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Abstract. We address the stochastic scheduled service network design problem with quality 
targets and uncertainty on travel times. This important problem, raising in the tactical 
planning process of consolidation-based freight carriers, has been little studied up to now. 
We define the problem considering quality targets for on-time operation of services and 
delivery of demand loads to destinations. We introduce a two-stage mixed-integer 
stochastic model defined over a space-time network, with quality targets modeled through 
penalties. We also propose an effective progressive-hedging-based meta-heuristic, based 
on a partial-decomposition concept aiming to address the challenges raised by the presence 
of flow-distribution decisions in the first-stage problem and by the flow-related degeneracy 
particular to network design. The results of an extensive numerical experimentation 
emphasize the worthiness of the formulation, as well as the very good performance of the 
proposed meta-heuristic when compared to a well-known commercial solver. 
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1 Introduction

Transportation plays a vital role in the social, political, and economic development of our
society. It supports production, trade, consumption, and leisure activities, and ensures the
movement of people and freight in a timely and efficient manner. The transportation industry,
freight carriers in particular, operates in a highly competitive, cost and quality-of-service-driven
environment. We focus on consolidation-based, long-haul freight transportation carriers, e.g.,
railways, liner-shipping companies, less-than-truckload motor carriers, etc., which operate more
or less tightly scheduled services to answer demand. Consolidation-based carriers take advan-
tage of economies of scale to lower costs and, thus, service prices, by moving the loads of
different customers in the same vehicle or convoy, for all or part of their itineraries from origins
to destinations. Consolidation-based carriers operate a set of regular scheduled transportation
services between particular terminals in their network. The schedule covers a certain length of
time and it is repeatedly executed for a given planning horizon, e.g., a weekly schedule repeated
for the six months of a so-called season. Deciding on the services and schedule to operate for
the next season is a rather complex tactical-planning problem that is traditionally addressed
through a scheduled service network design (SSND) methodology.

The scope of SSND is to produce the set of scheduled services, together with planned
routes for forecast regular demand (services used and terminals passed through), to achieve
the economic and quality targets of the carrier. The latter reflects carrier’s internal decisions
concerning the actual performance to achieve during the planning horizon with the selected
service network, and normally relates to the degree of violation acceptable with respect to what
is externally proposed to the customers (schedule and due dates).

While there is quite a body of literature on SSND models for consolidation-based trans-
portation (see, e.g., the survey of Crainic and Kim, 2007), few address quality target issues,
and even fewer account for the fluctuations in travel times and the resulting delays and breaches,
with monetary and possible market-loss consequences. In fact, according to our best knowledge,
none has jointly addressed the design of an efficient service network and the consideration of
travel time uncertainty impacting its reliability in terms of on-time service arrival and freight
delivery. We aim to fill this gap by defining the Stochastic Scheduled Service Network Design
Problem with Quality Targets (SSND-QT ) and proposing a formulation to address this tactical
planning problem while explicitly considering travel time uncertainty. The formulation takes
the form of a two-stage mixed-integer linear stochastic model over a space-time network. The
first stage addresses the selection of services and the routing of freight flows. Quality targets
are modeled through penalties. Then, when travel time realizations become known, penalties
are assigned to the appropriate services and deliveries.

Network design problems are NP-Hard and display high computational difficulty, stochastic
ones even more so (Powell and Topaloglu, 2003). Thus, only small- to medium-sized instances
can be solved optimally, and heuristic methods are generally required. We therefore propose
an effective progressive hedging (PH)-based meta-heuristic. We believe this to be the first
attempt to apply this methodology to a SSND problem with uncertainty on travel times. We
present a tailored approach (compared to, e.g., the more traditional one in Crainic et al., 2011)
to overcome challenges related to the quadratic reformulation and flow-related degeneracy that
arise when PH is applied straightforwardly to the SSND-QT formulation. The numerical results
of the experiments we conducted show the meta-heuristic is efficient and yields good-quality
solutions.
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The contributions of this paper therefore are: 1) Propose a new SSND problem setting
where uncertainty in travel times is explicitly considered and specific attention is given to qual-
ity targets; 2) Provide a two-stage stochastic linear mixed-integer programming formulation
for the SSND-QT where quality targets are modeled through penalties; 3) Develop a PH-based
meta-heuristic able to effectively find good-quality solutions to larger-scale problem instances
when compared to a well-known commercial solver; 4) Present the results of an extensive exper-
imentation underscoring the relevance of the formulation when quality targets are of interest, as
well as the performance of the proposed meta-heuristic compared to an exact solution method.

The paper is organized as follows. We recall the problem context and review the relevant
yet sparse literature on stochastic SSND in Section 2. Section 3 then presents the problem
setting we address and the modeling approach we propose. Section 4 introduces the notation
and the mathematical formulation. We describe the meta-heuristic in Section 5. We present
the experimental plan in Section 6, and analyse the results in Section 7. Conclusions and future
research issues are discussed Section 8.

2 Context and Literature Review

Freight consolidation-based carriers operate over a physical network of uni or intermodal ter-
minals connected by infrastructure (rail, road) or conceptual (navigation) links. They set up
and exploit transportation services, according to given schedules, to satisfy the forecast regular
demand in a cost and resource-utilization efficiently way. Demand is represented in terms of
commodities, i.e., collections of similar products. Each commodity requires the transportation
of a certain quantity of freight from a particular origin terminal, available at a certain availabil-
ity date, to be delivered to a destination terminal by a due date. Additional physical attributes
(e.g., weight, volume) and shipment requirements (e.g., type of vehicle) may characterize each
commodity. The service network moves the demand flows. Each service is characterized by its
origin and destination terminals, its schedule, i.e., the departure time at origin, the departure
and arrival times at intermediate stops (if any), and the arrival time at destination, as well
as a number of characteristics such as its capacity, speed and priority, etc. To take advantage
of economies of scale, the loads of different demands are consolidated, loaded together, into
the same vehicles, which, in some cases (e.g., rail, barge or road trains) are further consoli-
dated into convoys. Freight may thus be moved by a sequence of services between its origin
and destination, undergoing consolidation (accompanied possibly by loading/unloading) and
service-to-service transfer operations at intermediate terminals. Terminal activities follow a
strict schedule as well - coordinated with services arrival times - in order to efficiently perform
loading, unloading, transshipment, and consolidation activities. Services arriving early need
generally to wait and are processed when planned (e.g., ships waiting at sea at the port en-
trance); late arrived services instead are processed immediately to avoid increasing the delay
any further.

The methodology of choice to design such a transportation plan represents the problem over
a space-time network appropriate for the schedule length, made up of the set of all services that
might potentially be operated by the carrier to address the demand. Each potential service
is described based on its own characteristics (physical route, stops, schedule) as a path in the
space-time network. The aim is to select those services that allow for the satisfaction of demand
and meet the economic and quality targets chosen by the carrier. The corresponding Scheduled
Service Network Design model then takes the form of a fixed-cost, capacitated, time-dependent
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network design formulation.
Surveys on Service Network Design issues and formulations can be found in Assad (1980);

Crainic (1988); Cordeau et al. (1998) for rail transportation, Christiansen et al. (2004) and
Christiansen et al. (2007) for maritime transportation, Crainic and Roy (1988), Crainic (2000),
and Crainic (2003) for land-based long-haul transportation, and Crainic and Kim (2007) for
intermodal transportation. As shown in these surveys, as well as in the more recent literature,
most of the research related to SSND considers deterministic problem settings. Uncertain
factors such as stochastic demand and variability in travel times have been generally overlooked
and addressed in recent years only.

Most of the studies on stochastic SSND focus on demand uncertainty. Thus, e.g., Lium et al.
(2007), Lium et al. (2009), Bai et al. (2014), Jiang et al. (2017), and Wang et al. (2020) discuss
two-stage formulations and address the question of what may be lost by not integrating infor-
mation about the stochastic nature of demand directly into the tactical planning methodology,
highlighting consolidation as a powerful mean to hedge against fluctuation.

Travel time uncertainty is very rarely addressed in the SSND literature. We are aware
of very few contributions addressing the integration of travel time and the quality of the
service performed. Crainic et al. (1984), for rail and generalized by Crainic and Rousseau
(1986) for consolidation-based carrier planning, propose path-based SND formulations with
generalized-cost objective functions combining fixed and variable operating costs together with
time-related costs. Time representations take the form of non-linear congestion functions for
terminals and particular lines (e.g., rail tracks), and are transformed into costs through service
and commodity-specific unit time costs. Service-quality measurements are considered through
penalties on the variances of the service and demand total travel times. A similar approach
considering congestion functions is also used in Crainic et al. (1990a) and Crainic et al. (1990b)
for national/regional planning of multi-commodity multimodal freight transportation systems.
These contributions assume deterministic travel times.

Among the recent contributions considering travel times uncertainty, Demir et al. (2016)
focus on a multimodal consolidation-based transportation system in which motor-carrier trans-
portation services must catch rail and maritime transportation services operating according
to fixed schedules. The goal is to select motor-carrier services and route freight by minimiz-
ing costs and exploiting the given rail and maritime services as much as possible to reduce
gas emissions. The authors propose a multi-objective SND formulation and consider a chance
constraint approach to ensure, with a given probability, safe connections between the selected
motor-carrier services and the available “green” rail and maritime services. A similar problem
is addressed by Van Hui et al. (2014), where additional costs arise when connections are missed.
In the proposed two-stage job-assignment model, the first stage selects the motor-carrier ser-
vices minimizing the operation costs plus the expected costs of adjusting the plan in the second
stage, when delays to upcoming shipments are observed. The recourse in those cases is based
on what the authors call “common industrial practice” in their application, that is, “forget
the consolidation pertaining to the late shipments, release the on-time shipments according to
the plan, and send the late shipments using the fastest available means”. A different prob-
lem is considered in Wang and Meng (2012a) and Wang and Meng (2012b), who address the
optimization of the sailing speed of a container-ship fleet to achieve target arrival times at a
sequence of ports, while accounting for energy consumption. The ships should respect a given
schedule, but late departure times caused by longer-than-planned port operations are possible
and these affect the sailing time toward the subsequent port. The authors focus on operation
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time uncertainty and propose mixed-integer non-linear convex stochastic minimization models.
A similar problem is considered in Song et al. (2015), where it is addressed through a stochastic
multi-objective optimization formulation.

This brief overview highlights the novelty of the uncertain travel time problem in consoli-
dation-based transportation, as well as the need for further research in the area. We propose
a more general approach with respect to the existing literature to address this challenge. We
account for variations in travel times, their consequences on delays for services and demand
flows, and the propagation of these delays over the network. We define two types of quality
targets, for services and demand, which need to be considered separately, and account for their
violation. To the best of our knowledge, these features have never been jointly considered in
previous stochastic SSND contributions.

