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Abstract. Drone transportation is known as a potential major contributor in improving 
efficiency and alleviating first and last-mile delivery problems. For this reason, drone routing 
and scheduling has become a highly active area of research in recent years. Unlike the 
vehicle routing problem, however, designing the routes for drones is challenging due to 
multiple operational characteristics including multi-trip operations, recharge planning, as 
well as calculating energy consumption. Although various challenges arise, studies on 
drone operations are still scarce. To fill some important gaps, this paper solves a multi-trip 
drone routing problem, where drones' energy consumption is influenced by payload and 
travel distance whereas such relationships are nonlinear. To tackle the nonlinear (convex) 
energy function, which can be incorporated in the objective function within this particular 
problem, we propose two types of cuts, logical cuts and subgradient cuts. This allows us to 
make an exact calculation of energy consumption, instead of using the linear approximation 
method as in the literature, which can fail to detect infeasible routes due to excess energy 
consumption. We introduce two formulations to solve the problem, one with a drone index 
and the other without, which are further enhanced by valid inequalities. Branch-and-cut 
algorithms are developed for the formulations and benchmark instances (with up to 50 
customers) are first generated for this problem. Extensive numerical experiments indicate 
that the formulation without a drone index is superior in solving more instances to optimality 
and providing high quality solutions for all the generated instances. The results also indicate 
that even though the original model is nonlinear, the proposed approach is highly efficient 
and the performance does not deteriorate so much compared to the linear approximation 
model in which the structure is much simpler. In addition, in multiple instances, the linear 
approximation model yields infeasible routes based on energy constraints. There is also a 
significant gap in energy calculation between the linear approximation model and our exact 
model. 
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1 Introduction

In recent years unmanned aerial vehicles (UAVs), also known as drones, have attracted people’s
attention, especially since 2013 when Amazon announced their Prime Air UAV (Rose 2013).
Other companies, like DHL, Google, and Alibaba also began developing their own drones, be-
cause they believe drones have the potential to reduce cost and waiting time for last-mile delivery.
The development of technology has made this idea possible. For example, carbon fiber man-
ufacturing costs have decreased dramatically during the past few years, which enable stronger
and lighter air frames (Morgan 2005); lithium polymer batteries with high energy density are
also now available, which help extend drones’ flight range (Reddy 2010).

Compared to traditional trucks, drones have some specific advantages: (i) they can save
labor, because no drivers (or pilots) are needed; (ii) they travel much faster than trucks; and
(iii) they are not restricted to road networks. These merits enable logistics companies and on-line
stores to use drones for rapid parcel delivery. Humanitarian organizations are also considering
using drones in disaster scenarios. For example, in the immediate aftermath of a disaster, drones
can provide support with risk assessment, mapping, and temporary communication network
creation (Chowdhury et al. 2017). In situations where the transportation network is severely
compromised by natural disasters, drones can deliver emergency supplies to affected regions.
In addition, by taking traffic off the roads, drones could provide main relief for inner cities to
reduce negative implications on congestion, safety, and environment, which come from rapid
urbanization and population growth (Heutger and Kückelhaus 2014). This new transportation
mode also has the potential to provide an innovative solution for the increasingly complex city
logistics (Savelsbergh and Van Woensel 2016).

On the other hand, some unique characteristics of drones have presented new operational
challenges. Limited battery capacity influences drone’s flight duration, which can also be affected
by payload, speed, and weather conditions (Dorling et al. 2017). Therefore, how should we
represent the relationship between battery energy consumption and various factors which affect
it? How to route drones so that they can safely return after visiting designated sites? How
do we determine whether we need to locate some recharging stations to extend drones’ flight
range? Furthermore, the payload of drones is also limited, which means that a drone can only
visit a small number of customers during a trip. Thus, how should we schedule drones to serve
more demands to maximize their use? Although various operational challenges arise, current
research about drones still focuses only on engineering issues and studies addressing these other
challenges are scarce (Murray and Chu 2015).

Existing research on drone operations normally assumes that drone flight duration is a con-
stant number. However, flight duration is actually influenced by several factors including battery
energy capacity, payload, and travel distance. In addition, no benchmark instances and efficient
exact algorithms are available for the drone routing problem (DRP), which poses a limitation
on algorithm evaluation. To fill some gaps in this area, in this paper we solve a multi-trip drone
routing problem (MTDRP) which explicitly considers the influence of payload and distance on
flight duration. We propose two modeling schemes and develop exact algorithms for our for-
mulations. We also generate several benchmark instance sets, which are open to the research
community.

The rest of this paper is organized as follows. Section 2 reviews related literature and states
the contributions of our work. Section 3 describes our problem and constructs the mathematical
models. Section 4 introduces valid inequalities to strengthen the models. Section 5 presents the
techniques for exact calculation of energy consumption and provides the details of our exact
algorithms. Numerical tests and analyses are presented in Section 6. This is followed by the
conclusions in Section 7.
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2 Literature Review

This section reviews related literature on the DRP and the multi-trip vehicle routing problem
(MTVRP). A summary of the papers on DRP is given in Table 1. For more details about civil
applications of drones, see Otto et al. (2018).

2.1 Drone Routing Problem

Sundar and Rathinam (2014) study a single UAV routing problem where multiple depots are
available for refueling the drone. The objective is to find a minimum path distance where each
target is visited. Choi and Schonfeld (2017) study an automated drone delivery system, in which
all customers’ demands are the same. They use the relationship among battery capacity, payload,
and flight range to optimize the drone fleet size. San et al. (2016) describe the implementation
steps used to assign a swarm of UAVs to deliver items to target locations. They consider
several possible constraints, including drone’s payload, flight range, and the volume of each item
(whether this item can be put in a box and carried by a drone). Dorling et al. (2017) propose
two vehicle routing problem (VRP) variants for drone delivery. The first one minimizes the
total operating cost subject to a delivery time limit, and the second one optimizes delivery time,
subject to a budget constraint. The costs include drone fleet cost and energy cost. Instead of
dealing directly with the original form of the energy function, which is nonlinear, they use a
linear approximation function to calculate the energy consumption which varies linearly with
payload and battery weight. In their study, battery weight is a decision variable. In order to
save cost, each drone can perform multiple trips and visit multiple customers per trip. The
authors use a simulated annealing (SA) heuristic to solve the models.

Murray and Chu (2015) consider two types of truck-drone delivery problems. The first is
the flying sidekick traveling salesman problem (FSTSP), which is applicable to the case where
the distribution center (DC) is relatively far from the customer locations and a single UAV is
available. In the FSTSP, the truck carries one drone to deliver parcels. As the driver performs
deliveries, the UAV is launched from the truck, delivering a parcel for an individual customer,
then the truck and the drone rendezvous at a new customer location. The latter one is the parallel
drone scheduling traveling salesman problem (PDSTSP), which is designed for the situation,
where a significant proportion of customers are located within a UAV’s flight range from the
DC. In the PDSTSP, drones depart from the depot and deliver parcels to customers, and then
return to the depot. The truck services customers without carrying any drone. Simple heuristics
are used to solve both problems. Ponza (2016) uses a SA heuristic to solve the FSTSP. Carlsson
and Song (2017) use theoretical analysis to demonstrate that for FSTSP the improvement in
efficiency is proportional to the square root of the speed ratio of the truck and the drone. Agatz
et al. (2018) extend the FSTSP by allowing the truck to wait at the start node for the drone
to return. A route first–cluster second heuristic method is used. Bouman et al. (2017) use a
dynamic programming (DP) approach for the same problem. Ha et al. (2015) extend the FSTSP
by considering time span–the maximum allowable time that either the truck or the drone can
wait for each other at the assembly point. Both route first–cluster second and cluster first–route
second methods are used. Marinelli et al. (2017) extend the FSTSP by allowing the launch and
rendezvous operations to be performed not only at a node but also along a route arc. A greedy
randomized adaptive search procedure is developed for the problem.

Wang et al. (2017) and Poikonen et al. (2017) consider a fleet of homogeneous trucks with
multiple drones equipped with each truck. They focus on the worst-case analysis, which reveals
the amount of time (best case scenario) that can be saved by using truck-drone rather than
trucks alone. Pugliese and Guerriero (2017) extend the problem by considering time window
constraints. They conclude that the use of drones is not economically convenient but can reduce
negative environmental impacts (from a green perspective) and improve service quality.
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Mathew et al. (2015) consider a team of one truck and one drone, in which the truck travels
along the street network and carries the drone. The drone is responsible for delivering parcels
to customers, and the truck is only used to carry the drone. The truck can wait there for the
drone to come back or go to the next vertex to rendezvous with the drone. Luo et al. (2017)
study a similar problem, but in their problem the drone can visit several targets per trip, and
the truck and the drone must meet at the next vertex. Campbell et al. (2017) use a continuous
approximation model to derive general insights. Ferrandez et al. (2016) assume that the truck
follows the route generated by solving a traveling salesman problem (TSP), and that from each
truck stop one or more drones can be launched. Each truck stop is a hub for drone deliveries.
They use a K-means clustering algorithm to find truck stops and a genetic algorithm to determine
the truck TSP tour. In their work, drones are not constrained by flight range. Moshref-Javadi
and Lee (2017) use a truck-drone tandem system to minimize latency in a customer-oriented
distribution system. In their problem, at each stop site, the truck will wait until all drones
come back. The truck then carries drones to the next site. They compare the benefits of using
drones for a single trip versus multiple trips. Ulmer and Thomas (2017) study a same-day
delivery problem with trucks and drones, in which customer orders come dynamically during a
shift. The dispatcher first determines whether to accept a customer for same-day delivery, and
then decides to use a truck or a drone for the delivery. The authors present a Markov decision
model and an approximate DP algorithm to solve the problem. Dayarian et al. (2017) present
a same-day delivery problem with drone resupply, where trucks make deliveries to customers
and drones are used to resupply the trucks. A heuristic is developed for the system with one
truck and one drone. Ham (2018) extends the PDSTSP by assuming that drones can perform
two types of tasks: drop-off and pickup. After a drone finishes the delivery task, it can fly back
to the depot to begin a new trip or fly to the next customer to pick up a returned parcel. A
constraint programming method is proposed.

