of iterations and a considerable amount of redundant

work as it executes the next iteration with partial information on its current solution. In fact, the

asynchronism may increase the computational cost of each iteration since the MP grows large at a
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faster pace. Moreover, the lower bound may progress slower since merely a subset of the cuts are

applied to the MP at each iteration. The proof of convergence may as well be delayed due to the

unavailability of the upper bound, especially when one wishes to solve the problem to a certain

optimality gap. To overcome these drawbacks, we propose two classes of strategies acknowledging

the fact that we solve a SP in order to: (i) calculate an upper bound and (ii) generate a cut.

The upper bound is used to assess the convergence and prune nodes. In our asynchronous method

the delay in calculating the upper bound is usually due to long intervals between visiting two

integer nodes, where we conventionally collect the feedbacks from the slave processors. Thus, by

designing a module that can receive information from slave processors at every node of the search

tree, we can overcome this issue and update the upper bound with minimal delay.

The generated cuts are used to cutoff the subregion of the MP defined by the set of complicating

variables. To address the issue related to having cuts merely for a subset of the recourse variables

at each iteration, we have designed the following two strategies: (i) creating artificial SPs and (ii)

propagating the generated cuts.

5.4.1. Creating artificial SPs The MP does not wait for all SPs to be solved. Thus, having

good cuts that can represent the unevaluated SPs is important to improve the efficiency of our

asynchronous algorithm. To this end, we propose to create a set of artificial scenarios. The SP

associated with each artificial scenario will then be solved to generate a valid cut to bound the

recourse cost of the scenarios that remain unevaluated at the current iteration.

We assume that the recourse matrix and the costs are deterministic, i.e., cs = c and Ws =W ,

∀s ∈ S. We cluster the SPs into |G| groups according to the similarity measure. Note that the

cardinality of clusters may not be equal. Then, to generate the artificial SP, g ∈ G, we set hg =∑
s∈Sg βshs and Tg =

∑
s∈Sg βsTs, where Sg is the set of scenarios in cluster g ∈ G with S =∪g∈GSg,

and βs is the weight associated with scenario s∈ Sg such that
∑

s∈Sg βs = 1.

Proposition 2. Any extreme point αg and extreme ray rg of the artificial subproblem g ∈ G

gives a valid optimality cut
∑

s∈Sg βsθs ≥ (hg −Tgy)>αg or a feasibility cut 0≥ (hg −Tgy)>rg.

Proof. See Appendix B.

An important issue in deriving the artificial cuts lies in setting the β weights. The following

theorem suggests an optimal way to set these weights.

Theorem 1. Maximum bound improvement by the artificial scenario g ∈ G is attained when the

convex combination weight βs for scenario s∈ Sg is
ρs∑
s∈Sg ρs

.

Proof. See Appendix C.
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Note that we make use of the artificial scenarios to bound the recourse variable of those SPs

which remain unevaluated at the present iteration. The following corollary suggests a strategy to

further tighten the associated cuts.

Corollary 1. Let S̄g be the set of evaluated SPs in cluster g ∈ G at the current iteration. Then

solving the artificial SP using a smaller set Sg\S̄g yields a tighter cut for the remaining SPs. This

follows the aggregation step in the proof of Proposition 2.

From corollary 1, we observe that there is no need to apply the scenario creation strategy in the

synchronized and sequential algorithms.

5.4.2. Cut propagation In this part, we propose to propagate the generated cuts in order to

derive additional approximate cuts for the set of unevaluated SPs. We make the same assumption

on the problem’s structure as in section 5.4.1.

Proposition 3. Given an optimality cut θs ≥ (hs − Tsy)>αs associated with the SP s ∈ S, we

can generate a valid optimality cut θs′ ≥ (hs′ −Ts′y)>αs for SP s′ ∈ S : s′ 6= s without solving SP s′.

Proof. Based on our assumption, the dual SP (3) becomes maxα∈Rl+
{(hs−Tsȳ)>α : W>α≤ c}

for every s∈ S. Thus, all SPs have the same dual polyhedron for which each of its extreme points

and rays gives a valid cut. �

It is not computationally viable to propagate any dual solution due to time consuming cal-

culations and handling requirements. We thus generate propagated cuts only for those recourse

variables whose associated SP remains unevaluated at current iteration. Also, if a dual value yields

a cut which is not violated by the current solution, it will not be used for propagation. Finally,

for SP s′ we generate a propagated cut using the solution from SP s if the latter has the greatest

dominance value over the former in the set of evaluated SPs at the current iteration. Note that the

dominance value of SP s over SP s′ is calculated as the total number of the elements j ∈ {1, ..., l}

for which hjs ≥ h
j
s′ and T js

>
y≥ T js′

>
y for every y ∈ Y (Crainic et al. 2016).

5.5. The overall framework

The overall framework of the proposed asynchronous algorithm with its various components is

depicted in Figure 2.