3 Problem Statement and Proposed Modeling Approach

We address a general scheduled service network design problem setting for consolidation-based
freight carriers while explicitly accounting for the usual variability in travel times. The latter
belongs to the so-called business-as-usual uncertainty type (e.g., Klibi et al., 2010), that is,
uncertainty one observes over the duration of the tactical planning horizon and that one needs
to address when the plan is applied day after day during actual operations. Such variations in
travel times and, possibly, the associated delays in operating services and delivering flows, occur
even in the most tightly operated systems due to congestion conditions, adverse weather, and so
on, and may jeopardize what the carrier announces and “promises” to customers, namely, on-
time operations with respect to the service schedule and the demand due dates at destinations,
with negative impacts on reputation and revenues. Our goal therefore is a SSND formulation
that explicitly accounts for such possible day-by-day variations, and their consequences for the
carrier, at the planning phase, yielding a regular transportation plan requiring less adjustments
and costs during day-by-day operations when the actual variations become known.

As indicated in the previous section, the physical network supporting the operations of the
carrier in tactical-planning modeling is represented by a network with nodes standing for the
terminals and arcs modeling the connections between them the carrier may use. An estimation
of the usual travel time (for each service type when appropriate) is associated to each link.
The SSND formulation is then defined over a time-space network where the nodes are copies
of the physical terminals at all periods of the schedule length, while the arcs are defined by the
potential services the carrier might operate and among which the final service network is to be
selected. Section 4 details the definition of the service arcs (or segments) as well as that of the
holding arcs linking terminal nodes at consecutive time periods which are also included in the
model. Each service is defined by its origin and destination terminals plus, possibly, a number
of intermediate stops on its physical path among the two, as well as its schedule, called usual in
the following. The latter is based on the usual travel times of the physical links and gives the
arrival and departure times at each terminal on the route (capacity and other characteristics
are also part of the definition as detailed in the next section).

We represent the business-as-usual variability in travel times through probability distribu-
tions associated to each physical link and service arcs. This information is then considered
with respect to the quality targets of the carrier and integrated in the selection of the service
network. We identify two major types of quality targets a carrier might want to consider in
evaluating the quality of the proposed service network: 1) the schedule target related to the
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conformity to the scheduled arrival time at each stop for services, and 2) the delivery target
defining the respect of the given delivery due dates for demand.

We address the basic version of the problem setting in this first modeling attempt, still
retaining the main characteristics of stochastic SSND. All services are of the same type in
terms of speed, priority, and capacity. Services may arrive early at a terminal but must wait,
at no cost, until the scheduled time (e.g., ships at anchor at sea outside the port). Services may
also arrive late, in which case terminal operations begin immediately (recall that service time
at terminals is deterministic) and the departure time from that stop is modified to account for
the late arrival and the service time. The on-time arrival time at the following stops may thus
be compromised, unless the travel times on the subsequent links are lower than the usual ones.
Delays for services are thus propagated through the service network, i.e., a delay on a service-
link is propagated to the subsequent links and, thus, to the complete route (path) of the service.
The problem setting considered does not include explicit penalty costs for commodities missing
a transfer at a terminal due to service delays. We do, however, enforce “safe” connections
through the penalties described below on late service arrival. Notice that late arrival of a
service at some terminal is not important from the commodity point of view as long as it is
delivered on time. The target penalties defined in the following address these issues.

Recall that tactical plans are built for a certain planning-horizon length, also called season of
a few months to a year long, some time before the beginning of the season, to be used repeatedly
each “day” of the season when adjustments to plans are performed within the limits of oper-
ational feasibility to reflect the new information that become available. Two-stage stochastic
SSND formulations are then proposed to reflect this decision structure, the first stage defining
the service network based on a forecast of uncertain parameters, the second being dedicated
to adjusting the plan. We follow this approach in this paper, and need to address a number
of interrelated questions: how we model targets, when the new information becomes available,
and how we react when the realization of travel times is observed.

One way to model quality targets is through probabilistic conditions by exploiting travel
time distributions. Thus, e.g., a schedule target may specify that each service must respect its
planned arrival time at least with probability α, considering its occurrences during the planning
horizon, while delays should not be greater than a pre-specified amount of time (e.g., a specific
percentile of the travel time probability distribution or the expected value plus the standard
deviation), with probability 1. Similarly, a delivery target may specify that each demand
must arrive at its final destination respecting its due date at least with probability β. The
issue when considering probabilistic constraints, however, is that they place hard restrictions
on decisions, so that violations beyond the specific probabilistic threshold are not possible
(Birge and Louveaux, 2011). The direct effect of this is that such formulations ignore some
solutions which could be a good compromise between a violation, which comes at a cost, and
an acceptable solution for the carrier. This flexibility is often recommended, if not required,
when uncertainty must be faced at a tactical level and may be achieved by considering a soft
reformulation of those conditions, as extensively discussed in King and Wallace (2012). This
reformulation transforms hard into soft restrictions through a penalty function, which increases
its value as the target is missed, becoming part of the objective, where the costs and benefits
can be compared. We adopt this penalty-formulation approach in modeling quality targets and
define two penalty terms. The first relates to the delays of each service at each of its stops, the
second to the delay of each commodity at destination.

The information revelation process defines how and when the values of the stochastic pa-
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rameters are observed. The arrival times of services and demand flows at their respective
destinations, as well as at intermediate service stops, are the stochastic parameters in this
study, their values being a direct result of the variations in the times required to travel along
physical links. This implies that the delays incurred by services and demand flows, as well as
the computation of the penalties corresponding to violated quality targets, may be observed
only after services complete their movements, that is, at the second stage of decision making.

The aim of the proposed two-stage SSND-QT model is thus to select among the set of
potential services that might be offered by the carrier, given their respective usual schedules,
random travel times, and physical routes, those services, and consequent demand itineraries,
that yield the lowest total cost, combining the cost of planned operations (first stage) and the
additional expected penalty costs for violated quality targets (computed at the second stage).

The difference between the simple recourse of SSND-QT and the network recourse of most
SSND models with stochastic demand may be worth noticing. In the latter case, the realization
of demand takes place before transportation activities start and, thus, it makes sense to re-
optimize, partially or completely, the demand distribution over the service network. This is not
possible in our case, as information is revealed once transportation has been performed. Even
when partial information is available (e.g., after the first service leg), re-routing is not possible
or too costly in most cases when business-as-usual is addressed, as freight is loaded into vehicles
which often are captive of the infrastructure (e.g., trains of rail tracks and ships of ports of call
and navigation lines). Moreover, the lateness of a service at a stop does not necessarily imply
that the transported demand will be late at its final destination as shorter travel times may
occur in the rest of their itineraries. The simple recourse of paying the penalties is then the
only possible recourse, which justifies addressing the issue in the tactical-planning SSND model
to select services and flow itineraries that mitigate these costs. The model is introduced next.

4 Model Formulation

The physical network on which the carrier operates is represented by GP = (NP ,AP ), with node
set NP representing the physical terminals and arc set AP representing the direct connections
between terminals. Usual and random travel times are associated to each arc in AP .

We model the dynamics of the SSND-QT through a space-time network, G = (N ,A). We
discretize the schedule length into T time periods of equal length through T+1 time instants.
The set of physical nodes is replicated T+1 times, resulting in set N . Demand is represented
on G by the set of commodities K, each commodity k ∈ K requiring the transport of a certain
volume w(k) from origin o(k) ∈ N to destination d(k) ∈ N according to its origin and destina-
tion terminals, as well as its entry, a(k), and due, b(k), dates. Notice that the latter is the due
date specified in the understanding with the customer.

The set of arcs A is composed of the set of holding arcs AH and the set of moving arcs
AM . The former includes arcs between the representations of the same node in two consecutive
periods and is used to model idle time at terminal for freight or operation time at terminal for
services. The latter stands for the service legs of the potential services, that is, the movements
of services between two different nodes in two different time periods.

Let R be the set of potential services that the carrier may use. Each service r ∈ R has a
capacity ur and a route in the physical network, specifying the set σ(r) = {z(r)n ∈ NP , n =
1, . . . , |σ(r)|} of consecutive terminals visited between its origin z(r)1 and destination z(r)|σ(r)|
as well as the arcs in A used to perform the movement (Crainic et al., 2015). Timing information
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indicating the usual departure time ζo(r) at origin o(r) (= z(r)1), the usual arrival time ed(r)

at destination d(r) (= z(r)|σ(r)|), as well as the arrival/departure times at the other terminals
visited in usual conditions without any delay are also defined. Combined with the timing
information, the physical route yields the route the service performs in the space-time network,
which we define as the sequence of service legs L(r) = {l(r)}, ∀ r ∈ R. The collection of all
service legs of all potential services yields the set of moving arcs AM =

⋃
r∈R

⋃
l∈L(r) l(r).

A usual travel time, τ̂l(r) and a random travel time, τl(r), are associated to each service leg
l(r) ∈ L(r). A service leg has initial and terminal stops, zl and zl+1 in σ(r), and travels the
corresponding path in the physical network. Consequently, its usual and random travel times
are computed as the sum of the usual travel times and the convolution of the random travel
times, respectively, of the physical arcs making up this path. The same time ∆ is associated to
terminal activities for all terminals and services.

A fixed selection (operation) cost fr is associated to each potential service r ∈ R. A unit
commodity transportation cost ckl(r) is also associated to each service leg l(r) ∈ L(r), r ∈ R and

commodity k ∈ K. When appropriate, the arc-based notation, ckij , (i, j) ∈ AM, is also used.

The unit commodity handling cost at terminals is then given by ckij , k ∈ K, (i, j) ∈ AH. Table
1 summarizes the parameters used to describe the model.