Table 1: Summary of papers on drone routing problem
Problem

Authors # truck # drone
# customers
per drone trip

multi-trip
energy
function

Solution method

Sundar and Rathinam (2014) N/A 1 multiple
√

Route construction and improvement heuristics
Choi and Schonfeld (2017) N/A multiple multiple Mathematical analysis
San et al. (2016) N/A multiple 1

√
Genetic algorithm

Dorling et al. (2017) N/A multiple multiple
√ √

Simulated annealing heuristic

Murray and Chu (2015)
1 1 1

√
TSP route and re-assign heuristic

1 multiple 1
√

Partition and re-assign heuristic
Ponza (2016) 1 1 1

√
Simulated annealing heuristic

Carlsson and Song (2017) 1 1 1
√

Mathematical analysis
Agatz et al. (2018) 1 1 1

√
Route first-cluster second

Bouman et al. (2017) 1 1 1
√

Dynamic programming
Ha et al. (2015) 1 1 1

√
Route first-cluster second, cluster first-route second

Marinelli et al. (2017) 1 1 1
√

Greedy randomized adaptive search procedure
Wang et al. (2017) multiple multiple 1

√
Worst-case analysis

Poikonen et al. (2017) multiple multiple 1
√

Worst-case analysis
Pugliese and Guerriero (2017) multiple multiple 1

√
Mixed-integer linear programming

Mathew et al. (2015) 1 1 1
√

Reduce to TSP, then use TSP solver
Luo et al. (2017) 1 1 multiple

√
TSP route and split; route and re-assign

Campbell et al. (2017) 1 1/multiple 1
√

Continuous approximation model
Ferrandez et al. (2016) 1 multiple 1

√
K-means clustering, genetic algorithm

Moshref-Javadi and Lee (2017) 1 multiple 1
√

Mixed-integer linear programming
Ulmer and Thomas (2017) multiple multiple 1

√
Approximate dynamic programming

Dayarian et al. (2017) 1 1 multiple
√

Route generation, order release heuristic
Ham (2018) multiple multiple multiple

√
Constraint programming, variable ordering heuristics

This paper N/A multiple multiple
√ √

Branch-and-cut

N/A: trucks are not used in the system.

Based on the literature, we make the following observations: (1) the truck-drone tandem
system is the most intensively studied area; (2) almost all mentioned studies assume that drone
flight range is a constant number, except Dorling et al. (2017), which suggests that drone
duration is related to load and travel distance; (3) most papers addressing the truck-drone
system assume that during each trip a drone can only visit one customer. However, the papers
on the drone-only system always assume that there are multiple drones and that each drone can
cover several customers per trip; (4) for the truck-drone tandem system, the common assumption
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is that there is only one truck and one drone. This is due to the fact that one needs to consider
time synchronization between the truck and the drone in the tandem system, which makes the
problem difficult; (5) no benchmark instance is available for algorithm evaluation; (6) no efficient
exact algorithm is developed for the DRP.

2.2 Multi-trip Vehicle Routing Problem

Fleischmann (1990) is the first to study MTVRP. The author develops a modification of the
saving algorithm and uses a bin packing heuristic to assign routes to vehicles. Mingozzi et al.
(2013) develop two set-partitioning-like formulations for MTVRP. The first one is based on
the generation of all feasible trips, while the second one requires the generation of all feasible
schedules. A schedule of a vehicle is a subset of trips which satisfy the side constraints. They
derive lower bounds for the models and embed the bounds into an exact solution method.
Hernandez et al. (2016) develop two similar formulations for the MTVRP with time windows
(MTVRPTW) and use branch-and-price (B&P) algorithms. They compare the two models on
instances with the first 25 customers of Solomon’s “C2”, “R2”, and “RC2” instances (Solomon
1987).

Azi (2011) develops a B&P algorithm for the MTVRPTW with a trip duration constraint.
In their setting, it is not mandatory to visit every customer, so a hierarchical objective is used:
first the number of served customers is maximized; then for a fixed number of customers, the
travel distance is minimized. Their numerical tests focus on instances formed by the first 25
and 40 customers of Solomon’s type 2 instance sets. Macedo et al. (2011) propose a network
flow model based on generated trips for the same problem. They can solve more instances to
optimality. Hernandez et al. (2014) develop an exact two-phase algorithm. In the first phase,
they enumerate all feasible trips; in the second phase, they use a B&P algorithm to select the
best set of schedules. Their algorithm is comparable with that of Azi (2011) and outperforms
that of Macedo et al. (2011) on the “R2” instances. Later, Azi et al. (2014) and Wang et al.
(2014) develop an adaptive large neighborhood search and a route pool-based metaheuristic
for the same problem, respectively. For more details on the MTVRP, see the review paper by
Cattaruzza et al. (2016).

The contributions of our study are fourfold. First, we explicitly represent drones’ energy
consumption as a function of payload and travel distance, instead of simply assuming that their
flight range is a constant number. To tackle the nonlinear energy function, instead of relying
on the linear approximation method as proposed in Dorling et al. (2017), we propose two types
of cuts for exact energy calculation, because the solution generated by the linear approximation
method may either be infeasible (since it violates the energy constraint) or suboptimal (since
it overestimates the energy consumption). Our numerical tests in Section 6.4 confirm this
observation. Second, two formulation schemes are presented, one with a drone index and the
other without, which are solved by branch-and-cut (B&C) algorithms. To the best of our
knowledge, this paper is the first to formulate a MTDRP and use exact algorithms for drone
routing problems. Third, we generate several benchmark instance sets based on the realistic
parameters and known instance sets in the literature, which will be available to the research
community and allow for a better comparison of algorithms. Fourth, we provide extensive
computational results of the formulations and algorithms.

3 Formulations

In this section, we first introduce the problem and notation, then present the mathematical
models.

Formulations and Exact Algorithms for Drone Routing Problem
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3.1 Problem Definition

The problem is defined on a directed graph G = (N,A), where N = {0, ..., n + 1} is the set of
nodes. Node 0 represents the starting depot, and node n+1 is a copy of node 0 and it represents
the returning depot. N ′ = {1, ..., n} is the set of customers. For notational convenience, we
denote N+ = {0, ..., n} and N− = {1, ..., n + 1}. A = {(i, j) : i ∈ {0}, j ∈ N ′ and i ∈ N ′, j ∈
N−, i 6= j} is the set of arcs. Sets δ−(i) and δ+(i) represent node i’s preceded and succeeded
nodes, respectively.

Each customer is associated with a non-negative demand di, and a hard time window [ai, bi].
For the depots, [a0, b0] = [an+1, bn+1], where a0 and b0 are the earliest possible departure time
and the latest possible arrival time, respectively. A fleet of homogeneous drones K = {1, ..., |K|}
are based at the depot. Q is the maximum payload of a drone and we assume that di ≤ Q,∀i ∈
N ′. Each drone is allowed to perform several trips as long as it returns to the ending depot
before time bn+1. We assume drone speed to be a constant number, and with each arc (i, j)
is associated a travel time tij and a travel cost cij . Further, it is assumed that the triangle
inequality is satisfied for tij . Without loss of generality, here we assume the service time at each
customer is 0, because we can set tij to be the sum of travel time on arc (i, j) and the service
time at node i.

The problem consists in designing a set of drone routes, such that the objective function is
minimized and the following operational constraints are satisfied:

• Each route starts at depot 0 and ends at depot n+ 1;

• Every customer is visited exactly once;

• The sum of duration of trips assigned to the same drone does not exceed bn+1;

• Drone weight capacity constraint, battery energy constraint, and customers’ time windows
must be respected.

3.2 Mathematical Models

According to Cattaruzza et al. (2014), there are four ways to formulate the MTVRP. The first
one is the 4-index formulation, which uses both the vehicle index and the trip index. The second
and the third one are the 3-index formulations with either a trip index, or with a vehicle index,
respectively. And the last one is the 2-index formulation, which does not include any of these
two indexes. For the formulations involving a trip index, since the number of trips performed by
each vehicle is unknown, one has to set a sufficiently large cardinality for the trip set, resulting
in a weak model with a large number of variables. Or, we can impose an upper bound on the
maximal number of trips each vehicle can perform. As our problem has no limit on the number
of trips that each drone can perform, we adopt the latter two modeling schemes, i.e., the 3-index
formulation with a vehicle index and the 2-index formulation, and formulate the MTDRP.

3.2.1 Formulation With a Drone Index (3-index Formulation)

We use the following decision variables:
yki = 1 if and only if customer i is visited by drone k, 0 otherwise.
yk0 ∈ {0, 1, 2, ...} the number of trips performed by drone k.
xkij = 1 if drone k travels through arc (i, j), 0 otherwise.

zkij = 1 if a trip finishing with customer i is followed by another trip visiting j as the first
customer (performed by the same drone k), 0 otherwise.

qkij = the product weight carried by drone k through arc (i, j).

