
 
 
 
 
 
 
 
 
 
 

 
 

 
 

  
The Exact Solutions of Several 
Classes of Container Loading 
Problems 
 
Deidson Vitorio Kurpel 
Cleder Marcos Schenekemberg 
Cassius Tadeu Scarpin 
José Eduardo Pécora Junior 
Leandro C. Coelho 
 
June 2018 
 
 

 CIRRELT-2018-26 
 
 
 
 
Document de travail également publié par la Faculté des sciences de l’administration de l’Université Laval,  
sous le numéro FSA-2018-014. 

 
  



The Exact Solutions of Several Classes of Container Loading Problems 
Deidson Vitorio Kurpel1, Cleder Marcos Schenekemberg1, Cassius Tadeu Scarpin1, 

José Eduardo Pécora Junior1,2, Leandro C. Coelho2,3 

 
1. Universidade Federal do Paraná, Rua XV de Novembre, 1299, CEP 80.060-000, Centro 

Curitiba, PR Brasil 
2. Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation 

(CIRRELT) 
3. Department of Operations and Decision Systems, 2325 de la Terrasse, Université Laval, 

Québec, Canada G1V 0A6 
 

Abstract. In this paper we address multiple container loading problems, consisting of 

placing rectangular boxes, orthogonally and without overlapping, inside containers in order 

to optimize a given objective function, generally maximizing the value of the packed items 

or minimizing the number of containers required to pack all available boxes. Four techniques 

to enumerate the possible locations of boxes inside a container, not yet tested in literature, 

are developed and evaluated. We also propose new techniques to obtain bounds for these 

problems improving an existing heuristic method. In addition, we study some practical 

considerations of box orientation, load stability, and separation of boxes. A detailed analysis 

shows that our approach is very competitive, generating models containing signicantly fewer 

variables and constraints than the traditional approach existing in the literature. We test our 

methods on several existing benchmark sets. We prove optimality and improve the best 

known results for several instances. 

 
Keywords. Container loading problem, packing, practical considerations, mathematical 

formulation, heuristics. 

Acknowledgements. This work was supported by the Natural Sciences and Engineering 

Research Council of Canada (NSERC) under grant 2014-05764. This support is gratefully 

acknowledged. We thank Calcul Québec for providing high performance computing 

facilities. 

 

Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily 
reflect those of CIRRELT. 

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
 
_____________________________ 
* Corresponding author: Leandro.Coelho@cirrelt.ca 

Dépôt légal – Bibliothèque et Archives nationales du Québec 
          Bibliothèque et Archives Canada, 2018 

© Kurpel, Schenekemberg, Scarpin, Pécora, Coelho and CIRRELT, 2018 



1 Introduction

In Container Loading Problems (CLPs) the goal is to place rectangular boxes orthogonally

inside a container to optimize an objective function, typically maximizing the value of

the selected boxes (when the number of containers is not sufficient to load all items) or

minimizing the number of containers required to pack all boxes. These problems arise

in freight distribution when packing boxes inside actual containers for maritime or air

transportation or in trucks for road distribution. Due to the nature of the problem,

one must consider all three dimensions of the boxes and of the containers; special and

simplified cases arise in one and two dimensions as well.

An arrangement of boxes inside a container is called loading pattern. A better use of the

container’s space can substantially reduce the cost of freight, yielding significant financial

implications for carriers and shippers. Moreover, practical considerations arise when

designing a loading pattern, such as the orientations of the boxes, the stability of the

load, and the distribution of weight inside the containers. Bischoff and Ratcliff [1] list 12

practical considerations commonly observed in CLPs. However, most of them have not

been properly studied in the literature [3].

In general, CLPs are classified into two groups of problems [25]. The first one is the input

minimization problem, in which the storage space is sufficient to pack all boxes; here, the

number of containers is usually not binding. The objective function is to minimize the

number of containers required to load all available boxes. In the second group, called

output maximization problem, the space of a limited number of containers is not sufficient

to store all the boxes. The goal is then to select a subset of boxes maximizing the volume

or value associated with the load.

Several approaches to solve these problems have been proposed in the literature. Ivancic

et al. [14] solve the input minimization problem with a hybrid of heuristic and integer

programming that fills the containers sequentially. Eley [9] presents a greedy heuristic

that creates blocks of identical boxes to be packed into the container, and a tree-search
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heuristic to improve the loading patterns. The method of Lim and Zhang [16] uses a

greedy heuristic that fills the containers sequentially, prioritizing large boxes. Both Che

et al. [5] and Zhu et al. [26] use a procedure to generate columns representing packings

to solve an extended set covering problem.

Output maximization problems have also attracted the interest of many researchers. Mo-

hanty et al. [18] present a sequential solution strategy using a column generation pro-

cedure. Bortfeldt [2] uses a sequential strategy to fill the containers, outlining some

strategies to select the boxes to be placed in the containers. Modifications were made

to deal with input minimization problems as well. Eley [10] uses a column generation

heuristic to generate a sufficient number of loading patterns and then solves an integer

programming problem, considering only this limited number of patterns. Takahara [23]

introduces a multi-start local search procedure to determine the best loading sequence of

types of boxes and their orientation to be placed in the container. Ren et al. [21] solve

several single container problems, filling each one with the cuboid arrangement approach

and then improve the solution using a tree search algorithm. Junqueira et al. [15] present a

0-1 integer linear programming approach to an output maximization problem considering

a single container.

The input minimization problems addressed in this paper can be classified, according to

the typology of Wäscher et al. [25], as Single Stock-Size Cutting Stock Problems (SSS-

CSP), while the output maximization problems studied can be classified as Multiple Het-

erogeneous Large Object Placement Problem (MHLOPP). Recent works dealing with the

SSSCSP can be found in Grunewald et al. [12]; to the best of our knowledge, no papers

exploring the MHLOPP have been published since that of Ren et al. [21].

In this paper we present exact approaches to solve problems dealing with multiple con-

tainers, both for input minimization and output maximization. We also enhance several

loading patterns to account for the three-dimensional issues inherent to CLPs. To gener-

ate an upper bound for input minimization problems, we solve a set cover problem. To

create the columns for this problem, we use the heuristic of George and Robinson [11]
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and also present a variation of it, extending the work of Moura and Oliveira [19]. The

0-1 integer linear programming model presented in this work, based on the formulations

for the single container loading problems of Junqueira et al. [15], allows us to determine

the exact solution of problems in different scenarios, combining practical considerations in

ways that have not been previously tested in the CLP literature. These practical consid-

erations include the orientation of the boxes as well as their stability and the separation

of boxes that cannot be loaded into the same container. To our knowledge, no exact

formulation exists to deal with the separation of boxes.

