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1 Introduction

The operating room (OR) is renowned for consuming about 40% of hospital budgets. Looking to

improve its efficiency is a natural way to reduce cost and better use resources. Different criteria are

widely used to measure the efficiency (Macario, 2006): start-time tardiness, case cancellation rate,

turnover time, post-anesthesia care unit admission delays, etc. In this paper, we are interested in

the case cancellation rate due to congestion in the ICU.

Addressing the OR management problem is challenging for both researchers and practitioners

alike. An overview of the literature shows that, since the 2000s, the community has been very active

on the subject because of both the complexity of the problem and the OR’s potential economic

impact. Classifications of the problems encountered in the OR are described in (Cardoen et al.,

2010; Guerriero and Guido, 2011; Hulshof et al., 2012; Samudra et al., 2016). Briefly, the problems

are usually addressed either at the strategic (e.g. master surgery planning),tactical (e.g. balanc-

ing hospital resources) or operational level (e.g. patient scheduling). Uncertainty and whether

other services (upstream/ downstream) are included in the analysis are additional ways to classify

problems in the OR.

In this paper, we focus on the integration of the intensive care unit (ICU) to the (long term)

surgical case assignment problem (operational level). This problem consists of selecting patients

(from the wait list) to be on the operating list of surgeons for a selected horizon, and assigning a

day, an operating room, and a time block to each surgeon. In practice, each surgeon selects from

his/her wait list a set of patients to operate on (usually one week in advance). The sequencing

of the patients on the list may then be defined by the surgeon or management. The simple way

to constitute the list is on a first in, first out basis, however this may not allow for effective use

of the OR’s time. We therefore need to determine the best mix each day to maximize utilization

rate. In addition, knowing that some of the patients will require an ICU admission, we integrate

the availability of beds in the surgical case assignment problem.

However, if ICU beds are not available, scheduled cases would need to be cancelled. As the ICU

is known to be significantly impacted by uncertainty, i.e., the arrival of patients from the emergency

room (where most of ICU patients come from) and the length of their stay.

To our knowledge, no study in the literature includes the ICU availability when solving the

surgical case assignment problem (Fei et al., 2008; Mateus et al., 2018; Marques and Captivo,

2017). Most papers focus on demonstrating the impact of the OR on ICU efficiency and vice versa.
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(Chow et al., 2011) show, for example, that a high bed occupancy rate in the ICU results in an

increased burden on hospital staff, frequent cancellations of surgeries, and increased wait times. It

is confirmed in (Fügener et al., 2016, 2014) that not considering the limited resources of intensive

care and recovery beds during OR scheduling leads to a decrease in the level of service of these

postoperative units. (Bowers, 2013) highlights the interdependence between resources in intensive

care and the OR. The study shows that a balance between the number of surgeries performed

and the number of beds in intensive care should reflect the relative cost of these two departments.

(Cook et al., 2004) study the influence of parameters such as the distribution of arrivals, length

of stay, resources in the ICU and the number of surgery rooms. Finally, in (Marmor et al., 2011),

a simulation model is used to show the link between the level of service offered to patients and

the bed occupancy rate. Several sources of variability are considered, such as the seasonality

of operating theater programming or the length of stay in intensive care. More generally, the

same type of impacts are observed in relation to the emergency room (McConnell et al., 2004).

Increasing capacity in the ICU decreases the burden on the emergency room. Most of these papers

use simulation to show the interaction between the OR and the ICU. This relation is then usually

modeled by including either an indicator in the objective function (Vissers et al., 2005) or a hard

constraint on the capacity of beds in the ICU while solving the OR scheduling problem (Santibanez

et al., 2007; Pham and Klinkert, 2008; van Oostrum et al., 2008). In the latter case, this constraint

is usually static and needs to be defined before solving the problem. In this paper, we propose a

novel approach that integrates this constraint dynamically in the problem.

The contribution of this paper is thus to propose a scheduling approach for the OR that takes

into account the stochastic availability of the ICU. We propose a novel approach that incorporates

the graph derived from a Markov Decision Process into a Mixed Integer Programming model in

order to compute the cancellation probability due to congestion in the ICU within the OR case

assignment problem. We evaluate this approach on a practical case from the teaching hospital

Sainte-Justine (CHUSJ), in Montreal, to analyze the data from the OR and the ICU.

This paper is structured as follows. Section 2 describes the case study of CHU Sainte-Justine.

In Section 3, we introduce the mathematical model including the postoperative constraints. The

approach for modeling the ICU is presented in Section 4. The results obtained will be presented

and analyzed in Section 5 followed by the conclusion.
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2 The practical case of CHU Sainte-Justine

CHU Sainte-Justine (CHUSJ) is a pediatric teaching hospital. The surgery department includes

85 surgeons covering more than 11 specialties (orthopedic surgery, plastic, general, etc.). Approx-

imately 10,000 interventions are performed each year in the 14 available rooms. The objective of

this section is, first, to describe the practical case of CHUSJ and, second, to understand how data

compares with the literature. This is particularly relevant to generalize our approach and findings.