τki = the start of service time at node i ∈ N− when serviced by drone k.
Constraints. We organize the constraints into seven groups, including
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(i) Route feasibility:∑
k∈K

∑
j∈δ+(i)

xkij = 1 ∀i ∈ N ′, (1)

∑
j∈δ−(i)

xkji +
∑

j∈δ+(i)

xkij = 2yki ∀i ∈ N ′,∀k ∈ K, (2)

∑
j∈δ+(0)

xk0j =
∑

j∈δ−(n+1)

xkj,n+1 ∀k ∈ K, (3)

∑
j∈δ+(0)

xk0j +
∑

j∈δ−(n+1)

xkj,n+1 = 2yk0 ∀k ∈ K. (4)

Constraints (1) ensure that each customer is visited exactly once. Equations (2) are the degree
constraints at customers. Constraints (3) indicate that for each drone the number of trips
leaving the starting depot is equal to the number arriving at the ending depot. Constraints (4)
are degree constraints at the starting depot.

(ii) Customer demand constraint:∑
i∈δ−(j)

qkij −
∑

i∈δ+(j)

qkji = djy
k
j ∀j ∈ N ′,∀k ∈ K. (5)

Equations (5) impose that each customer’s demand must be satisfied, and also eliminate sub-
tours.

(iii) Drone weight capacity constraint:

qkij ≤ Qxkij ∀(i, j) ∈ A,∀k ∈ K, (6)

qki,n+1 = 0 ∀i ∈ N ′,∀k ∈ K. (7)

Constraints (6) guarantee that drone weight capacity is respected. Equations (7) indicate that
drones cannot carry any product from a customer to the ending depot.

(iv) Drone energy constraint:
Leishman (2006) describes the energy consumption, P (q), of a single rotor helicopter as a

convex function of payload q. Based on the assumption that each rotor shares the total weight
of a drone equally, Dorling et al. (2017) derive the power consumption equation for a h-rotor
drone as

P (qkij) = (W +m+ qkij)
3
2

√
g3

2ρςh
, (8)

where W is the frame weight (kg), m is the battery weight (kg), qkij is the payload (kg), g is

the gravity (N), ρ is the fluid density of air (kg/m3), ς is the area of spinning blade disc (m2),
and the unit of P is Watt. In order to avoid the undesirable nonlinearity of Equation (8), the
authors propose to approximate power consumption as

P (qkij) = α(m+ qkij) + β, (9)

where α(kW/kg) and β(kW ) are two constant numbers obtained by a linear approximation.
As shown in Figure 1, when the sum of the battery weight and payload falls into the range

between points A and B, the linear approximation function overestimates the energy consump-
tion but will not affect the feasibility of generated drone routes. However, when the sum is larger
than B, the actual energy consumption will be underestimated if we use the linear approxima-
tion method, and the generated routes may violate the battery’s energy capacity. Therefore, we
use Equation (8) to compute power consumption exactly. To do this, we introduce a variable fki
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Figure 1: Energy calculation by exact and linear approximation methods (Dorling et al. 2017)

to track the accumulated energy consumption of drone k upon arrival at node i (kWh). Thus,
drones’ energy consumption constraints are written as

fk0 = 0 ∀k ∈ K, (10)

fki + [(W +m+ qkij)
3
2

√
g3

2ρςh
/1000]tij/3600 ≤Mij(1− xkij) + fkj ∀(i, j) ∈ A,∀k ∈ K, (11)

fkn+1 ≤ σ ∀k ∈ K. (12)

Equations (10) indicate that at the beginning of each trip the accumulated energy consump-
tion is 0, that is, every time a drone begins a new trip we give it a new battery. Equations
(11) establish the energy relationship between node i and its immediate successor j, and Mij

is an arbitrary large constant. We can observe that, when xkij = 0, according to Equations (6),

qkij also gets value 0, then we can set Mij = [(W + m)
3
2

√
g3

2ρςh/1000] × (tij/3600) + σ (σ is the

energy capacity of the battery (kWh)). Constraints (12) mean that battery’s energy capacity
constraint must be respected. Since constraints (11) are nonlinear, the model cannot be solved
directly by a mixed-integer linear programming (MILP) solver. In Section 5.1, we introduce
different types of cuts to tackle this group of constraints implicitly.

We also give the linear approximation version of constraints (11) which is adapted from
Dorling et al. (2017):

fki + [α(m+ qkij) + β]tij/3600 ≤M ′ij(1− xkij) + fkj ∀(i, j) ∈ A,∀k ∈ K, (13)

in which M ′ij = (αm + β)tij/3600 + σ. In numerical tests, we will compare the difference in
solution construction when using these two versions of expressions.

(v) Time window constraint:

τki + tij −M
′′
ij(1− xkij) ≤ τkj ∀i ∈ N ′,∀j ∈ N−, ∀k ∈ K, (14)

ai ≤ τki ≤ bi ∀i ∈ N−, ∀k ∈ K. (15)

Constraints (14) establish the time relationship between customer i and its immediate successor
j. According to Desaulniers et al. (2014), we can set the large constants M

′′
ij = max{bi +



tij − aj , 0}. Constraints (15) denote that the time window constraint must be respected. We
remark that, if node i is not visited by drone k, constraints (14) will not be active and the
variable τki simply takes the value arbitrarily in the range [ai, bi]. Here we impose the time
window constraint instead of the deadline constraint, because the latter is a special case of the
former with ai = 0, ∀i ∈ N . Furthermore, many revealed drone samples, like Amazon Prime
Air and DHL Parcelcopter, show that when drones deliver parcels they land at customer sites;
therefore, without loss of generality, we assume that drones can wait at customer locations
without energy consumption until the opening of the time window. We can also incorporate the
energy consumption during the waiting time, which can be obtained by multiplying the waiting
time by the energy consumption per unit time, to the left-hand side of Equations (11).

(vi) Time relationship between trips:

τki + (ti,n+1 + t0j) ≤ τkj + (1− zkij)M
′′′
ij ∀i, j ∈ N ′, i 6= j,∀k ∈ K, (16)∑

i∈N ′
i6=j

zkij ≤ xk0j ∀j ∈ N ′,∀k ∈ K, (17)

∑
j∈N ′
j 6=i

zkij ≤ xki,n+1 ∀i ∈ N ′, ∀k ∈ K, (18)

∑
j∈N ′

xk0j =
∑
i∈N ′

∑
j∈N ′
j 6=i

zkij + 1 ∀k ∈ K. (19)

Equations (16) establish the time relationship between consecutive trips performed by the same
drone k, where M

′′′
ij = ti,n+1 + t0j + bi. These constraints take into account the time to return to

the depot and replace the battery. Constraints (17)–(19) connect variables x and z (Karaoğlan
2015).

(vii) Variable domain:

xkij ∈ {0, 1}, qkij , e
k
ij ≥ 0 ∀(i, j) ∈ A, ∀k ∈ K, (20)

fki ≥ 0 ∀i ∈ N, ∀k ∈ K, (21)

yki ∈ {0, 1}, yk0 ∈ {0, 1, 2, ...} ∀i ∈ N ′,∀k ∈ K, (22)

τki ≥ 0 ∀i ∈ N−,∀k ∈ K, (23)

zkij ≥ 0 ∀i, j ∈ N ′,∀k ∈ K. (24)

Objective function. We consider the applications of logistics companies who use drones
for last-mile delivery, in order to reduce an overall transportation cost. Therefore, we consider
a general form of the objective function which also incorporates the energy consumption

min
∑
k∈K

∑
(i,j)∈A

(cijx
k
ij + δekij), (25)

where ekij is the energy consumption on arc (i, j) of drone k, and δ is the unit energy cost which

includes the cost of energy and battery amortized based on drone operations. ekij is computed
as

ekij = (W +m+ qkij)
3
2

√
g3

2ρςh
/1000× (tij/3600)xkij . (26)

Correspondingly, if the linear approximation method is used, ekij will take the value [(αm +

β)xkij + αqkij ]t
k
ij/3600.

Note that the energy cost could be negligible in realistic applications, and we add it here for
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two reasons: first, to keep consistent with some existing works, which also include the energy
cost in the objective function to incorporate the depreciation and operating cost of battery as
a function of energy usage (Mathew et al. 2015, Dorling et al. 2017); second, to demonstrate
that our objective function is quite flexible. The model and approach can be used to solve a
traditional VRP objective which minimizes the travel cost by dropping the second term, or a
green supply chain related objective which minimizes the energy consumption/cost by dropping
the first term. We analyze the impact of different objectives on computational efficiency and
solution configurations in Section 6.3.

3.2.2 Formulation Without a Drone Index (2-index Formulation)

The drawback of the previous formulation is that the number of decision variables increases in
proportion to the number of drones. To overcome this, we introduce a formulation that does
not require a drone index. The formulation uses variables x, q, e, f, τ, z with the same notation
as in the previous section, but drops the index k. It is as follows:

min
∑

(i,j)∈A

(cijxij + δeij) (27)

s.t.
∑

j∈δ+(i)

xij = 1 ∀i ∈ N ′, (28)

∑
j∈δ−(i)

xji = 1 ∀i ∈ N ′, (29)

∑
j∈δ+(0)

x0j =
∑

j∈δ−(n+1)

xj,n+1, (30)

∑
i∈δ−(j)

qij −
∑

i∈δ+(j)

qji = dj ∀j ∈ N ′, (31)

qij ≤ Qxij ∀(i, j) ∈ A, (32)

qi,n+1 = 0 ∀i ∈ N ′, (33)

f0 = 0, (34)

fi + [(W +m+ qij)
3
2

√
g3

2ρςh
/1000]tij/3600 ≤Mij(1− xij) + fj ∀(i, j) ∈ A, (35)

fn+1 ≤ σ, (36)

τi + tij −M
′′
ij(1− xij) ≤ τj ∀i ∈ N ′, ∀j ∈ N−, (37)

ai ≤ τi ≤ bi ∀i ∈ N−, (38)

τi + (ti,n+1 + t0j) ≤ τj + (1− zij)M
′′′
ij ∀i, j ∈ N ′, i 6= j, (39)∑

i∈N ′
i6=j

zij ≤ x0j ∀j ∈ N ′, (40)

∑
j∈N ′
j 6=i

zij ≤ xi,n+1 ∀i ∈ N ′, (41)

∑
j∈N ′

x0j −
∑
i∈N ′

∑
j∈N ′
j 6=i

zij ≤ |K|, (42)

xij ∈ {0, 1}, qij , eij ≥ 0 ∀(i, j) ∈ A, (43)

fi ≥ 0 ∀i ∈ N, (44)

τi ≥ 0 ∀i ∈ N−, (45)
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zij ≥ 0 ∀i, j ∈ N ′. (46)

Constraints (28)–(46) are equivalent to (1)–(3), (5)–(7), (10)–(12), (14)–(18), (20)–(21), and
(23)–(24), respectively. Constraints (42) limit the number of drones that can be used in the
system. The big-M in this formulation takes the same values as those in the previous section.
Similarly, constraints (34)–(36) are also tackled implicitly using the method introduced in Section
5.1.