The remainder of this paper is organized as follows. Section 2 presents 0-1 integer lin-

ear programming models, along with the practical considerations of box orientation, load

stability, and box separation. In Section 3 we derive tight bounds for input minimization

problems. Section 4 analyzes the extensive computational results obtained on classical

benchmark instances and presents the comparison with many competing algorithms. Fi-

nally, Section 5 presents the main conclusions as well as perspectives for future work.

2 Mathematical formulations

We consider a set of m distinct types of boxes available, and each box of type i ∈

{1, . . . ,m} has a length li, a width wi, a height hi, a volume (or value) vi, and avail-

ability bi. For input minimization problems, we consider that there are a total of C

identical containers, each with length L, width W , height H and volume V . For out-

put maximization problems, we consider K types of containers, each container of type

k ∈ {1, . . . ,K} being associated with length Lk, width Wk, height Hk, volume Vk, and

availability dk.

Taking the Cartesian coordinate system, let (p, q, r) be the front-left-bottom vertex of

a box inside a container (see Figure 1). Boxes can assume different orientations within

the container. Although a box can be placed inside a container in up to six different

orientations, more restricted situations can be addressed, in which it is not possible to
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place a box in a given orientation, generally due to fragility and/or stability of the cargo.

(0, 0, 0) L

W

H

p

q
r

Figure 1: Box allocated inside a container with its vertex at the point (p, q, r).

In our formulations, we address the practical consideration of box orientation, assuming

that a box of type i can be loaded in up to six orientations, by means of orthogonal

rotations. To this end, we derive the orientations that a given box can take by de-

composing the dimensions (li, wi, hi) into new items of dimensions (lig, wig, hig), where

g ∈ Ωi 6= ∅, with Ωi ⊆ {1, 2, 3, 4, 5, 6}, such that (li1, wi1, hi1) = (li, wi, hi), (li2, wi2, hi2) =

(li, hi, wi), (li3, wi3, hi3) = (wi, li, hi), (li4, wi4, hi4) = (wi, hi, li), (li5, wi5, hi5) = (hi, li, wi)

and (li6, wi6, hi6) = (hi, wi, li), as shown in Figure 2.
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Figure 2: Six possible orientations of a box.

The following sets indicate the possible positions that a box can take in relation to the

dimensions of the container:
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X = {p ∈ Z | 0 ≤ p ≤ L−min
i

(lig)}, ∀ i ∈ {1, . . . ,m}, g ∈ Ωi (1)

Y = {q ∈ Z | 0 ≤ q ≤ W −min
i

(wig)}, ∀ i ∈ {1, . . . ,m}, g ∈ Ωi (2)

Z = {r ∈ Z | 0 ≤ r ≤ H −min
i

(hig)}, ∀ i ∈ {1, . . . ,m}, g ∈ Ωi. (3)

Enumerating the sets that indicate all possible positions that a box can take along the

axes of a container allow only the resolution of small problems due to the large number of

possible positions that must be considered when deciding where to place an item, many

of them redundant or symmetric. In this paper, four techniques to generate the possible

points that can be occupied by the front-left-bottom vertex of a box are adapted for the

three-dimensional packing case: Normal Patterns (NP), Reduced Raster Points (RRP),

Regular Normal Patterns (RNP), and the Meet in the Middle (MiM) Principle.

The NP, originally described by Herz [13] and Christofides and Whitlock [6], take into

account that the boxes can be moved toward the bottom and/or left of the container

until they are adjacent to other boxes or to the container walls, eliminating symmetrical

positions that they may occupy. In an attempt to obtain sets with fewer elements, Terno

et al. [24] and Scheithauer and Terno [22] introduced the RRP sets, derived from NP.

Although there is no guarantee that no loss of generality occurs in the RRP, in the

empirical tests performed by de Queiroz et al. [8] and also in this work, no optimal

solution was missed.

Boschetti et al. [4] introduce the RNP, in which the possible positions that a box i can

take inside a container can be computed by determining the positions of all box types

except i. Finally, the MiM Principle, defined by Côté and Iori [7], fix a threshold T along

the dimensions of the container, forcing items whose front-left-bottom vertex lay in the

left of T to be packed on the container’s bottom, while the others are positioned at the

top of the container.

These discretization techniques aim to generate sets of lower cardinality than those pre-

sented by formulation (1)–(3), leading to models with fewer variables and constraints.
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2.1 Input minimization problems

In order to model input minimization problems, we use the following sets and decision

variables. The sets described by (4)–(6) enumerate the possible coordinates that a box of

type i, in its gth orientation, can assume inside a container:

Xig = {p ∈ X | 0 ≤ p ≤ L− lig}, ∀ i ∈ {1, . . . ,m}, g ∈ Ωi (4)

Yig = {q ∈ Y | 0 ≤ q ≤ W − wig}, ∀ i ∈ {1, . . . ,m}, g ∈ Ωi (5)

Zig = {r ∈ Z | 0 ≤ r ≤ H − hig}, ∀ i ∈ {1, . . . ,m}, g ∈ Ωi. (6)

The decision variables of the model are defined as follows. Let xjpqrig be equal to 1 if a

box of type i, in its gth orientation, has its front-left-bottom vertex at point (p, q, r) of

the jth container, and 0 otherwise, and ej be equal to one if the jth container is used,

j ∈ {1, . . . , C}, and 0 otherwise.

The mathematical formulation for the input minimization problem is given by:

min
C∑
j=1

ej (7)

subject to:

m∑
i=1

∑
g∈Ωi

∑
{p∈Xig |s−lig+1≤p≤s}

∑
{q∈Yig |t−wig+1≤q≤t}

∑
{r∈Zig |u−hig+1≤r≤u}

xjpqrig ≤ ej,

s ∈ X, t ∈ Y, u ∈ Z, j ∈ {1, . . . , C} (8)

C∑
j=1

∑
g∈Ωi

∑
p∈Xig

∑
q∈Yig

∑
r∈Zig

xjpqrig = bi, i ∈ {1, . . . ,m} (9)

xjpqrig ∈ {0, 1}, i ∈ {1, . . . ,m}, g ∈ Ωi, j ∈ {1, . . . , C}, p ∈ Xig, q ∈ Yig, r ∈ Zig.

(10)
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The objective function (7) minimizes the number of containers used. Constraints (8)

guarantee that no overlapping of boxes inside the jth container occurs, if it is used. These

constraints work by preventing a point (s, t, u) occupied by any item from being used by

another item. Constraints (9) impose that all boxes must be packed, allowing the boxes

to be rotated, assuming up to six positions, while constraints (10) define the domain of

the decision variables.

Given that all containers are identical, equivalent solutions may arise by simply inter-

changing their usage. To avoid such symmetries, we consider the following constraints,

which imposes an order of usage of the available containers:

ej ≤ ej−1, j ∈ {2, . . . , C}. (11)

2.2 Output maximization problems

Some adjustments in the objective function and constraints in the input minimization

model allow the construction of a mathematical formulation for output maximization

problems with multiple heterogeneous containers.

