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Abstract. We study a variant of the multi-period routing problem in which deliveries may 
occur between release and due dates. The release date of each product is stochastic, and 
customer orders arrive dynamically over a planning horizon. The due date of an order is 
specified by the customer and no late delivery is allowed.  The supplier reveals the delivery 
date to the customer in advance and any deviation from this date incurs a penalty. The 
probability of a product being available on any given day can be estimated. We introduce 
the notion of supplier risk aversion level to model the behavior of a supplier who must deal 
with disruptions in product supplies while trying to minimize the total cost of deliveries and 
of the penalties to be paid. Combining probabilities of product availability and the risk 
aversion level of the supplier, we formulate an a priori model for the problem in a 
deterministic fashion. This model, which is solved only once at the beginning of the planning 
horizon, allows the supplier to plan and schedule the upcoming deliveries. However, upon 
the occurrence of a supply disruption, delivery plans have to be modified and communicated 
to the customers.  In this case, a recourse model is solved iteratively over the remaining 
days of the planning horizon, which can also handle dynamism in customer demand. The 
models are solved by branch-and-cut.  Several sensitivity analyses are performed, and 
insights are developed to study the trade-offs between cost and stable plans. The results 
show how a more pessimistic attitude toward uncertainty results in more stability in planning 
but leads to higher costs, whereas lower risk aversion levels result in lower costs but come 
at the expense of more frequent changes in delivery plans.  
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1. Introduction

Most of the research on routing problems assumes static and deterministic information, whereas

in many real-life cases, the information is not fully known in advance (Azi et al., 2012; Coelho

et al., 2016). Uncertainty can stem from di↵erent sources. Sanchez-Rodrigues et al. (2010)

identify several uncertainty types with respect to shippers, customers, carriers, control systems,

and the external environment. In stochastic routing problems, the main uncertain parameters

relate to demand, travel time, service time, and the presence of customers (Gendreau et al.,

2016; Hernandez et al., 2019).

There exist relatively few studies on supply uncertainty in routing problems. In distribution

planning, products are usually assumed to be available at the time of shipment. For example,

in inventory-routing (Coelho et al., 2014) and production-routing problems (Adulyasak et al.,

2015; Dı́az-Madroñero et al., 2015), products can be delivered if the inventory is su�cient, and

these have a known and deterministic production rate. Supply disruptions caused by delays,

breakdowns, quality failure, or any other factors are rarely considered in these contexts. In this

paper, we investigate distribution planning in the presence of stochastic product availability.

Here we consider a routing problem with the following three characteristics: 1) customer orders

for products arrive dynamically over a planning horizon, 2) they have a delivery due date specified

by the customer, and 3) the time at which the products become available for delivery is uncertain,

i.e., they have stochastic release dates. In this study, we consider as a first step the single-vehicle

version of the problem. We call it the dynamic routing problem with due dates and stochastic

release dates (DRPDSR).

In addition to e-commerce, applications of the DRPDSR arise in natural disasters emergency

logistics planning where the demand for items such as medical supplies, personnel, food and

water, clothing and bedding, is known for each location, and a deadline is given for their recep-

tion, but the availability of these products is not fully known in advance. The problem is also

encountered in production systems dependent on the manufacturing or on the external supply

of items to be shipped to customers.
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1.1. Literature review

We now present a review of the literature on the vehicle routing problem (VRP) with release and

due dates (VRPRDD). Shelbourne et al. (2017) and Archetti et al. (2018) introduced release and

due dates to the vehicle routing literature. In this context, the challenge is to delay customer

orders to be able to serve them together and benefit the most from the resulting reduction in

delivery costs (Reyes et al., 2018). Shelbourne et al. (2017) defined the release date as the

time at which the requests become available at the depot. They aimed to integrate production

scheduling and vehicle routing decisions where penalties related to late deliveries also need to

be minimized. These authors defined a setting with a fleet of homogeneous capacitated vehicles.