For notational convenience, in the following sections we use R, E, and R + E to represent
the model that minimizes travel cost (δ = 0), energy cost (cij = 0, ∀(i, j) ∈ A), and both travel
and energy costs (as in the objective functions (25) and (27)), respectively. If the exact method
is applied for energy calculation, we use a subscript e. Similarly, a subscript a is used for the
linear approximation method. Symbols |k and |nk indicate whether drone index k is used or
not when building the model. For example, Re|nk represents the formulation without a drone
index that minimizes the travel cost and uses the exact method for energy calculation.

4 Valid Inequalities

In this section, we introduce some valid inequalities to further strengthen our models. We first
present those adopted from the literature, then introduce another group of valid inequalities
based on the energy function.

Valid inequalities from the literature. We adopt the following equations for the 3-index
formulation:

xkij ≤ yki ∀i ∈ N+, j ∈ δ+(i),∀k ∈ K, (47)∑
k∈K

∑
j∈N ′

xk0j ≥
⌈∑

i∈N ′ di

Q

⌉
, (48)

yki ≤ yk0 ∀i ∈ N ′,∀k ∈ K, (49)

j∑
i=1

2j−iyki ≥
j∑
i=1

2j−iyk+1
i ∀j ∈ N ′, ∀k ∈ K \ {|K|}. (50)

Constraints (47) are logical inequalities (Coelho and Laporte 2013). Constraints (48) indicate
the least number of trips needed to visit all the customers. Constraints (49) mean that if drone
k does not leave the starting depot, it cannot visit any customers (Coelho and Laporte 2013).
Equations (50) break the symmetry, which are the lexicographic ordering constraints (Sherali
and Smith 2001, Adulyasak et al. 2013).

Valid inequalities (48) are also modified to enhance the 2-index formulation:

∑
j∈N ′

x0j ≥
⌈∑

i∈N ′ di

Q

⌉
. (51)

Valid inequalities based on the energy function. Constraints (52) are derived from
Equations (26) using the constant dj to replace the variable qkij , which yields linear equations

and a lower bound of ekij since qkij ≥ dj when xkij = 1. Constraints (52) mean that if arc (i, j)
is traversed by drone k, the energy consumption is at least equal to the value of the right hand
side.

ekij ≥ (W +m+ dj)
3
2

√
g3

2ρςh
/1000× (tij/3600)xkij ∀(i, j) ∈ A,∀k ∈ K. (52)
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Correspondingly, for the 2-index formulation, we have

eij ≥ (W +m+ dj)
3
2

√
g3

2ρςh
/1000× (tij/3600)xij ∀(i, j) ∈ A. (53)

5 Solution Method

In this section, we introduce the techniques for exact calculation of energy consumption, and
develop B&C algorithms for our models.

5.1 Cuts for Nonlinear Energy Function

We describe the techniques for exact energy calculation for the 3-index formulation here. The
2-index formulation can apply the same techniques with minor modifications.

Logical cut (infeasibility cut). We first solve the model without constraints (10)–(12).
When a feasible solution is generated, we check whether it satisfies the energy capacity constraint
for each trip. For any violated trip {0, i1, i2, . . . , il−1, il, n+ 1} associated with drone k̄, we add
the logical cut

xk̄i1i2 + xk̄i2i3 + . . .+ xk̄il−1il
≤ l − 2. (54)

Equation (54) means that the customer sequence is not allowed to be performed by drone k̄.
We can also extend it to any drone

xki1i2 + xki2i3 + . . .+ xkil−1il
≤ l − 2 ∀k ∈ K. (55)

However, our preliminary tests demonstrate that Equation (54) is more efficient.
Subgradient cut. In Equation (26), when xkij is fixed (xkij 6= 0), ekij is a convex function in

qkij . Thus, when x̄kij = 1 the tangent line at point (q̄kij , ē
k
ij) (we use a bar ‘-’ to represent known

values) is
ekij = ēkij + β̄kij(q

k
ij − q̄kij), (56)

where β̄kij = 3
2(W + m + q̄kij)

1
2

√
g3

2ρςh/1000 × (tij/3600), and it is the derivative. Figure 2 is an

illustration of the tangent line. Therefore, the subgradient cut derived for constraints (11) can
be added using a conditional form as follows:

ekij ≥ ēkijxkij + β̄kij(q
k
ij − q̄kij) ∀(i, j) ∈ A,∀k ∈ K. (57)

When xkij = 0, the right-hand side of Equation (57) is a negative number (qkij = 0 because of

constraints (6)) and the cut is inactive. When xkij = 1, the cut is added to guarantee that the
energy consumption and cost are accurately computed.

Remarks: (i) Being different from the logical cuts, constraints (10) and (12) are necessary
when applying the subgradient cuts. (ii) For the models with energy costs in the objective, i.e.,
the E and R+E models, we must apply the subgradient cuts to ensure the correct calculation of
energy cost. However, logical cuts are optional because the subgradient cuts can also guarantee
that the energy capacity constraints are respected. (iii) For the models without energy costs,
i.e., the R model, we can implement the cuts in three ways: only add logical cuts, only add
subgradient cuts, or add them together. If there is only one customer in a trip, we do not add
either logical or subgradient cuts for the R model, because we can guarantee that each customer
is eligible to be serviced by a drone when generating the instance sets. Moreover, when only the
logical cuts are used for model R, we do not need valid inequalities (52) and (53).
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Figure 2: The tangent line of the energy function

5.2 Branch-and-Cut Algorithms

The B&C algorithm has been extensively used to solve MILP problems, which is a combination
of a cutting plane method with a branch-and-bound (B&B) algorithm (Mitchell 2002). In our
B&C scheme, we first add valid inequalities to the formulations at the root node of the search
tree. We then solve the linear programming (LP) relaxation problem at each node of the tree.
Each time a fractional solution is obtained, we detect and generate violated cuts in a cutting-
plane fashion and the LP relaxation at the current B&B node is re-optimized. If all the cuts
are respected and the solution still has fractional-valued integer variables, the branching process
continues. If an integer solution is obtained and no cuts are generated, we consider updating
the incumbent solution and pruning some nodes. This process continues until all nodes of the
tree are evaluated.

5.2.1 Separation of Subtour Inequalities

Although constraints (5) and (31) can eliminate subtours, we introduce another group of subtour
elimination constraints (SECs) which can help improve computational efficiency for the B&C
scheme.

Formulation with a drone index. The SECs for the formulation with a drone index can
be stated as follows (Gendreau et al. 1998, Fischetti et al. 1998):∑

i∈S

∑
j∈S

xkij ≤
∑
i∈S

yki − ykl ∀S ⊆ N ′, |S| ≥ 2,∀l ∈ S,∀k ∈ K. (58)

To identify the violated constraints, we use an exact separation algorithm which solves a
minimum s − t cut problem for each drone. We construct a graph for drone k with nodes
where ȳki > 0,∀i ∈ N+ and set the capacity of edges as x̄kij . Then a set of minimum s − t cut

problems are solved by setting the starting depot as the source and each customer i ∈ N ′|ȳki > 0
as the sink. A violated SEC is obtained if the value of the minimum cut is smaller than 2ȳki .
If a subtour is found for drone k, we add constraints (58) with l =i∈S {ȳki } to the model.
To solve the minimum s − t cut problem, we use the Python networkx 2.0 package (https:
//networkx.github.io/documentation/networkx-1.10/index.html).

Formulation without a drone index. The SECs for the formulation without a drone
index are as follows (Laporte 1986):∑

i∈S

∑
j∈S

xij ≤ |S| − q(S) ∀S ⊆ N ′, |S| ≥ 2, (59)
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where q(S) =
⌈∑

i∈S di
Q

⌉
is the minimum number of trips needed to visit customers in set S. The

separation algorithm is performed by using the CVRPSEP package of Lysgaard et al. (2004).

5.2.2 Implementation of Cuts and SECs

For the logical and subgradient cuts, they are applied when an integer solution is obtained. For
the SECs, we only generate them at the root node because they are redundant for our models
due to the fact that the subtours are eliminated by the customer demand constraints and it is
time consuming to solve the separation problems at all nodes of the B&B tree.

6 Numerical Experiment

In this section, we present the instances and discuss our numerical tests. The B&C algorithms
are coded in Python on Pycharm 2.7 using Gurobi 7.5.1 as the solver. All the parameters are set
to their default values in the solver. The experiments are performed on a cluster of Intel Xeon
X5650 CPUs with 2.67 GHz and 24 GB RAM under Linux 6.3. Each experiment is conducted
on a sing1e core of one node unless specified. The computing time limit is set to four hours.