Since each type of container has different dimensions, in the formulation described next,

sets Xk, Yk and Zk can be obtained repeating the process of set generation using one

of the discretizations from Section 2 for each of the k types of containers available, just

like sets Xigk, Yigk and Zigk can be devised from replications of the sets (4)–(6) for all

k ∈ {1, . . . ,K} .

The decision variables are defined as follows. Let xjkpqrig be equal to 1 if and only if a box

of type i, in its gth orientation, has its front-left-bottom vertex at the point (p, q, r) of

the jth container of type k. The mathematical formulation for the output maximization

problem is given by:
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max
K∑
k=1

dk∑
j=1

m∑
i=1

∑
g∈Ωi

∑
p∈Xigk

∑
q∈Yigk

∑
r∈Zigk

vix
jkpqr
ig (12)

subject to

m∑
i=1

∑
g∈Ωi

∑
{p∈Xigk|s−lig+1≤p≤s}

∑
{q∈Yigk|t−wig+1≤q≤t}

∑
{r∈Zigk|u−hig+1≤r≤u}

xjkpqrig ≤ 1,

s ∈ Xk, t ∈ Yk, u ∈ Zk, k ∈ {1, . . . ,K}, j ∈ {1, . . . , dk} (13)

K∑
k=1

dk∑
j=1

∑
g∈Ωi

∑
p∈Xigk

∑
q∈Yigk

∑
r∈Zigk

xjkpqrig ≤ bi, i ∈ {1, . . . ,m} (14)

xjkpqrig ∈ {0, 1}, i ∈ {1, . . . ,m}, g ∈ Ωi, k ∈ {1, . . . ,K},

j ∈ {1, . . . , dk}, p ∈ Xigk, q ∈ Yigk, r ∈ Zigk. (15)

The objective function (12) maximizes the volume (or the associated value) of the items

packed in the available containers. Constraints (13)–(15) have similar interpretation to

those from the previous section. Note that if there is only one type of container, the

formulation can be simplified by removing index k and assuming that j ∈ {1, . . . , C}.

2.3 Practical considerations

In this section we study some practical considerations not often included in other ap-

proaches. Nevertheless, they are of high importance in practice. These include the sepa-

ration of boxes in Section 2.3.1 and load stability in Section 2.3.2.

2.3.1 Separation of boxes

According to Bischoff and Ratcliff [1], requirements of separation of boxes are related to

items that cannot be packed side by side, having some space between them when they
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share the same container. Eley [10] extends this concept to types that cannot be loaded

into the same container. We follow this interpretation of conflicting items, i.e., they

cannot be loaded into the same container.

To this end, let B1 and B2 be two sets with the types of conflicting items, i.e., each box

type in B1 cannot be loaded in the same container with items of set B2 and vice-versa. A

practical situation arises when one must load some containers with a set of different foods

and another set of chemicals, or separating frozen and refrigerated items from general

cargo. Binary variables yγjk, γ ∈ B1 ∪B2, j ∈ {1, . . . , dk} and k ∈ {1, . . . ,K}, take value

1 if boxes of type γ are allocated in the jth container of type k, and 0 otherwise.

To consider the practical consideration of separation of items, constraints (14) must be

replaced by the following ones, for each γ ∈ B1 ∪B2:

∑
g∈Ωγ

∑
p∈Xγgk

∑
q∈Yγgk

∑
r∈Zγgk

xjkpqrγg ≤ bγyγjk, k ∈ {1, . . . ,K}, j ∈ {1, . . . , dk}. (16)

To guarantee that boxes of type θ ∈ B1 will be loaded in different containers than boxes of

type µ ∈ B2, the following constraints must be added to the model defined by (12)–(15):

yθjk + yµjk ≤ 1

yθjk ∈ {0, 1}, yµjk ∈ {0, 1}, θ ∈ B1, µ ∈ B2, k ∈ {1, . . . ,K}, j ∈ {1, . . . , dk}.

(17)

Again, if there is only one type of container, the formulation can be simplified by removing

index k and assuming that j ∈ {1, . . . , C}.

2.3.2 Stability of items

Stability is one of the most important practical considerations that can be incorporated in

the CLP, as stable loads prevent cargo damage during transport and ensure the safety of

operators, especially during the loading/unloading procedures. The stability requirement
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imposes that a minimum percentage of the base of each box must be supported by the

base of the container of by other boxes. The stability coefficient α indicates the minimum

portion of the items that must be supported. When α = 1, 100% of the base of the box

must be supported, and when α = 0 no stability requirement is considered, i.e., the items

may be partially supported or “floating” within the containers.

To consider the vertical stability in the CLP, the following constraints must be added to

the formulations (7)–(10) and (12)–(15):

m∑
i=1

∑
{g∈Ωi|r′−hig≥0}

∑
{p∈Xigk|p′−lig+1≤p≤p′+lλa−1}

∑
{q∈Yigk|q′−wig+1≤q≤q′+wλa−1}

LiλWiλx
jkpq(r′−hig)
ig ≥ αlλawλax

jkp′q′r′

λa

λ ∈ {1, . . . ,m}, a ∈ Ωλ, k ∈ {1, . . . ,K}, j ∈ {1, . . . , dk},

p′ ∈ Xλak, q′ ∈ Yλak, r′ ∈ Zλak. (18)

where

Liλ = min(p+ lig, p
′ + lλa)−max(p, p′) (19)

and

Wiλ = min(q + wig, q
′ + wλa)−max(q, q′). (20)

Expressions (18)–(20) guarantee a minimum percentage of support for the base for a box

of type λ positioned at (p′, q′, r′) of the jth container of type k. This support is provided

by a box of type i (including i = λ) that is located at (p, q, r) within the container, where

r = r′ − hig.

As in the mathematical formulation for the practical consideration of item separation, one

can remove index k and assume that j ∈ {1, . . . , C} if there is only one type of container

available.
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We note, however, that while the parameter α controls the minimum bearing area of the

boxes, it does not guarantee the stability of the load when it is subject to the action of

external forces such as speed, acceleration and vehicle oscillations [20].

3 Bounds for input minimization problems

In this section we describe how we obtain bounds for input minimization problems. We

describe an upper bound procedure in Section 3.1 and a lower bound method in Section

3.2. Computational results showing their efficiency are presented in Section 4.

3.1 Upper bound

Determining the maximum number of containers U needed to pack all the boxes is ex-

tremely important to model the input minimization problems. Since the number of con-

tainers C is a parameter in the formulation, the smaller the value of C, the smaller the

number of variables and constraints of the models.

