
Decision-Based Scenario Clustering 
for Decision-Making under Uncertainty 

Michael Hewitt 
Janosch  Ortmann 
Walter Rei 

October 2018 

CIRRELT-2018-39 



Decision-Based Scenario Clustering for Decision-Making 
under Uncertainty 

Mike Hewitt1, Janosch Ortmann2,*, Walter Rei2,3

1 Department  of  Information  Systems  and  Supply Chain Management,  Quinlan  School  of 
Business,  Loyola University, 1 E. Pearson, Suite 204, Chicago, IL 60611, USA 

2 Department of Management and Technology, Université du Québec à Montréal, P.O. Box 8888, 
Station Centre-Ville, Montréal, Canada H3C 3P8 

3 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT) 

Abstract. In order to make sense of future uncertainty, managers have long resorted to 
creating scenarios that are then used to evaluate how uncertainty affects decision-making. 
The large number of scenarios required to faithfully represent several sources of uncertainty 
leads to major challenges in using the scenarios in a decision-support context. Moreover, 
the complexity induced by the large number of scenarios can stop decision makers from 
reasoning about the interplay between the uncertainty modelled by the data and the 
decision-making processes. In order to meet this challenge, we propose a new approach to 
group scenarios based on the decisions associated to them. We introduce a graph structure 
on the scenarios based on the opportunity cost of predicting the wrong scenario. This allows 
us to apply graph clustering methods and to obtain groups of scenarios with mutually 
acceptable decisions. In order to test our approach, we apply it in the context of stochastic 
optimisation, specifically as a means to derive both lower and upper bounds for stochastic 
network design models and fleet planning problems under uncertainty. Our numerical 
results indicate that our approach is particularly effective to derive high-quality bounds when 
dealing with complex problems under time constraints. 

Keywords: Stochastic optimisation, graph clustering, fleet planning, stochastic network 
design. 

Acknowledgments. This research was partially funded by the Natural Sciences and 
Engineering Council of Canada (NSERC) via the Discovery Grant programme (WR) and by 
Concordia University through a Horizon postdoctoral fellowship (JO). This support is 
gratefully acknowledged. We are also grateful to Khedidja Seridi for her help in 
implementing the necessary code for the biweekly fleet planning problem. 

Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily 
reflect those of CIRRELT. 
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 

_____________________________ 
* Corresponding author: ortmann.janosch@uqam.ca

Dépôt légal – Bibliothèque et Archives nationales du Québec
      Bibliothèque et Archives Canada, 2018 

© Hewitt, Ortmann, Rei and CIRRELT, 2018 



1. Introduction

Decision-makers are continuously solving problems in the presence of different sources
and varying levels of uncertainty that affect the information parameters defining them, e.g.,
Pownuk and Kreinovich (2018) and King and Wallace (2012). The need to develop decision
support methodologies that explicitly account for such uncertainty is undeniable. Numer-
ous studies have shown how uncertainty can significantly affect decision-making processes
in a variety of domains. When planning and managing inventories in supply chains, the
bullwhip effect (e.g., see Metters (1997) and Ouyang and Li (2010)), which stems from
the demand uncertainty of the end users, and its overall consequences (e.g., operational
inefficiencies and excessive stocks throughout the chain) force organizations to implement
specific planning strategies (e.g., that mainly rely on having better cooperation, coordina-
tion and communication between the actors of the chain, see Mackelpranga and Malhotra
(2015)) to mitigate this problem. In the context of investment planning, the effects that
higher levels of uncertainty have on reducing the responsiveness of organizations to adjust
their investment strategies following demand shocks is also a well studied phenomenon, see
Bloom et al. (2007).

Moreover, solutions to optimization models that are efficient in randomly varying envi-
ronment are structurally different than solutions obtained by solving a deterministic op-
timization model, where perfect knowledge of the available information is assumed (Lium
et al., 2009). In this context, scenario generation has been used as a cornerstone method-
ology to support decision-makers to both formulate how uncertain parameters vary and to
explore how such uncertainty affects the decisions to be made.