2.1 The OR at CHUSJ

We analyze data collected between January 1st, 2013 and December 31st, 2015. See Figure 1 for

the distribution of interventions among specialties.
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Figure 1: Distribution of surgeons and procedures per specialty

We observe that the two specialties with the highest number of interventions are general surgery

and Ear, Nose and Throat (ENT) (almost 20% of the total load). On the other hand, neurosurgery

and cardiology each represent 2% of the total number of interventions. Despite the smaller number,

these latter patients have a significant impact on the use of upstream/downstream resources in the

operating room. In particular, they usually require admittance to the ICU.

The OR schedule follows a master surgical schedule (MSS) that is updated monthly. It is

usually based on government guidelines and how the hospital prioritizes specialties. Although it

varies each month, it seems to be stable at CHUSJ. The distribution of time for each specialty
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varies between 50 hours (dentistry) and about 125 hours (for orthopaedic (ortho.) and general

surgery). Cardiac surgery uses 62 hours approximately, plastic and endovascular (endo.) about

110h and the rest around 80-90 hours. This partially explains the small percentage of the total

number of operated patients (see figure 1) as well as the large wait time (figure 2) that cardiac

surgery represents. Less than half of the slots available in the month are open to interventions

(130.5 slots available out of 280 in total). This is linked to the limited resources of the hospital

(surgeons, nurses, anesthesiologists, hospital beds, etc.).

An analysis of the wait list of patients on May 2nd, 2017 shows that over 4,000 patients were

waiting for surgery. Figure 2 reports the number of patients waiting for each specialty and their

average wait time (in days).
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Figure 2: Number of patients in the wait list and average wait time - Wait list, May 2nd, 2017

We observe that the highest number of patients on the wait list are from ENT and Urology. It

is important to note that Urology is also one of the specialties with the fewest number of surgeons.

On the contrary, many ENT surgeons are available and the number of interventions is the most

important. If we now look at the average wait time, urology patients wait the most (approximately

8.5 months) followed by dentistry patients (around 8 months). The other specialties have relatively

similar average wait times, around 5 months, except for gynecology for which the average wait is

around 3 months.

We then analyze how the OR performs in terms of start time and end time. In theory, the

OR opens at 8am and closes at 4pm. Figure 3 shows that most cases start on time, with very few
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Figure 3: Start time and end time of rooms

rooms starting after 9am. While most rooms end at 4pm, some may end earlier or later.

Finally, an analysis of the duration of interventions shows it fits a Lognormal distribution.

2.2 The intensive care unit

Table 1 illustrates the number of patients requiring intensive care per specialty on the wait list as

of January 26th, 2017. It shows that 90% of cardiac patients (about 32 patients) needed an ICU

recovery. Neurosurgery (5 patients) and orthopaedics (35 patients) require ICU in 13% of the cases.

In total, 2% of elective patients require ICU recovery.

Table 1: Patients requiring postoperative ICU

Ortho. Plas. Gen. Uro. Opht. Gyn. ENT Endo. Dent. Neuro. Card. Total

ICU 35 2 5 3 0 0 3 0 1 5 32 86

Total 264 444 511 755 459 192 982 397 223 37 35 4299

Percentage (%) 13.3 0.5 1.0 0.4 0.0 0.0 0.3 0.0 0.4 13.5 91.4 2.0

Data available from the ICU, between April 6th, 2014 and February 13rd, 2017, shows that each

year an average of 17% of the requests for surgery requiring an ICU admission are cancelled (see

Table 2). This represents an average of 1.4 requests/day and 0.23 cancellations/day.

A finer analysis of the cancellations during the year shows that surgeries are more likely to be

postponed or canceled during the winter (see Figure 4).
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Table 2: Data on requests/cancellations per year

2014-2015 2015-2016 2016-2017 Total

Number of requests 365 351 294 1010

Number of cancellations 75 52 47 174

Probability to cancel 21% 15% 16% 17%

Figure 4: Ratio of surgeries with ICU admission canceled/postponed

Fitting the data (dotted line) shows an average of 1.4 cancellations and a maximum (minimum)

reached in January (July). Based on this graph and a discussion with senior management from the

hospital, we consider four periods in the year November-January, February-April, May-July and

August-October. They may be aggregated into November-April and May-October.