To each customer, they associated a service time and an order characterized by its quantity,

release and due dates, and a weight. They considered both the travel time and consistency of

the sum of distance and total weighted tardiness. This problem is known to be NP-hard and

shares similarities with the capacitated VRP and the VRP with time windows. The authors

proposed a path-relinking algorithm to solve it. Archetti et al. (2015b) introduced the multi-

period VRP with due dates in which the delivery decisions are more flexible than in the classical

VRP, as every request from customers can be satisfied within a given deadline. Motivated by

the integration of vehicle routing and production scheduling problems, the VRP with due dates

was later extended to the VRPRDD (Cattaruzza et al., 2016). Shelbourne et al. (2017) provide

a comprehensive review of the VRPRDD and other VRPs with time constraints.

Archetti et al. (2015a) solved two versions of the VRP with uncapacitated vehicles and release

dates. In the first case, they considered a deadline for each order and minimized the total

distance traveled, whereas in the second case, no deadlines were considered, but the total delivery

completion time was minimized. They analyzed the complexity of these VRP variants and

showed that the cases with either one uncapacitated vehicle performing several routes, or an

unlimited fleet of vehicles performing only one route, could be solved in polynomial time for some

graph structures. The authors developed a dynamic programming algorithm for the problem,

which was also used by Reyes et al. (2018) who solved the same two variants, but in a di↵erent

setting since they considered service guarantees. As an extension to the work of Archetti et al.
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(2015a), Reyes et al. (2018) applied dynamic programming to minimize the completion time

of the last route and the distance traveled while completing the last route before a specific

deadline. Finally, focusing on the traveling salesman problem with release date and completion

time minimization, Archetti et al. (2018) proposed a mathematical formulation and developed

an iterated local search-based heuristic to solve it.

Another related variant of the VRPRDD is the VRP with release dates and time windows.

Cattaruzza et al. (2016) introduced this problem with a fleet of identical capacitated vehicles

serving customers within their preset time windows. Each order is associated with a release date.

They developed a hybrid genetic algorithm to solve the problem. Zhen et al. (2020) extended

this problem and studied a multi-depot multi-trip VRP with release dates and time windows.

They proposed two metaheuristics: a hybrid particle swarm optimization algorithm and a hybrid

genetic algorithm.

Although the recent VRP literature embraces the notion of stochasticity in which some elements

of the problem are random, uncertainty has not yet been considered in the VRPRDD. The most

studied stochastic elements in the VRP context are demand (Bertsimas, 1992) and stochastic

travel times (Laporte et al., 1992). In this paper, we are particularly interested in uncertain

supplies. In our problem setting, product availability is not deterministic, which forces the plans

to change on a daily basis and with the release of information. Therefore, our problem is also

related to disruption management in vehicle routing.

Eglese and Zambirinis (2018) review disruption management in vehicle routing. They consider

four sources of disruption: vehicle breakdown, unavailable link in the road network, unknown

supply, and unknown customer demand. The disrupted capacitated vehicle routing problem

with order release delay (DCVRP-ORD) introduced in Mu and Eglese (2013) is the closest work

to our problem as one needs to modify the routing plans when some products are unavailable

at the start of the delivery period. The authors proposed two tabu search heuristics to deal

with supply delays: to wait for the delayed products or to continue delivering the available ones.

Despite the similarity of the DCVRP-ORD with the DRPDSR in the supply disruption aspect,
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the two problems di↵er in several important ways. In the single-period setting of DCVRP-ORD,

some products become available later during the period, which requires certain vehicles to wait

at the depot for the delayed products to become available. In the DRPDSR, given that each

customer has a due date, one needs to decide on which day before the due date a delivery has

to be made. In the DCVRP-ORD, a vehicle can wait at the depot for products to become

available or multiple trips can also be assigned to vehicles, whereas in the DRPDSR, we consider

an expedited shipping option (at a price), which encourages the supplier to make the best use

of the vehicle capacity. Moreover, in the DCVRP-ORD, all delayed orders arrive at the same

time at the depot, whereas in the DRPDSR the release day of products varies. Although in

the DCVRP-ORD, a disruption occurs at the depot, the amount of the delayed orders and the

length of the delay are known. In the DRPDSR, on the other hand, stochastic parameters are

used to represent the release day of a product. While the DCVRP-ORD aims to minimize the

delays, in the DRPDSR the goal is to reduce the deviations between the anticipated and the

real delivery plans, and finally, no mathematical model is provided for the DCVRP-ORD.