Sets
Notation Description
T set of time periods in which the schedule length is discretized

N set of nodes of the space-time network defined as the set of physical terminals NP replicated over T
A set of arcs of the space-time network defining movements or idle time
K set of commodities
R set of potential services
L(r) set of service legs of service r ∈ R
Ω set of possible travel time outcomes
S set of scenarios

Parameters
Notation Description
fr selection (operation) cost of service r ∈ R
ur capacity of service r ∈ R
o(r) origin of service r ∈ R
ζo(r) usual departure time at origin of service r ∈ R
zl origin terminal of service leg l(r) ∈ L(r) of service r ∈ R
el(r) usual arrival time at destination terminal of service leg l(r) ∈ L(r) of service r ∈ R
τ̂l(r) usual travel time associated to service leg l(r) ∈ L(r) of service r ∈ R
τl(r)s travel time realization associated to service leg l(r) ∈ L(r) of service r ∈ R in scenario s ∈ S
λr
l(r)

penalty cost for short delay for service leg l(r) ∈ L(r) of service r ∈ R
Λr
l(r)

penalty cost for long delay for service leg l(r) ∈ L(r) of service r ∈ R
B maximum acceptable service delay

ckij transportation or handling cost of commodity k ∈ K associated to arc (i, j) ∈ A
w(k) volume of commodity k ∈ K
o(k) origin of commodity k ∈ K
d(k) destination of commodity k ∈ K
b(k) due date of commodity k ∈ K
λk penalty cost for short delay of commodity k ∈ K at destination

Λk penalty cost for long delay of commodity k ∈ K at destination

Bk maximum acceptable delivery delay of commodity k ∈ K at destination

∆ service time for terminal activities

Table 1: Parameters used to describe the model

Let Ω define the set of possible outcomes of the arc travel time random variables and let ω
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be an element in that set. Two sets of first-stage decision variables are defined:

• yr ∈ {0, 1}, r ∈ R, represent whether service r is selected (yr = 1), or not (yr = 0);

• xkij ≥ 0, k ∈ K, (i, j) ∈ A, stand for the flow of commodities in the space-time network,

moving, (i, j) ∈ AM , or waiting at a terminal, (i, j) ∈ AH .

Three sets of second-stage variables are defined to model how to address the delays given a
travel time realization ω ∈ Ω:

• δl(r)(ω) ≥ 0, l(r) ∈ L(r), r ∈ R, represent the time instant at which service r begins to
execute (move) its service leg l(r) (obviously, it is the usual departure time ζo(r) for the
first leg starting at o(r));

• ηl(r)(ω) ≥ 0, l(r) ∈ L(r), r ∈ R, stand for the time instant at which service r ends its
movement on service leg l(r);

• εk(ω) ≥ 0, k ∈ K, represent the time instant at which commodity k is delivered at its
destination.

As already indicated, we express quality targets through a set of penalties on lateness and add
those to the objective function. Lateness of service is considered as soon as the observed arrival
time at a stop exceeds the usual arrival time for that stop. Thus, for each service leg, we
compute

ηl(r)(ω) = δl(r)(ω) + max (τ̂l(r), τl(r)(ω)) ∀ l(r) ∈ L(r) (1)

and

δl(r)(ω) =

{
ζo(r) when zl = o(r)

ηl−(r)(ω) + ∆ when zl 6= o(r)
∀ l(r) ∈ L(r), ∀ r ∈ R (2)

where τl(r)(ω) is the travel time realization of service leg l(r). Thus, when the service arrives
earlier than planned, it must wait for the terminal operations and the usual travel time is
considered (as depicted in Figure 1(a)). When late, terminal operations start on arrival and
the next leg starts once these are completed (as depicted in Figure 1(b)). Expression (2) is also
directly involved in the calculation of the delay propagation of the service r. A λrl(r) penalty

proportional to the ηl(r)(ω) − el(r) difference is then applied. A similar approach is applied to
the maximum acceptable delay B, the unit penalty cost Λrl(r) being applied to the difference

ηl(r)(ω) and B. The same logic is followed to model late deliveries of demand flows, i.e., when

εk(ω) > b(k), k ∈ K, with unit penalty cost λk, and the maximum acceptable delivery delay,
Bk, with unit penalty cost Λk applied to the εk(ω)−Bk difference.

(a) An early arriving service waits until its usual ar-
rival time at terminal to start terminal operations

(b) A late arriving service starts terminal operations
immediately

Figure 1: Examples of arrival and departure time to and from a terminal
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We approximate uncertainty through a set S = {s} of scenarios, each of which has dimension
|AP |. A probability ps is assigned to each scenario, with 0 ≤ ps ≤ 1, ∀s ∈ S and

∑
s∈S ps = 1.

Instantiating the previous decision variables and problem parameters for each scenario, the
two-stage formulation of the SSND-QT may be written as:

min
∑
r∈R

fryr +
∑

(i,j)∈A

∑
k∈K

ckijx
k
ij +

∑
s∈S

ps[Q(y, x; τl(r)(s))] (3)

∑
j∈N+(i)

xkij −
∑

j∈N−(i)

xkji =


w(k) if i = o(k),

0 if i 6= o(k), i 6= d(k),

−w(k) if i = d(k),

∀ i ∈ N , ∀ k ∈ K, (4)

∑
k∈K

xkl(r) ≤ uryr ∀ l(r) ∈ L(r), ∀ r ∈ R, (5)

xkij ≥ 0 ∀ k ∈ K, ∀ (i, j) ∈ A, (6)

yr ∈ {0, 1} ∀ r ∈ R, (7)

where

Q(y, x; τl(r)(s)) =
∑
r∈R

∑
l(r)∈L(r)

λrl(r)(ηl(r)s − el(r))+ +

∑
r∈R

∑
l(r)∈L(r)

Λrl(r)(ηl(r)s −B)+ +

∑
k∈K

λk(εks − b(k))+ +
∑
k∈K

Λk(εks −Bk)+

(8)

and variables δl(r)s, l(r) ∈ L(r), r ∈ R and ηl(r)s, l(r) ∈ L(r), r ∈ R, are computed similarly to
(1) and (2), respectively.

The objective (3) is to minimize the total cost of the system, including the fixed cost of
selecting and operating services, the transportation costs for routing commodities, and the
expected cost of recourse for applying the chosen plan when travel delays are observed. The
second-stage function Q(y, x; τl(r)(s)) depends on both design and routing decisions, as well
as on the realizations of the random variables τl(r) expressed through the scenarios. Then,
in the second-stage, (8) computes the total penalty costs of service and demand late arrivals,
where the first two terms relate to schedule targets and the last two to delivery targets. The
operator (x − y)+ returns the difference between x and y if positive and 0 otherwise. Equa-
tions (4) represent the commodity flow conservation constraints. Relations (5) represent the
linking-capacity constraints, which state that the flow can use selected services only and that
the total commodity flow on any service leg cannot exceed the capacity of the corresponding
service. Relations (6) and (7) represent the non-negativity and binary constraints that define
the domains of the decision variables.

The model includes the two quality targets considered. It can be easily modified to focus
on one target type only. The solution method presented in the next section applies to all cases.
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5 A Progressive Hedging-Based Meta-heuristic

The meta-heuristic we propose is based on the concepts of scenario-decomposition and progressive-
hedging (Rockafellar and Wets, 1991). The idea is to call on augmented Lagrangian techniques
to decompose the original multi-scenario problem into single-scenario-based sub-problems, it-
eratively solve those, build an aggregated solution out of the sub-problem ones, and, for as
long as the sub-problem solutions do not agree (i.e., do not produce identical solutions), adjust
the decomposition parameters to “guide” the method toward a “well hedged” solution to the
original problem.

Convergence to the global optimum has been proven for continuous stochastic programs
(Rockafellar, 1982). No such result exists in the integer case and, thus, only PH-based meta-
heuristics are proposed for integer formulations. The method has been proven to be compu-
tationally efficient, however, for a wide range of problem settings, such as, operation planning
(Gonçalves et al., 2012), lot-sizing (Haugen et al., 2001), portfolio management (Mulvey and
Vladimirou, 1991), unit commitment and server location (Guo et al., 2015; Gade et al., 2016),
scheduling (Carpentier et al., 2013), resource allocation (Watson and Woodruff, 2011), ca-
pacity planning and stochastic bin packing (Crainic et al., 2016), network design (Mulvey and
Vladimirou, 1991; Hvattum and Løkketangen, 2009; Fan and Liu, 2010), and SND with demand
uncertainty (Crainic et al., 2011,0; Jiang et al., 2017).

A few important algorithmic issues must be carefully addressed when considering a PH-
based meta-heuristic and are developed in the following sub-sections:

• The decomposition strategy, which separates the formulation and defines sub-problems
according to the given scenario set (Section 5.1);

• The aggregation process to synthesize an estimated global solution out of the local solu-
tions provided by the sub-problems (Section 5.2);

• The search of consensus strategy, which takes advantage of the global and local infor-
mation to modify the settings of the sub-problems and, thus, hopefully guide the meta-
heuristic toward a solution to the original problem corresponding to a consensus among
the scenario sub-problems (Section 5.3);

• The general algorithmic design of the meta-heuristic (Section 5.4).

5.1 Decomposition strategy

The formulation of the SSND-QT involves both design and routing variables as first-stage
decisions, which is different from most previous applications to network design where demand
was assumed stochastic and routing was decided in the second stage (e.g., Crainic et al., 2011).
A standard application of the PH approach to the present case yields difficult non-linear sub-
problem formulations, as well as raising issues regarding the consensus-seeking strategy. We
thus introduce a new methodological framework for PH-based meta-heuristics aimed at network
design formulations with design and flow variables in the first stage.

Following the standard approach (detailed in Annex 2), first-stage decision variables are
defined in each scenario, and non-anticipativity constraints (10) - (13) are added to ensure all
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scenarios obtain the same design and routing solution. This yields

min
∑
s∈S

ps

(∑
r∈R

fryrs +
∑

(i,j)∈A

∑
k∈K

ckijx
k
ijs+∑

r∈R

∑
l(r)∈L(r)

λrl(r)(ηl(r)s − el(r))+ +
∑
r∈R

∑
l(r)∈L(r)

Λrl(r)(ηl(r)s −B)+ +

∑
k∈K

λk(εks − b(k))+ +
∑
k∈K

Λk(εks −Bk)+

) (9)

subject to constraints (4) - (7) written for all scenarios s ∈ S, and the non-anticipativity
constraints

yrs = ȳr ∀ r ∈ R, ∀ s ∈ S, (10)

xkijs = x̄kij ∀ k ∈ K, ∀ (i, j) ∈ A, ∀ s ∈ S, (11)

ȳr ∈ {0, 1} ∀ r ∈ R, (12)

x̄kij ≥ 0 ∀ k ∈ K, ∀ (i, j) ∈ A, (13)

where ȳr and x̄kij are the overall design and routing solutions, respectively.