In all generality, scenarios have first been used to approximate probability distributions
that are applied to express stochastic parameters in optimization settings. Examples of such
applications are numerous. They can be found in decision analysis methods, see Borgonovo
et al. (2018), where event trees are created to assess the direct consequences of decisions
when random events occur, but also as a means to evaluate how the notion of regret (or
opportunity loss) affects how decisions are made when facing uncertainty, see Bell (1982).
Using scenario generation to approximate probability distributions is also an integral part of
how stochastic optimization models are both formulated and solved, see Birge and Louveaux
(2011). In this case, representative scenarios are used to formulate recourse cost functions,
which are then applied in stochastic optimization models to evaluate the projected costs
of solutions (i.e., the future cost of decisions which are required to be made before the
random events are observed). Various probabilistic methods have been proposed to generate
such scenarios, e.g., Löhndorf (2016) and Høyland et al. (2003). Such methods have been
successfully applied both statically to obtain solutions to complex stochastic optimization
models, as in the case of stochastic network design models, see Crainic et al. (2011) and
Rahmaniani et al. (2018); and dynamically to derive probabilistic bounds in the process of
performing stochastic optimization, e.g., as in the cases of the sample average approximation
method, see Kleywegt et al. (2002), and the stochastic decomposition strategy, see Higle
and Sen (1991).

The second major use of scenarios has been to help perform planning processes in gen-
eral managerial contexts, see Godet (2000). In this case, scenario generation (or scenario
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analysis) refers to the tools used by managers, whose tasks involve solving planning prob-
lems at different decisional levels, to define a set of future informational outcomes that
are then used to support them in these tasks. Such outcomes can define the informational
contexts that are likely to be observed, but they can also represent specific perspectives,
or intuitions, regarding possible futures that the managers may be interested to explicitly
consider in the planning. As a matter of fact, to perform efficient long-term planning, an
organization’s foresight capabilities are often cited as one of the most important aspects,
see Peter and Jarratt (2015).

The impact and relevance that information technologies have on organizational perfor-
mance has been the subject of numerous scientific studies, see Melville et al. (2004) and
Trieu (2017) for literature reviews on this general subject. As illustrated by Devaraj and
Kohli (2003), one of the key factors that defines how information technologies influence
organizational performance is their actual use. To apply scenario generation methods for
decision-support, one of the main challenges resides in how to efficiently use the potentially
high-volume of information (i.e., scenarios) that may be produced. On the one hand, instan-
tiating a specific decision model with a large number of scenarios may render it numerically
intractable to apply. For example, a stochastic optimization model that is formulated us-
ing a large set of scenarios may require a prohibitive amount of computational effort to
solve. This is often the case when attempting to solve general stochastic integer programs,
see Birge and Louveaux (2011). On the other hand, the complexity involved in assessing
the managerial impact that a set of generated scenarios has on a specific decisional prob-
lem (e.g., through what-if analyses) may become insurmountable when the size of the set is
very large. Actually, the various problems related to information overload for organizations,
specifically as they may hinder decision processes, have become unavoidable, see Edmunds
and Morris (2000). When applying scenario generation, one can actually reach a point
where the amount of information to process simply becomes to great to distill meaningful
insights.

In the present paper, we propose a general methodology that relies on graph clustering
methods to identify structure in the scenario space associated with decision-making con-
texts under uncertainty. Specifically, for a given decision problem where the informational
uncertainty is expressed through a set of generated scenarios (regardless of the strategy
employed to generate them), our methodology can be used to identify groups of scenarios
based on their proximity evaluated on a decisional basis. Our work makes the following
contributions:

(1) We provide a novel provide to clustering scenarios on a decisional basis, using graph
clustering methods

(2) We introduce new upper and lower bounds based on these clusters of scenarios
(3) We test this approach on two stochastic optimisation applications, namely stochastic

network design and fleet planning.

The rest of the paper is divided as follows. We give a brief outline of the problem in
Section 2. Our methodology is explained in Section 3, followed by our numerical results in
Section 4. Section 5 concludes.
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2. Problem statement

In its most general form, the kind of problem we attack in this paper can be stated as
follows: given a probability measure P on a probability space (Ω,F) and a set Y, we wish
to find

φ(P ) = inf
y∈Y

Φ(y, P ), (2.1)

where Φ is a given function. This general formulation can be extremely complex, given that
it attempts to define how a set of decisions to be made (represented by y) is to be evaluated
subject to uncertainty (represented by P ). In order to define a criterion on which decisions
are to be evaluated, the mean or expectation value is often used. For this reason, a natural
choice for the function Φ is given by

Φ(y, P ) = EP (g(y);ω) (2.2)

for a measurable function g, which represents the evaluation of the decision y in the real-
isation ω. By making this choice, the evaluation of a possible solution y under a specific
realisation ω is directly related the probability P (ω) that ω occurs. The overall quality of
a solution is then taken to be the aggregation over all realisations ω.