Each processor starts with an initialization step where a series of tasks are executed. At the

master processor, the MP is created, scenarios are grouped (based on similarity criteria) and

assigned to each slave processor, and the recourse variables are clustered for the cut aggregation

purpose. Each slave processor waits to receive the assigned scenarios and then creates the SPs.

In the first phase, each time that the LP relaxation of MP is solved, the solution is broadcast to

all slave processors. Then, the master processor waits to receive the feedback from these processors
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Figure 2 Flowchart of the asynchronous parallel method

based on the chosen scheme from the solving MP strategies. In the next step, cuts from the pool

are selected and aggregated using the appropriate strategy for cut management. If the first phase

is not yet optimized, we repeat the same steps. Otherwise, we proceed with the branching phase.

In the second phase, we check if the incumbent solution can be updated before choosing and

evaluating an open node. If the selected node is integer, we broadcast the solution to all processors.

However, if the node solution is fractional, we need to decide if we want to generate cuts associated

with that solution based on the cut generation strategies of section 8.1.3. Before evaluating the

selected node, we check the cut pool to see if new cuts exist or not. If the selected node is fractional,

we do not wait for cuts to be generated. For the integer nodes, however, we wait for feedback from

slave processors depending on the solving MP strategy that we are using. Finally, if one of the

stopping criteria is satisfied, we broadcast the termination signal to stop the algorithm.

All slave processors execute the same process but independently. At each step, they check if a

new master solution is broadcast. If so, they receive the solution and store it in a pool. However,

if there is no solution in the queue, they do not wait and proceed by choosing a solution from

the pool based on the appropriate solution management strategy. If the solution pool is empty for

any slave processor, it waits until a new one or the termination signal is broadcast. At next step,

they select one of their local SPs based on the solving SPs strategy and evaluate it. Finally, each

processor sends back to the master processors the generated information (i.e., cut and bound). If

no termination signal has been received, the process repeats.
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6. Hybrid Parallel Benders Decomposition Algorithm

We observed that when solving the MP and SPs is quick, re-optimizing the MP with partial

feedback from the slave processors can yield efficiency drawbacks. This is particularly the case

during the first phase of our asynchronous algorithm. For this reason, we hybridize the two previous

parallelization strategies by solving the first phase with the synchronized and the second phase

with the asynchronous strategies. We refer to this strategy as hybrid parallelism.

7. Implementation Details

We solve all LP and MILP problems using IBM ILOG CPLEX 12.7. All programs are coded in

C++ environment. The code is compiled with g++ 4.8.1 performed on Intel Xeon E7-8837 CPUs

running at 2.67GHz with 64GB memory under a Linux operating system. The B&C algorithm

was also implemented using CPLEX’s callable libraries. We solve the extensive formulation with

CPLEX’s default setting, and turn off presolve features for our Benders-based algorithms.

To further accelerate the presented B&BC algorithms, we also incorporate some classical accel-

eration strategies. We have thus implemented the following techniques in all of our algorithms: (i)

warm start strategy, (ii) valid inequalities for the MP, (iii) valid inequalities for each SP, and (iv)

Pareto-optimal cuts. The complete details of these strategies can be found in Rahmaniani et al.

(2017b). Finally, as local branching was shown to effectively accelerate the BD method (Rei et al.

2009), we turn on the local branching of CPLEX in the second phase of our B&BC algorithms.

7.1. Test instances

To test our method, we address the well-known Multi-Commodity Capacitated Fixed-charge Net-

work Design Problem with Stochastic Demand (MCFNDSD). This problem naturally appears in

many applications (Klibi et al. 2010) and it is notoriously hard to solve (Costa 2005, Crainic et al.

2011). The complete detail of this problem is given in Appendix D. To conduct the numerical tests,

we have used the R instances which are widely used in the literature, e.g., Chouman et al. (2017),

Rahmaniani et al. (2017b), Crainic et al. (2016, 2011), Boland et al. (2016). These instances have

up to 64 scenarios. To generate a larger number of scenarios, we have followed a procedure similar

to the one used by Boland et al. (2016). For the numerical assessment of the strategies, we have

considered a subset of the instances: r04-r10 with correlation of 0.2 and cost/capacity ratio of 1, 3,

or 9 which accounts for 21 instances. This subset of the R family corresponds to the instances most

commonly tackled in the literature (Rahmaniani et al. 2017b, Crainic et al. 2016). In the following

part of the computational experiments, where we study the performance of our method versus

alternative methods, we have considered a larger number of instances, i.e., r04-r11 accounting for

200 instances. The description of these instances is given in Appendix E.
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7.2. Implementation of the asynchronous algorithm

We discussed various search strategies whose combination gives a very large number of algorithms

to test. Presenting the numerical results for all of them is clearly beyond the length of this article.