Let φrs and φkijs be the Lagrangian multipliers associated to constraints (10) and (11),
respectively, and let ρ and ψ be the penalty factors associated to the respective quadratic terms
of augmented Lagrangian relaxation. Following straightforward manipulations, and taking
advantage of the binary nature of the service design variables, the objective function becomes

min
∑
s∈S

ps

(∑
r∈R

(fr + φrs +
1

2
ρ− ρȳr)yrs+

∑
(i,j)∈A

∑
k∈K

(ckij + φkijs +
1

2
ψxkijs − ψx̄kij)xkijs+∑

r∈R

∑
l(r)∈L(r)

λrl(r)(ηl(r)s − el(r))+ +
∑
r∈R

∑
l(r)∈L(r)

Λrl(r)(ηl(r)s −B)+ +

∑
k∈K

λk(εks − b(k))+ +
∑
k∈K

Λk(εks −Bk)+

)
(14)

The resulting formulation is scenario separable. Yet, it also raises significant questions. First,
sub-problems are non-linear, which complicates addressing an already computationally difficult
NP-Hard problem. Second, it requires consensus on multi-commodity flows. This is troubling,
as the well-known nature of multi-commodity network design problems regarding the degeneracy
of their flow distributions would make reaching such a consensus almost impossible. Even
assuming consensus is reached for design variables, several equivalent flow path solutions could
still exist and force the algorithm to continue.

We therefore introduce a partial scenario decomposition, based on a “hierarchy of im-
portance” among first-stage variables. According to this decomposition strategy, the non-
anticipativity constraints on the design variables are kept and relaxed as before through the
augmented Lagrangian mechanism, while, on the other hand, the flow non-anticipativity con-
straints are discarded. Consequently, consensus is explicitly sought by the meta-heuristic on
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the design variables, while it is only indirectly looked for in the flows. The partial scenario
decomposition applied to the SSND-QT formulation then yields the following sub-problem for-
mulations:

min
∑
r∈R

(fr + φrs +
1

2
ρ− ρȳr)yrs +

∑
(i,j)∈A

∑
k∈K

ckijx
k
ijs+∑

r∈R

∑
l(r)∈L(r)

λrl(r)(ηl(r)s − el(r))+ +
∑
r∈R

∑
l(r)∈L(r)

Λrl(r)(ηl(r)s −B)+ +

∑
k∈K

λk(εks − b(k))+ +
∑
k∈K

Λk(εks −Bk)+

(15)

Subject to

∑
j∈N+(i)

xkijs−
∑

j∈N−(i)

xkjis =


w(k) if i = o(k)

0 if i 6= o(k), i 6= d(k)

−w(k) if i = d(k)

∀ i ∈ N , ∀ k ∈ K, ∀ s ∈ S, (16)

∑
k∈K

xkl(r)s ≤ uryrs ∀ l(r) ∈ L(r), ∀ r ∈ R, ∀ s ∈ S, (17)

xkijs ≥ 0 ∀ k ∈ K, ∀ (i, j) ∈ A, ∀ s ∈ S, (18)

yrs ∈ {0, 1} ∀ r ∈ R, ∀ s ∈ S. (19)

In this paper, sub-problems are solved separately, yielding two vectors containing respectively
the design, i.e., the selected services, and the corresponding flow distribution, i.e., the com-
modity flows on the service legs. This is used to build an aggregated design for the complete
problem and to adjust multipliers and penalty factors to guide the meta-heuristic, as detailed
in the following sub-sections.

5.2 Solution aggregation

The overall design summarizes in a single design vector ȳν the information obtained by solving
the sub-problems at a given iteration ν. It represents both an estimation of global trends and a
reference point to “guide” the sub-problem solutions, iteration after iteration, toward consensus.
A weighted average function is used as aggregation operator (as in, e.g., Crainic et al., 2011;
Rockafellar and Wets, 1991) yielding

ȳνr =
∑
s∈S

psy
ν
rs ∀ r ∈ R (20)

The values of ȳνr are between 0 and 1. When all scenarios agree on the selection status of a
service r, consensus is observed, and ȳνr equals 1 when all scenarios agree on activating service
r, or 0 when all scenarios agree on non-selecting it. Most of the time, however, one observes
that 0 < ȳνr < 1. We assume in this case that a high (close to 1) or a low (close to 0) value
for ȳνr indicates a trend toward selecting or not selecting the service, respectively, and use this
information in the adjustment of parameters to guide the meta-heuristic.
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5.3 Search for consensus

The local information provided by solving the sub-problems together with the aggregated refer-
ence solution are used to modify the values of the Lagrangian parameters and the fixed service
costs within each sub-problem, to guide the solutions of the sub-problems toward reaching a
consensus. The “distance” of local solutions to the reference one is an important criterion in
the adjustment strategies, which aim to induce selection or non-selection of a service when its
status is different from that in the current overall design.

We propose two adjustment strategies. The first follows the literature and makes use of the
design information only. The second adds the flow information produced by the sub-problems
to the criteria used to locally adjust the service fixed costs.

Both strategies start with the update of the augmented Lagrangian multipliers and pa-
rameter ρ, considering the current reference design ȳν and the designs yνs provided by the
sub-problems s ∈ S (Løkketangen and Woodruff, 1996; Rockafellar and Wets, 1991).

Three cases may occur when considering any design variable yνrs, which is either 1 or 0 in
scenario sub-problem s at iteration ν:

• yνrs < ȳνr . Service r is not selected in scenario s, but the trend among the other scenarios,
as reflected by the reference point ȳνr , is opposite. The goal is, then, to promote the
activation of service r by reducing its cost in the sub-problem s;

• yνrs > ȳνr . The opposite situation, when service r is selected in scenario s, but most
other scenarios do not agree on this decision. The cost is then adjusted so as to dissuade
selecting service r in the sub-problem s; Notice, that, the higher the number of other
sub-problems not agreeing to select the service, the stronger the disincentive;

• yνrs = ȳνr . Total consensus is observed among all sub-problems and the fixed costs remain
unchanged.

The parameters are then updated as follows:

φνrs ← φν−1
rs + ρν−1(yνrs − ȳν−1

r ) ∀ r ∈ R (21)

ρν ← γρν−1 (22)

Update rule (21) represents the steepest ascent step in the space of the dual problem (Mulvey
and Vladimirou, 1991) and depends on parameter ρν . Initially, ρ0 is set to an arbitrarily positive
small value and is dynamically adjusted at each iteration through a given parameter γ > 1. As
seen in the literature, the adjustment should be smooth. Although dynamic adjustments of the
penalty parameter are not covered by the convergence theory for the PH algorithm, Mulvey
and Vladimirou (1991) found that this strategy can improve the overall convergence behavior.

Fixed costs are adjusted at each iteration. According to the usual approach, this adjustment
is global and targets the design arcs with a status different from what a majority of arcs seems
to agree upon at the current iteration (Crainic et al., 2011). As above, the trend is given by the
value of the current reference solution ȳνr , r ∈ R, a high/low value of ȳνr indicating a trend to
select/not select service r. As discussed in Crainic et al. (2011), we assume that when ȳνr is less
than a given threshold threslow, increasing its cost fr will result in it becoming less interesting
in the sub-problems, resulting eventually in its non-selection. Symmetrically, when ȳνr is higher
than a given threshold threshigh, lowering the cost fr of service r will make it more attractive
and lead to its selection.
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The first strategy then adjusts the fixed costs according to Crainic et al. (2011):

fνr =


βfν−1

r if ȳν−1
r < threslow

1
β f

ν−1
r if ȳν−1

r > threshigh

fν−1
r otherwise

(23)

with fνr representing the modified selection cost of service r at iteration ν, and parameters
β > 1, 0 < threslow < 0.5, and 0.5 < threshigh < 1.

The second adjustment strategy we propose extends the previous one by adding a local ad-
justment to the global one. The local adjustment is particular to each sub-problem and is based
on the respective flow distribution at the current iteration. Let Xν(r) =

∑
l(r)∈L(r)

∑
k∈K x

kν
k(r)s

be the total flow moved by service r in the solution of sub-problem s at iteration ν. Let’s define
two threshold parameters 0 < locallow < ur/2 and ur/2 < localhigh < ur to qualify the local
flow distribution. Four occurrences may be observed at iteration ν when contrasting the global
and local trend information. The local adjustment rule stated by relations (24) - (27) addresses
the first three.

fνrs =



1

β2
fνr if ȳνr > threshigh and Xν(r) > localhigh (24)

1

β
fνr if ȳνr > threshigh and Xν(r) < locallow (25)

βfνr if ȳνr < threslow and Xν(r) < locallow (26)

fνr if ȳν−1
r = 0.5 (27)

Cases (24) and (26) define the two situations when the global and the local information agree
to select or not, respectively, service r. The local adjustments we propose thus reinforce the
global information favoring/discouraging the selection of the service by lowering/increasing its
fixed cost. In the case (25), the local trend is to make a rather limited use of a service for which
a strong selection trend exists at the global level. One can interpret the local decision as a
“safety” selection to hedge against uncertainty and use for excess flow one cannot move on the
most sought-after services. We therefore reinforce the global trend but less strongly compared
to case (24). Finally, the fixed cost is not changed when there is a fifty-fifty global split on a
particular service.

The global and local trends clash in the forth case

ȳνr < threslow and Xν(r) > localhigh, (28)

a majority of sub-problems avoiding certain services, which are heavily favored locally. The
question here is “how important these services may be with respect to the final design?”, that
is, to what extent a rather small subset of highly used services in some sub-problems should
influence the final plan? The adjustment strategy based on global information only simply
ignores these services. We propose to account for this information but to try to limit its
impact, by limiting the number of services that belong to condition (28).

Let Cνs = {r ∈ R : ȳνr < treslow and
∑

k∈K x
kν
l(r)s > localkhigh} for each sub-problem s at

iteration ν. Let hν−1
s = |Cν−1

s | be the number of services satisfying condition (28) at iteration
ν − 1 for sub-problem s. Also, let the parameter aνrs, ∀r ∈ R, ∀s ∈ S, to assume value 1 when
r ∈ Cνs and 0 otherwise. Then, we add constraint (29) to sub-problem s at iteration ν and solve
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the new formulation (after all other usual Lagrangian parameters and fixed costs modifications).
If a solution is found, it indicates that the parameter and cost updates allowed to switch flow
to other services. When a solution is not found, we assume the services in Cν−1

s are necessary
to find a feasible solution for sub-problem s and are therefore kept in subsequent iterations.∑

r∈R
aνrsyrs ≤ hν−1

s − 1 (29)

5.4 The PH-based meta-heuristic for the SSND-QT

We address a SND and face the challenges of “converging” or, more precisely, of achieving
consensus for all design variables within an acceptable computing time (Crainic et al., 2011).
We thus build a two-phase meta-heuristic, schematically illustrated in Algorithm 1. The first
phase executes the PH-based search, with the algorithmic components defined in the previous
sub-sections, for a certain number of iterations. As illustrated in Algorithm 1, the procedure
solves the sub-problems with the current fixed costs, builds the reference solution out of the
sub-problem solutions, updates the augmented Lagrangian multipliers and penalty term ρ,
adjusts the fixed costs, and iterates. We identify the first adjustment strategy, based on the
reference solution only, as PHR, and PHRL the strategy performing local adjustments as well.
At the initialization step, ν = 0 and the service fixed costs are the original ones. In the current
implementation, sub-problems are solved optimally by using a commercial solver.