6.1 Instance Sets

Here, we introduce two sets of benchmark instances. The first set, named Set A, is created based
on the instance generation frameworks presented in Solomon (1987) and Dorling et al. (2017).
And the second set, named Set B, is an extension of Solomon’s instances, taking into account
drones’ specific characteristics. We use Set A instances for preliminary tests and performance
comparisons. After knowing the performance of the two formulations, we conduct experiments
on Set B instances in Section 6.6. Given that Set B instances are an extension of the well-known
Solomon’s instances, one can also evaluate the robustness and gain the insights regarding the
performance of our approach. The details of the instances and solutions are available at the
following URL: https://sites.google.com/view/chengchun/instances.

6.1.1 New Benchmark Instances (Set A)

In this set, we consider two types of instances and each has 10–50 customers. For type 1
instances, named Set A1, the depots are located at the lower left corner of the region. For type
2 instances, named Set A2, the depots are in the middle of the region. For a fixed number of
customers in each type, we generate 5 instances. Our instances are labeled as Set Ax Cust Y Z,
which represents that this is the Z th instance of Y customers in Set Ax.

According to Dorling et al. (2017), we set α = 0.217 kW/kg, β = 0.185 kW , m = 1.5 kg,
Q = 1.5 kg, σ = 0.27 kWh, g = 9.81 N/kg, ρ = 1.204 kg/m3, ς = 0.0064 m2, h = 6,
δ = 360 $/kWh.

For both Set A1 and Set A2 instances, the demand of the first 40% of customers is drawn
uniformly from [0.1, 0.7] and the demand of the remaining customers is drawn uniformly from
[0.1, 1.5]. Here we do not generate all the demands from [0.1, 1.5], because our preliminary tests
show that if this generation method is used, for most trips only one customer is included because

of the limited drone weight capacity. We set K = d
∑

i∈N′ di
3Q e, that is, we expect that each drone

can perform 3 or more trips on average. For Set A1, the coordinate of the depot is (0, 0).
The x−coordinate and y−coordinate of each customer is drawn uniformly from [0, 480]. Since
we assume travel distance and travel time are the same, if a customer is located at (0, 480),
then the travel time from the depot to this customer would be 480 seconds. Meanwhile, we let
cij = tij ∀(i, j) ∈ A. For the depots, we set a0 = an+1 = 0 and generate the right-hand side of the
time window as follows: we first compute the travel time between the depot and each customer,
i.e., t0j , and rank them in a non-increasing order; we then sum up the first hth numbers in
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order, where h = d |N
′|

K e and the sum is denoted as s. Finally, we set b0 = bn+1 = d2se.
This generation scheme is based on the idea that, in an extreme situation, each drone trip
only involves one customer and each drone performs at most h trips. And all the deliveries
can be finished within d2se time limit. As travel time satisfies triangle inequality, the earliest
time that a customer j can be serviced is t0j , and the latest time that a drone must leave j is
bn+1−tj,n+1. To create customers’ time windows, we refer to the method in Solomon (1987). We
first randomly generate the center of the time window oj from [t0j , bn+1 − tj,n+1] using uniform
distribution, then we generate the time window’s width wj as a normally distributed random
number whose mean is 0.25(bn+1−tj,n+1−t0j) and standard deviation is 0.05(bn+1−tj,n+1−t0j).
We set aj = max(dt0je, boj − 0.5wjc), bj = min{bbn+1 − tj,n+1c, boj + 0.5wjc}. For Set A2, the
coordinate of the depot is (480, 480). The x-coordinate and y-coordinate of each customer is
drawn uniformly from [0, 960]. The method of generating the time windows is the same as that
of Set A1.

6.1.2 Instances Extended From Solomon’s Instances (Set B)

We generate this set of instances based on the principle of minimal modifications to the original
data. To fit Solomon’s instances, we need to add a service time si, ∀i ∈ N ′ to constraints (14)
and (16) for the 3-index formulation (constraints (37) and (39) for the 2-index formulation) when
conducting our numerical tests. We also make some modifications to customers’ demands to fit
drone’s payload and to allow multi-trip operations. In particular, for type C2 and RC2 instances
with the first 25 and 40 customers, demands are multiplied by 0.03, because the minimal and the
maximal demands are 10 and 40, respectively. For type R2 instances, demands are multiplied
by 0.05 for those with the first 25 customers, because the minimal and the maximal demand are
2 and 29, respectively; demands are multiplied by 0.045 for those with the first 40 customers,
because the maximal demand now becomes 31. We determine the number of drones as described
in the former section. Here, we set the battery energy capacity as σ = 0.027 kWh, and keep
other drone-related parameters the same, as given in Section 6.1.1.

6.2 Enhancement Strategy Evaluation and Model Comparison

This section analyzes the effect of valid inequalities and SECs, and also compares the 3-index
and 2-index formulations. We conduct all the tests on instances with 10–30 customers in Set
A. First, we only apply subgradient cuts to the models to evaluate the valid inequalities and
SECs. After evaluating the performance of the 3-index and 2-index formulations, we further
compare different implementations of cuts on the best formulation scheme. Tables 2–3 present
the results. The third column None gives the results without any enhancement strategy. The
remaining columns indicate that one (or all) valid inequalities or SECs are added to the models.
Opt is the number of instances solved to optimality. Unsol denotes the number of instances, for
which no feasible solution is generated under the time limit. Note that if there exist unsolved
instances, the reported results are the average of the solved instances (i.e., an optimal or feasible
solution is generated for the instance). UP, LB, RLB are the best upper bound, the best lower
bound, and the lower bound at the root node, respectively. Gap is the percentage difference
between the best upper and lower bounds. CPU is the time in seconds consumed to solve the
instance.

From Table 2, for the 3-index formulation, more instances are solved to optimality when all
the valid inequalities are applied. When the SECs are added, the algorithm can optimally solve
two more instances for the (R+ E)e|k model, and reduce the number of unsolved instances for
the Ee|k model. When valid inequalities (52) are added for the Ee|k and (R + E)e|k models,
the lower bound at the root node can be significantly improved, especially for the Ee|k model.

From Table 3, for the 2-index formulation, different implementations of cuts yield different
performances. In general, the simultaneous application of logical cuts and subgradient cuts,
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Table 2: Average results with different valid inequalities and SECs for the 3-index formulation

None (47) (48) (49) (50) (52) All All+SECs

Re|k

Opt 22/50? 20/50 22/50 19/50 25/50 19/50 26/50 25/50
Unsol 7/50? 5/50 5/50 7/50 3/50 7/50 6/50 4/50
UB 7870.38 8053.94 8083.73 7882.41 8263.65 7954.25 7824.83 8035.41
LB 7462.27 7548.35 7644.49 7438.44 7836.00 7451.99 7573.10 7722.08
Gap 3.89 4.74 4.08 4.26 3.84 4.73 2.48 2.97
CPU 8336.30 8685.40 8535.10 9014.17 7875.92 8742.56 6951.51 7460.86
RLB 6971.74 7144.68 7200.88 6976.40 7330.72 7001.01 7153.02 7299.76

Ee|k

Opt 11/50 13/50 10/50 11/50 13/50 18/50 21/50 21/50
Unsol 14/50 6/50 14/50 10/50 11/50 9/50 4/50 3/50
UB 519.70 578.53 525.79 555.76 542.41 541.81 571.60 586.01
LB 217.19 228.29 220.28 208.74 221.34 477.43 512.26 517.75
Gap 46.87 48.16 46.58 50.55 46.31 9.22 7.91 8.81
CPU 10265.33 10674.74 10423.45 10658.98 9766.58 9000.03 8614.09 8911.76
RLB 0.00 0.00 2.04 0.00 2.74 433.27 463.12 470.11

(R+ E)e|k

Opt 18/50 18/50 18/50 17/50 19/50 18/50 23/50 25/50
Unsol 6/50 7/50 7/50 9/50 7/50 9/50 4/50 5/50
UB 8563.65 8476.04 8419.78 8163.00 8527.50 8220.80 8726.56 8555.89
LB 7777.36 7713.21 7727.38 7523.64 7797.20 7761.73 8257.30 8161.45
Gap 7.20 6.87 6.32 6.16 6.26 4.38 3.96 3.46
CPU 9406.63 8763.15 9132.24 8988.13 8653.47 8739.88 7842.17 7230.65
RLB 7064.39 7027.90 7020.14 6802.50 6996.78 7268.07 7809.29 7691.62

? indicates the number of instances (out of 50) that are solved to optimality or unsolved.

as well as all the enhancement strategies, gives the best performance for the three models.
Specifically, more instances can be solved to optimality for the Re|nk and Ee|nk models. For
the (R + E)e|nk model, the number of optimally solved instances is the same when only using
the subgradient cut or using both cuts together; however, the average optimality gap and CPU
time is relatively close. We can also observe that, the average lower bounds are significantly
improved for the models with the energy cost (Ee) when applying the valid inequalities based on
the energy function, i.e., constraints (52) and (53), for the 2-index and the 3-index formulation,
respectively.

Tables 2–3 also show that the 2-index formulation outperforms the 3-index formulation in
two aspects: (1) the 2-index formulation can solve more instances to optimality. The 3-index
formulation can solve 26, 21, and 25 instances to optimality for the Re, Ee, and (R + E)e
models, respectively; however, the 2-index formulation can increase the corresponding number
to 47, 46, and 46; (2) the 2-index formulation can generate good feasible solutions for all the
instances in a shorter time. For the Re and (R+E)e models, the average gap can be controlled
under 0.4% by the 2-index formulation, regardless of whether enhancement strategies are used
or not. For the Ee model, the comparison is even obvious. When Equations (52) or (53) are
not used, the average gap is over 46% for the 3-index formulation while it is under 9% for the
2-index formulation. When these two valid inequalities are used, the average gap of the 3-index
formulation (over 7%) is also dramatically larger than that of the 2-index formulation (under
0.6%). Therefore, in the following sections, we use the 2-index formulation, together with all
the enhancement strategies and both logical and subgradient cuts, to perform our tests for each
model.