Table 3: Data per period

Periods

Nov. - Jan. Feb. - Apr. May - July. Aug. - Oct

Number of requests
273 240 231 266

513 497

Number of cancellations
89 44 21 20

133 41

Probability to cancel
33% 18% 9% 8%

26% 8%

We clearly observe that a cancellation is more likely to occur in November-April than in the

period May-October. A finer analysis per day (Figure 5) shows that demand is similar for both

periods with a peak of almost 2 patients daily on Tuesdays and 1.5 patients on Thursdays. Since the
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requests are similar and the postponement rate varies significantly, we hypothesize that the ICU ca-

pacity for elective patients is greater between May-October. It also appears that the postponement

rate is slightly different between November-January and February-April. A peak of postponements

is observed on Wednesdays (green line) followed by a rate lower than average on the following day.

This shows that there is enough capacity on that day.

Figure 5: Requests and postponements over the periods

Figure 6 shows that the number of patients in the ICU (information collected everyday at 7am)

is 17, on average.

The seasonality previously observed is confirmed in the figure. The number of patients decreases

during summer time and capacity is higher between May-October. The analysis per day of the week

(Figure 7) shows the same pattern regardless of the period of the year. The unit empties gradually

during the week-end (no elective patients admitted during that time). Finally, we note a small
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Figure 6: Occupancy in the ICU (July 2014 - January 2017)

variation on the number of patients in the ICU on Thursdays between November-April. This is

probably related to postponement rate of elective patients on Wednesdays, observed in the same

period.

Figure 7: Average number of patients in the ICU per day

Figure 8 shows the number of patients (elective and non-elective) admitted in the ICU per

month. Non-elective patients represent almost 75% of all patients (2,784 patients). These patients

have priority in the ICU, and the variability in admissions is the major reason for elective case
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cancellation.

Figure 8: Elective and non-elective patients admission in the ICU (2012 - 2017)

The figure again confirms the observation that capacity decreases during Summer time. We

also note a few outliers that may be explained by

• A decrease in demand;

• An increase in demand for non-elective cases;

• A decrease in the number of nurses in intensive care.

We clearly observe a correlation between the low number of admitted elective patients and the

high number of non-elective patients (mainly emergency patients). We also observe a small increase

of admission of non-elective patients (about one more per day). Finally, we observe a decrease in

the number of non-elective admissions around July of each year.

A finer analysis using the Python library (https://facebookincubator.github.io/prophet/) shows

the trends in the admission of emergency patients in the ICU. Figure 9 shows that since 2012, one

additional emergency patient per day is admitted in the ICU. It also confirms the seasonality of

the demand: November-April and May-October.
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Figure 9: Trends in non-elective admissions in the ICU

Finally, the distribution of non-elective patients’ arrival is very similar to the literature and

follows a Poisson distribution.

An average of 2.5 discharges from the ICU is observed every day (see Figure 10). Most of them

occur between Tuesdays and Fridays, regardless of the period considered.

2.3 Discussion

A recent publication (Leeftink and Hans (2018)) on benchmark instances for case mix classification

and surgery scheduling confirms that our data from CHUSJ is aligned with the one in the literature:

• the 3-parameter lognormal distribution best fits surgery duration distribution;

• the usual opening hours of each OR is 8h;

• the instances used 11 specialties (17 case mix profiles), between 5 and 40 ORs, a load param-

eter that determines the expected surgery workload set between 0.8 and 1.2.
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Figure 10: Distribution of discharges per day of the week

Therefore, our method and results are not instance dependent.

Finally, in most papers that integrate ICU in the literature, the number of beds available each

day is very similar to what we observed in CHUSJ: 1 bed available for surgery patients in (Pham

and Klinkert (2008)) and an average of 2 beds in (Santibanez et al. (2007)). Note that in the latter

case, they refer to special care units rather than intensive care units.

3 The surgical case assignment problem

Our objective is to solve the surgical case assignment at CHUSJ. Namely, we want to maximize

room occupancy by prioritizing the oldest patients on the wait list. We define four priority groups

of the same size. We need to select patients to operate during the horizon, determine the slots

for intervention of these patients, and assign surgeons to available slots. Currently, CHUSJ uses

a fixed master surgical schedule. This MSS is generated monthly, and indicates the specialty and

the room assigned to it each day. Although most of the slots of the OR schedule may already be

assigned to a surgeon, some slots remain available. In the latter case, one needs to allocate the

surgeon in order to maximize the objective function.

Note that a patient can only be operated by the pre-assigned surgeon.
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The parameters and variables used in our model are summarized in Table 4.