The goal of the first phase is to identify a subset of arcs for which “consensus” appears
possible. Phase one stops on one of a number of criteria, e.g., time limit, maximum number of
iterations, a minimum percentage of arcs for which consensus is reached. The second phase of
the meta-heuristic is then called upon to compute the complete solution to the original problem,
by fixing the design variables for which consensus has been reached and solving the reduced
formulation. When the first phase yields a consensual design, i.e., all sub-problems agree, this
corresponds to solving the capacitated multi-commodity network flow problem. In most cases,
however, consensus is not reached, and the corresponding reduced network design formulation
is solved.

6 Experimental plan

We performed two sets of experiments. The first aimed to quantify the benefits of explicitly
considering stochastic travel time in the SSND model. This experiment therefore involved
solving exactly the stochastic and deterministic versions of the SSND-QT formulation for small-
and medium-sized problem instances only, but with diverse characteristics in terms of level of
variability, number of commodities, size of delivery time windows, and penalty costs. The
results were then evaluated through a Monte Carlo simulation and compared. In the same
set of experiments, we also investigated the impact of the penalty parameter on the stochastic
solutions, in particular, on the reliability of the resulting service networks. Problem instances
were thus solved for increasing values of penalties, keeping all other parameters fixed. The
second set of experiments focused on qualifying the performance of the proposed meta-heuristic.
A subset of instances used in the previous experiment were addressed with both PHR and
PHRL approaches, and the solutions were compared to quantify the gain of using local flow
information. Meta-heuristic results were then compared to the exact solutions obtained by
solving the multi-scenario formulations with CPLEX.
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Algorithm 1 Hierarchic progressive hedging-based meta-heuristic

Initialization ν = 0
1: φνrs ← 0, ∀ r ∈ R, ∀ s ∈ S;
2: ρν ← ρ0;
3: fνrs ← fr, ∀ r ∈ R, ∀ s ∈ S;
4: Solve the corresponding |S| SSND-QT sub-problems;

First Phase:
5: while stopping criterion is not met do
6: ȳνr ←

∑
s∈S psy

ν
rs, ∀ r ∈ R;

7: Adjust globally fνr , ∀ r ∈ R, using equation (23);
8: for s = 1, ..., |S| do
9: if PHRL = TRUE then

10: Adjust locally fνrs, ∀ r ∈ R using the rule (24) - (27);
11: hνs ← |Cνs |;
12: Add constraint (29) with hν−1

s ;
13: end if
14: Solve the modified SSND-QT sub-problem s;
15: if PHRL = TRUE then
16: while Solve == TRUE do
17: hν−1

s + +;
18: Solve the modified SSND-QT sub-problem s;
19: end while
20: end if
21: end for
22: ν ← ν + 1;
23: Update:

φνrs ← φν−1
rs + ρν−1(yνrs − ȳν−1

r ),∀ r ∈ R, ∀ s ∈ S;
ρν ← γρν−1;

24: end while
Second Phase:

25: Fix the design variables for which consensus is obtained;
26: Solve the restricted multi-scenario formulation.

Deterministic and stochastic mixed-integer linear programming models, as well as the meta-
heuristic, were implemented using the OPL language. All experiments were conducted on an
Intel Xeon X5675 computer with 3.07 GHz and 48 GB of RAM. The CPLEX 12.6 solver (IBM
ILOG, 2016) was used to implement the solution methods applied.

Before detailing the results of the sets of experiments, we present the instance generation
and the stability analysis we performed.

6.1 Instances and scenario generation

Performance was assessed by comparing the meta-heuristic results to the optimal results pro-
vided by CPLEX. Consequently, for most of our experiments, the instances had to be of dimen-
sions that could be tackled by the software. Somewhat larger instances were also generated.
The physical service network we consider in all our experiments is inspired by that used in
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Crainic et al. (2014b), which consists of 5 physical nodes and 10 physical arcs and is shown in
Figure 2(a). The service network is defined for a schedule length of 15 periods and displays a
cyclic nature (Crainic et al., 2014b), as illustrated in Figure 2(b).

(a) Physical service
network

(b) Space-time service network

Figure 2: Physical and space-time service networks

We consider 8 demand classes defined by the number of commodities and the time available
to deliver them. We used four levels of demand, from 1, corresponding to a low (15) number
of commodities, to 2 and 3 for medium sizes (20 and 25, respectively), and to 4 for a relatively
high number of commodities (50). Two values were considered for the delivery-time windows,
loose (l), with due dates between 11 and 14 periods after the availability date (given a schedule
length of 15 periods), and tight (t) with due dates between 9 and 12 periods after the availability
dates. In the tables of this and the following sections, the demand classes are represented by
DClass(··) with the respective values for these two attributes. The potential service network is
the same for all instances and includes 150 direct services and 7 services with one intermediate
stop. We generated services with usual duration of 3, 4 or 5 periods (the usual duration of a
service leg was a smaller but integer number of periods). The fixed cost of a direct service is
proportional to its usual duration. The fixed cost of a service with intermediary stop is 35%
less than the cost of the two direct services one would need for the same path.

We aimed for a set of test instances that provides the means to assess the impact of travel
time variability on the performance of the model and algorithm, as well as on the resulting
service networks. We thus selected a class of probability distributions for the random event
that allowed us to control the main elements defining the travel times, usual value, variability,
and ranges, defined as the difference between the maximum and minimum travel times possible
on the arcs of the network.

In our case, arc travel times do have a minimum value, corresponding to the free running time
of a single service under perfect conditions, and a maximum value since we do not address neither
major disturbances nor highly hazardous and catastrophic events. Given that, in practice,
delays occur much more frequently than early arrivals, we aimed for a probability distribution
that increases rapidly to the value of the usual travel time, followed by a gradual decrease
until the maximum travel time value (i.e., the tail should be skewed to the right). We thus
selected the class of Truncated Gamma (TG) probability distributions (Coffey and Muller, 2000;
Chapman, 1956), fitting these requirements (see Figure 3(a)).

The scenario generation process was performed by sampling random values from TG distri-
butions defined by particular values for mode, variance, and range of travel times. We assumed
independent sampling and, thus, travel time random variables. Note that this hypothesis only
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(a) Random distribution characteristics (b) Different variability levels

(c) Different ranges (d) Tails for different ranges

Figure 3: Travel time truncated gamma distributions

affects the scenario generation procedure, and not the performance of our scenario-based model.
The mode of a service (service leg) is its usual duration. Nine scenario classes, SClass, were
generated by considering three variability levels and three ranges. The former was measured in
terms of standard deviation, low for level 1, medium for level 2, and high for level 3. We set
the same lower bound for all cases but varied the range by using three different upper bounds.
Recall that, first, our problem setting is interurban travel where in most cases time periods are
lengthy (e.g., of the order of half a day or a day) and, second, we address business-as-usual
delays. Consequently, the ranges should be reasonably “close”. We thus defined a tight range,
t, computed as the mode −30% of a time-period duration, medium, m, computed as mode plus
one time period, and loose, l, computed as medium plus 30% of a time period. The looser the
range, the wider is the concept of “usual” travel time. Scenario classes, SClass(··) are thus
identified by the pair level of variability (1, 2, or 3) and range (t, m, or l). Figure 3(b) displays
distributions for the same range but different standard deviations, while Figures 3(c) and 3(d)
display different ranges and their tails, respectively, for the same level of variability.

The mode was also used as the travel time point estimation in the deterministic formulation
of the original problem. Experiments were performed under three levels of increasing penalty
costs for each of the two schedule targets, on-time arrival and maximum acceptable delay.
For services, the first level of on-time-arrival penalty was set to 175% of the cost of the most
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expensive service, while the first level of the maximum-delay penalty was set to 215% of the
same value. The second and third levels are obtained by doubling and tripling these values,
respectively. A similar process was performed for the delivery targets, where the on-time-arrival
penalty was set to the cost of the most expensive service, while the first level of the maximum-
delay penalty was set to 175% of the same value. To address the single-target formulations, we
set the penalties to 0 for the target not considered in that experiment.

6.2 In-sample and out-of-sample stability

We performed in-sample and out-of-sample stability verification to assess the correctness of the
scenario generation procedure and the representativity of the generated scenarios, and, thus,
avoid introducing bias in the results of the optimization model. The two types of stability are
different and it is recommended to test them both (Kaut et al., 2007). We performed stability
tests for the highest variability level (level 3), with varying ranges and levels of demand.

For in-sample stability test, we considered ten instances for each problem class. Each
instance was solved with different scenario-sized sets and for each scenario-size the difference
between the highest and lowest optimal values across instances was collected. In-sample stability
achieving a difference of less than 1% between the highest and lowest optimal values for each
problem class was obtained by using sets of 30 scenarios. Table 2(a) displays results for the
third demand class and the third penalty level.

We then tested out-of-sample stability by using 30-scenario-sized sets to find solutions and
100-scenario-sized sets as the “true” stochastic phenomenon (generated from the same TG
distributions used to construct the scenario sets for the optimization process). A procedure
similar to Monte-Carlo simulation was used to evaluate the solutions. The evaluation was
performed by fixing the first-stage variables obtained solving the stochastic programs for the
30-scenario-sized sets and optimizing the demand flows by solving the second-stage for the
100-scenario-sized sets. We computed the difference between the highest and lowest optimal-
solution values for the 100 scenarios. In the worst-case situation, we obtained an error of 2.33%.
Table 2(b) displays the results for the same problem classes, scenario classes, and penalty as
for the in-sample experiments. We also tested out-of-sample stability for larger scenario sizes.
Nevertheless, we were able to only reduce this error at a marginal level (decimal order) but at
the expenses of a tremendous increase of running time.