On the other hand, there are contexts where particular realisations, corresponding to
extreme occurrences, are of disproportional importance. In such settings, more complicated
ways of evaluating a potential solution, such as the conditional value at risk (Dupačova and
Poĺıvka, 2007) can be preferable. In this article, we will focus on the choice (2.2) and defer
consideration of other possible definitions for Φ to future work.

The scenarios approach mentioned in the introduction enters here as follows. Let S
be a finite subset of a configuration space of parameters. These possible configurations
s ∈ S, as well as the probabilities ps assigned to them, can either be inferred from past
data that is used to derive probabilistic information, or generated by subjective analysis,
as described in the introduction. We refer to elements of S as scenarios: each scenario
corresponds to a possible configuration of parameters that might occur. In this way, we
obtain a discretisation of (2.1) by setting P =

∑
s∈S psδs, so that (2.1) with the choice (2.2)

becomes

φ(P ) = φ (ps : s ∈ S) = inf
y∈Y

∑
s∈S

g(y; s)ps (2.3)

3. Methodology

Suppose that we had an oracle that predicts with certainty which scenario s will occur.
Then we can always choose the best decision

y∗s = argmin
y

g(y; s) (3.1)

under this scenario. The use of such point estimates as a base for decision-making is
frequently taken. In this context, the decision making process takes the form of a two-
step approach. In the first step, a point prediction is made, based on which, as a second
step a prescriptive model is applied to establish the decisions to be made. The first step
often relies on the use of a predictive model (which can be thought of as an ‘oracle’), that
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establishes which scenario is most likely to occur. Given this scenario s, an optimal decision
y∗s is obtained via a prescriptive model.

In reality, a perfect oracle does not exist, and this process will lead to incorrect predictions
and therefore non-optimal decision being taken from time to time. In order to quantify this
error, we introduce the opportunity cost of taking the decision associated to scenario s1
when another scenario s2 actually occurs. Denote this by δ (s1 |s2 ):

δ (s1 |s2 ) = g
(
y∗s1 ; s2

)
− g

(
y∗s2 ; s2

)
≥ 0. (3.2)

Since δ (s1 |s2 ) 6= δ (s2 |s1 ) in general, we will symmetrise and define the opportunity cost
distance function on S by

d (s1, s2) = δ (s1 |s2 ) + δ (s2 |s1 ) , s1, s2 ∈ S. (3.3)

This introduces a notion of distance on the set S of scenarios. This distance function
enables us to compare scenarios on a decisional basis. It is natural to now identify groups
of scenarios which are close to each other with respect to this distance, since the decision
associated to one scenario in this group will still be close to optimal for the others. Such
groups also yield another way of estimating the risk associated to the predictions made by
the oracle. Furthermore, in the special case of a linear problem with fixed recourse we have
the following result:

Proposition 3.1. Suppose that the problem (2.3) is linear and with fixed resource. For
each s ∈ S let Y∗s denote the set of optimal solutions of the deterministic problem (3.1)
corresponding to scenario s. If there exists a solution Y∗ ∈

⋂
s∈S Y∗s then y∗ is also optimal

for the stochastic problem.

Proof. Suppose for a contradiction that there exists ỹ ∈ Ystoch (the feasible set for the
stochastic problem) such ∑

s∈S
g (ỹ, ξs) ps <

∑
s∈S

g (y∗, ξs) ps. (3.4)

Then there must exist at least one scenario s ∈ S with g (ỹ, ξs) < g (y∗, ξs). By optimality
of y∗ for the deterministic problem it follows that ỹ /∈ Ys. But this is a contradiction since
then ỹ /∈ Ystoch =

⋂
s∈S Ys, the latter set equality being Theorem 4 in Birge and Louveaux

(2011). �

Corollary 3.2. Suppose that C ⊆ S is such that y∗ is optimal for the deterministic
problem with respect to all s ∈ C. Then the conditional expectation on C is also maximised
by y∗.