Table 4: Notation used in the model

Notation Definition

Sets T Number of days in the horizon (28 days)
C Set of surgeons
S Set of specialties
I Set of patients
K Set of rooms

Parameters Ωtk Availability in minutes of room k on day t
α Load parameter of operating rooms
di Duration of intervention for patient i
γi Priority group of patient i
qcs 1 if surgeon c is assigned to specialty s and 0 otherwise
bic 1 if patient i is assigned to surgeon c and 0 otherwise
msstk c if surgeon c is assigned to room k on day t and 0 otherwise
estk 1 if room k is assigned to specialty s on day t and 0 otherwise

Variables rctk 1 if surgeon c is assigned to room k on day t and 0 otherwise
xitk 1 if patient i is assigned to room k on day t and 0 otherwise

The model is the following:

max
r,x

∑
i∈I

∑
t∈T

∑
k∈K

xitkdiγi (1)

subject to:

∑
c∈C

rctk ≤ 1 ∀t ∈ T, k ∈ K (2)

rctk ≤
∑
s∈S

qcsestk ∀c ∈ C, t ∈ T, k ∈ K (3)

xitk ≤ rctk ∀c ∈ C, t ∈ T, k ∈ K, i ∈ I|bic = 1 (4)∑
t∈T

∑
k∈K

xitk ≤ 1 ∀i ∈ I (5)

∑
i∈I

xitkdi ≤ αΩtk ∀t ∈ T, k ∈ K (6)

rctk = 1 ∀c ∈ C, t ∈ T, k ∈ K|msstk = c (7)

rctk ∈ {0, 1} ∀c ∈ C, t ∈ T, k ∈ K (8)

xitk ∈ {0, 1} ∀i ∈ I, t ∈ T, k ∈ K. (9)

The objective function (1) maximizes room occupancy while prioritizing the oldest patients on

the wait list. The score of each patient is equal to diγi. As in Agnetis et al. (2012), considering the
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duration at this point ensures we are not only scheduling short cases.

Constraints (2) ensure that up to one surgeon can be assigned to a room each day and con-

straints (3) that surgeon c can only be assigned to room k on day t if his/her specialty is already

scheduled in the MSS. Constraints (4) link a patient i to a slot only if his/her surgeon is also

assigned to it. Constraints (5) ensure each patient is processed, at most, once in the horizon.

Capacity duration of rooms is enforced by constraints (6). No extra time is allowed if α ≤ 1.

Constraints (7) impose the assignment of surgeons already assigned to slots in the MSS. Finally,

constraints (8-9) state that variables are binary.

Next section describes how to include the availability in the ICU to this problem.

4 Modeling the availability in the ICU

Better anticipating the admission capacity in the ICU at the time of scheduling the OR will limit

the risk of last minute cancellations. As mentioned earlier, it is very rare that more than 2 elective

patients are admitted in the ICU. Instead, 75% of capacity is occupied by emergency patients.

We propose an approach based on graphical optimization models. We first model the system

using Markov Decision Processes, using state and action variables. A state is defined by explanatory

variables of the number of cancellations and, in each state, we determine (action) how many patients

to schedule for the next day. We first define the explanatory variables of these cancellations in order

to present the states.

As discussed in Section 2, two seasonal factors influence the probability of an elective admission:

the month of the year and the day of the week. We propose a third factor which is the number

of patients canceled the day before. For example, if two patients are canceled on day t, the

probability of admitting an elective patient is higher on t + 1. Each state is therefore defined by

three parameters: the season, the day of the week, and the number of cancellations.

We can derive the number of patients requiring an ICU admission once the surgical case mix

is obtained each day. Thus, for each schedule, we build a graph, where the capacity of the edges

is defined as the probability of transition from one state to another in the MDP. The intuition

is that given an initial state (for example “Tuesday”) and a request for one ICU bed, the flow

will propagate through the different possible states in this graph. Each state is associated with a

number of cancellations. Flow conservation constraints are enforced. The probability of reaching

each state of the network at a time t will help quantify the risk of canceling the number of scheduled
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cases with ICU admission. Note that these probability transitions are data-driven and thus may

depend on the season.

Let’s introduce a simple example with six days (Monday to Friday and one day to model the

week-ends), and a maximum number of patients that can be canceled each day equal to 2. The

maximum number of patients to schedule per day is two as well (derived from the decision variable

in case mix assignment optimization model). Each state is defined by the day of the week and the

number of cancellations. The transition probabilities are data-driven. In this case, we will use both

the two periods of the year derived from the analysis in Section 2.2. For each day, 18 possible states

are possible (6 days and 0 to 2 cancellations) and we can decide to schedule 0, 1 or 2 patients for

the next day. This decision process is graphically illustrated in Figure 11.

Figure 11: Illustration of a node in the graphical model

In this example, we are in the state (Tu, 1) which refers to Tuesday, with one elective patient

being canceled. The decision for the next day will lead to a move to the state (Wed,0), i.e.,

“Wednesday” with 0 cancellations, or (Wed,1), (Wed,2). If the action is to place 1 request for

an ICU admission for the next day, this will lead to 0 cancellations (i.e. will be accepted) with a

probability a2 and to 1 cancellation with a probability a4. Note that only six outgoing arcs are

represented (three of the nine possibilities have a probability equal to 0, refer for example to the arc

corresponding to 1 request and leading to 2 cancellations which is impossible in practice). These 6

arcs represent:

• 0 request leads to 0 cancellation with probability a1 (equal to one);

• 1 request leads to 0 or 1 cancellation with probability a2 and a4;
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• 2 requests lead to 0, 1 or 2 cancellations with probability a3, a5 and a6.