For this reason, we provide some insights for those strategies which we do not intent to presented

numerical results for.

With respect to solution management strategies, we observed that LIFO outperforms both FIFO

and random strategies. The main reason is that Benders method, as “a dual algorithm”, is very

sensitive to the feedback on its current solution. In the both FIFO and random selection strategies,

“older” solutions are usually selected. As a result, the generated cuts are dominated or they have

a very limited impact on the MP. Thus, the MP generates a solution which is not very different

(in terms of quality) from the previous iteration(s) and the lower bound progresses very slowly.

Furthermore, in both strategies the upper bound improves at a slower pace compared to LIFO,

although they might update the upper bound more frequently in the initial iterations. This is

because the FIFO and random selection strategies need a much larger number of iterations to

actually find a high quality feasible solution that gives a tight bound. As a result, we henceforth

only consider the LIFO as solution selection strategy.

With respect to solving SPs, we realized that, on average, the random selection of the SPs

performs better than other strategies. This is because the random selection of the SPs ensures the

diversity of the cuts applied to the MP. In ordering based strategies, after a certain number of

iterations, a specific set of the recourse variables is bounded at each iteration. Hence, the lower

bound progresses slowly and the algorithm performs poorly. Finally, the random selection based on

the criticality weights tends to perform better than pure random selection. This is because higher

priority is given to the indicator SPs and the diversity of the cuts applied to the MP is maintained.

Therefore, we consider this strategy to select SPs for evaluation.

Finally, we consider the proposed strategies in the solving MP dimension. We have decided to

use both MP2 and MP3. This is because of two reasons. First, we observed that applying cuts

associated with the current solution is necessary. Otherwise, the algorithm performs poorly due

to the same reasons pertinent to the FIFO strategy. Second, with adoptive synchronization points

the late convergence proof in the first phase of the algorithm will be alleviated significantly. On

the contrary, synchronization causes overheads during the second phase of the algorithm because

master processor can proceed with evaluating the open nodes of the branch-and-bound tree while

the cuts are being generated. Therefore, we use MP3 in the first and MP2 in the second phase of

our algorithm.
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7.3. Stopping criteria and search parameters

In solving each stochastic instance, we have set the stopping optimality gap at 1%. The total

time limit is set at 2 hours. To solve the LP relaxation of the problem at the root node, we have

considered half of the maximum running time limit. The parallel variants are run on 5 processors

unless otherwise specified. In the cut generation strategy, τ , λ, and λ̂ values are set to 0.5%, 10−1,

and 10−2 . The set of scenarios in the feasibility repair problem are chosen based on their demand

sum. We have sorted the scenarios based on their total demand and chosen the first 5 scenarios.

8. Computational Results

In this section, we present the numerical assessments of the proposed parallelization strategies.

We first study different versions of our parallel B&BC algorithms to evaluate the limitations and

impact of the proposed acceleration techniques. The second part of the analysis is devoted to test

the speedup and scalability of our parallel algorithms. Finally, we conduct a comparison between

our exact algorithms and CPLEX to benchmark their performance.

8.1. Synchronized parallel algorithm

In this section, we investigate the impact of the proposed acceleration strategies, namely the cut

management, cut aggregation and cut generation in context of the synchronous parallel B&BC

algorithm. Note that we have activated the proposed strategies one by one to observe their cumu-

lative additive impact over the performance. Thus, the basic algorithm in each subsection is the

best variant obtained from the previous subsection.

8.1.1. Cut management We first study the impact of the cut management strategy. We

compare the method proposed in section 4.4 to that commonly used in the literature, where cuts

with high slack value are removed, see, e.g., Pacqueau et al. (2012). In Table 2, the average running

time in seconds, optimality gap in percentages, and number of removed cuts, shown with #Cut,

are reported for each cut management strategy.

Table 2 Numerical results for various cut management strategies

NoCutManagement SlackCutManagement DominanceCutManagement
Time(ss) Gap(%) Time(ss) Gap(%) #Cut Time(ss) Gap(%) #Cut

r04 2422.60 1.00 2424.57 1.26 151.00 1802.97 0.36 1616.00
r05 1133.64 0.47 517.22 0.47 164.33 500.64 0.47 942.67
r06 3270.45 1.76 2656.59 2.06 602.33 2601.43 2.12 22.00
r07 2437.16 3.32 2439.03 2.37 13.67 2141.70 2.06 1599.33
r08 2534.89 3.36 2513.26 3.56 50.67 2315.18 2.40 292.00
r09 4898.53 4.01 4737.94 4.24 163.67 4780.70 4.25 868.67
r10 4977.60 7.77 4927.27 5.25 645.00 4931.94 6.23 108.00

Ave. 3096.41 3.10 2887.98 2.75 255.81 2724.94 2.56 778.38

It is important to note that none of the methods deteriorates the LP bound at the root node. We

observe from Table 2 that cleaning up the useless cuts yields positive impact on the performance.
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The slack based notion keeps many of the useless cuts in the MP while the proposed method

removes a much larger number of them. Thus, for small and medium instances, we observe a clear

advantage of the proposed method. However, for larger instances, the impact of removing cuts on

running is less significant because the algorithm reaches the time limit. We here note that most of

the removed cuts are associated with early iterations. Finally, we observe that there is no direct

relation between the number of the cuts removed and the performance of the B&BC method. This

is because of the heuristic nature of both strategies.