In particular, if we knew that a cluster actually has an optimal solution in common we
could replace the entire cluster by one single representative without changing the solution.
Thus, in a perfect clustering, Corollary 3.2 allows us to eliminate scenarios with the same
associated decision. However, such a perfect agreement is unlikely to be the case in practice.
While exact optimality will not often be observed in practice, Corollary 3.2 nevertheless
serves as further motivation to find groups with mutually acceptable solutions.

In the remainder of this section, we will first detail how our general methodology is
imbeded within a general decision support process under uncertainty (see subsection 3.1).
In subsection 3.2 we give two example problems to which we will apply our methodology.
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Mathematically, our technique of finding such clusters consists of defining a graph with
vertex set S, based on the notion of distance induced by d. The motivation for this approach
lies in the existence of good methods for identifying clusters in a graph. In particular, we will
apply Ncut (Shi and Malik, 2000) and its relaxation, spectral clustering; see von Luxburg
(2007) for a survey. The technical aspects are explained in section 3.3 below.

3.1. Decision-based clustering for decision support under uncertainty. We now
return to the general problem stated in (2.1). Commonly (Birge and Louveaux, 2011), one
of two approaches is taken:

(A) The classical approach of predicting a particular outcome and then proscribing a
solution accordingly, as described above. This corresponds to predicting a scenario
s ∈ Ω and computing φ(δs) as an approximation to φ(P ). This approach has
the advantage of being computationally cheap. As a downside, the error, i.e. the
difference between φ(P ) and φ(δs) is not controlled.

(B) The stochastic programming approach: according to the probability measure P ,
sample scenarios s1, . . . , sN and attach probabilities ps1 , . . . , psN . Then approximate
φ(P ) by φ(PN ) where

PN =
N∑
k=1

pkδsk . (3.5)

This approach leads to a much better approximation: under certain assumptions
about the sampling procedure, one can sometimes even get arbitrarily close to φ(P )
by taking N large enough. On the other hand, the complexity is uncontrolled.

We propose the following approach, which will control both the complexity and the error
incurred:
Step 1: Generate scenarios s1, ..., sN as in (B).
Step 2: For each scenario sj , calculate φ(δsj ) as in (A). In particular, we obtain a minimiser
y∗sj for each scenario sj ; that is

Φ
(
y, δsj

)
≥ Φ

(
y∗sj , δsj

)
∀ y ∈ Y. (3.6)

Step 3: Compute opportunity costs of scenario si with respect to sj , that is the loss incurred
by optimising under the expectation that scenario si happens, when actually scenario sj
occurs:

δ (si |sj ) = Φ
(
y∗si , δsj

)
− Φ

(
y∗sj , δsj

)
, (3.7)

which induces a distance on the space of scenarios S = {s1, . . . , sN} as in (3.3).
Step 4: Apply clustering methods in order to find groups of scenarios that are close to
each other in terms of the optimal solution. Thus, we obtain a partition C1, ..., Cn of the
space of scenarios S.

As illustrated in Figure 1, the traditional approach to stochastic optimisation calls for
the generation of a set of representative scenarios that are used to instantiate a scenario-
based stochastic optimisation model, which is solved to obtain a solution. For example, as
in the case of the sample-average approximation method (Kleywegt et al., 2002), this series
of steps is repeated to evaluate probabilistic upper and lower bounds.

Decision-Based Scenario Clustering for Decision-Making under Uncertainty
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DecisionsOptimisationScenarios

Figure 1. Traditional approach to stochastic optimisation.

One way to exploit this clustering is as follows. Choose one representative scenario
σj ∈ Cj for each cluster Cj and assign it a probability πj . A natural example is given by

πj =
∑
s∈Cj

ps. (3.8)

Then, find Φ (
∑n

k=1 πkδσk) and use this as an approximation for φ(P ). Thus, we obtain an
approximation that is computationally much cheaper than (B) (since in general the number
of clusters n is much smaller than the number of scenarios N), but at the same time we are
able to control the error incurred in terms of the diameters of the clusters. Alternatively,
one can refine approach (A) by choosing a point estimate for each cluster, rather than for
each scenario.

Our approach works well for choices of Φ where the error incurred by approach (A) is too
large, whereas approach (B) is too computationally expensive. By following the four steps
outlined above, we obtain a control on both the error and the computational complexity,
see Figure 2. In fact, we can trade off complexity (the number of clusters) against accuracy
(the diameter of clusters), in order to obtain an optimal approximation.