In order to obtain an upper bound for the problem, we solve a set cover problem, mini-

mizing the number containers needed to pack all the boxes. Inspired by the work of Zhu

et al. [26], we create packings to the set cover problem but, instead of using the prototype

column generation presented by them, we use the heuristic of George and Robinson [11]

(G&R), a fast procedure to obtain the packings. Besides, we also present a variation of

the heuristic based on the GRMod of Moura and Oliveira [19].

Originally designed for loading a single container, the G&R heuristic fills the container

by partitioning it into layers and filling them with stacks of identical boxes. The depth

of each layer is defined by the first box placed in the layer. George and Robinson [11]

present three criteria for choosing this box. These criteria, given below, must be applied

sequentially, i.e., the next criterion is used only used as a tie-breaker:
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i. Select the box with the largest of the smallest dimensions;

ii. Select the item with the largest quantity available;

iii. Select the box with the largest dimension.

While filling the container, it is possible that the box type chosen does not have a sufficient

availability to fill the entire layer or, alternatively, that this type of box can not be placed

in the remaining space. This entails the generation of new spaces inside the container:

a depth space in front of the layer; a width space on the side of the layer and a height

space on the top of the layer. These spaces must be filled in the reverse order in which

they are created, that is, one must first try to fill the height space, then the width and,

finally, the depth space. However, these spaces may be insufficient to be occupied by any

other type of box during the filling of the current layer. Even so, they are stored in a list

of temporarily rejected spaces, because they can be combined with other idle spaces in

filling a new layer, generating a more dense loading.

To generate feasible packing patterns, we applied the heuristic sequentially, updating the

availability of the boxes as each container is filled. One of the disadvantages of this

strategy is that, although the first containers tend to be almost completely filled, the

latter ones will have a low ratio of occupancy. This is mainly due to the number of boxes

available for loading, as well as the need to choose the boxes that will open the layers

based on the original heuristic criteria.

In order to obtain different, high quality packings for the set cover, we created a variation

of the G&R heuristic, inspired by the work of Moura and Oliveira [19]. In order to generate

the load patterns, we eliminated the criteria for choosing the boxes of the original heuristic

and made the choice of the type of box that will be used to create a new layer or to fill a

space based on a restricted list of candidates. The boxes that will be part of this list are

chosen based on the following expression, given by Moura and Oliveira [19]:

T = V olmax + β(V olmin–V olmax) (21)
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where T is a volume utilization threshold, V olmax and V olmin are, respectively, the max-

imum and minimum volume that can be used by the arrangements that can be formed

with the boxes available for loading, and β is a parameter that controls to dictate the level

of randomness of the algorithm. Moura and Oliveira [19] point out that when β = 1, the

boxes will be chosen in a random fashion, whereas when β = 0, the choice of the boxes

assumes a greedy behavior. Since this approach has a random feature, each execution of

it can yield a different load pattern.

One of the advantages of using a heuristic like G&R or the variation of the GRMod to

obtain the packings is that, besides the number of each box type loaded in a container,

the heuristic also gives an actual packing pattern, with a feasible arrangement of boxes

inside a container.

After running the strategies above, we have P different packing patterns. The number of

boxes types loaded in each packing will be a column vector y, whose elements yij indicate

the number of boxes of type i in the packing j. This leads to the following set cover

formulation:

min
P∑
j=1

δj (22)

subject to:

P∑
j=1

yijδj = bi, i = 1, . . . ,m (23)

δj ∈ N. (24)

In the formulation above, (22) minimizes the number of times a packing is selected. This

can also be seen as the number of containers needed to pack the available boxes; therefore,

by solving (22)–(24), an upper bound for the input minimization problem is obtained.
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3.2 Lower bound

We computed a lower bound to determine the minimum number of containers needed to

load the available boxes. In addition, we compare the results obtained by the upper bound

procedure with the lower bound to evaluate the quality of the initial solution. An obvious

lower bound for the CLP, which can determine the minimum number of containers needed

to allocate the boxes, is given by:

L =

⌈∑m
i=1 vibi
V

⌉
. (25)

It should be noted that it may not be possible to place all of the boxes in this num-

ber of containers, because the waste of space may be unavoidable due to the geometric

arrangement of the boxes [17].

The objective function in the input minimization problem formulation minimizes the

number ej of containers needed to allocate all the available boxes. By using (25), since L ≤

U , one can assign the value 1 to all variables ej, j ∈ {1, . . . ,L}, leaving the mathematical

formulation to minimize the use of remaining variables, and to ensure the arrangement of

the boxes in the selected containers, considerably reducing the effort to solve the models.

Finally, if a loading pattern is known and L = U , it constitutes an optimal solution for

the problem.

4 Computational experiments

We now describe the detailed computational experiments used to assess the performance

of our methods. In order to evaluate the approaches proposed in the previous sections,

we have used known datasets from the literature for both input minimization and output

maximization problems. We have implemented all models and procedures in VB.net

and executed each instance using computers equipped with Xeon processors running at
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2.77GHz and up to 120GB of RAM. A time limit of 7200 seconds was imposed for each

execution. The mathematical models were solved using Gurobi 7.0.2.

Section 4.1 describes the instances used and the methods available in the literature. Sec-

tion 4.2 presents a discussion about the discretizations techniques used to solve the models.

In Section 4.3 we detail the results obtained for input minimization problems, followed

by those for output maximization in Section 4.4.

4.1 Instances

We have used the instances of Ivancic et al. [14] for the input minimization problem.

This data set is composed of 47 instances ranging from two to five types of boxes, and

from 47 to 180 boxes. A single type of container is considered in these instances. The

objective is to find the lowest number of containers needed to pack all the boxes. These

instances have been solved by different methods, and we compare our results against the

integer programming-based heuristic of Ivancic et al. [14], the heuristic box and container

selection criteria of Bortfeldt [2], the column generation heuristic of Eley [10], the greedy

heuristic of Lim and Zhang [16], and the column generation procedures of Ren et al. [21]

and Zhu et al. [26]. Only the tree search heuristics with sequential and parallel strategy

of Eley [9] and the column generation procedure of Zhu et al. [26] include the practical

consideration of stability. Throughout the text, for simplicity, these approaches will be

called IVA, BOR, ELY, LZG, CHE ZHU, ELS, ELP, and ZHU-ST, respectively.

The output maximization problem was tested on the 16 instances proposed by Mohanty

et al. [18], which range from two to six types of boxes, with availability varying from 47

to 200 items, and with two and three different container types, with availability ranging

from two to 15 containers. The objective is to maximize the value associated with the

cargo. Again, different methods have been used to solve these instances. We compare our

results against the sequential solution strategy using a column generation procedure of

Mohanty et al. [18], the heuristics combined with the box and container selection criteria
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of Bortfeldt [2], the column generation heuristic combined with integer programming of

Eley [10], the multi-start local search procedure of Takahara [23], and the tree search

algorithm of Ren et al. [21]. These techniques will be called MOH, BOR, ELY, TAK, and

REN, respectively.