Approximating a probability distribution through scenarios will inexorably bring some noise
into results. The error of such an approximation will be reduced as the number of scenarios
increases. On the other hand, as we increase the number of scenarios, the difficulty of obtaining
optimal solutions increases as well. There is thus a trade-off between the stability of the
stochastic solutions and the problem growing too large. We consider the results of stability
tests performed with 30 scenarios satisfactory and consistent with our scopes of finding optimal
solutions in acceptable time. Note that the reported results relate to the highest variability
level, which defines the most volatile situations. In less variable cases, such results are even
lower. In the following thus, results are obtained by considering 30 as the scenario-size.
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(a) In-sample stability test

DClass(3t) DClass(3l)

SClass(3t) 0.72 0.65

SClass(3m) 0.77 0.75

SClass(3l) 0.56 0.51

(b) Out-of-sample stability test

DClass(3t) DClass(3l)

SClass(3t) 2.24 0.61

SClass(3m) 1.08 1.44

SClass(3l) 2.33 0.79

Table 2: Stability results for the scenario-generation procedure

7 Results and Analyses

Results of the experimentation are presented and discussed first with respect to the evaluation of
the SSND-QT formulation and, then, relative to the performance of the meta-heuristic. Several
other results on the formulation are presented in (Lanza et al., 2018).

7.1 Formulation evaluation

The evaluation analysis was performed considering 6 demand classes derived by the combined
use of the first 3 levels of demand and the 2 delivery-time windows. We generated 10 instances
for each demand class, for a total of 60 deterministic instances. For each deterministic instance,
27 stochastic instances were constructed, combining the 3 levels of variability, 3 ranges, and 3
penalty rates.

A solution, whether for the deterministic variant (SSND) or for the stochastic one, con-
sists of a set of selected services and the paths used to transport commodity flows to their
destinations. Solutions were found to the three stochastic formulations and are identified in
the following as SSND-QT for the complete formulation, SSND-QT-S and SSND-QT-D when
only the schedule- or the delivery-targets were considered, respectively. Comparisons among
methods and solutions are discussed relative to the set-up cost of the network (service selection
plus routing costs), as well as to their behavior into a stochastic environment through a Monte
Carlo-like procedure with a set of 100 scenarios. The subsection finishes with an analysis of the
impact of penalties.

7.1.1 Cost comparisons

The deterministic solution SSND displays, in general, characteristics typical of consolidation-
based transportation networks, where different commodities share the capacity of single services
for most of their journeys, passing through several intermediary stops, where they often wait,
before arriving at destination. One also observes the just-in-time arrival, with respect to due
dates, of freight at destination. Furthermore, one-stop services are usually favored when possi-
ble, rather than no-stop services in order to lower the fixed costs.

The stochastic SSND-QT-S set-up costs are generally similar to those of the corresponding
deterministic SSND, but the structure of the service network is markedly different. In almost
all cases, less services operate in SSND-QT-S than in SSND, even though the two solutions
share part of them. This may be explained as follows by the increased risk of delay of multi-
stop services. Thus, if a service experiences a delay in its first leg, it will most likely arrive
at destination (its second stop) later than scheduled, unless, in the second leg, the observed
travel time is much lower than usual and absorbs the delay. Given the assumed distributions,
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complete absorption is not very likely and one-stop services have a higher risk of paying for
delays. Consequently, the model would move the solution away from less-expensive multi-stop
services to more expensive direct connections, lowering the risk of extra costs when the services
operate. The observed trend of SSND-QT-S solutions is to select only the strictly necessary
direct services to fulfill demand. This often results in higher flow distribution costs and more
complex distribution patterns. As fewer services are available, commodity paths will be more
tangled and involve more services and transfers, the latter implying additional idle time at
intermediary terminals. The SSND-QT-S set-up cost is thus the result of two opposite effects:
on the one hand, fixed costs, as well as the number of selected services, are reduced while, on the
other hand, freight distribution costs are increased. This characteristic seems to contrast SSND-
QT-S solutions to the documented effect of stochastic demand, which generally increases the
number of services (Wang et al., 2018). Table 3 illustrates this analysis displaying the average
cost characteristics - Set-up, Fixed (service selection), and Routing (freight distribution) -
together with the associated number of selected services for instances belonging to the third
demand class that were solved with increasing level of variability and the highest penalty level.

DClass(3t) DClass(3l)

Set-up Fixed Num.Serv. Routing Set-up Fixed Num.Serv. Routing

SClass(1m) 6326.5 136.2 31.3 6190.3 6684.8 167.2 37.4 6517.6

SClass(2m) 6330.7 135.9 31.1 6194.8 6705.2 163.1 37 6542.1

SClass(3m) 6333.6 131 30.5 6202.6 6713.7 158.4 36.6 6555.3

SSND 6340.8 139.8 31.4 6201 6694.8 177.1 39.5 6517.7

Table 3: Cost characteristics of SSND-QT-S solutions

The opposite behavior is observed for the SSND-QT-D for which, generally, set-up costs
are generally more expensive compared to the corresponding deterministic version. Moreover,
unlike the SSND-QT-S case, but similar to the case of SSND with stochastic demand, more
services are selected and the increase in set-up costs follows directly. SSND-QT-D networks
appear to be built to bring commodity flows as early as possible to destination, at least one
period before due date. When avoiding just-in-time arrival is not possible for the total quantity
of a commodity, the flow is sometimes split, and a major part is shipped in advance. Such
behavior requires more services to be selected. Table 4 displays the average results for the same
demand classes, scenario classes, and penalty level considered above.

DClass(3t) DClass(3l)

Set-up Fixed Num.Serv. Routing Set-up Fixed Num.Serv. Routing

SClass(1m) 6344.8 144.2 32.4 6200.6 6697 178.4 39.8 6518.6

SClass(2m) 6350.6 144.4 32.9 6206.2 6715.2 176.9 40 6538.3

SClass(3m) 6351.9 144.1 32.9 6207.8 6717.1 175.9 39.7 6541.2

SSND 6340.8 139.8 31.4 6201 6694.8 177.1 39.5 6517.7

Table 4: Cost characteristics of SSND-QT-D solutions

Let the full cost of a network be the set-up cost plus the penalties incurred for delays
when simulating the behavior of the network with the Monte Carlo procedure. SSND-QT-
S and SSND-QT-D display full costs that are always lower than that of the corresponding
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SSND. This shows that explicitly considering the stochastic nature of the travel times in the
tactical planning model may hedge against, or at least reduce, the effects and consequences of
uncertainty, despite an initial higher set-up cost. To illustrate, we display in Tables 5 and 6,
the average results of the Monte-Carlo simulation procedure for two stochastic versions and the
same demand classes, scenario classes and penalty level considered above. The tables display
the average full costs, total penalty, as well as the split of the latter according to weather the
penalty corresponds to the short (i.e., the actual target) or a long (relative to the maximum
time allowed B or Bk) delay.

DClass(3t) DClass(3l)

Full Cost Tot Penalty Short Long Full Cost Tot Penalty Short Long

SClass(1m) 17871.2 11544.7 11118.2 426.4 20636.1 13951.2 13474.9 476.3

SSND 18221.3 11880.5 11437.4 443.0 21550.5 14855.7 14336.4 519.3

SClass(2m) 36835.2 30504.48 13162.2 17342.2 42864 36158.8 16443.6 19715.2

SSND 39439.9 33099.1 13214.0 19885.1 51719.8 45025 16959.2 28065.8

SClass(3m) 46531.2 40197.5 15873.4 24324.1 54481 47767.7 19589 28178.7

SSND 50362.1 44021.3 16532.2 27489.0 65478.2 58783.4 20940.6 37842.7

Table 5: Monte Carlo simulation cost analysis of SSND-QT-S

DClass(3t) DClass(3l)

Full Cost Tot Penalty Short Long Full Cost Tot Penalty Short Long

SClass(1m) 8647 2302.2 2222.9 79.3 10186.5 3489.5 3314.7 174.7

SSND 11068.5 4727.7 3069.3 1658.4 14803.6 8108.8 3826.6 4282.2

SClass(2m) 13388.8 7038.1 2485.5 4552.6 17215.1 10499.9 3773.5 6726.3

SSND 21332 14991.2 3421.5 11569.6 28410.2 21715.4 4275.3 17440

SClass(3m) 15615.6 9263.7 2877.3 6386.4 20735.9 14018.8 4537.2 9481.5

SSND 25199.9 18859.1 4327.9 14531.1 33396.2 26701.4 5335.5 21365.8

Table 6: Monte Carlo simulation cost analysis of SSND-QT-D

The general SSND-QT yields service designs that appear as a compromise between SSND-
QT-D and SSND-QT-S, displaying both the direct-service and early-freight-arrival trends. It is
the schedule targets, however, that influence the SSND-QT the most. The set-up cost display
exactly the same behavior as for SSND-QT-S when penalties or variability levels increase (a
decrease in the number of selected services and fixed costs and a consequent increase in routing
costs). Nevertheless, the delivery targets try to limit just-in-time deliveries, favoring delivery
one period before the due date, if not earlier. Routing is complicated as, in the majority of the
cases, demand is not only delivered in advance to lower the expenses related to the late arrivals
of freight, but it is also moved through the network by less services than in the SSND. Freight
paths thus seem even more tangled than in SSND-QT-S and include longer idle times at some
intermediary stops. Average set-up costs and performance results are shown in Tables 7 and 8.
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DClass(3t) DClass(3l)

Set-up Fixed Num.Serv. Routing Set-up Fixed Num.Serv. Routing

SClass(1m) 6347.2 136.9 31.6 6210.3 6703.5 170.2 38.6 6533.3

SClass(2m) 6333.6 136.6 31.4 6219.4 6742.2 161.9 37.3 6580.3

SClass(3m) 6365.9 135.1 31.2 6230.8 6765.5 156.4 36.3 6609.1

SSND 6340.8 139.8 31.4 6201 6694.8 177.1 39.5 6517.7

Table 7: Cost characteristics of SSND-QT solutions

DClass(3t)
Full Cost Tot Penalty Short S Long S Short D Long D

SClass(1m) 20245.6 13898.4 11227.4 419.8 2190.4 60.7

SSND 22949.04 16608.2 11437.4 443 3069.3 1658.3

SClass(2m) 44871.2 38515.3 13173.7 18233.4 2541.6 4566.5

SSND 54431.2 48090.4 13214 19885.1 3421.5 11569.6

SClass(3m) 57512 51146.1 16247.7 25483.8 2986.8 6427.7

SSND 69221.2 62880.4 16532.2 27489 4327.9 14531.1

DClass(3l)
Full Cost Tot Penalty Short S Long S Short D Long D

SClass(1m) 24389.8 17686.3 13792.7 469.6 3270.4 153.5

SSND 29659.4 22964.6 14336.4 519.3 3826.6 4282.2

SClass(2m) 54048.8 47306.6 16332.5 19924.8 4032.1 7017.1

SSND 73435.3 66740.5 16959.2 28065.8 4275.3 17440.1

SClass(3m) 67839.4 47306.6 16332.5 19924.8 4032.1 7017.1

SSND 92179.6 85484.8 20940.6 37842.8 5335.5 21365.8

Table 8: Monte Carlo simulation cost analysis of SSND-QT

7.1.2 Impact of penalties

The amplitude of the penalties for late arrival directly influences the design. The higher the level
of penalties the more the model aims to build a service network that will perform as planned
when travel times vary. Table 9 displays the results when the level of penalties increases. The
average increase in set-up costs and average decrease in total delay are shown, in percentages,
for solutions obtained with penalty levels 2 and 3, compared relative to solutions obtained with
penalty level 1. The same demand and scenario classes considered in the previous experiments
were also used here.