In particular, it should be noted that because we are only solving the deterministic
version of (2.1), we can consider a much larger number of scenarios than the stochastic
approach would be able to handle.

Scenarios Clustering Optimisation Decisions

Figure 2. Embedding decision-based clustering into the decision support process

3.2. Examples. We have chosen two stochastic optimisation problems on which to test
our approach, one modelling the design of a transport network and one from fleet planning.
Transport network design. When designing a transport network, two types of decisions
must be taken Crainic et al. (2014): first, one chooses the structure of the network (de-
sign decisions) and secondly how to use this network to perform the operational activities
considered (flow decisions).

Decision-Based Scenario Clustering for Decision-Making under Uncertainty
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Our specific problem was first considered in Crainic et al. (2016). Here, the design deci-
sions must be taken before the stochastic parameters are known. More precisely, consider
a directed graph G = (N,A) and a set of commodities K. For each scenario s ∈ S, the
stochastic parameters are given by the demands dksi of the quantity of commodity k to be
transported to vertex i ∈ N and the capacity usi,j of edge (i, j).

For each edge e = (i, j) ∈ A, the design decision corresponds to choosing whether to
open e = (i, j) at a fixed cost yij or not. This decision must be taken before the scenario
that actually occurs is known. Once the design decision has been taken, the scenario is
revealed and the flow decisions must be taken. That is, we must choose how many units of
commodity k to transport across edge (i, j), at a unit cost of ckij . The goal of the program
is to satisfy all of the demands while minimising the expected total cost incurred. Denoting

by yi,j ∈ {0, 1} the choice of opening edge (i, j) and xk,si,j the quantity of commodity k to

be transported across (i, j) in the case of scenario s, we obtain the following mathematical
formulation:

min
∑

(i,j)∈A

fijyij +
∑
s∈S

ps

∑
k∈K

∑
(i,j)∈A

ckijxij

 (3.9)

s.t.
∑

j∈N+(i)

xksij −
∑

j∈N−(i)

xksji = dksi ∀ (i, k, s) ∈ N ×K × S (3.10)

∑
k∈K

xksij ≤ usijyij ∀
(
(i, j), s

)
∈ A× S (3.11)

yij ∈ {0, 1} , xksij ∈ [0,∞) ∀
(
(i, j), k, s

)
∈ A×K × S. (3.12)

Biweekly fleet planning. Our second test problem concerns the fleet-sizing problem faced
by a freight carrier over a two-week horizon where the loads for the first week are known
(Topaloglu, 2018). The decisions are for the first week are the number of vehicles available
at each terminal and the number of vehicles moving between each origin and destination.
The decisions for the second week are similar, but the vehicle supply at each terminal is
determined by the decisions of the first week. If the vehicle supply of a location at the end
of the second week is different than what it was at the beginning of the first week, then
a penalty is incurred. We introduce the following notation: xij and x̃ij denote number of
empty and loaded of vehicles respectively, moving terminal ito j during the first week. The
variables zi represent the number of vehicles deployed at terminal i. The number of vehicles
at terminal i at the beginning of the second week is given by z̃i. If the vehicle supply at
location j at the end of the second week is below zj , then this imbalance is penalized
by a cost of pj per unit shortage. ξij denotes the (random) number of loads that need to
be carried from terminal i to j in the second stage. The mathematical formulation of the
problem is then given by

min
∑
i∈L

vizi +
∑
i,j∈L

(rijxij + r̃ij x̃ij) +Q (z, z̃) (3.13)

s.t.
∑
j∈L

(xij + x̃ij)− zi = 0 ∀ i ∈ L (3.14)

Decision-Based Scenario Clustering for Decision-Making under Uncertainty
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∑
i∈L

(xij + x̃ij)− z̃i = 0 ∀ i ∈ L (3.15)

xij ≤ uij ∀ (i, j) ∈ L2 (3.16)

where the function Q is defined by

Q (z, z̃, ξ) = min
∑
i,j∈L

(rijyij + r̃ij ỹij) +
∑
j∈L

pjwj (3.17)

s.t.
∑
j∈L

(yij + ỹij) = z̃i ∀ i ∈ L (3.18)

∑
i∈L

(yij + ỹij) + wj − w̃j = zj ∀ j ∈ L (3.19)

yij ≤ ξij ∀ (i, j) ∈ L2. (3.20)

3.3. Graph clustering. We conclude this section by giving some details on the graph
clustering techniques we are proposing to use. There are two key questions: 1) how to
define the graph on the scenario space and 2) based on this graph, how to partition the
scenarios into clusters.