1.2. Scientific contributions and organization of the paper

Although the VRPRDD literature extends the classical VRP by considering a release date for

the orders, its underlying assumption is that the release dates are known and deterministic. In

this paper, we extend the problems studied in Mu and Eglese (2013) and Archetti et al. (2020) to

introduce due dates and stochastic release dates. We consider the availability of the product, i.e.,

the release date, to be a random variable. This paper di↵ers from previous studies as information

regarding demand and product availability is revealed on a daily basis after an a priori solution

has been determined and communicated to the customers. When new information arrives, the a

priori solution may need to be revised, and routes may have to be changed. Whenever the new

plan results in a change in delivery schedules, the supplier may incur a penalty.

Our scientific contribution is manifold. We introduce, model, and solve the DRPDSR. We

propose an a priori plan and several recourse actions whenever the a priori solution cannot be

executed due to the non-availability of the products. We introduce the notion of supplier’s
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risk aversion level and we combine it with the probabilities of product availability to yield a

deterministic a priori model. We believe our study is the first to explicitly integrate this notion

in the mathematical modeling of a stochastic vehicle routing problem (see, e.g., the recent survey

of Gendreau et al. (2016)). We then iteratively solve a recourse model to handle stochastic

realizations and demand dynamism.

The remainder of this paper is organized as follows. In Section 2, the DRPDSR is formally

defined and modeled, with a detailed description, mathematical formulation, a priori solution,

and recourse actions. The solution algorithm is explained in detail in Section 3. In Section 4, we

present the results of our extensive computational experiments, along with sensitivity analyses

and discussions on the results. Conclusions follow in Section 5.

2. Problem statement

We describe the DRPDSR, in general terms in Section 2.1 and through a mathematical model

in Section 2.2, followed by disruption management procedures in Section 2.3.

2.1. General description

We consider a supplier delivering several products to its customers. The products are expected

to become available at the supplier on a given date, with a given discrete probability distribution.

According to the definition provided by Shelbourne et al. (2017), we call this the release date.

Customers request products on di↵erent days of the planning horizon, and the day at which a

product is requested is referred to as an order date. These requests can be met within a time

interval, beginning at the order date and ending at their due date, which is known in advance

and may vary for di↵erent requests. The supplier knows that all products will be available before

the due date, but their availability on any given day between the order date and the due date is

not guaranteed. The supplier must communicate the delivery plans in advance to the customers.

Therefore, at the beginning of the planning horizon, the supplier makes an a priori plan that

specifies delivery dates. If the products are unavailable on the planned distribution day or if the

7

The Dynamic Routing Problem with Due Dates and Stochastic Release Dates 

CIRRELT-2020-21



demand pattern changes, the supplier needs to change its a priori plan, a recourse action on the

decisions is required. This entails iteratively solving a recourse model.

The supplier operates a single capacitated vehicle to serve the customers and has access to an

express delivery service in order not to violate the due dates if the vehicle capacity is insu�cient.

When the vehicle makes a trip, it leaves the depot where the supplier is located, visits some

customers, and returns to the depot. Two events may a↵ect the routing plans of a day. First,

a product planned for delivery turns out to be unavailable. In this case, the supplier has no

choice but to postpone its delivery by bumping some customers from their planned route, which

incurs a bumping cost. Due to this change of plan, extra space becomes available on the vehicle,

and the supplier may decide to anticipate the delivery of other available products, in which case

these delivery dates also need to be changed, and a bumping cost is again incurred. The other

case occurs when a product that was considered unavailable in the initial plan becomes available

on a given delivery day. In this case, the supplier may decide to change the delivery date of this

product and incur a bumping cost. Given the uncertainties on the supply side, this decision is

made to avoid future express delivery costs caused by the violation of the vehicle capacity, since

some requests need to be sent urgently. The supplier always has the option of subcontracting

deliveries to an express carrier, which yields more costly direct shipments to customers.