6.3 Details of Solutions for Set A Instances With Size 10–30

Tables 4–5 give further details of results provided by the 2-index formulation. Cust is the number
of customers. Log, Sub, and SECs are the number of generated logical cuts, subgradient cuts,
and SECs, respectively. UAVs is the number of drones used. Swap represents the times of
battery swap. T/d indicates the average number of trips performed by each drone. The last
column in Table 5 is the proportion of energy cost to total cost. More detailed results for each
instance are presented in Appendix (Table 12).
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Table 3: Average results with different valid inequalities and SECs for the 2-index formulation

Only subgradient Only logical
Subgradient
+logical

None (51) (53) (51)+(53)
(51)+(53)
+SECs

(51)+SECs
(51)+(53)
+SECs

Re|nk

Opt 46/50 45/50 43/50 45/50 46/50 46/50 47/50
UB 8275.03 8275.68 8275.92 8277.65 8275.03 8275.03 8276.33
LB 8258.96 8257.78 8252.39 8256.71 8260.45 8262.29 8265.28
Gap 0.14 0.16 0.22 0.19 0.13 0.11 0.10
CPU 1891.19 1879.87 2676.27 2163.63 1809.08 1598.88 1852.69
RLB 7801.30 7837.34 7809.34 7831.27 7845.03 7855.32 7847.05

Ee|nk

Opt 31/50 31/50 41/50 41/50 43/50

Not
applicable

46/50
UB 585.05 585.50 583.68 583.76 583.66 583.74
LB 515.36 521.38 579.51 579.90 581.84 581.92
Gap 8.83 8.06 0.54 0.50 0.22 0.22
CPU 6277.92 6070.81 2979.98 3096.69 2862.01 2388.78
RLB 168.74 155.80 510.49 506.82 512.79 512.32

(R+ E)e|nk

Opt 44/50 43/50 45/50 45/50 46/50

Not
applicable

46/50
UB 8867.14 8871.10 8863.44 8864.42 8863.48 8866.82
LB 8830.79 8825.42 8839.74 8843.10 8843.84 8845.15
Gap 0.30 0.38 0.19 0.18 0.16 0.18
CPU 3385.75 2675.13 2256.70 2301.36 2196.45 2236.96
RLB 7966.44 7993.49 8317.81 8357.03 8374.24 8374.46

Table 4: Average results on cuts generated by the 2-index formulation for Set A instances with
size 10–30

Re|nk Ee|nk (R+ E)e|nk

Cust Opt Gap CPU Log Sub SECs Opt Gap CPU Log Sub SECs Opt Gap CPU Log Sub SECs

Set A1

10 5/5 0.0 0.5 0.2 92.2 21.4 5/5 0.0 0.9 0.4 138.2 31.4 5/5 0.0 0.6 0.0 134.8 25.2
15 5/5 0.0 176.6 3.4 400.6 27.6 5/5 0.0 82.6 2.6 595.4 33.2 5/5 0.0 306.2 2.8 518.6 32.6
20 5/5 0.0 162.2 1.6 349.8 35.4 5/5 0.0 72.3 1.6 558.2 39.4 5/5 0.0 224.0 0.6 615.6 35.6
25 4/5 0.4 4666.1 3.0 552.4 34.2 5/5 0.0 4508.6 4.8 1282.0 39.8 4/5 0.6 4945.6 4.4 1512.0 38.2
30 3/5 0.6 6860.3 3.8 1172.8 42.4 3/5 1.0 8989.8 3.4 1884.6 47.8 3/5 0.7 8865.7 2.8 1759.0 47.0

Set A2

10 5/5 0.0 0.4 0.0 40.8 16.6 5/5 0.0 0.5 0.4 142.6 13.8 5/5 0.0 0.3 0.0 71.4 9.8
15 5/5 0.0 5.0 2.4 152.2 34.0 5/5 0.0 4.1 1.4 274.4 27.6 5/5 0.0 5.7 1.8 297.8 29.4
20 5/5 0.0 27.0 2.0 259.0 34.6 5/5 0.0 37.3 1.6 487.6 40.0 5/5 0.0 33.1 1.4 500.8 36.4
25 5/5 0.0 202.3 2.2 469.4 36.6 5/5 0.0 301.0 4.0 921.0 37.2 5/5 0.0 313.1 2.4 853.0 39.4
30 5/5 0.0 6426.4 3.2 927.2 41.2 3/5 1.2 9890.6 5.0 1815.8 35.4 4/5 0.5 7675.3 4.0 1437.4 39.6

Average 47/50 0.1 1852.7 2.2 441.6 32.4 46/50 0.2 2388.8 2.5 810.0 34.6 46/50 0.2 2237.0 2.0 770.0 33.3

Table 4 shows that the number of subgradient cuts is significantly larger than that of the
logical cuts. This is because the subgradient cuts are produced for edges while the logical cuts
are generated for trips. On average, the Re|nk model consumes the least computing time and
the Ee|nk model consumes the most computing time. Further, instances in Set A1 require more
time than those in Set A2, which suggests that depot location influences the computational
efficiency.

Table 5 indicates that more drones are used with an increasing number of customers and
that, in most cases, each drone performs 2 or 3 trips. For the (R + E)e|nk model, the energy
cost only accounts for a small portion, around 6.6%, of the total cost. The average results seem
similar for the three models; however, with different objective functions, different schedules are
indeed generated for some instances. An example is given in Table 6. It shows that two more
trips are performed for the Ee|nk model, leading to a greater travel distance and a lower energy
consumption. In addition, we find that for this instance the schedules generated by the Re|nk
and (R + E)e|nk models are quite similar, except that the travel direction of the second and
fifth trips are opposite. Since we perform our tests on an undirected network, travel direction
influences energy consumption because of different payloads on arcs. However, as the (R+E)e|nk
model includes the energy cost in the objective, it can always guarantee that drones travel in
directions with minimal energy consumption. Therefore, in realistic applications, for undirected
networks, even though decision makers favor a VRP objective which minimizes the travel cost,
they can still add the energy cost in the objective and set a small value for the energy price to
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Table 5: Average results on drones generated by the 2-index formulation for Set A instances
with size 10–30

Re|nk Ee|nk (R+ E)e|nk

Cust UAVs Swap T/d UAVs Swap T/d UAVs Swap T/d
Energy
cost (%)

Set A1

10 2.0 3.2 2.6 2.0 3.2 2.6 2.0 3.2 2.6 6.6
15 2.2 4.0 2.9 2.2 4.2 3.0 2.2 4.0 2.9 6.6
20 3.6 6.2 2.8 3.6 6.2 2.8 3.6 6.2 2.8 6.8
25 3.8 7.4 3.0 3.8 7.6 3.0 3.8 7.6 3.0 6.7
30 5.0 8.4 2.7 5.0 8.4 2.7 5.0 8.2 2.6 6.8

Set A2

10 2.0 3.4 2.7 2.0 3.6 2.8 2.0 3.4 2.7 6.4
15 2.8 5.6 3.1 2.8 6.2 3.3 2.8 5.6 3.1 6.4
20 3.4 7.2 3.2 3.4 7.4 3.2 3.4 7.2 3.2 6.6
25 4.0 8.6 3.2 4.0 9.2 3.3 4.0 8.6 3.2 6.7
30 4.4 9.6 3.2 4.4 10.0 3.3 4.4 9.6 3.2 6.6

Average 3.3 6.4 2.9 3.3 6.6 3.0 3.3 6.4 2.9 6.6

save battery energy consumption and further reduce the recharging time.

Table 6: Schedules generated by different objectives for instance Set A2 Cust 15 2

Re|nk Ee|nk (R+ E)e|nk

Trips Energy (kWh) Trips Energy Trips Energy (kWh)

[0, 3, 1, 16] 0.1585 [0, 3, 1, 16] 0.1585 [0, 3, 1, 16] 0.1585
[0, 4, 2, 16] 0.2389 [0, 4, 2, 16] 0.2389 [0, 2, 4, 16] 0.2344
[0, 5, 10, 15, 16] 0.2099 [0, 10, 5, 16] 0.0937 [0, 5, 10, 15, 16] 0.2099
[0, 6, 12, 16] 0.2530 [0, 12, 16] 0.1645 [0, 6, 12, 16] 0.2530
[0, 7, 8, 16] 0.1733 [0, 8, 7, 16] 0.1637 [0, 8, 7, 16] 0.1637
[0, 9, 11, 16] 0.2418 [0, 9, 16] 0.1354 [0, 11, 9, 16] 0.1835
[0, 13, 16] 0.1690 [0, 13, 16] 0.1690 [0, 13, 16] 0.1690
[0, 14, 16] 0.1341 [0, 14, 16] 0.1341 [0, 14, 16] 0.1341

[0, 11, 16] 0.0462
[0, 15, 6, 16] 0.1794

Total energy 1.5785 1.4834 1.5061
Total travel distance 7995.39 8153.26 7995.39

6.4 Performance Comparison Between Subgradient-based B&C and Linear
Approximation Model

This section discusses and provides the insights regarding the differences in solutions generated
by the exact models and the linear approximation models. Table 7 presents the statistical results,
and detailed results for the linear approximation models are presented in Appendix (Table 13).
For solutions generated by the linear approximation models, after obtaining the trips, we use
equation (26) to calculate the actual value of the energy consumption for each trip and report
the average results in the last two rows of Table 7. Infeasible is the number of instances for which
the linear approximation models actually yield trips with violated energy constraints. Energy
gap is the percentage difference in energy calculation, which is computed as (actual value - linear
value) / linear value ×100.