Delivery target Schedule target

Fixed cost (%) Short delay (%) Long delay (%) Fixed cost (%) Short delay (%) Long delay (%)

Penalty 1 - - - - - -

Penalty 2 +0.01 -3.26 -9.99 +0.01 -1.06 -5.66

Penalty 3 +0.05 -7.48 -18.36 +0.03 -3.38 -9.95

Table 9: Effects of penalty increase on SSND-QT-D and SSND-QT-S behavior
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Focusing on the SSND-QT-S, we observe that, as anticipated, increasing the penalty en-
forces the reliability by decreasing the number of multi-stop services. The main delay decrease
concerns the most expensive delay, i.e., the long delay over the threshold B. The higher the
penalty, the lower are such delays. Increasing penalties threefold yields an increase in the fixed
cost of the network by some 0.03%, with a decrease in the amount of total delay of some 3%
for the short delays and 10% for the long ones.

Similar results were observed for SSND-QT-D. Here, an increase in the penalty level makes
the optimization increase the number of selected services to deliver the highest number of
commodities possible at least one period before due date. The percentage of early freight
arrivals is increased by 8% when the solutions based on the highest and lowest penalty level are
compared (total number of commodities is 25). The total amount of delay decreases by 12%,
the vast majority of delays being of the large variety (over the threshold Bk), at the expense
of additional set-up cost of 0.05% only.

7.2 Meta-heuristic performance analyses

The meta-heuristic performance was evaluated through experiments conducted considering in-
stances belonging to all demand classes, the loosest delivery time window (11−14), the highest
variability level (σ = 0.25) and the loosest time distribution range (l). We still use 30 scenarios
for each instance (this means that at each iteration the meta-heuristic solves 30 single-scenario
sub-problems). The parameters were set to γ = 1.1 and β = 1.1 for the fixed-cost adjust-
ments, while thresholds were set to threshigh = 0.8, threslow = 0.2 for global adjustments and
localhigh = 1 + ur/2 and locallow = (ur/2) − 1 for local adjustments. Parameter values were
chosen based on those used in Crainic et al. (2011), after not having observed any significant
changes in the meta-heuristic behavior for small changes in those values during preliminary
experiments. We considered, instead, different values of parameter ρ0, ranging from 0.1 to 50,
and different thresholds of consensus required to stop Phase 1, ranging from 80% to 95% of the
services.

Table 10 displays the performance results of CPLEX and the meta-heuristic with the PHR
and PHRL cost-adjustment strategies, with ρ0 = 5. The first phase is stopped either when
consensus is obtained for 90% of services, on reaching a total of 20 iterations, or after 4 hours
of running time. The table also displays the total computation time (in seconds), the number
of iterations, and the relative gaps with respect to the solution obtained with CPLEX.

As expected, CPLEX solves almost all instances in a very short time, requiring only a few
seconds for the easiest instances and around 2 minutes for the most complicated. Meta-heuristic
computing times are longer. This is not surprising. On the one hand, instances were selected
in such a way to allow CPLEX to find the optimal solution to the stochastic formulation. On
the other hand, in order to have a clear comparison in terms of solution quality, the optimal
solution to each sub-problem at each iteration was determined using the same solver (future
extensions could, of course, involve the use of meta-heuristics for the sub-problems). While
this slows down the meta-heuristic, it provides the means to show its very good performance
in terms of solution quality, both versions finding good quality solutions; 45% of the instances
are solved optimally, while the optimality gaps for the remaining instances are less than 1%.

What is the effect of flow-information adjustment? The PHRL approach seems to perform
slightly better compared to the PHR approach, yielding an average optimality gap of 0.022%
compared to 0.054% for PHR. The improvement is reached, however, at the expense of a higher
number of iterations (on average 4.63 instead of 3.58) and a much longer running time (PHRL
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CPLEX PHR PHRL

|K| Time (sec.) Obj Time (sec.) Obj Iter. Gap (%) Time (sec.) Obj Iter. Gap (%)

15 13.11 3964.38 61.25 3964.38 2 0 82.66 3964.38 2 0

15 13.86 4538.18 114.24 4538.18 2 0 151.33 4538.18 2 0

15 12.95 3701.94 70.42 3712.86 2 0.29 104.88 3701.94 2 0

15 13.87 3834.58 101.16 3841.76 3 0.19 185.51 3841.76 3 0.19

15 14.21 4562.23 128.22 4565.61 2 0.07 395.12 4565.61 5 0.07

15 13.74 4679.08 120.91 4679.08 2 0 324.04 4679.08 4 0

20 32.53 6007.60 189.53 6007.60 2 0 230.42 6007.60 2 0

20 18.23 5061.42 172.41 5061.42 3 0 312.03 5061.42 4 0

20 23.14 6178.43 249.02 6181.83 3 0.06 544.75 6180.20 4 0.03

20 30.71 6532.49 350.09 6565.06 2 0.50 715.83 6532.49 4 0

20 16.15 4830.19 87.80 4830.19 3 0 151.25 4830.19 3 0

20 17.83 5216.48 116.97 5216.48 3 0 338.74 5216.48 5 0

25 24.90 7151.51 207.49 7153.12 2 0.02 313.53 7153.12 2 0.02

25 21.57 6245.17 104.80 6245.17 2 0 222.61 6250.66 3 0.09

25 27.10 6729.70 244.82 6729.70 4 0 828.99 6729.70 7 0

25 23.45 6968.70 176.93 6968.70 2 0 257.61 6968.70 2 0

25 29.54 7295.06 374.55 7300.43 4 0.07 887.82 7302.14 5 0.10

25 22.34 6638.79 89.24 6638.79 2 0 147.18 6639.35 3 0.01

50 48.26 14494.40 1682.03 14494.40 6 0 9313.16 14494.40 8 0

50 51.19 15562.70 1806.54 15575.10 6 0.08 9574.86 15564.30 8 0.01

50 90.65 15068.40 2514.37 15068.40 8 0 11129.99 15068.40 7 0

50 49.37 15317.40 1871.77 15317.40 7 0 8927.28 15317.40 8 0

50 123.89 14776.00 2024.23 14779.40 7 0.02 8850.26 14779.40 8 0.02

50 50.38 15035.60 2177.47 15035.60 7 0 9184.05 15035.60 10 0

Average 32.62 626.51 3.58 0.05 2632.25 4.63 0.02

Table 10: Performances of CPLEX and meta-heuristic (PHR and PHRL strategies; ρ0 = 5)

needs on average 58% more time compared to PHR). This additional effort is due to the higher
number of operations characterizing PHRL compared to PHR. In all cases, the PHR version
stops Phase 1 because the chosen consensus threshold is reached, while in 25% of the cases, the
PHRL stops because the time limit is reached.

We also tested the meta-heuristic over a set of larger instances built on the same physical
network with 35 scenarios, 220 services and 85 commodities. CPLEX could not address in-
stances of such sizes, while the meta-heuristic with the global fixed-cost adjustment strategy
PHR (with ρ0 = 5 and a consensus threshold of 90%) provided solutions in 4 hours, on average.

7.2.1 Impact of parameter ρ0

The performance of the method is generally sensitive to the choice of the penalty parameter ρ0,
which scales the penalty term (Bertsekas, 2014). Theory suggests that high values of the penalty
parameter should induce faster but often premature convergence leading to ill-conditioned so-
lutions. Conversely, small values of ρ0 yield a weaker enforcement of the non-anticipativity
constraints, resulting in a more gradual convergence to typically better solutions after many
iterations (Wallace and Helgason, 1991; Mulvey and Vladimirou, 1991). This is supported by
empirical evidence in our case as well. We solved the chosen instance set considering different
values of ρ0, ranging from 0.1 to 50. The first phase is stopped when consensus is obtained for
80% of services.

Table 11 displays average performance results for the PHR and PHRL versions of the meta-
heuristic, namely, the number of iterations, the percentage of instances solved to optimality,
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and the optimality gaps (with respect to CPLEX). In line with the results from the literature,
a small ρ0 value yields longer first-phase computations, but the mechanism has sufficient time
to “absorb” the information from the scenarios and obtains good results. For large ρ0 values,
however, the meta-heuristic stops quite rapidly at a local optimum. The number of instances
solved to optimality decreases (from 70% to 58% for PHR and from 79% to 62% for PHRL),
as well as the accuracy of solutions, even though the optimality gaps are very low and less
than 1%. This behavior characterizes both meta-heuristic variants but, as observed earlier, the
PHRL always outperforms the PHR in relative gaps and number of instances optimally solved.
It is noteworthy that the PHRL variant is able to solve at least 75% of instances optimally,
maintaining this standard until ρ0 = 5, while not only is the PHR unable to reach this threshold,
but this percentage decreases as soon as ρ0 increases. Regarding iterations, it seems that if ρ0

is very low, the iterations needed by the PHRL are less than those needed by the PHR, as if
the additional flow information not only influences the accuracy of the solutions but also allows
the approach to converge sooner. This characteristic is lost when ρ0 = 1.

PHR PHRL
ρ0 Iterations % of Optima Gap (%) Iterations % of Optima Gap (%)
0.1 3.17 70.83 0.0498 2.54 79.17 0.02215

0.5 2.5 66.67 0.0504 2.33 75 0.02239

1 2.17 66.67 0.0522 2.29 75 0.02471

5 1.88 62.5 0.0542 2.25 75 0.02617

10 1.83 62.5 0.0558 2.17 70.83 0.02863

20 1.71 62.5 0.0598 2.13 70.83 0.02938

50 1.63 58.33 0.0675 1.63 62.5 0.04406

Table 11: Average performance of PHR and PHRL with different values of ρ0

7.2.2 Impact of the consensus threshold parameter

We solved the instance set considering different values of consensus threshold to stop Phase 1,
ranging from 80% to 95% of the services. The value of ρ0 was set to 5. Intuitively, the value
of the threshold directly influences the number of iterations the algorithm needs to perform
before stopping the first phase: the higher the value, the more iterations are needed in Phase
1 to reach the desired consensus threshold and go to Phase 2. At the same time, however, this
allows Phase 2 to start with a higher number of fixed services, decreasing its computational
effort. The results presented in Table 12 are consistent with this behavior. The table displays
the average number of iterations performed by the PHR and PHRL versions, the percentage of
instances solved to optimality, and the average optimality gaps.