4.2 Discretizations techniques

The mathematical formulations for the input minimization problem, defined by equations

(7)–(10), and for the output maximization problem, given by expressions (12)–(15), were

tested using the four techquines to generate the points that can be occupied by the front-

left-bottom vertex of a box, as mentioned in Section 2. For input minimization problems,

the container availability was defined as the upper bound U obtained solving the set

cover problem presented in Section 3.1. Algorithm 1 shows the procedure used to solve

the problems.

Algorithm 1 Strategy to solve input minimization problems

Require: Box dimensions, box availability and container dimensions

Compute the lower bound L

Compute the upper bound U

if L < U then

Generate the model

Set ej = 1, j ∈ {1, . . . ,L}

Add symmetry breaking constraints ej ≤ ej−1, ∀j ∈ {L+ 1, . . . ,U}

Solve the model

end if

return Loading pattern, number of containers

Table 1 presents the number of containers required to load the boxes on the 47 instances

of Ivancic et al. [14], the number of variables and constraints of each model, as well as the

time required to obtain the solution with each of the techniques. As all the techniques
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tested were obtained, directly or indirectly, from the NP sets, this technique generated

models with more variables and constraints. The time needed to solve the models obtained

using the RNP approach was slightly lower in comparison with the ones with NP, even

though the number of variables and constraints is the same in both approaches. Even

though the RRP yielded models with the lowest number of constraints and variables, the

MiM approach obtained similar results, with the guarantee of no loss of generality.

Tests performed with the 16 instances of Mohanty et al. [18] for the output maximization

problem showed a similar outcome from those presented for the input minimization case,

as can be seen in Table 2. Thus, for simplicity, we will only show the results obtained

with the MiM in the following sections.

4.3 Results for input minimization problems

The formulations for the input minimization problem presented in this article were tested

without and with the practical consideration of stability. For the tests considering load

stability, the height was discretized using Normal Patterns to guarantee that no loss of

generality occurs. To obtain the upper bound, we created the columns for the set cover

problem first applying the G&R heuristic sequentially. Then, more columns were created

using the adapted GRMod approach presented in Section 3.1, with parameters β = 0,

β = 0.5 and β = 1. The boxes were loaded in two different strategies: filling the container

through the length and through the width. As a stop criterion, we set a time limit of 15

seconds or a maximum of 100,000 executions in each direction for each parameter. After

solving the set cover the optimality was proved comparing the upper and lower bound

in 22 instances, as highlighted in Table 3. The upper bound U and the corresponding

loading pattern for each instance were computed in an average time of 7.59 seconds.

Table 4 compares our results without the practical consideration of stability against the

competing methods described in Section 4.1. Optimal solutions are highlighted in bold,

and the best known solutions in italics. We improved two solutions and match all of the
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Table 1: Comparison between the discretization techniques using the instances of Ivancic et al.

[14]

#
NP RNP RRP MIM

Containers Variables Constraints Time (s) Containers Variables Constraints Time (s) Containers Variables Constraints Time (s) Containers Variables Constraints Time (s)

1 25 3725 3002 3.03 25 3725 3002 3.08 25 3725 3002 2.94 25 3725 3002 2.99

2 9 12730 3432 10.69 9 12730 3432 10.50 9 12730 3432 10.87 9 12730 3432 10.47

3 19 17917 1904 9.95 19 17917 1904 9.95 19 17917 1904 9.95 19 17917 1904 9.95

4 26 14326 1876 5.84 26 14326 1876 5.84 26 14326 1876 5.84 26 14326 1876 5.84

5 51 10506 2044 27.74 51 10506 2044 27.18 51 10506 2044 27.29 51 10506 2044 27.32

6 10 4730 603 6.42 10 4730 603 6.42 10 4730 603 6.42 10 4730 603 6.42

7 16 3856 579 4.43 16 3856 579 4.43 16 3856 579 4.43 16 3856 579 4.43

8 4 5556 579 8.26 4 5556 579 8.26 4 5556 579 8.26 4 5556 579 8.26

9 19 8037 2662 14.15 19 8037 2662 12.84 19 8037 2662 13.64 19 8037 2662 14.87

10 55 1485 552 2.56 55 1485 552 2.56 55 1485 552 2.56 55 1485 552 2.56

11 16 9760 4482 43.27 16 9760 4482 4.20 16 9760 4482 43.41 16 9760 4482 41.79

12 53 9699 2123 4.20 53 9699 2123 4.22 53 9699 2123 4.09 53 9699 2123 4.20

13 25 24325 3753 7.15 25 24325 3753 7.02 25 24325 3753 7.15 25 24325 3753 7.07

14 27 13878 2433 4.40 27 13878 2433 4.40 27 13878 2433 4.40 27 13878 2433 4.40

15 11 23903 4227 5.34 11 23903 4227 5.34 11 23903 4227 5.34 11 23903 4227 5.34

16 26 10842 3123 5.58 26 10842 3123 5.43 26 10842 3123 5.44 26 10842 3123 5.49

17 7 35665 5085 7.46 7 35665 5085 7.46 7 35665 5085 7.46 7 35665 5085 7.46

18 2 88562 12379 13.07 2 88562 12379 13.07 2 88562 12379 13.07 2 88562 12379 13.07

19 3 77991 13203 9.11 3 77991 13203 9.11 3 77991 13203 9.11 3 77991 13203 9.11

20 5 39905 10403 195.16 5 39905 10403 152.01 5 39905 10403 130.51 5 39905 10403 318.54

21 20 90960 30805 7080.26 20 90960 30805 7081.64 20 90960 30805 6979.15 20 90960 30805 7054.96

22 8 287416 39173 15.00 8 287416 39173 15.00 8 287416 39173 15.00 8 287416 39173 15.00

23 19 62244 27221 3246.39 19 62244 27221 3268.13 19 62244 27221 3239.20 19 62244 27221 3261.04

24 5 162145 19604 10.74 5 162145 19604 10.74 5 162145 19604 10.74 5 162145 19604 10.74

25 5 314405 29164 7200.00 5 314405 29164 7200.00 5 314405 29164 7200.00 5 314405 29164 7200.00

26 3 506889 38644 15.00 3 506889 38644 15.00 3 506889 38644 15.00 3 506889 38644 15.00

27 4 112940 20067 8.17 4 112940 20067 8.17 4 112940 20067 8.17 4 112940 20067 8.17

28 9 48753 15879 6.79 9 48753 15879 6.79 9 48753 15879 6.79 9 48753 15879 6.79

29 16 80160 25924 6030.58 16 80160 25924 5846.36 16 78480 19716 4316.05 16 78480 19716 4333.17