8.1.2. Cut aggregation We ran the algorithm with 11 different cluster sizes in order to study

the impact of various cut aggregation levels on the performance. The comparative results in terms

of total running time are depicted in Figure 3. Note that the value on each column gives the average

optimality gap in percentages.

Figure 3 Comparison of various cut aggregation levels for the synchronized parallel algorithm

We observe from Figure 3 that neither of the two conventional strategies, i.e., single cut (column

labeled “1”) and multi-cut (column labeled “1000”), gives the best results. Although the latter

performs noticeably better than the former. The best aggregation level is associated with a cluster

size of 300. All aggregation levels are able to solve 66.67% of the instances within the 2 hours time

limit, except for the single cut method which could only solve 61.90% of the instances. In addition,

we observe that the difference in running time among some aggregation levels is small. This is

because the algorithm reaches the maximum run time limit for 33.33% of the instances. Thus, if

we only consider the instances that are solved by all aggregation levels, we observe more significant

differences in the running times. These results are presented by the empty half bars in Figure 3.

Comparing the results to those of the sequential algorithm, see Figure 8 in Appendix F, we

observe that a larger cluster size gives the best results for the sequential algorithm. This is because
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the sequential algorithm performs less iterations in the same amount of time and thus, it is more

sensitive to the loss of information in the aggregation step.

8.1.3. Cut generation strategy We next study the cut generation strategies of section 4.3.

For computational purposes, we have set Γ to 10, 100 and ∞ and compare the results to the case

for which we generate cuts merely at the root node, i.e., Γ = 0. For each Γ value, we have reported

numerical results for two cut generation strategies: “Single” indicates generating cuts once per

node and “Multi” indicates generating cuts for each node as long as the lower bound improves by

more than 0.5%. Also, we have studied two cases for each strategy: (i) the fractional solutions are

directly used and (ii) the feasibility of the infeasible ones is restored. The numerical results are

summarized in Table 3.

Table 3 Numerical results for various cut generation strategies

Γ Strategy
NoFeasibilityRestoration FeasibilityRestoration

Time(ss) Gap(%) Sol.(%) Time(ss) Gap(%) Sol.(%)
∞ Single 2737.66 20.19 57.14 2694.15 10.95 66.67
∞ Multi 3045.31 29.38 57.14 3164.12 24.80 61.90
100 Single 2538.98 16.27 52.38 2611.14 10.58 66.67
100 Multi 2999.89 25.00 57.14 3050.19 24.84 66.67
10 Single 2398.36 2.16 71.43 2405.82 2.41 71.43
10 Multi 2612.17 2.48 71.43 2583.14 2.40 71.43
0 - 2549.10 2.26 66.67 - - -

Here “Sol.(%)” gives percentage of the solved instances. From Table 3 we observe that generating

cuts for many fractional nodes considerably increases the optimality gap. This happens because of

two main reasons. First, generating cuts for many nodes is computationally expensive and second,

it causes considerable handling costs. For the same reasons, the “Multi” strategy underperforms

the one with the “Single” module. On the contrary, generating cuts merely for the first 10 nodes

performs better or equal to generating cuts only at the root node, such that the average running

time and optimality gap reduce by 150.74 seconds and 0.1%, while the percentage of solved instances

increases by 4.76%.

We next examine the strategies proposed to round the fractional solutions. The first strategy,

denoted Round, rounds each fractional value to its closest integer value. The second strategy,

denoted Upward, rounds each fractional value greater and equal than 0.1 to 1 and 0 otherwise.

The third strategy employs a restricted MIP to find a close integer feasible solution to the current

fractional solution. The numerical results are summarized in Table 4.

Note that, following the observations in Table 3, we have applied these strategies only at the

first 10 fractional nodes. Comparing Tables 3 and 4, we observe that the rounding strategies do

not perform better than directly using the fractional solutions. The main reason is that the cuts
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Table 4 Numerical results for the rounding based cut generation strategies

Strategy NoFeasibilityRestoration FeasibilityRestoration
Time(ss) Gap(%) Sol.(%) Time(ss) Gap(%) Sol.(%)

MIP - - - 2486.78 2.31 71.43
Round 2629.98 2.20 61.90 2591.03 2.25 61.90
Upward 2579.79 2.35 66.67 2606.85 2.44 71.43

Γ = 0 2549.10 2.26 66.67 - - -

associated to the rounded solutions do not, in general, affect the local bounds. In addition, CPLEX’s

default heuristics and local branching are active in our implementations. This makes the marginal

impact of the rounding strategies negligible.