Given a distance function d on S, there are two standard ways to construct affinity
graphs with vertex set S: namely we define G = (S, E) where the edge set E is one of the
following:

(1) E = {d(s, t) : ast < ε} for some (small) parameter ε > 0. That is, two scenarios s, t
are connected if the opportunity cost between s and t is smaller than ε. This graph
is known as the ε-neighbourhood graph.

(2) Let s t if d(s, t) is one of the M smallest elements of {d(s, u) : u 6= s} and s ∼ t if
s t and t s. The edge set E is then defined to be E = {(s, t) ∈ S × S : s ∼ t}.
We will call this the (symmetrised) M -nearest neighbour graph.

In both cases, the graph is a way of encoding affinity between scenarios: two scenarios
s, t are connected if the opportunity costs between s and t are small. Moreover, there is
always a parameter (ε or M) that can be adjusted in order to regulate how much affinity
is rewarded.

Once we have constructed our affinity graph (either ε-neighbourhood graph or M -nearest
neighbour graph), we can analyse it in order to identify structure in the scenarios. Our
focus in this paper will be on clustering algorith, but we note in passing that other analyses
are also possible, including finding maximal graph cliques (Tsukiyama et al., 1977) and
analysing connected components.

The goal of our clustering is to partition the scenario space S into clusters C1, ..., Cn such
that the diameters of the Cj are as small as possible. In order to simplify the presentation,
we will assume that the choice of affinity graph and parameter (ε or M) has been made
and let G denote the affinity graph chosen for analysis.

The simplest approach to this would be to solve the min-cut problem described in Stoer
and Wagner (1997). However, this method tends to simply separate out single elements from
the vertex set. Thus, one needs to incorporate into the objective function the requirement
that all clusters be reasonably large. Examples of this approach are the RatioCut (Hagen
and Kahng, 1992) and Ncut (Shi and Malik, 2000) methods. For a problem with a relatively
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small number of scenarios, Ncut yields very good results. However, these extensions are NP
hard to solve (Wagner and Wagner, 1993) and hence the computational complexity grows
quickly with the number of vertices, or scenarios.

All of the min-cut problems described above can be expressed in terms of discrete min-
imisation problems involving graph Laplacians. Therefore, it is natural to consider their
continuous relaxations. These relaxations can be written in terms of various graph Lapla-
cians. In addition to NCut itself, we utilise a relaxation of the NCut problem, the so-called
normalized spectral clustering (Shi and Malik, 2000; Ng et al., 2002):

Algorithm: Normalised Spectral Clustering.

(1) Compute the random walk Laplacian Lrw.
(2) Compute the eigenvalues u1, . . . , uk corresponding to the k lowest eigenvalues of

Lrw

(3) For each s ∈ S define ys ∈ Rk by ys(j) = uj(s)
(4) Perform the k-means algorithm to partition the ys into k clusters Γ1, . . . ,Γk
(5) return the partition C1, . . . , Cm on S defined by s ∈ Cj if and only if ys ∈ Γj .

4. Numerical results

In order to test our approach, we have applied it to the two examples described in section
3.2. In this section, we summarise the preliminary results we have obtained. We have found
that our method works well for complex problems with limited computational resources or
time.

4.1. Stochastic network design. We have applied our methodology to 20 instances of the
stochastic network design problem, each having 128 scenarios. Using the Ncut algorithm
described above we have clustered the scenario space into groups of between 2 and 15
clusters. We then applied the group subproblem methodology explained in Sandikci et al.
(2013). Thies yields a lower bound, and the solution of the group subproblem defines a
feasible solution to the original problem, which leads to an upper bound. At the same time,
we solved the full stochastic problem using CPLEX with a time limit of 10 hours, which led
to another set of upper and lower bounds. We evaluated the effectiveness of our approach
by calculating the relative difference between the lower bound from the group subproblem
and the lower bound from the full problem.