30 22 49082 22444 7200.00 22 49082 22444 7200.00 22 47344 15844 7200.00 22 47344 15844 7200.00

31 12 168987 36040 7200.00 12 168987 36040 7200.00 12 165841 28734 7200.00 12 165841 28734 7200.00

32 4 110452 16019 9.44 4 110452 16019 9.44 4 110452 16019 9.44 4 110452 16019 9.44

33 4 61028 12099 8.14 4 61028 12099 8.14 4 61028 12099 8.14 4 61028 12099 8.14

34 8 43416 10755 108.53 8 43416 10755 104.32 8 43416 10755 107.20 8 43416 10755 107.36

35 2 64834 12802 5.94 2 64834 12802 5.94 2 61234 10832 5.94 2 61234 10832 5.94

36 14 10528 7282 6.01 14 10528 7282 6.12 14 10136 6050 6.00 14 10136 6050 5.79

37 23 63319 11963 17.06 23 63319 11963 17.38 23 63319 11963 17.64 23 63319 11963 17.41

38 45 31995 8643 9.27 45 31995 8643 9.55 45 31995 8643 9.74 45 31995 8643 9.72

39 15 47745 8193 726.13 15 47745 8193 704.02 15 47745 8193 717.54 15 47745 8193 735.97

40 8 133432 16900 3660.31 8 133432 16900 3550.23 8 133432 16900 3647.12 8 133432 16900 3660.02

41 15 61755 11344 59.00 15 61755 11344 57.51 15 61755 11344 59.42 15 61755 11344 59.17

42 4 260532 27107 9.78 4 260532 27107 9.78 4 148244 14595 9.78 4 157540 17027 9.78

43 3 756147 71985 15.00 3 756147 71985 15.00 3 475659 38853 15.00 3 475659 38853 15.00

44 3 599652 62643 5987.74 3 599652 62643 5927.74 3 325540 28707 830.11 3 398116 35883 1255.09

45 3 1326255 113404 7200.00 3 1326255 113404 7200.00 3 1257063 93916 7200.00 3 1257063 93916 7200.00

46 2 1335726 109392 15.00 2 1335726 109392 15.00 2 1270058 91732 15.00 2 1270058 91732 15.00

47 3 675213 74254 15.00 3 675213 74254 15.00 3 620871 58036 15.00 3 620871 58036 15.00

Average 167732.09 20387.11 1196.87 167732.09 20387.11 1187.45 149292.81 17062.38 1046.50 151034.77 17266.81 1062.62
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Table 2: Comparison between the discretization techniques using the instances of Mohanty

et al. [18]

#
NP RNP RRP MIM

Obj. Value Variables Constraints Time (s) Obj. Value Variables Constraints Time (s) Obj. Value Variables Constraints Time (s) Obj. Value Variables Constraints Time (s)

1 9216.00 2840 928 17.71 9216.00 2840 928 18.26 9216.00 2840 928 18.05 9216.00 2840 928 18.05

2 85555.20 8485 1064 12.59 85555.20 8485 1064 13.73 85555.20 8485 1064 12.89 85555.20 8485 1064 12.89

3 53262.50 2340 279 1.52 53262.50 2340 279 1.35 53262.50 2340 279 1.83 53262.50 2340 279 1.23

4 2354752.00 2240 752 0.07 2354752.00 2240 752 0.07 2354752.00 2240 752 0.07 2354752.00 2240 752 0.07

5 583750.00 4488 753 1.41 583750.00 4488 753 0.70 583750.00 4488 753 0.50 583750.00 4488 753 0.50

6 142464.00 16612 2823 7200.00 142464.00 16612 2823 7200.00 142464.00 16612 2823 7200.00 142464.00 16612 2823 7200.00

7 17664.00 33976 6483 7200.00 17664.00 33976 6483 7200.00 17664.00 33976 6483 7200.00 17664.00 33976 6483 7200.00

8 71972.40 204915 25310 7200.00 71972.40 204915 25310 7200.00 71972.40 199821 21118 7200.00 71972.40 199821 21118 7200.00

9 114228.00 264270 22636 7200.00 114228.00 264270 22636 7200.00 114228.00 264270 22636 7200.00 114228.00 264270 22636 7200.00

10 15360.00 5392 1283 1.75 15360.00 5392 1283 1.82 15360.00 5392 1283 0.99 15360.00 5392 1283 0.97

11 54761.00 25246 7036 1174.91 54761.00 25246 7036 1189.56 54761.00 24715 5398 312.78 54761.00 24715 5398 336.04

12 24393.60 48294 8375 7200.00 24393.60 48294 8375 7200.00 24393.60 48294 8375 7200.00 24393.60 48294 8375 7200.00

13 36556.80 66334 13842 414.42 36556.80 66334 13842 428.50 36556.80 62678 11696 377.10 36556.80 62678 11696 461.63

14 68723.20 13288 2519 7200.00 68723.20 13288 2519 7200.00 68723.20 13288 2519 7150.31 68723.20 13288 2519 6547.81

15 40807.80 41588 5740 26.89 40807.80 41588 5740 25.65 40807.80 41588 5740 34.36 40807.80 41588 5740 27.29

16 498426.00 323197 35677 7200.00 481434.00 323197 35677 7200.00 629754.00 154874 14633 7200.00 632274.00 179988 17160 7200.00

Average 66469.06 8468.75 3253.20 66469.06 8468.75 3254.97 55368.81 6655.00 3194.30 56938.43 6812.93 3162.90

BKS for this 47 instance set. Moreover, we prove optimality for 43 instances, the highest

number in literature. We obtained outstanding results, optimally solving 91.48% of the

instances, against 53.19% from Eley [10]. Comparing the Tables 3 and 4, besides the

22 instances which optimality was proved early in Table 3, the set cover approach found

the optimal solution in 18 cases, later proved by solving the models. Overall, the sum of

containers needed to pack the boxes is 688, three fewer than the approach of Zhu et al.

[26], currently the best in CLP literature.

The stability coefficient was defined as α = 1 for tests with this constraint, i.e., the bottom

side of each box must be fully supported by other boxes or by the floor of the container.

This value is commonly found in the literature, being used, for example, by Eley [9] and

Junqueira et al. [15]. Table 5 shows the results considering the stability constraint. We

compare our results against the approaches of Eley [9] and Zhu et al. [26]. Out of the 47

instances, we proved optimality for 37 (highlighted in bold). Our results were equal to the

BKS in 43 instances and we improved the BKS for two cases (BKS in italic), requiring

one fewer container in each instance to load the boxes.

Figures 3 and 4 show the loading pattern obtained for instance 8 without and with the
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stability consideration, respectively.