8.2. Asynchronous parallel algorithm

In this part, we study the proposed strategies for the asynchronous parallel algorithm. We first

study different synchronization levels as controlled by the γ parameter. Then, we analyze the

proposed acceleration techniques.

8.2.1. The synchronization level Figure 4 depicts the impact of the γ value on the running

time. The values on this figure represent the average optimality gaps in percentage.

Figure 4 Effect of waiting portion of the master processor (gamma value) on the performance

We observe that the best performance lies neither at 100% nor at 1%. It is always numerically

better to wait for some percentage in between. Moreover, comparing Figures 4 and 8, we observe

that full asynchronism (i.e., γ = 0) underperforms even the sequential algorithm. The best result is

attained when the master processor waits until 40% of the SPs associated with the current solution

are solved. This synchronization level solves 66.67% of the instances with the average optimality
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gap of 2.15% in 2465.26 seconds. This is comparable to the synchronous algorithm without the cut

generation strategies, see Figure 3.

We observe that waiting for a larger portion of the SPs is more desirable when solving the LP

relaxation of the MP, while the contrary is true in the second phase of the algorithm. In the former

case, we gain nothing from quickly resolving the MP since no other useful task can be executed.

In the latter case, however, we can perform useful work (i.e., evaluating open nodes of the search

tree) while the cuts are being generated. We thus consider γ = 100% and 0% in the first and second

phase of our hybrid algorithm.

8.2.2. Scenario creation In Table 5 we investigate the impact of the artificial SPs on the

convergence of our asynchronous algorithm.

Table 5 Impact of the artificial subproblems on performance of the asynchronous algorithm

NoArtificialSP NumberOfArtificialSPs=|P|
Time(ss.) Gap(%) Sol.(%) Time(ss.) Gap(%) Sol.(%)

r04 689.50 0.75 100.00 759.39 0.73 100.00
r05 274.84 0.51 100.00 286.64 0.42 100.00
r06 2518.45 1.86 66.67 2546.88 1.48 66.67
r07 1442.27 0.84 66.67 1412.31 0.90 66.67
r08 2521.60 2.65 66.67 2466.25 2.02 66.67
r09 4898.42 3.98 33.33 4859.83 3.46 66.67
r10 4911.77 5.07 33.33 4880.33 4.53 33.33

Ave. 2465.26 2.25 66.67 2458.80 1.93 71.43

We observe in Table 5 that the creation of artificial scenarios increases the percentage of the

solved instances by 4.76% while the average time is almost unchanged. The running time with

artificial SPs increases for small instances and for larger instances the time improvement is not

very much noticeable. In small problems additional time is spent on generating cuts while they

could have been solved quicker. For larger instances, in many cases the algorithm reaches the time

limit and thus the improvement on the average time does not show. We observe, however, that the

average optimality gap has been reduced. Thus, the artificial SPs are a valid strategy to accelerate

the asynchronous algorithm.

8.2.3. Cut aggregation Figure 5 reports the impact of the proposed cut aggregation scheme

for different cluster sizes. The value on each bar shows the average optimality gap in percentages.

We observe that clustering improves the convergence of the algorithm. The best aggregation

level is reached at the size of 500, which is larger than the best value found for the synchronized

algorithm, i.e., a cluster size of 300. With this aggregation level, our asynchronous algorithm solves

76.19% of the instances with an optimality gap of 1.46% in 2219.42 seconds, which outperforms

the synchronized algorithm. Moreover, the single cut method does not perform much differently

from other aggregation levels. This is because of introducing a recourse variable for each SP in the

aggregated cuts.
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Figure 5 Comparison of different cut aggregation levels in context of the asynchronous method

8.2.4. Cut propagation To assess the usefulness of the proposed cut propagation strategy,

we compare our algorithm with and without the cut propagation module. Table 6 summarizes

the results in terms of average time requirement and number of iterations. Note that the cut

propagation is performed merely at the first phase of the algorithm. We have thus reported the

time required and number of iterations to find the optimal LP solution.

Table 6 Impact of the cut propagation on the LP phase of the asynchronous algorithm

WithoutPropagation WithPropagation
Time(ss.) #Iter. Time(ss.) #Iter.

r04 29.62 17.00 111.24 13.67
r05 50.88 21.33 213.86 14.00
r06 307.41 32.67 1377.90 18.67
r07 19.98 15.67 286.50 14.00
r08 59.61 21.00 415.22 15.33
r09 546.43 30.67 1085.35 16.00
r10 1158.31 41.67 1591.48 23.00

Ave. 310.32 25.71 725.94 16.38

We observe from Table 6 that the cut propagation reduces number of the major iterations.