These relative differences are listed in Table 1 below, aggregated across the instances by
the number of clusters. The cluster bound gap denotes the relative difference between the
lower bound from the full model and the lower bound from the group subproblem, whereas
the cluster primal gap is calculated as the relative difference between the upper bound from
the group subproblem and the upper bound from the full model. Thus, in both cases a
negative value implies an improvement in performance of our clustered approach. Finally,
we have also computed the difference in time taken between the clustered model and the
full model. As can be seen in Table 1, our approach is faster.

Decision-Based Scenario Clustering for Decision-Making under Uncertainty
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cluster bound gap cluster primal gap time difference
mean var mean var mean var

clusters

2 -0.009716 0.000929 -0.044691 0.017231 -4625.80 1.268810e+08
3 -0.018039 0.002010 -0.067526 0.025848 -4374.25 9.673558e+07
4 -0.021404 0.002775 -0.092313 0.039781 -3306.70 8.473449e+07
5 -0.023190 0.003024 -0.089347 0.047737 -2292.30 1.139200e+08
6 -0.024780 0.003174 -0.088608 0.047761 -1898.25 1.704076e+08
7 -0.026365 0.003577 -0.089912 0.049885 -965.00 2.228125e+08
8 -0.024229 0.003218 -0.089774 0.049921 -2150.20 2.615600e+08
9 -0.017766 0.001179 -0.089775 0.049932 -1666.85 3.202642e+08
10 -0.018919 0.001341 -0.089793 0.049922 -1137.65 3.746308e+08
11 -0.012263 0.000485 -0.057347 0.019306 -1820.75 3.769358e+08
12 -0.012191 0.000462 -0.048259 0.009202 -2795.10 3.768468e+08
13 -0.009643 0.000369 -0.039941 0.008548 -4169.70 3.236817e+08
14 -0.009015 0.000358 -0.040060 0.008539 -5158.70 2.985408e+08
15 -0.007975 0.000344 -0.039514 0.008580 -6497.45 2.432807e+08

Table 1. Summary performance statistics for our approach in the network
design case

4.2. Biweekly fleet planning. For biweekly fleet problem, we have tested four instances
of the small problem and compared the group subproblem bound (see above) with the
deterministic approximation (DA) described in Topaloglu (2018).
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cluster bound gap
mean var

clusters

2 -0.063961 0.000162
3 -0.071368 0.000058
4 -0.082579 0.000099
5 -0.086557 0.000091
6 -0.092331 0.000078
7 -0.097669 0.000084
8 -0.101370 0.000099
9 -0.106733 0.000092
10 -0.109695 0.000068
11 -0.113290 0.000068
12 -0.117053 0.000055
13 -0.120289 0.000054
14 -0.123160 0.000052

Table 2. Performance statistics comparing the group subproblem bound
applied to our clustering method with the deterministic approximation.

5. Conclusion

We have introduced a new methodology that enables a large number of scenarios to be
efficiently analysed. Specifically, this methodology allows to identify scenarios which are
close on a decisional basis. Such groupings of scenarios can then be applied to gain a better
understanding of how stochastic phenomena can impact the decision-making process.

We have shown that these clusters can be used to efficiently derive lower and upper
bounds in a context of performing stochastic optimisation. When applied to the case of
stochastic network design, we observe that, under computational time constraints, these
bounds are better and can be obtained more quickly when compared to solving the consid-
ered problems directly using CPLEX, an efficient and widely used commercial optimisation
software.

Going forward, various avenues of research appear to us interesting to investigate. First,
from a computational point of view, calculating the opportunity cost matrix may be costly
if the number of scenarios is large, or, if the decisional problem studied is complex to solve.
The investigation of how parallel computing can be used to speed up the building of this
matrix is thus an interesting avenue of research to explore. Second, finding how scenarios,
that are used in specific decision-making contexts, are related to one another is also a
general open question that should be studied. Towards this end, we will also investigate
alternative decision- and scenario-based distance functions and consider directed graph
clustering methods that can be applied to asymmetric distance functions for the proposed
methodology. Finally, we have used the expected value in order to evaluate the quality
of the decisions to be made when facing uncertainty. In contexts where extreme cases are
of disproportional importance, other functionals such as the conditional value at risk may
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be more suitable to apply. Exploring how the developed clustering method can be used in
such cases will also be studied.
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