The capacity a of each of these arcs is equal to the probability of having K cancellations

(indicated in the arrival node) given that we are in the state corresponding to the current

node, here (Tu, 1). Since the request is equal to 1 in this case, all flow outgoing from 0 and 2 is

null (illustrated with a red cross). Finally, the flow f needs to spread across the remaining edges

in proportion to their capacity, here a2 and a4, which makes this a particular case of network flow.

The conservation of the flow is maintained with equation a2 + a4 = 1.

The complete network consists of the 18 nodes, corresponding to the states, repeated each day,

forming different successive vertical layers. The number of layers is then equal to the number of

days in the horizon and the flow entering each layer is equal to 1. We have

• L : Maximum number of elective patients scheduled per day;

• P : Maximum number of cancelled patients per day;

• atp1`p2 : Probability to cancel p2 patients given the state (day, cancellation) (t,p1) and that `

patients are scheduled for the following day;

• Wt` =


1 if ` patients are scheduled on day t

0 otherwise

• and the variables ztp1`p2 = flow (of probability) in arc between nodes (t, p1) and (t + 1, p2)

associated with demand `. The capacity of this arc is equal to atp1`p2 .

Figure 13 in Appendix illustrates a horizon of 6 days and the network layers are represented

from left to right. The first and last layers contain only one node and the others three nodes. We

only represent the arcs for which the flow may be positive. The value shown in square brackets for

each state represents the flow passing through this node. Note that the flow through each layer is

equal to 1, which respects the flow conservation constraint. All probabilities are displayed.

We now introduce the linear model allowing to obtain the flow z. Let’s suppose that the OR

schedule is available for the week and is an input parameter of problem W . Then, ztp1`p2 is the

flow (of probabilities) propagating through the edge connecting nodes (t, p1) and (t + 1, p2) and

associated with the request ` (capacity of the arc is atp1`p2).
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The model is as follows:

max
z

0 (10)

subject to:

0 ≤ ztp1`p2 ≤ atp1`p2 ∀t ∈ T, (p1, p2) ∈ P, ` ∈ L (11)

ztp1`p2 ≤ atp1`p2
∑
p0,`0

z(t−1)p0`0p1 ∀t ∈ T, (p1, p2) ∈ P, ` ∈ L, t ≥ 1 (12)

∑
p1,p2

ztp1`p2 ≤Wt` ∀t ∈ T, ` ∈ L (13)

∑
p1,`,p2

ztp1`p2 = 1 ∀t ∈ T, t ≥ 1 (14)

∑
`,p2

z00`p2 = 1. (15)

The objective function (10) is to find a feasible flow (of value 1). Note that the flow is unique.

Constraints (11) and (12) are capacity constraints that ensure the outgoing flow of a node is spread

on the edges according the probabilities of the action one can take at each state. Constraints (13)

define existing arcs given `, the number of patients scheduled on day t. Finally, the flow from the

initial node (t = 0, p1 = 0) is equal to 1 (constraints (15)) and constraints (14) are flow conservation

constraints (flow of 1 between each layer).

This model gives us, for a given OR schedule, a flow through each node representing the prob-

ability to transit through this state. These flows thus indicate, for each day, the probability of

having 0, 1 or 2 cancellations when the OR schedule is defined by parameter W .

Senior management plays an active role at this stage to define the acceptable risk for canceling

1 or 2 cases per day. This upper bound is then included in the initial model to schedule the OR.

When merging both the graphical model to obtain the flow and the case mix assignment model,

Wt` is no longer a parameter but the result of the scheduling problem (x variables). Let g be

a function that returns the number of intensive care patients scheduled on day t in the schedule

(defined by the x variable). Constraints (16-17) link variables x and W

∑
`

`Wt` = g(x, t) ∀t ∈ T (16)

∑
`

Wt` = 1 ∀t ∈ T. (17)
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We also introduce a binary parameter ωi that indicates whether a patient requires an ICU

admission (equals 1) or not (equals 0). The model finally becomes

max
r,x,z,W

∑
i∈I

∑
t∈T

∑
k∈K

xitkdiγi (18)

subject to:

(2)− (9)

0 ≤ ztp1`p2 ≤ atp1`p2 ∀t ∈ T, (p1, p2) ∈ P, ` ∈ L (19)∑
p1,p2

ztp1`p2 ≤Wt` ∀t ∈ T, ` ∈ L (20)

∑
l,p2

z00`p2 = 1 (21)

∑
p1,l,p2

ztp1`p2 = 1 ∀t ∈ T, t ≥ 1 (22)

ztp1`p2 ≤ atp1`p2
∑
p0,l0

z(t−1)p0l0p1 ∀t ∈ T, (p1, p2) ∈ P, ` ∈ L, t ≥ 1 (23)