However, it increases the time requirement to optimize the LP relaxation of the problem. This

is partially due to the additional time we need to spend on handling the propagated cuts and

checking their violation. In addition, we can solve the LP relaxation of the considered instances

within the considered time limit and the cut propagation does not further tighten this bound. We

thus believe that the proposed cut propagation strategy can be very useful for problems with a

fairly small number of hard-to-solve SPs rather than many of easy-to-solve SPs. Since this is not

the case in our problem, we do not include this strategy in our method.

8.3. Speedup of the parallel algorithms

In Figure 6, we compare our parallel algorithms on 2, 3, 5, 10, 15 and 20 processors. In this

experiment, we have considered only those instances that the sequential algorithm could solve
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within a 10-hour limit in order to have a clear sense of the speedups. Note that the value on each

bar indicates the speedup ratio calculated as Sequential time/Parallel time.

Figure 6 Speedup rates of our parallel Benders decomposition algorithms

The first interesting observation is related to the use of 2 processors, i.e., 1 slave and 1 master

processor. In this case, the synchronized algorithm performs worse than the sequential algorithm

because of the cut generation which slows down the algorithm. Our asynchronous algorithm, on

the contrary, performs much better. This is clearly due to the better use of the processors in

our asynchronous method since the two processors are less dependent. Also, we observe that the

hybrid algorithm is better than the synchronized one, although they are roughly the same during

the first phase of the algorithm. Thus, the speedup rate in our hybrid algorithm must be due to

its asynchronous part. This indicates that our asynchronous method has noticeably reduced the

computational bottleneck at the master level.

The speedups do not increase monotonically with the number of the processors. This is because

increasing the number of slave processors does not alleviate the bottleneck at the master processor,

although it significantly accelerates the cut generation cycle. We observe that the synchronous

algorithm reaches super linear speedup during the LP phase of the algorithm, while it fails to

reach even linear speedup overall. This is due to the second phase of the algorithm where the slave

processors are not efficiently used and the heavy work is carried out by a single processor, i.e.,

master. The same situation also applies to the asynchronous and hybrid algorithms.

Our third observation concerns the hybrid method. It outperforms the synchronized method

because of using non-blocking communications in the branching phase, which is the most time

consuming part of the algorithm; see Figure 4. The advantage of the hybrid algorithm over the

asynchronous method becomes more evident for larger instances in which solving the LP relaxation

is noticeably time consuming. Moreover, we observe that its efficiency exceeds or becomes closer

to the asynchronous method as the number of processors increases. This justifies the development

of the hybrid algorithm.
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8.4. Comparison with CPLEX

In this part, we compare our asynchronous and hybrid algorithms versus the latest version of

CPLEX for all instances, see Table 8 in Appendix E. In doing so, we ran our algorithms until

reaching the same optimality gap which is obtained by CPLEX after 10 hours. Note that all

algorithms are run on 15 processors. The average speedup rates are reported in Figure 7. These

values are rounded to the closest integer point and they are obtained from dividing CPLEX’s time

requirement to that of our methods.

Figure 7 The speedup rate of our asynchronous and hybrid parallel algorithm compared to CPLEX

The asynchronous and hybrid parallel algorithms are, on average, 286.48 and 325.69 times faster

than CPLEX in finding a solution of equal or better quality. We observe that the speedup for

larger instances is smaller because solving their LP relaxation takes up to one hour. This makes

the speedup rates in scale of 10. Moreover, the hybrid parallelization reaches a better speedup rates

since it solves the LP relaxation faster.

To complete the comparative study in this section, we compare the optimality gaps obtained by

our parallel algorithms to that of CPLEX for a run time limit of 2 hours. Note that if CPLEX fails

to find a feasible solution, we have set the optimality gap at 100%. The average optimality gap for

each instance class is summarized in Table 7.

We observe from Table 7 that CPLEX fails to handle even small instances of the considered

stochastic problem. Furthermore, the hybrid algorithm reaches better optimality gaps than the

asynchronous method for larger instances.

9. Conclusions and Remarks

We studied parallelization strategies for the Benders decomposition method in which the subprob-

lems are concurrently solved on different processors and the master problem on a single processor.
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Table 7 The average optimality gap obtained by each method after 2 hours

CPLEX Asynchronous Hybrid
r04 14.49 0.33 0.34
r05 31.84 0.48 0.46
r06 56.11 2.00 2.75
r07 33.73 0.34 0.50
r08 43.90 2.18 2.48
r09 58.07 3.25 2.72
r10 56.15 3.58 2.28
r11 86.86 7.65 6.82

Ave. 47.64 2.48 2.29

We implemented the algorithm in a B&C framework and presented synchronous, asynchronous

and hybrid parallelization frameworks along with various acceleration strategies.