The cost minimization dilemma the supplier faces can be described as follows: is it better to be

assured of the availability of products before announcing the delivery plans to the customers,

or to assume the products will be available as early as possible and pay for the bumping costs

if proved wrong? The choice depends on the risk aversion level of the supplier and therefore,

the trade-o↵ between the distribution costs and the bumping costs leads to di↵erent delivery

plans. In summary, the a priori solution determines when to deliver to each customer and how to

create vehicle routes, under the objective of minimizing the total cost of routing and expedited

delivery. A recourse action aims at 1) recovering feasibility once a release date does not allow a

product delivery, and its request must be postponed, 2) decreasing costs in case other deliveries

can be anticipated, and 3) handling dynamism in customer demand.
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2.2. Mathematical formulation of the a priori problem

The DRPDSR is defined on an undirected graph G = (N , E), where N = {0, . . . , n} is the

node set and E = {(i, j) : i, j 2 N , i < j} is the edge set. Node 0 represents the depot and

Nc = N \ {0} is the set of customers. Let P = {1, . . . , P} be the set of products that are

delivered to the customers by a single vehicle of capacity Q. A routing cost cij is associated with

each edge (i, j). The problem is defined on a finite planning horizon T = {1, . . . , T} of T days

or over an infinite horizon. In the latter case it can easily be solved through a rolling-horizon

mechanism by iteratively solving the problem each day for the horizon {t, ..., t + T � 1} and

implementing the solution for day t . In what follows we model and solve the problem for the

finite horizon case.

For each customer i the demand of product p on day t is known and denoted by dtpi. Multiple

products may be requested on day t, and a maximum allowed lateness ltpi indicates within how

many days the demand of customer i for product p must be fulfilled, defining the due date. A

maximum allowed lateness of zero means same-day delivery.

The order fulfillment of product p depends on its availability, which is stochastic, but once a

product becomes available on day t, it will remain so until the end of the planning horizon.

Before its scheduled delivery on day t, the cumulative probability ⇡t
p of product p being available

on day t is known. This means that if a customer i has a positive demand for product p on day

t (dtip > 0) with a maximum lateness ltpi, then we must have ⇡t0
p = 1, where t0 = t + ltpi. If the

product is available, delivery can occur; otherwise, it needs to be postponed. The subjective

estimate of the supplier on the availability of product p on day t is denoted by etp, which is a

binary parameter incorporating the cumulative probabilities ⇡t
p and the risk aversion level of the

supplier denoted by ✓ 2 [0, 1]. Specifically,

etp =

8
><

>:

1 if ⇡t
p � ✓

0 otherwise.

If ✓ = 0, then the supplier is risk taking (i.e., an optimist) who assumes that product p will

9

The Dynamic Routing Problem with Due Dates and Stochastic Release Dates 

CIRRELT-2020-21



be available at the first available opportunity. If ✓ = 1, then the supplier is risk averse (i.e., a

pessimist) who assumes that product p will be available on the last possible day. Intermediate

values of ✓ correspond to a continuum of risk aversion levels. Because the supplier does not

know in advance whether the products will be available or not on a certain day and the delivery

plan needs to be communicated to the customers beforehand, etp is used to compute the delivery

plan, which yields a deterministic-equivalent form of a stochastic model.

Knowing the availability probability of each product, the supplier schedules the deliveries in

its a priori plan, but as time unfolds and stochastic release dates are realized, these schedules

may need to be revised, which gives rise to a recourse action. A bumping cost f must be paid

whenever a customer has one of its deliveries rescheduled. Expedited delivery to customer i

costs c0i, and we assume that c0i is su�ciently large to encourage the shipment via routing. No

split delivery is allowed for a given product, but di↵erent products ordered on the same day can

be delivered separately.

By considering the subjective estimate of the supplier on the availability of the product, the de-

terministic counterpart of the DRPDSR can be formulated with the following decision variables:

let xt
ij be the number of times edge (i, j) is traversed on day t, yti = 1 if and only if customer

i is visited on day t via routing, ztt
0

pi = 1 if and only if product p ordered on day t is delivered

to customer i on day t0 > t via routing, and qtt
0

pi = 1 if and only if product p ordered on day

t is delivered to customer i on day t0 > t via an expedited delivery. The problem can then be

modeled as follows:

(P) minimize
X

t02T

0

@
X

(i,j)2E

cijx
t0

ij +
X

p2P

X

i2Nc

X

t2T

c0iq
tt0

pi

1

A (1)

subject to xt
ij  yti (i, j) 2 E , t 2 T (2)

xt
0i  2yti i 2 Nc, t 2 T (3)

yt0 � yti i 2 Nc, t 2 T (4)
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X

j:(i,j)2E

xt
ij +

X

j:(i,j)2E

xt
ji = 2yti i 2 Nc, t 2 T (5)

X

(i,j)2E
i,j2S

xt
ij 

X

i2S

yti � ytm S ⇢ Nc,m 2 S, t 2 T (6)

ztt
0

pi  yt
0

i dtpi > 0, p 2 P , i 2 Nc, t, t
0 � t 2 T (7)

X

t2T ,tt0

ztt
0

pi  M t0yt
0

i p 2 P , i 2 Nc, t
0 2 T , dtpi > 0 (8)

X

p2P

X

t2T ,tt0

ztt
0

pi � yt
0

i i 2 Nc, t
0 2 T , dtpi > 0 (9)

X

p2P

X

i2Nc

X

t2T ,tt0

ztt
0

pi d
t
pi  Q t0 2 T (10)

X

t02T ,
tt0t+ltpi

⇣
ztt

0

pi + qtt
0

pi

⌘
= 1 p 2 P , i 2 Nc, t 2 T , dtpi > 0 (11)

ztt
0

pi + qtt
0

pi  et
0

p p 2 P , i 2 Nc, t 2 T , dtpi > 0, t0 2 [t, t+ ltpi] (12)

xt
ij 2 {0, 1, 2} (i, j) 2 E , t 2 T (13)

yti , z
tt0

pi , q
tt0

pi 2 {0, 1} p 2 P , i 2 Nc, t, t0 2 T . (14)

The objective function (1) minimizes the total cost of routing and expedited deliveries. Con-

straints (2)–(4) link the routing and visiting variables. Constraints (5) define the node degrees,

and constraints (6) eliminate subtours (see Gendreau et al. (1997)). Constraints (7)–(9) link the

z variables to the y variables, where M t0 in constraints (8) is a large number that can be set

to the number of requests from customer i between time 1 and time t0. Constraints (10) ensure

that the vehicle capacity for the routing shipments is respected. Constraints (11) state that each

demand must be satisfied exactly once, and constraints (12) state that the delivery of a product

can only be made after it has become available. These constraints also ensure that the due dates

are respected. Finally, constraints (13) and (14) define the domains of the variables.
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2.3. Managing disruptions: mathematical formulation of the recourse model

The problem at hand can be considered as a sequential decision problem since decisions have to

be made at di↵erent points in time and are influenced by the previous ones (Hausman, 1969).

Under this situation, adaptive optimization is the most natural approach a supplier can apply in

which one adjusts the solutions when uncertain parts of the input are realized (Bertsimas et al.,

2013). We apply this concept to manage disruptions in product availability and dynamism in

customer demands.

In the a priori plan, we set the values of etp according to the rules described before. We then

solve model (1)–(14) to obtain a delivery plan, i.e., xt
ij = x̄t

ij, z
tt0
pi = z̄tt

0
pi , and qtt

0
pi = q̄tt

0
pi . On each

day t of the planning horizon, the true realization of the release dates for the products becomes

known, and some of the previously made decisions may need to be adjusted. The same model

can be used to handle dynamic customer demands.

In the recourse plan, we solve the problem iteratively, and at the beginning of each day t, we

decide whether a modification to the a priori plan is required. Three situations may occur. First,

the estimation etp was correct, in which case no recourse action is needed. Second, if the product

is not available when it was expected to be, at least one delivery will be bumped to a later date.

One can also use the extra vehicle capacity to anticipate some deliveries. Third, a product that

was not expected to be available on day t becomes available, meaning that some later deliveries

can be anticipated, including to the day in question.