∑
`

`Wt` =
∑
i,k

ωixitk ∀t ∈ T (24)

∑
`

Wt` = 1 ∀t ∈ T (25)

Wt` ∈ {0, 1} ∀t ∈ T, ` ∈ L (26)

Constraints (19-26) relate to the distribution of patients requiring ICU during the week in order

to limit the risk of cancellation. This block of constraints gives us, in particular, the variable z

which quantifies this risk. The last step is therefore to add the two constraints

∑
p1,`

zt−1,p1,`,1 ≤ u1 ∀t ∈ T, t ≥ 1 (27)

∑
p1,`

zt−1,p1,`,2 ≤ u2 ∀t ∈ T, t ≥ 1, (28)

where u1 and u2 are the maximum probabilities of getting 1 and 2 cancellations, respectively. Recall

that the involvement of senior management to determine these values is essential.

In the next section, we discuss the results based on the practical case of CHU Sainte-Justine.
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5 Experiments and results

To evaluate our scheduling approach, we use six performance measures that focus on the efficiency

of the operating room, namely

1. Occupancy rate (ρ): ratio of the sum of the duration of the programmed interventions to

the total duration of programming available on the horizon.

2. Group priority distribution: This distribution indicates the number of scheduled patients

in each group. For example,

(
Q4
Q3
Q2
Q1

)
=

(
89
71
13
0

)
indicates that 89 in the fourth group (with the

highest wait time), 71 in the third group, 13 in the second and 0 patients in the group of the

most recent patients are scheduled.

3. Average Wait Time (µwait): The average wait time is the average wait time for patients

scheduled on the horizon. A high wait time means that patients scheduled are “old” patients

from the wait list.

4. Standard deviation of wait time (σwait): The smaller this standard deviation, the more

patients are scheduled among the oldest patients.

5. Relative standard deviation (RSDwait): This coefficient represents the ratio between the

standard deviation and the average of the wait times. It is a standardized measure that shows

the extent of variability to the mean. When the value is close to 0, it reflects the absence of

variability in the data. This ratio will help compare the selection of patients between models

in an objective way.

6. Potential number of patients canceled (# cancellations): This number is obtained

after running a simulation (5000 replications) that uses the transition probabilities between

states.

We compare these metrics on different alternatives to include the ICU availability. Parameters

u1 and u2 allow to quantify the risk of cancellation for each day to integrate in the case assignment

problem. They correspond respectively to the maximum probability of having 1 and 2 cancellations.

These probabilities need to be discussed with senior management to decide on the acceptable risk

to cancel an elective case. We have tested the following three alternatives:

• Static constraint to limit the number of elective patients requiring ICU to two (≤ 2);
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• Dynamic constraint with no intervention from the manager to limit the risk of cancellation,

u1 = 1, u2 = 1;

• Dynamic constraint with different levels of intervention from the manager to limit the risk:

u1 = 0.5;u2 = 0.25;(the risk of canceling one patient is less than 550% and that of canceling

two patients is less than 25%); u1 = 0.3;u2 = 0.15; u1 = 0.2, u2 = 0.05; u1 = 0;u2 = 0.

Decreasing values of u` correspond to increasing risk aversion.

Finally, to quantify the benefit of the dynamic constraint, we run a simulation (5000 replications)

to estimate the number of patients that may be canceled for each scenario.

All experiments are conducted on two real instances. For each instance, we use the wait list of

patients (accessed once a month from the hospital data warehouse), the MSS of the same month,

the estimation of the duration of interventions, the list of available surgeons and the data-driven

transition probabilities to cancel cases requiring ICU. We use high, medium and low transition

probabilities.

Note that since we do not consider turnover (time between two cases) in the model, we set α,

the load parameter, to 7
8 . This represents 420 minutes for a complete day and 210 minutes for a

half-day. This value is based on the average turnover observed in the OR of CHUSJ. About 50%

of the MSS is not fixed (i.e. we schedule 50% of the rooms: specialty, surgeon and cases).

All results are obtained in approximately 10 seconds with an integrality GAP of less than 1%.

Tables 5 and 6 show the performance measures for each instance. The main take message from

these results is that including availability of the ICU does not negatively impact the efficiency of

the OR. Cases are scheduled differently to reduce risk of cancellation. This observation is valid for

all scenarios.