Reporting numerical results on hard benchmark instances from stochastic network design prob-

lems with 1000 scenarios, we observed (super-)linear speedups when the master problem does not

computationally dominate the algorithm. This is particularly true when solving the LP relaxation

of the master problem. In similar cases, the synchronized method performed generally better than

the asynchronous algorithm. On the larger instances, our parallel algorithms did not reach a linear

speedup. Moreover, we observed that our parallelizations did not scale with the number of the

processors. The main reason for this is the fact that the most significant computational bottleneck

of the parallel algorithm is solving the master problem sequentially on a single processor. Also,

the proposed asynchronous and hybrid algorithms displayed a better performance compared to the

synchronous method. Compared to CPLEX, they were more than 286 times faster to obtain the

same optimality gap. In addition, for the same time limit, they could also obtain optimality gaps

that were more than 19 times lower than CPLEX.

This research opens the way for a number of interesting issues to be considered in future works.

First and foremost, the master problem needs to be solved in parallel in order to reach a scalable

algorithm. Second, it is worthwhile to study the proposed cut propagation strategy for problems in

which generating a single optimality cut is significantly time consuming. Third, some of the well-

known acceleration strategies for the Benders method need to be revisited in order to be properly

applied in the parallel environment. An example would be the partial decomposition strategy of

Crainic et al. (2016). Last but not least, heuristics are widely used to accelerate the BD method,

but we are not aware of any integration of these methods in a parallel (cooperative) framework.
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Appendix A: Proof of Proposition 1

It is trivial to observe that dȳe ∈ Y due to assumption (ii). Let assume that the recourse cost associated to

the rounded solution dȳe is known and given by ν′s for each s ∈ S. Thus, for this integer solution, a valid

upper bound can be calculated from f>dȳe+
∑

s∈S ρsν
′
s ≥ z∗. On the other hand, based on the assumptions

(ii) and (iii), we have ν∗s =Q(ȳ, s)≥Q(dȳe, s) = ν′s. Thus, f>dȳe+
∑

s∈S ρsν
∗
s ≥ f>dȳe+

∑
s∈S ρsν

′
s ≥ z∗.

Appendix B: Proof of Proposition 2

If |Sg|= 1, the results follows immediately from the disaggregated version of the BD method Van Slyke and

Wets (1969). To proof the validity of the cuts for 1< |Sg| ≤ |S|, we need to show that the derived SP gives

a valid lower approximation of the aggregated recourse variables for any y ∈ Y .

θs ≥ min
x∈Rm

+

{c>xs : Wxs ≥ hs−Tsy} s∈ Sg

βs ≥ 0 → βsθs ≥ min
x∈Rm

+

{βsc>xs : Wxs ≥ hs−Tsy} s∈ Sg∑
s∈Sg

βsθs ≥ min
x∈Rm|S|

+

{
∑
s∈Sg

βsc
>xs :Wxs ≥ hs−Tsy, s∈ Sg} ≥ min

x∈Rm|S|
+

{c>
∑
s∈Sg

βsxs :
∑
s∈Sg

Wβsxs ≥
∑
s∈Sg

βs(hs−Tsy)}

The last inequality holds because we have aggregated the constraints using convex combination weights

1 ≥ βs ≥ 0 such that
∑

s∈Sg βs = 1. We next consider a variable transformation
∑

s∈Sg βs = 1, xg =∑
s∈Sg βsxs, hg =

∑
s∈Sg βshs, Tg =

∑
s∈Sg βsTs. Thus,∑

s∈Sg

βsθs ≥ min
x∈Rm

+

{c>xg : Wxg ≥ hg −Tgy}= max
α∈Rl

+

{(hg −Tgy)>α : W>α≤ c} ∀y ∈ Y,
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Also, we observe that the dual polyhedron is identical to a regular dual SP which indicates the validity of

the feasibility cut.

Appendix C: Proof of Theorem 1

For an arbitrary first-stage solution y ∈ Y , let σg = (hg − Tgy)>αg be the right hand side of the optimality

cut generated from artificial scenario g ∈ G and let θ∗s = (hs−Tsy)>αi
∗

s , where i∗ ∈ arg maxi∈Et
s
(hs−Tsy)>αis

for which Et
s is the set of optimality cuts associated to scenario s at iteration t. If the cut from the artificial

SP is violated by the y solution, it means that σg >
∑

s∈Sg βsθ
∗
s . For a given y solution, the MP can be

separated for each cluster g ∈ G and can be defined as:

min
∑
s∈Sg

ρsθs∑
s∈Sg

βsθs ≥ σg

θs ≥ θ∗s s∈ Sg.