Considering the same risk estimate as before, if the due date for the product is reached or if

this product has become available, then etp = 1, otherwise, we need to recompute the values of

etp based on the remaining probabilities ⇡t
p and the value of ✓, as follows. Considering that the

decision is made on day t, we have

etp =

8
><

>:

1 if
�
⇡t
p � ⇡t�1

p

�
� ✓

0 otherwise.
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Specifically, on day t, the supplier either realizes that some products have been released or

remain unavailable, e↵ectively knowing the availability status of each product p. To determine

the recourse action, a mathematical model optimizes the remaining decisions based on the same

risk aversion level of the supplier. To this end, we define binary variables vti , equal to 1 if and

only if any product ordered by customer i is bumped from its delivery planned for day t. Also,

let the values of variables ztt
0

pi and qtt
0

pi be z̄tt
0

pi and q̄tt
0

pi , based on the solution of the a priori model.

In order to calculate the bumping costs, we define parameters gti based on the a priori plan and

variables wt
i for the recourse plan. The parameters gti indicate whether a visit was planned for

customer i in period t and are defined as follows:

gt
0

i =

8
>><

>>:

1 if
P
p2P

P
tt0

�
z̄tt

0
pi + q̄tt

0
pi

�
� 1

0 otherwise.

Variables wt
i are equal to 1 if any delivery is scheduled for customer i on day t and 0 otherwise.

The recourse model is then:

(R) minimize
X

t02T

0

@
X

(i,j)2E

cijx
t0

ij +
X

p2P

X

i2Nc

X

t2T

c0iq
tt0

pi +
X

i2Nc

fvt
0

i

1

A (15)

subject to (12)–(14) and to

wt0

i 
X

p2P

X

tt0

⇣
ztt

0

pi + qtt
0

pi

⌘
i 2 Nc, t

0 2 T (16)

X

p2P

X

tt0

dtpiw
t0

i �
X

p2P

X

tt0

⇣
ztt

0

pi + qtt
0

pi

⌘
i 2 Nc, t

0 2 T (17)

vt
0

i � gt
0

i � wt0

i i 2 Nc, t
0 2 T (18)

vt
0

i � wt0

i � gt
0

i i 2 Nc, t
0 2 T (19)
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wt
i , v

t
i 2 {0, 1} i 2 Nc, t 2 T . (20)

The objective function (15) is similar to (1) with an extra term representing the bumping costs.

Constraints (16) link delivery variables z (routing) and q (expedited delivery) with the visiting

variables w. Quantities delivered are then ensured via constraints (17). If any visit was planned

for customer i in period t, i.e., gti = 1, but a new optimized plan does not include a visit to this

customer in that period, i.e., wt
i = 0, then variables v take value 1 as ensured by constraints

(18) and (19). In this case, a bumping cost is then incurred as per the new objective function

(15). Constraints (20) define the domains of the decision variables.

For any day t � 2, the values of ztt
0

pi and qtt
0

pi are stored in z̄tt
0

pi and q̄tt
0

pi , respectively. Model R is

then reoptimized by adding the following constraints to ensure that past decisions are no longer

changed:

z t̃t
0

pi = z̄ t̃t
0

pi t̃ 2 {1, . . . , t} (21)

qt̃t
0

pi = q̄t̃pi t̃ 2 {1, . . . , t}. (22)

3. Solution algorithm

To deal with the uncertainty from the supply side, we first make a priori decisions. On a given

horizon, these decisions are updated, if necessary. To solve model (1)–(14), we use a general

purpose mixed integer linear program solver, Gurobi in our case. However, using a heuristic, we

first generate an initial solution as a warm start for a branch-and-cut algorithm.

3.1. Initial solution generation

An initial solution is given to the branch-and-cut algorithm to provide an upper bound and

speed up the search. The heuristic process applied to obtain this initial solution is summarized

as follows. As long as the capacity of the vehicle allows, the demand of each customer for each

day t is scheduled for delivery on the earliest possible day, both with respect to the availability
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of the product and the delivery due date. It should be noted that all demands must be satisfied

by their due dates. The pseudocode for this procedure is described in Algorithm 1.

Algorithm 1 Initial solution construction

1: for each demand of product p from customer i released on day t do
2: if the demand is not assigned then
3: for each day from t until the due date do
4: if the product is available then
5: if the capacity of the vehicle allows then
6: Assign the demand of customer i for product p to day t
7: Adjust the load of the vehicle
8: end if
9: end if

10: end for
11: else
12: Go to the next demand to be assigned
13: end if
14: end for

3.2. Branch-and-cut algorithm

To solve the DRPDSR, we have implemented the model defined by (1)–(14), excluding the sub-

tour elimination constraints (6), relaxing integrality, and considering the supplier’s risk aversion

level. Once a solution is found, it is checked against these constraints using the separation

procedure from the CVRPSEP library (Lysgaard et al., 2004). If the solution does not contain

subtours, it is accepted; otherwise, it is discarded and the violated constraints are added to the

model.