Table 5: Average performance measures - Instance 1

Pmedium Plow Phigh

No prio Off Static 1-1 0.5-0.25 0.3-0.1 0.2-0.05 0-0 1-1 0.5-0.25 0.3-0.1 0.2-0.05 0-0 1-1 0.5-0.25 0.3-0.1 0.2-0.05 0-0

ρ 98% 97% 97% 96% 97% 96% 97% 91% 96% 97% 97% 97% 93% 97% 97% 97% 96% 93%

Q4 137 412 413 423 421 418 410 396 426 417 408 407 391 423 417 413 412 391
Q3 129 158 156 151 162 166 164 174 161 161 160 167 164 145 161 165 170 164
Q2 142 46 46 43 44 44 48 42 42 36 51 46 45 46 43 46 48 45
Q1 170 29 32 34 33 30 32 32 36 35 31 33 37 35 31 35 34 37

# of patients 578 645 647 651 660 658 654 644 665 649 650 653 637 649 652 659 664 637

µwait 133 237 235 235 234 233 235 243 236 235 236 234 238 241 235 234 234 238
σwait 126 148 120 118 117 118 119 128 115 117 119 122 122 118 120 116 118 122

RSDwait 0.95 0.62 0.51 0.50 0.50 0.51 0.50 0.53 0.49 0.50 0.50 0.52 0.51 0.50 0.51 0.50 0.50 0.551

The first column shows the results when no prioritization of patients is used (No prio), the

second one includes the prioritization (Off). The availability in the ICU is not considered. The

third column includes the availability of the ICU as a static constraint (Static). All the following
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Table 6: Average performance measures - Instance 2

Pmedium Plow Phigh

No prio Off Static 1-1 0.5-0.25 0.3-0.1 0.2-0.05 0-0 1-1 0.5-0.25 0.3-0.1 0.2-0.05 0-0 1-1 0.5-0.25 0.3-0.1 0.2-0.05 0-0

ρ 97% 96% 95% 96% 95% 96% 95% 91% 96% 96% 96% 95% 93% 95% 95% 95% 95% 93%

Q4 147 452 455 474 4655 468 462 462 461 4855 454 471 465 474 460 454 456 465
Q3 110 101 100 99 94 106 100 101 103 105 98 105 97 102 103 97 100 97
Q2 149 30 35 32 34 36 34 31 32 34 32 34 28 33 35 33 33 31
Q1 164 14 13 12 13 13 13 11 12 14 17 12 11 15 16 11 10 11

# of patients 570 597 603 617 606 619 609 602 608 638 605 622 604 624 614 595 599 604

µwait 143 271 262 266 262 261 260 261 264 262 256 261 257 261 259 262 263 257
σwait 141 142 119 119 117 117 117 117 122 113 117 114 121 124 117 120 122 121

RSDwait 0.99 0.52 0.45 0.43 0.45 0.45 0.45 0.45 0.45 0.43 0.48 0.44 0.47 0.43 0.45 0.46 0.46 0.47

columns include the prioritization of patients and the probabilities to cancel cases.

When comparing the first two columns, we first observe that introducing the prioritization of

patients does not impact the occupancy rate of the rooms (over 92%, on average, in all cases except

for cardiac surgery). We also observe that we can improve the number of patients scheduled by

9% (about 50 patients for each instance). Regarding µwait, the average wait time, we observe

that the scheduled patients are about twice as old with prioritization. In addition, we observe a

significant decrease of δwait the coefficient of variation for all specialties (average of 41%) except

for “Neurology” and “Cardiology”. Also, the priority group distribution decreases in most

cases, except again for Cardiac and Neurosurgery. Although prioritization slightly improves the

situation for these specialties, the scheduled patients remain divided almost equally between the

different groups. This is due to the fact that there is very little flexibility in terms of duration of

interventions (all usually long). Finally, it should be noted that, of all the specialties, about 65%

of the patients scheduled are from the group of the oldest patients and that 90% come from half of

the oldest patients. Figure 12 shows the distribution of the number of patients in each quartile Qi

per specialty.

When considering availability of the ICU (looking at the remaining columns), same observations

stand. There is no negative impact on the efficiency of the OR. Utilisation room (ρ) is very stable

(approximately 96%) and the only significant difference is observed for scenario u1 = u2 = 0. Recall

that this scenario is very conservative (risk aversion to cancel cases is equal to 100%), therefore less

cases are scheduled to prevent from canceling.

The total number of patients scheduled remains very similar regardless of the scenario when

ICU availability is included. This number varies between 637 and 660 for instance 1 and between

597 and 619. Average wait times (µwait), standard deviation (σwait) (and therefore δwait) are again

comparable.

Regarding the last metric (number of patients that may be canceled), Table 7 summarizes

the results for both instances on all scenarios. For each instance, the first six lines represent the
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Figure 12: Distribution of number of patients in Q1, Q2, Q3, Q4 per specialty

number of elective cases scheduled requiring an ICU admission for different alternatives to include

the availability in the ICU: with the static constraint or with the risk of cancellation. The next

six lines detail the number of cases canceled after generating 5,000 simulations of probabilities to

cancel cases.