It can be shown that the above formulation has a knapsack structure and since σg >
∑

s∈Sg βsθ
∗
s , the recourse

variable θs̃ takes the extra violation σg −
∑

s∈Sg βsθ
∗
s > 0, where s̃ ∈ arg mins∈Sg

ρs
βs

. This gives θs̃ = θ∗s̃ +

1
βs̃

(σg −
∑

s∈Sg βsθ
∗
s) which results in a lower bound improvement of ∆ := ρs̃

βs̃
(σg −

∑
s∈Sg βsθ

∗
s) at the given

y solution. The maximum value of ∆ is achieved when βs = ρs. Considering
∑

s∈Sg βs = 1 and Sg ≤ |S|, the

maximum value of ∆ is achieve at βs = ρs∑
s∈Sg ρs

.

Appendix D: Stochastic network design problem

The MCFNDSD is defined on a directed graph consisting a set of nodes N and a set of potential arcs A.

In this problem, a set of commodities K exist where each commodity k ∈ K has an uncertain amount of

demand that needs to be routed from its unique origin O(k) ∈ N to its unique destination D(k) ∈ N . We

assume that the demand is characterized with a set of discrete scenarios S. Therefore, each commodity k ∈K
has a stochastic demand which is denoted by dks ≥ 0 for each possible scenario s ∈ S. We assume that the

realization probability for each scenario s ∈ S is known and denoted by ρs such that
∑

s∈S ρs = 1. The goal

is to select a proper subset of the arcs to meet all the flow requirements at minimum cost. To use arc a∈A
we need to pay a fixed cost of fa units and to route a unit of commodity k ∈ K on this arc cka units will

be charged. In addition, there is a capacity limit ua on each arc a ∈ A. Thus, the objective function is to

minimize sum of the fixed costs and the expected flow costs.

To model this stochastic problem we define the binary first-stage variables ya indicating if arc a ∈ A is

used 1 or not 0. To model the second-stage, we define continuous variables xk,sa ≥ 0 to reflect the amount of

flow on arc a∈A for commodity k ∈K under realization s∈ S. The extensive formulation of MCFNDSD is

thus:

MCFNDSD= min
y∈{0,1}|A|,x∈<|A||K||S|

+

∑
a∈A

faya +
∑
s∈S

ρs
∑
k∈K

∑
a∈A

ckax
k,s
a (9)

s.t:
∑

a∈A(i)+

xk,sa −
∑

a∈A(i)−

xk,sa =

 dks if i=O(k)
−dks if i=D(k)
0 otherwise

∀i∈N , k ∈K, s∈ S (10)

∑
k∈K

xk,sa ≤ uaya ∀a∈A, s∈ S, (11)
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where A(i)+ and A(i)− indicate the set of outward and inward arcs incident to node i. The objective function

minimizes the total fixed costs plus the expected routing costs. For each scenario, constraint set (10) imposes

the flow conservation requirements for each commodity and node. Constraints (11) enforce the capacity limit

on each arc in every scenario. To introduce the complete recourse property for the above formulation, we

add a dummy arc between each O-D pair with large routing cost as an outsourcing strategy.

Appendix E: Test instances

Table 8 presents the detail of the used instances problems from R family which we used in this article.

Table 8 Attributes of the instance classes

Name |N | |A| |K| |Ω| Cost/Capacity Ratio Correlation #Instances
r04 10 60 10 1000 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 25
r05 10 60 25 1000 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 25
r06 10 60 50 1000 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 25
r07 10 82 10 1000 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 25
r08 10 83 25 1000 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 25
r09 10 83 50 1000 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 25
r10 20 120 40 1000 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 25
r11 20 120 100 1000 1, 3, 5, 7, 9 0, 0.2, 0.4, 0.6, 0.8 25

Appendix F: Numerical results of the sequential algorithm

To make fair comparisons, we have incorporated the techniques that we developed in sections 4.1, 4.2, and 4.4

into our sequential method (presented in Algorithm 1). We have also incorporated the classical acceleration

techniques which we have used in our parallel algorithms, see section 7.

In this appendix, we present some numerical results to complement our numerical assessments in section 8.

In Figure 8, we thus study impact of the cut aggregation over the sequential algorithm. For each aggregation

level, we have ran the algorithm for 2 hours. The value on each column indicates the average optimality gap

in percentages.

Figure 8 Comparison of various cut aggregation levels for the sequential B&BC method

We next present the numerical performance of the sequential algorithm for a run time limit of 10 hours.

The results are presented in Table 9.
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Table 9 Numerical results of the sequential B&BC algorithm

#Instance Time to solve LP Total Time Gap(%) Sol.(%)
r04 3 31.43 1098.21 0.36 100.00
r05 3 159.20 798.77 0.47 100.00
r06 3 775.99 14671.58 1.23 66.67
r07 3 34.81 12087.66 0.76 66.67
r08 3 224.44 12259.00 2.34 66.67
r09 3 1188.19 24270.19 2.79 33.33
r10 3 3582.01 24521.04 6.80 33.33

Ave. 3 856.58 12815.21 2.11 66.67
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