Table 3: Bounds for the instances of Ivancic et al. [14]

#
Lower

bound

Upper

bound
Time (s) #

Lower

bound

Upper

bound
Time (s)

1 19 25 2.55 25 4 5 5.82

2 7 10 5.96 26 3 3 15

3 19 19 9.95 27 4 4 8.17

4 26 26 5.84 28 9 9 6.79

5 46 51 6.43 29 15 16 7.09

6 10 10 6.42 30 18 22 5.24

7 16 16 4.43 31 11 13 7.01

8 4 4 8.26 32 4 4 9.44

9 16 19 2.42 33 4 4 8.14

10 37 55 2.54 34 7 8 6.16

11 14 16 3.06 35 2 2 5.94

12 45 53 3.63 36 10 14 3.68

13 20 25 4.57 37 12 23 7.92

14 27 27 4.4 38 25 45 5.39

15 11 11 5.34 39 12 15 4.77

16 21 26 4.53 40 7 8 12.93

17 7 7 7.46 41 14 15 5.99

18 2 2 13.07 42 4 4 9.78

19 3 3 9.11 43 3 3 15

20 4 5 4.61 44 3 4 6.37

21 17 20 8.08 45 2 3 15

22 8 8 15 46 2 2 15

23 17 21 6.62 47 3 3 15.00

24 5 5 10.74 Sum/Avg 579 693 7.59

Bold indicates proven optimal
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Table 4: Results for the instances of Ivancic et al. [14]

# IVA BOR ELY LZG CHE ZHU
This paper

Containers Deviation to the BKS

1 26 25 25 25 25 25 25 0

2 11 10 10 10 10 10 9 -1

3 20 20 20 19 19 19 19 0

4 27 28 26 26 26 26 26 0

5 65 51 51 51 51 51 51 0

6 10 10 10 10 10 10 10 0

7 16 16 16 16 16 16 16 0

8 5 4 4 4 4 4 4 0

9 19 19 19 19 19 19 19 0

10 55 55 55 55 55 55 55 0

11 18 18 17 16 16 16 16 0

12 55 53 53 53 53 53 53 0

13 27 25 25 25 25 25 25 0

14 28 28 27 27 27 27 27 0

15 11 11 11 11 11 11 11 0

16 34 26 26 26 26 26 26 0

17 8 7 7 7 7 7 7 0

18 3 2 2 2 2 2 2 0

19 3 3 3 3 3 3 3 0

20 5 5 5 5 5 5 5 0

21 24 21 20 20 20 20 20 0

22 10 9 8 9 8 8 8 0

23 21 20 20 20 19 19 19 0

24 6 6 6 5 5 5 5 0

25 6 5 5 5 5 5 5 0

26 3 3 3 3 3 3 3 0

27 5 5 5 5 5 4 4 0

28 10 10 10 9 10 10 9 0

Continued on next page
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Table 4: Results for the instances of Ivancic et al. [14]

# IVA BOR ELY LZG CHE ZHU
This paper

Containers Deviation to the BKS

29 18 17 17 17 17 17 16 -1

30 24 22 22 22 22 22 22 0

31 13 13 13 12 12 12 12 0

32 5 4 4 4 4 4 4 0

33 5 5 5 4 4 4 4 0

34 9 8 8 8 8 8 8 0

35 3 2 2 2 2 2 2 0

36 18 14 14 14 14 14 14 0

37 26 23 23 23 23 23 23 0

38 50 45 45 45 45 45 45 0

39 16 15 15 15 15 15 15 0

40 9 9 8 9 8 8 8 0

41 16 15 15 15 15 15 15 0

42 4 4 4 4 4 4 4 0

43 3 3 3 3 3 3 3 0

44 4 3 4 3 3 3 3 0

45 3 3 3 3 3 3 3 0

46 2 2 2 2 2 2 2 0

47 4 3 3 3 3 3 3 0

Sum 763 705 699 694 692 691 688

Italic indicates BKS

Bold indicates proven optimal

Table 5: Results for the instances of Ivancic et al. [14] with load stability

# ELS ELP ZHU-ST
This paper

Containers Deviation to the BKS

1 27 26 25 25 0

Continued on next page
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Table 5: Results for the instances of Ivancic et al. [14] with load stability

# ELS ELP ZHU-ST
This paper

Containers Deviation to the BKS

2 11 10 10 10 0

3 21 22 19 19 0

4 29 30 26 26 0

5 55 51 51 51 0

6 10 10 10 10 0

7 16 16 16 16 0

8 4 4 4 4 0

9 19 19 19 19 0

10 55 55 55 55 0

11 17 18 17 16 -1

12 53 53 53 53 0

13 25 25 25 25 0

14 27 27 27 27 0

15 12 12 11 11 0

16 28 26 26 26 0

17 8 7 7 7 0

18 2 2 2 2 0

19 3 3 3 3 0

20 5 5 5 5 0

21 24 26 20 20 0

22 9 9 8 8 0

23 21 21 20 21 1

24 6 6 5 5 0

25 6 5 5 5 0

26 3 3 3 3 0

27 5 5 4 4 0

28 11 10 10 9 -1

29 18 18 17 17 0

Continued on next page
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Table 5: Results for the instances of Ivancic et al. [14] with load stability

# ELS ELP ZHU-ST
This paper

Containers Deviation to the BKS

30 22 23 22 22 0

31 13 14 12 13 1

32 4 4 4 4 0

33 5 5 4 4 0

34 8 9 8 8 0

35 2 2 2 2 0

36 18 14 14 14 0

37 26 23 23 23 0

38 46 45 45 45 0

39 15 15 15 15 0

40 9 9 8 8 0

41 16 15 15 15 0

42 4 4 4 4 0

43 3 3 3 3 0

44 4 4 3 3 0

45 3 3 3 3 0

46 2 2 2 2 0

47 3 3 3 3 0

Sum 733 721 693 693

Italic indicates BKS

Bold indicates proven optimal

4.4 Results for output maximization problems

To evaluate the formulation for the maximization problem, we considered four different

situations: first, we only assessed the formulation given by (12)–(15). Then, we considered

the constraints for the separation of boxes, considering the stability of the cargo, and

finally with both practical considerations. To ensure no loss of generality, in the tests
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Figure 3: Loading patterns for instance 8 of Ivancic et al. [14].

Figure 4: Loading patterns for instance 8 of Ivancic et al. [14] with load stability.
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with stability consideration the height was discretized using Normal Patterns due to this

requirement.

Table 6 compares the results obtained by our approach against the ones mentioned in

Section 4.1. In 15 out of the 16 instances, our approach yielded the BKS, improving the

existing one for 10 instances. Those are highlighted in italics. Additionally, 10 instances,

highlighted in bold, were solved optimally.