Let’s first note that the total number of patients programmed on the horizon is higher when

the only constraint imposed on intensive care is a maximum of two patients daily. Next, our

model is more likely to program patients when the probability to cancel patients is low (Plow). We

observe that with the thresholds imposed (u1 = 0.2 and u2 = 0.05), our scheduling policy is more

conservative and allows to schedule 2 patients requiring the ICU per day in very few occasions. In

most cases, less patients are scheduled but for exceptional cases. Finally, imposing a constraint on

intensive care has a smaller impact when the probabilities to cancel cases are low. The number of

patients requiring the ICU per month varies from 0 (when the risk to cancel cases is very high)

to 38 for the static constraint. The second half of the table shows that the number of patients to

be canceled after 5,000 simulations increases as the probabilities used decrease: for example, being

less conservative may lead to a higher cancellation of cases.
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Table 7: Total demand of ICU beds (monthly)

Instance 1 Instance 2
Scenario Pmedium Plow Phigh Pmedium Plow Phigh

Number
of cases

scheduled

Static 34 34 34 24 24 24
1− 1 21 21 21 38 38 38
0.5− 0.25 20 24 21 38 38 31
0.3− 0.15 18 25 16 31 32 19
0.2− 0.05 17 15 12 19 27 12
0− 0 0 4 0 0 4 0

# cancellations

Static 3.03 2.02 4.71 8.83 5.51 12.11
1− 1 2.67 2.60 4.94 8.77 5.59 11.70
0.5− 0.25 2.81 2.88 5.15 8.66 5.44 8.85
0.3− 0.15 2.72 2.64 2.84 6.42 4.71 3.51
0.2− 0.05 1.39 1.02 1.60 1.78 1.90 1.68
0− 0 0.0 0.0 0.0 0.0 0.0 0.0

We illustrate in Table 8 one example (Instance 2 with Pmedium, Static vs u1 = 0.5, u2 = 0.25)

where approximately the same number of patients are scheduled (20 vs 24). It shows the results

for each day of the period (excluding week-ends). We observe that when considering the dynamic

constraint, two patients are scheduled two days in a row on two occasions only (day 2 and day 24)

versus six.

Table 8: Distribution of patients scheduled - Instance 2

Day 1 2 3 4 5 8 9 10 11 12 15 16 17 18 19 22 23 24 25 26 Total

Static 2 2 2 1 0 0 2 2 2 0 0 1 1 2 0 1 2 2 2 0 24
u1 = 0.5, u2 = 0.25 1 2 2 0 1 1 2 1 1 0 0 2 0 1 1 1 0 2 2 0 20

6 vs 7 5 vs 6 4 vs 4 5 vs 7

In conclusion, our approach allows to take into account the risk of cancellation more accurately

than when we simply set a static constraint for each day. The number of patients scheduled on a

day depends on the state of the system the previous day, which also depends on the day prior to

that one, and so on. No scheme is therefore decided a priori for the week. In this way, the system

is more flexible in the sense that there may be 2 per patient, regardless of the day of the week,

but this value ultimately depends on the selected patients and the state of the system from the

previous days. The constraint is thus transferred from the number of patients to operate per day

to the probability of having cancellations.
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6 Conclusion

In this paper, we have proposed a novel approach to model availability of beds in the ICU for

elective surgery patients. This approach is inspired by Markov decision processes. We solve the

surgical case assignment problem in the operating room at the tactical level. Four weeks in advance,

we determine which patients will be operated on. We show that prioritizing patients during this

process only increases the quality of the schedule without decreasing the occupancy rate of the

OR. This mix of patients is also consistent with the master surgical plan agreed on by senior

management. Finally, we include the risk of cancellations in the ICU during the planning of theses

cases. The classical way is to include a constraint that limits the number of beds. However, this

number varies under different conditions dynamically. This will prevent from canceling cases in the

OR. We also better distribute the patients who need ICU admission throughout the week.

An extension to this work consists of increasing the number of states to evaluate (for example

cancelling 3 cases) and including the length of stay in the ICU.
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Cardoen, B., Demeulemeester, E., and Beliën, J. (2010). Operating room planning and scheduling:

A literature review. European journal of operational research, 201(3):921–932.

Chow, V. S., Puterman, M. L., Salehirad, N., Huang, W., and Atkins, D. (2011). Reducing surgical

ward congestion through improved surgical scheduling and uncapacitated simulation. Production

and Operations Management, 20(3):418–430.

Cook, D., Kozan, E., and Mchardy, S. (2004). Modelling of intensive care units and operating

theatre in public hospitals.

Fei, H., Chu, C., Meskens, N., and Artiba, A. (2008). Solving surgical cases assignment problem

by a branch-and-price approach. International Journal of Production Economics, 112(1):96–108.

A Data-Driven Approach to Include Availability of ICU Beds in the Planning of the Operating Room 

CIRRELT-2020-10 23
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APPENDIX

Figure 13: Illustration for the graphical model for 6 days
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