From Table 7, we get the following observations: (1) Computational efficiency. For
both models, the computational efficiency of the approximation method is better than that
of the exact method. By using the approximation method, more instances can be solved to
optimality in a shorter time frame. However, the gap difference of the two methods is not
significant. Therefore, we can conclude that, even though our original models are nonlinear, the
use of logical and subgradient cuts is highly efficient and the performance does not deteriorate
so much compared to the approximation models for which the structure is much simpler. (2)
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Table 7: Statistics of solutions generated by the exact and linear approximation models

model R model R+ E

Exact
method

Linear
approximation

Exact
method

Linear
approximation

Opt 47/50 49/50 46/50 50/50
Optimality gap 0.10 0.04 0.18 0.00
CPU 1852.69 911.59 2236.96 743.95
Travel distance 8276.33 8227.72 8278.71 8227.68
Infeasible 0/50 20/50 0/50 18/50
Energy gap 0.00 9.45 0.00 9.32

Feasibility. In multiple instances, the approximation models yield infeasible trips which violate
the energy capacity constraints. For the R and R + E models, the approximation method
produces infeasible trips for 20 and 18 instances, respectively. In addition, there is a significant
gap in energy calculation, over 9%, between the two methods.

To further display the value of exact energy calculation, we give an example in Table 8 to
show the different schedules generated by the exact and approximation models. It demonstrates
that the first trip given by the two approximation models consumes 0.2925 kWh energy, which
violates the battery’s energy capacity (0.27 kWh). However, if the linear approximation method
is used, it will consider these trips as feasible ones. Therefore, it is necessary to use our proposed
cuts for exact energy calculation.

Table 8: Details of solutions generated by the exact and approximation models for instance
Set A1 Cust 25 2

Exact method Linear approximation method

Energy
consumption
(kWh)

Energy consumption

Trips Trips
Linear
approximation

Actual
value

Energy
gap(%)

R

[0, 1, 14, 2, 6, 26] 0.2685 [0, 1, 14, 2, 6, 16, 26] 0.2656 0.2925 10.13
[0, 4, 7, 8, 26] 0.1348 [0, 7, 8, 26] 0.1147 0.1240 8.11
[0, 5, 20, 26] 0.2056 [0, 5, 20, 26] 0.1857 0.2056 10.72
[0, 13, 11, 26] 0.1501 [0, 13, 11, 26] 0.1378 0.1501 8.93
[0, 15, 3, 26] 0.1471 [0, 15, 3, 26] 0.1346 0.1471 9.29
[0, 17, 10, 24, 12, 25, 26] 0.2528 [0, 12, 24, 10, 17, 4, 26] 0.1965 0.2175 10.69
[0, 18, 9, 16, 26] 0.2138 [0, 25, 18, 9, 26] 0.1944 0.2146 10.39
[0, 19, 21, 26] 0.1551 [0, 21, 19, 26] 0.1320 0.1447 9.62
[0, 22, 26] 0.0134 [0, 22, 26] 0.0127 0.0134 5.51
[0, 23, 26] 0.0684 [0, 23, 26] 0.0622 0.0684 9.97

R+ E

[0, 1, 14, 2, 6, 26] 0.2685 [0, 1, 14, 2, 6, 16, 26] 0.2656 0.2925 10.13
[0, 4, 7, 8, 26] 0.1348 [0, 8, 7, 26] 0.1099 0.1177 7.10
[0, 20, 5, 26] 0.2039 [0, 20, 5, 26] 0.1845 0.2039 10.51
[0, 13, 11, 26] 0.1501 [0, 13, 11, 26] 0.1378 0.1501 8.93
[0, 15, 3, 26] 0.1471 [0, 15, 3, 26] 0.1346 0.1471 9.29
[0, 17, 10, 24, 12, 25, 26] 0.2528 [0, 4, 17, 10, 24, 12, 26] 0.1903 0.2091 9.88
[0, 18, 9, 16, 26] 0.2138 [0, 25, 18, 9, 26] 0.1944 0.2146 10.39
[0, 21, 19, 26] 0.1447 [0, 21, 19, 26] 0.1320 0.1447 9.62
[0, 22, 26] 0.0134 [0, 22, 26] 0.0127 0.0134 5.51
[0, 23, 26] 0.0684 [0, 23, 26] 0.0622 0.0684 9.97

6.5 Impact of Time Windows

Here, we first consider new instances with tighter time windows at customers. We generate
the width of customers’ time windows according to a new normal distribution whose mean is
0.15(bn+1− tj,n+1− t0j), and keep other data unchanged. Next, we remove the time constraints
(37)–(39) and solve a multi-trip drone routing problem. Average results are reported in Table 9
and detailed results are presented in Appendix (Tables 14–15).
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Table 9: Average results for exact models with tighter time windows and without time windows
model R model E model R+ E

Tighter time windows Without time windows Tighter time windows Without time windows Tighter time windows Without time windows

Cust Opt Gap CPU Opt Gap CPU Opt Gap CPU Opt Gap CPU Opt Gap CPU Opt Gap CPU

Set A1

10 5/5 0.0 0.2 5/5 0.0 0.5 5/5 0.0 0.3 5/5 0.0 1.0 5/5 0.0 0.3 5/5 0.0 0.4
15 5/5 0.0 32.2 5/5 0.0 527.4 5/5 0.0 47.8 5/5 0.0 44.6 5/5 0.0 41.7 5/5 0.0 129.5
20 5/5 0.0 82.1 5/5 0.0 387.1 5/5 0.0 106.8 5/5 0.0 200.7 5/5 0.0 87.8 5/5 0.0 287.5
25 5/5 0.0 2377.8 4/5 0.7 5948.0 3/5 1.6 6319.1 4/5 0.4 5641.6 5/5 0.0 3179.9 4/5 0.8 5061.6
30 3/5 0.6 6565.7 1/5 0.5 12339.4 3/5 1.1 8552.8 2/5 1.3 12211.0 3/5 0.7 6425.4 1/5 0.8 12468.2

Set A2

10 5/5 0.0 0.1 5/5 0.0 1.5 5/5 0.0 0.2 5/5 0.0 0.9 5/5 0.0 0.2 5/5 0.0 1.0
15 5/5 0.0 1.0 5/5 0.0 8.8 5/5 0.0 1.3 5/5 0.0 4.4 5/5 0.0 1.2 5/5 0.0 9.6
20 5/5 0.0 10.1 5/5 0.0 97.4 5/5 0.0 19.3 5/5 0.0 47.2 5/5 0.0 13.4 5/5 0.0 73.4
25 5/5 0.0 140.2 5/5 0.0 1183.1 5/5 0.0 240.7 5/5 0.0 119.2 5/5 0.0 121.8 5/5 0.0 1006.6
30 5/5 0.0 646.5 3/5 0.9 8849.3 5/5 0.0 2458.6 3/5 0.5 7969.1 5/5 0.0 507.5 4/5 0.5 6988.8

Average 48/50 0.1 985.6 43/50 0.2 2934.3 46/50 0.3 1774.7 44/50 0.2 2624.0 48/50 0.1 1037.9 44/50 0.2 2602.7

From Table 4 and Table 9, when the time windows are tighter, one more instance can be
solved to optimality for the R model, and two more instances for the R + E model. Moreover,
the average computation time has seen a significant decrease for the three models. However,
when the time constraints are absent, instances become much more difficult to handle. Fewer
instances can be solved to optimality within the time limit and the average computation time
also increases. These observations are consistent with the results provided by Azi (2011), where
a branch-and-price algorithm is used for the MTVRPTW.

6.6 Algorithm Performance on Extended Solomon’s Instances

In this section we test our algorithm on Set B instances which are extended from Solomon
(1987). All the experiments are performed on 4 core processors with a 12-hour (43200 seconds)
time limit. Summarized results are shown in Table 10 and detailed results on each instance are
provided in Appendix (Table 16). In Table 10, column Inst is the instance label.

Table 10: Algorithm performance on Solomon’s instances of type 2
25 customers 40 customers

model R model E model R+ E model R model E model R+ E

Inst Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU

c201 0.00 1.4 0.00 11.5 0.00 2.5 0.00 48.3 0.00 229.9 0.00 43.8
c202 0.00 13.4 0.00 48.5 0.00 19.7 0.00 372.9 0.00 14073.8 0.00 955.4
c203 0.00 56.4 0.00 86.5 0.00 74.8 0.00 3881.6 0.95 43200.0 0.00 10685.1
c204 0.00 48.2 0.00 240.8 0.00 78.6 0.20 43200.0 1.55 43200.0 0.00 16940.6
c205 0.00 13.0 0.00 29.5 0.00 9.0 0.00 871.2 0.00 23630.3 0.00 881.7
c206 0.00 21.1 0.00 40.8 0.00 21.7 0.00 2011.9 1.83 43200.0 0.00 8368.8
c207 0.00 32.0 0.00 55.3 0.00 43.4 0.00 5757.3 0.00 5567.9 0.00 8358.9
c208 0.00 23.2 0.00 34.7 0.00 34.3 0.00 1936.7 0.63 43200.0 0.00 3547.3