PHR PHRL
Threshold Iterations % of Optima Gap (%) Iterations % of Optima Gap (%)

80% 1.88 62.5 0.0542 2.25 66.67 0.0263

85% 2.63 66.67 0.0338 3.21 75 0.0255

90% 3.58 66.67 0.0337 4.63 75 0.0173

95% 8.73 66.67 0.0331 11.21 75 0.0136

Table 12: Performance of PHR and PHRL with different consensus threshold values
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Both variants display the same behavior, with similar increases in the number of iterations
and accuracy as the consensus threshold increases. PHRL constantly outperforms PHR in
terms of accuracy but, as already observed, at the expense of a higher number of iterations
(27% more on average). Thresholds higher than 85% seem to improve the accuracy level for
both approaches, while the percentage of instances solved optimally does not change and the
decrease in optimality gaps is marginal.

It should be noted, however, that the highest threshold (95%) seems too strict, and the
first phases of both variants stopped, for most of the hardest cases, not because the consensus
threshold was attained, but because the time limit (4 hours) was reached. Figure 4 plots the
percentage of times the Phase 1 of PHR and PHRL stopped by reaching the chosen consensus
threshold.

Figure 4: Percentage of instances reaching consensus thresholds

We also solved a number of instances without a time-limit stopping rule. Solutions and gaps
do not change significantly (only after the third decimal place). What consistently changes is
the number of iterations needed to reach this threshold and stop Phase 1, on average 20. This
emphasizes that consensus thresholds and time limits should be appropriately chosen. The
results of this section are a step in defining these criteria.

7.2.3 Final remarks about PHR and PHRL

To sum up the observations regarding the two versions of the fixed-cost adjustment strategy,
both approaches result in good quality solutions, but display slightly different behaviors.PHRL
seems to greatly benefit from small ρ0 parameters (even when ρ0 = 0.1 and ρ0 = 0.5, PHRL
outperforms PHR in terms of number of iterations) and high consensus thresholds. The PHR
approach seems to have a more stable behavior with respect to optimality gaps but is char-
acterized by a decreasing number of iterations when the parameters are changed. Optimality
gaps are displayed for increasing values of ρ0 and consensus threshold for the two variants in
Figures 5(a) and 5(b).

The PHRL variant appears to enable the algorithm to perform better compared to PHR
when solution accuracy is of concern, and the higher computational effort is of lesser importance.
On the other hand, it seems that, at least for the instances studied, the information on global
trends is sufficient to find good solutions, making the PHR variant a suitable methodology to
address problem instances quickly and efficiently.
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(a) Gaps for different ρ0 values with consensus
threshold at 90%

(b) Gaps for different consensus thresholds with
ρ0 = 5

Figure 5: Optimality gap evolution for PHR (full line) and PHRL (dashed line)

8 Conclusion

We addressed the SSND-QT, the stochastic SSND problem with quality targets and travel time
uncertainty. It is an important problem for the tactical planning process of consolidation-based
freight carriers, as well as for the network design problem class. Very few papers in the lit-
erature address issues related to this problem, our contribution being, according to our best
knowledge, the first to state and address the full problem. We defined the problem considering
quality targets for on-time, according to a schedule, operation of services and on-time, accord-
ing to carrier-customer contracts, delivery of commodity flows to destinations. We proposed a
two-stage mixed-integer linear stochastic model defined over a space-time network, with qual-
ity targets modeled through penalties. The first stage addresses the selection of services and
the routing of the freight flows, while the second stage verifies targets and computes penal-
ties. We also proposed an effective PH-based meta-heuristic, based on a partial-decomposition
concept aimed to address the challenges raised by the presence in the first-stage problem of
flow-distribution decisions and by the flow-related degeneracy peculiar to network design. The
results of an extensive numerical experimentation underscored the worthiness of the formula-
tion when quality targets are of interest, highlighting specific features to hedge against time
fluctuations. They also showed that the proposed meta-heuristic performs very well, being
comparable to that of a well-known MIP solver, and outperforming the solver when instance
dimensions increase. Several interesting research avenues are open. One relates to the intro-
duction of uncertainty on terminal operations and, clearly in the longer-term, integrating in a
unique formulation uncertainty related to both demand and time. A second avenue concerns
the representation of more complex decisions/actions when delays are observed, addressing,
for example, the case of missed connections. Extensions to explicitly account for the manage-
ment of resources required to operate services is another interesting research avenue, as is the
study and relaxation of the independence hypothesis regarding travel time distributions. Algo-
rithmically speaking, continuing the study of partial decomposition and associated adjustment
and consensus-seeking strategies is certainly of interest, as is the definition of multi-scenario
sub-problems. The latter issue belongs to the broader challenge of developing efficient solu-
tion methods for large instances of stochastic network design problems. We look forward to
presenting results on some of these issues in the near future.
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Appendices

Annex 1 - Two-Stage Formulation

The goal of the SSND-QT model is to select the services and route the freight to satisfy demand
and the quality targets in the most efficient way, that is, minimizing fixed service selecting costs,
variable moving costs and the expected extra costs if delays are observed when applying the
chosen plan. The two-stage formulation may be written as follows:

min
∑
r∈R

fryr +
∑

(i,j)∈A

∑
k∈K

ckijx
k
ij + Eτl(r),l(r)∈L(r),r∈R [Q(y, x; τl(r)(ω))] (1)

Subject to

∑
j∈N+(i)

xkij −
∑

j∈N−(i)

xkji =


w(k) if i = o(k)

0 if i 6= o(k), i 6= d(k)

−w(k) if i = d(k)

∀ i ∈ N , ∀ k ∈ K (2)

∑
k∈K

xkl(r) ≤ uryr ∀ l(r) ∈ L(r), ∀ r ∈ R (3)

xkij ≥ 0 ∀ k ∈ K, ∀ (i, j) ∈ A (4)

yr ∈ {0, 1} ∀ r ∈ R (5)

where

Q(y, x; τl(r)(ω)) =
∑
r∈R

∑
l(r)∈L(r)

λrl(r)(ηl(r)(ω)− el(r))+ +

∑
r∈R

∑
l(r)∈L(r)

Λrl(r)(ηl(r)(ω)−B)+ +

∑
k∈K

λk(εk(ω)− b(k))+ +
∑
k∈K

Λk(εk(ω)−Bk)+

(6)
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Annex 2 - The Standard PH Formulation

We describe the standard development of the PH methodology applied to our problem.
To obtain scenario separability, a reformulation of the original model is required. First,

a copy of each first-stage decision variable, design and flow distribution, is defined for each
scenario:

min
∑
s∈S

ps

(∑
r∈R

fryrs +
∑

(i,j)∈A

∑
k∈K

ckijx
k
ijs+∑

r∈R

∑
l(r)∈L(r)

λrl(r)(ηl(r)s − el(r))+ +
∑
r∈R

∑
l(r)∈L(r)

Λrl(r)(ηl(r)s −B)+ +

∑
k∈K

λk(εks − b(k))+ +
∑
k∈K

Λk(εks −Bk)+

) (7)

Subject to

∑
j∈N+(i)

xkijs −
∑

j∈N−(i)

xkjis =


w(k) if i = o(k)

0 if i 6= o(k), i 6= d(k)

−w(k) if i = d(k)

∀ i ∈ N , ∀ k ∈ K, ∀ s ∈ S (8)

∑
k∈K

xkl(r)s ≤ uryrs ∀ l(r) ∈ L(r), ∀ r ∈ R, ∀ s ∈ S (9)

xkijs = xkijs′ ∀ k ∈ K, ∀ (i, j) ∈ A, ∀ s, s′ ∈ S, s 6= s′ (10)

yrs = yrs′ ∀ r ∈ R, ∀ s, s′ ∈ S, s 6= s′ (11)

xkijs ≥ 0 ∀ k ∈ K, ∀ (i, j) ∈ A, ∀ s ∈ S (12)

yrs ∈ {0, 1} ∀ r ∈ R, ∀ s ∈ S (13)

Let ȳr and x̄kij define a global design and flow distribution solution. Constraints (10) and
(11) may be replaced by

yrs = ȳr ∀ r ∈ R, ∀ s ∈ S, (14)

xkijs = x̄kij ∀ k ∈ K, ∀ (i, j) ∈ A, ∀ s ∈ S, (15)

ȳr ∈ {0, 1} ∀ r ∈ R, (16)

x̄kij ≥ 0 ∀ k ∈ K, ∀ (i, j) ∈ A, (17)

By performing the augmented Lagrangian relaxation of the non-anticipatory constraints,
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one obtains the following objective function:

min
∑
s∈S

ps

(∑
r∈R

fryrs +
∑

(i,j)∈A

∑
k∈K

ckijx
k
ijs+∑

r∈R

∑
l(r)∈L(r)

λrl(r)(ηl(r)s − el(r))+ +
∑
r∈R

∑
l(r)∈L(r)

Λrl(r)(ηl(r)s −B)+ +

∑
k∈K

λk(εks − b(k))+ +
∑
k∈K

Λk(εks −Bk)++

∑
r∈R

φrs(yrs − ȳr) +
1

2

∑
r∈R

ρ(yrs − ȳr)2+

∑
(i,j)∈A

φkijs(x
k
ijs − x̄kij) +

1

2

∑
(i,j)∈A

ψ(xkijs − x̄kij)2
)

(18)

where φrs and φkijs are the Lagrangian multipliers used to relax constraints (14) and (15),
respectively, and ρ and ψ are penalty ratios. The latter objective function may be reduced by
taking advantage of the binary requirements of the service design variables:

min
∑
s∈S

ps

(∑
r∈R

(fr + φrs +
1

2
ρ− ρȳr)yrs+

∑
(i,j)∈A

∑
k∈K

(ckij + φkijs +
1

2
ψxkijs − ψx̄kij)xkijs+∑

r∈R

∑
l(r)∈L(r)

λrl(r)(ηl(r)s − el(r))+ +
∑
r∈R

∑
l(r)∈L(r)

Λrl(r)(ηl(r)s −B)+ +

∑
k∈K

λk(εks − b(k))+ +
∑
k∈K

Λk(εks −Bk)+

)
(19)

The resulting formulation is scenario separable.
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