Table 6: Results for the test sets of Mohanty et al. [18]

# MOH BOR ELY TAK REN
Proposed approach

Obj. Value Time (s) Gap (%)

1 8640.00 8640.00 8640.00 8640.00 8640.00 9216.00 18.05 0.00

2 83494.40 85120.00 85376.00 84224.00 85376.00 85555.20 12.89 0.00

3 53262.50 53262.50 53262.50 52350.00 53262.50 53262.50 1.23 0.00

4 2333440.00 2333440.00 2307840.00 2333440.00 2333440.00 2354752.00 0.07 0.00

5 495500.00 581250.00 583750.00 579250.00 579250.00 583750.00 0.50 0.00

6 138240.00 139584.00 141216.00 137952.00 139968.00 142464.00 7200.00 0.47

7 16668.00 17409.00 17004.00 17262.00 17226.00 17664.00 7200.00 1.02

8 65741.00 68645.60 69121.20 69747.20 71236.40 71972.40 7200.00 0.40

9 119772.00 128952.00 133632.00 128556.00 130860.00 114228.00 7200.00 -

10 15360.00 15360.00 15360.00 15360.00 15360.00 15360.00 0.99 0.00

11 49995.00 53202.80 52873.60 53202.80 53202.80 54761.00 312.78 0.00

12 23529.00 24235.20 23673.00 23990.40 23990.40 24393.60 7200.00 1.45

13 36556.80 36556.80 36556.80 36556.80 36556.80 36556.80 377.11 0.00

14 56492.80 65316.80 68723.20 68723.20 68723.20 68723.20 7150.31 0.00

15 37558.80 39727.20 39382.20 40590.00 40590.00 40807.80 34.36 0.00

16 556458.00 595770.00 591535.00 571290.00 603000.00 632274.00 7200.00 2.40

Bold indicates optimal solution

Italic indicates BKS

- indicates that the solver did not provide a dual bound

For the separation of boxes, we followed Eley [10] imposing that boxes of types 1 and 2

be separated. Our results improve the solution of Eley [10] in 11 instances, and we prove
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optimality for 9 instances. Detailed solutions are reported in Table 7.

Table 7: Results for the test sets of Mohanty et al. [18] with separation of boxes

# ESI
Proposed approach

Obj. Value Time (s) Gap (%)

1 5120.00 7680.00 4.31 0.00

2 85376.00 85555.20 2.51 0.00

3 53262.50 53262.50 4.08 0.00

4 1354752.00 1354752.00 0.10 0.00

5 536250.00 538750.00 4.15 0.00

6 139968.00 140448.00 7200.00 0.34

7 16707.00 17664.00 7200.00 0.78

8 69121.20 71972.40 7200.00 0.40

9 128088.00 102672.00 7200.00 -

10 15360.00 15360.00 2.02 0.00

11 52873,60 54761.00 433.38 0.00

12 22730.40 23745.60 7200.00 4.15

13 34022.40 34022.40 7200.00 7.45

14 66995.20 66995.20 3524.10 0.00

15 39382.20 40807.80 29.96 0.00

16 568482.00 612546.00 7200.00 5.62

Bold indicates optimal solution

Italic indicates BKS

- indicates that the solver did not provide a dual bound

The stability constant was again defined with α = 1, i.e., requiring 100% of support to the

bottom of the boxes. Although the load stability requirement significantly increases the

complexity of the problem, we obtained an optimal solution for eight instances. When the

practical considerations of load stability and separation of boxes are jointly considered,

the objective value is typically much worse due to the more constrained nature of the

problem. Nevertheless, the proposed formulation obtained an optimal solution for seven

instances. Results for these scenarios are shown in Table 8.
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Table 8: Results for the test sets of Mohanty et al. [18]

#
With load stability With load stability and separation of boxes

Obj. Value Time (s) Gap (%) Obj. Value Time (s) Gap (%)

1 8640.00 3169.20 0.00 6720.00 55.19 0.00

2 85376.00 7200.00 0.21 85376.00 7200.00 0.19

3 53262.50 20.88 0.00 53262.50 17.31 0.00

4 1354752.00 1.59 0.00 1354752.00 0.96 0.00

5 583750.00 8.60 0.00 538750.00 22.61 0.00

6 142464.00 7200.00 0.67 139968.00 7200.00 2.40

7 16896.00 7200.00 6.20 17037.00 7200.00 5.14

8 40556.20 7200.00 - 34255.60 7200.00 -

9 * 7200.00 - * 7200.00 -

10 15360.00 4.63 0.00 15360.00 4.96 0.00

11 54761.00 2311.70 0.00 54761.00 4732.53 0.00

12 18504.00 7200.00 - 16992.00 7200.00 -

13 36556.80 466.42 0.00 34022.40 7200.00 7.45

14 68723.20 7200.00 0.88 66995.20 7200.00 1.58

15 40807.80 1500.70 0.00 40807.80 2008.30 0.00

16 481434.00 7200.00 - 304200.00 7200.00 -

Bold indicates optimal solution

- indicates that the solver did not provide a dual bound

* indicates that the solver did not provide a solution in the time set for the test
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Figures 5–8 show the loading pattern obtained for instance 12 in each of the evaluated

cases. All boxes have their bases fully supported by other items or by the floor of the

container when the load stability is considered, and in cases considering the separation of

boxes, items of type 1 and 2 (in gray and blue, respectively) were allocated to different

containers.

Figure 5: Loading patterns for instance 12 of Mohanty et al. [18].

Figure 6: Loading patterns for instance 12 of Mohanty et al. [18] with separation of boxes.

Figure 7: Loading patterns for instance 12 of Mohanty et al. [18] with load stability.

5 Conclusion

This paper presented mathematical formulations for several classes of multiple container

loading problems. We have adapted and tested four discretization techniques to enumer-
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Figure 8: Loading patterns for instance 12 of Mohanty et al. [18] with load stability and

separation of boxes.

ate the possible positions of a box inside a container, and also presented an enhanced

version of the classic heuristic of George and Robinson [11] to obtain an upper bound for

input minimization problems. Besides, we have also proposed mathematical formulations

to the practical considerations of separation of boxes and stability, allowing the boxes

to assume up to six orientations in our approaches. Computational experiments using

well known data sets in the literatures were carried out and in many cases new optimal

or improved BKS were obtained. Specifically, we have improved two solutions for the

input minimization and matched 45 BKS out of the 47 instances available; for output

maximization, for the 16 instances available we have improved the BKS in ten instances

and matched five BKS.

The formulations presented in this article can be used to create new techniques combining

exact methods with heuristic or metaheuristics strategies, to achieve good solutions in

shorter computational time. Also, new formulations to obtain tighter bounds can be

devised to assess the quality of the solutions for the problems.

Mathematical formulations for other practical considerations can be taken into account, in

order to address more realistic problems. Finally, the formulations presented in this article

can be combined with routing algorithms, formulating approaches to the capacitated

vehicle routing problem with three dimensional load requirements.
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