r201 0.00 4.0 0.00 8.7 0.00 5.6 0.00 437.7 0.00 2730.5 0.00 348.1
r202 0.00 32.9 0.00 26.9 0.00 29.2 0.00 11666.6 1.22 43200.0 0.00 8183.1
r203 0.00 132.1 0.00 40.2 0.00 58.0 0.00 33302.4 0.00 17013.0 0.00 40920.9
r204 0.00 134.2 0.00 125.4 0.00 120.3 0.58 43200.0 0.00 37471.4 1.22 43200.0
r205 0.00 38.5 0.00 21.8 0.00 27.1 0.00 5921.7 0.00 7086.4 0.00 8098.5
r206 0.00 54.8 0.00 29.8 0.00 84.6 0.96 43200.0 0.00 5167.2 0.42 43200.0
r207 0.00 83.5 0.00 37.4 0.00 87.8 1.18 43200.0 0.00 22529.7 0.00 39388.0
r208 0.00 75.7 0.00 47.9 0.00 106.7 0.96 43200.0 0.36 43200.0 0.67 43200.0
r209 0.00 42.8 0.00 41.5 0.00 50.0 0.00 42044.0 5.91 43200.0 1.40 43200.0
r210 0.00 46.0 0.00 24.8 0.00 60.2 0.00 14821.3 0.00 2832.5 0.68 43200.0
r211 0.00 136.1 0.00 53.4 0.00 102.5 1.44 43200.0 0.62 43200.0 1.16 43200.0

rc201 0.00 28.0 0.00 31.7 0.00 60.0 0.00 959.5 7.42 43200.0 0.00 2540.3
rc202 0.00 366.9 0.00 315.0 0.00 125.1 0.79 43200.0 2.86 43200.0 0.62 43200.0
rc203 0.00 15.7 0.00 29.9 0.00 56.8 0.00 1542.6 0.00 509.2 0.00 5064.3
rc204 0.00 5.4 0.00 64.3 0.00 952.8 0.00 110.3 0.00 2663.9 0.00 9900.8
rc205 0.00 63.4 0.00 269.0 0.00 100.6 0.00 27642.5 13.59 43200.0 1.58 43200.0
rc206 0.00 65.4 0.00 59.5 0.00 755.0 0.00 4719.6 10.42 43200.0 0.00 39338.2
rc207 0.00 1253.2 0.00 58.3 0.00 7306.9 0.39 43200.0 1.10 43200.0 0.91 43200.0
rc208 0.00 207.4 0.00 23.0 0.00 157.5 0.00 1684.8 0.00 237.6 0.00 7961.0

Average 0.00(0) 110.9 0.00(0) 68.7 0.00(0) 390.0 0.24(8) 18716.0 1.80(13) 26049.8 0.32(9) 22234.3

(−) indicates the number of instances (out of 27) that are not solved to optimality.

We can observe that all instances with 25 customers are solved to optimality within the
time limit. When the number of customers increases to 40, 19 out of 27 instances are optimally
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solved for model R, and this number decreases to 14 and 18 for model E and model R + E,
respectively. The CPU time also varies widely, ranging from a few minutes to many hours.

In terms of computational performance as opposed to the MTVRPTW which is relatively
similar to the MTDRP considered in this paper, our algorithms could generally solve larger
instance sizes compared to those considered in exact algorithms for the MTVRPTW despite
the fact that the original models are nonlinear and more complex. Here, we give some details
about results presented in the literature where a MTVRPTW is solved to provide some insights
for our algorithms. Azi (2011) conduct their experiments with 72 hours allotted on an AMD
Opteron 3.1 GHz with 16 GB of RAM. Their results suggest that when the trip duration limit
is tight, for instances of 25 (40) customers, 15 (7) out of 27 are solved to optimality. When the
trip duration constraint becomes less restrictive, only 14 and 4 instances are optimally solved,
correspondingly. Hernandez et al. (2014) focus on generating feasible solutions in a shorter time
and conduct their experiments on an Intel Core 2 duo 2.10 GHz with 2GB of RAM. Within a 2-
hour time limit, for the case with a tight trip duration, 2 (0) out of 27 are solved to optimality for
instances with size 25 (40). For the case with a longer trip duration, the corresponding number
is 4 and 0. As a whole, the optimality gap ranges from 0.00% to 5.86% for their algorithm.

6.7 Results for Large Instances of Set A

Here, we report the results of Set A instances with 35–50 customers in Table 11. More detailed
results are given in Table 17. All the experiments are performed on 4 core processors with a 12-
hour time limit. The instances with 10–30 customers that were not optimally solved in previous
experiments are also solved again. Our results show that all the previous instances, except
Set A1 Cust 30 5 for model E, are solved to optimality under the new experiment setting. The
optimality gap of this instance for model E is 1.77%. We also solve instances with over 50
customers in Set A1 and with over 55 customers in Set A2. The results show that for some
instances no feasible solution is generated within the allotted time. Therefore, we do not report
the results of these instances here. For some instances, when we directly solve the E model
or the R + E model, we find that the optimality gap is over 5% within the time limit, mainly
resulting from the poor lower bound. Considering the R model is relatively easier than the other
two models, for these specific instances, we first solve the R model to get a feasible solution and
then use this solution as a start for the other two models. The results of these instances are
marked by a square.

Table 11 shows that the average gap ranges from 1.81% to 2.28% for instances in Set A1 and
from 1.29% to 1.50% for instances in Set A2, which further confirms our previous observation
that generally instances in Set A2 are easier than those in Set A1. For the R model, 13 out of 35
instances are solved to optimality. For the E and R+E models, the number of optimally solved
instances are 12 and 10 respectively. We also note that it is effective to use the first solution of
the R model as a start for the other two models. In particular, for the E model, 5 instances can
be solved to optimality by using this method. We further use this idea to model E for Solomon’s
r209, rc201, rc205, and rc206 instances with 40 customers (i.e., instances whose optimality gap
is over 5% in Table 10). The results show that all these instances can be solved to optimality
now.

7 Conclusions

This paper solves the multi-trip drone routing problem with time windows. Two formulations,
one with a drone index and the other without, are introduced. B&C algorithms are developed
to solve the formulations. We propose two types of cuts to tackle the nonlinear energy function.
This strategy can always guarantee the feasibility of the given solutions and the exact calculation
of energy cost. We further demonstrate the necessity and benefits of exact energy calculation as

Formulations and Exact Algorithms for Drone Routing Problem

20 CIRRELT-2018-31



Table 11: Results using multicore processors for Set A instances with 35–50 customers

model R model E model R+ E

Cust Inst Gap CPU Gap CPU Gap CPU

Set A1

35

1 4.11 43200.0 4.55� 43200.0 3.24� 43200.0

2 1.80 43200.0 3.58� 43200.0 2.78 43200.0

3 0.00 20642.0 0.00� 21866.9 0.98 43200.0

4 0.00 30214.8 0.00� 36895.7 0.21 43200.0
5 0.00 29126.0 0.00 15121.7 0.00 20446.6

40

1 3.38 43200.0 2.92 43200.0 3.95 43200.0
2 0.00 13947.5 0.90 43200.0 0.59 43200.0

3 3.74 43200.0 4.74 43200.0 3.78� 43200.0

4 0.44 43200.0 0.00� 23208.1 0.39 43200.0

5 0.73 43200.0 1.30� 43200.0 2.32 43200.0

45

1 4.24 43200.0 3.65� 43200.0 3.96 43200.0

2 2.15 43200.0 2.66� 43200.0 2.06� 43200.0

3 1.51 43200.0 3.76 43200.0 2.46� 43200.0

4 3.05 43200.0 4.42� 43200.0 3.15� 43200.0

5 1.95 43200.0 1.79� 43200.0 2.29 43200.0

Average 1.81 37942.0 2.28 38152.8 2.14 41683.1

Set A2

35

1 2.53 43200.0 0.00� 31873.4 2.65 43200.0
2 0.00 1755.4 0.00 18306.0 0.00 3397.5
3 0.00 8732.7 2.83 43200.0 0.00 11645.0
4 0.00 9765.1 0.00 38648.4 0.00 25076.3
5 0.00 9491.5 0.00 42292.8 0.00 18041.8

40

1 0.00 32162.3 0.00 6219.5 0.00 21628.1
2 1.12 43200.0 1.44 43200.0 0.00 41897.4
3 0.00 3298.6 0.00 30554.3 0.00 5495.7

4 2.13 43200.0 0.00� 7308.4 2.16 43200.0

5 5.05 43200.0 6.39� 43200.0 4.81 43200.0

45

1 0.00 6142.2 0.00 1802.5 0.00 8093.6
2 0.00 41018.0 1.30 43200.0 1.32 43200.0
3 1.20 43200.0 2.15 43200.0 0.00 7452.0

4 2.02 43200.0 1.85� 43200.0 2.68 43200.0
5 0.00 37956.5 2.11 43200.0 1.00 43200.0

50

1 1.80 43200.0 0.74� 43200.0 2.36 43200.0

2 3.81 43200.0 2.24� 43200.0 3.80 43200.0

3 2.92 43200.0 4.20� 43200.0 2.72 43200.0

4 1.32 43200.0 3.29 43200.0 0.72� 43200.0

5 1.80 43200.0 1.55� 43200.0 2.01� 43200.0

Average 1.29 31276.1 1.50 34770.27 1.31 30896.4

� We use the first feasible solution of the R model as an initial solution for this model.

opposed to the linear approximation used in the literature which results in either a suboptimal or
infeasible solution. We generate the benchmark instances for this problem based on the instances
used in the literature and conduct extensive numerical experiments to evaluate the effects of valid
inequalities and user cuts. We also compare the formulations, which demonstrate that the 2-
index formulation can solve more instances to optimality and provide good quality solutions. The
effectiveness of the modeling scheme and the B&C algorithms are further confirmed by solving
Solomon’s type 2 instances. Therefore, our work has filled important gaps in the literature
concerning the formulations and the exact algorithms for the multi-trip drone routing problem
with energy consumption.

Appendix. Detailed Results of Numerical Tests

Tables 12–17 present detailed results of our numerical tests, which are also available online.
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