We observed in preliminary experiments that many small subtours arise early in the solution

process. To speed up the search forbidding such subtours, and increasing the lower bounds from

the root node, we apply a lazy constraints strategy. This means that these constraints are valid,

written and ready, but not added to the model directly. Instead, they remain in a lazy constraint

pool where they remain inactive until an integer feasible solution is found, at which point the

solution is checked against the lazy constraint pool. If the solution violates any lazy constraints,

they are added to the model. Within Gurobi, we used the attribute value of 1, which indicates
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that not all violated lazy constraints need to be added for a violated solution. This leads to a

more parsimonious addition of constraints to the model, which helps prevent making the model

too heavy for the later phases of the branch-and-cut search. This is valid as long as at least

one violated constraint is added. Then the node is solved again, and if another integer feasible

solution is obtained, it is checked against the lazy constraint pool again.

Our use of lazy constraints is as follows. First, all subtours of sizes two and three are forbidden

by adding all constraints (6) with |S| = 2 and 3 as lazy constraints. Moreover, for some sets

|S| = 4 and 5 the respective constraints are also enumerated in the lazy constraint pool. Since

the number of possible subsets is very large, here for each node, we only write the constraints

to forbid the 10 smallest subtours, i.e., we evaluate the size (routing cost) of all these subsets,

and for each customer, we add to the lazy pool the constraints that would forbid the 10 smallest

ones. Obviously, repeated constraints are discarded. Adding these constraints for subsets larger

than five nodes would become too expensive to separate.

4. Computational results

The formulations presented in Sections 2.2 and 2.3 were coded in C++ and solved using Gurobi

Optimization 8.1.0. The computational experiments are conducted on an Intel Core i7 processor

running at 3.4 GHz with 64 GB of RAM installed with the Ubuntu Linux operating system.

The a priori phase is run for five hours, and we limit the reoptimization time to one hour for

each day in the planning horizon.

4.1. Instance generation

For our experiments, we have randomly generated several sets of instances, as described in Table

1. The instances di↵er in size defined by the number of products, customers, and days in the

planning horizon. All the random selections follow a discrete uniform distribution. To ease

the computational burden, we work with a fixed planning horizon and static demands varying

between zero and five units. The value of T is selected from {5, 8, 10, 12}, and when five days
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are considered in the planning horizon, |Nc| is selected from {10, 20, 50, 60, 80}. Each time, we

move to a larger planning horizon, we remove the largest element of the set Nc. This means

that for instances with 12 days, we consider 10 and 20 customers. As the products are customer

specific, in all our instances we assume P = |Nc|+ 5.

The coordinates for the customer nodes are randomly and uniformly generated as an integer

number in the interval of [0, 500]. We located the depot at the center with coordinates [250, 250].

The distances between any two nodes are calculated using a Euclidean metric and rounded to

the nearest integer, where transportation costs are proportional to the distances.

Table 1: Parameters of the instances

Parameter Notation Value
# of days T {5, 8, 10, 12}
# of customers |Nc| {10, 20, 50, 60, 80}
# of products P P = |Nc|+ 5
Demand dtpi [0, 5]
Vehicle of capacity Q 1.5⇥maxt

P
i2C

dti

Coordinates of node i Xi, Yi [0, 500]
Routing cost cij b

p
(Xi �Xj)2 + (Yi � Yj)2 + 0.5c

Expedited delivery cost c0j 5⇥ c0j
Bumping cost f {500, 2000}
Maximum allowed lateness ltpi [1, 1 + T+1

2 )

To generate the release day of products, we randomly select a day between the day at which

the product is demanded for the first time and the latest day at which the product can become

available. The product will become available after this randomly selected day. It should be

noted again that once a product becomes available, it remains so until the end of the planning

horizon, and no product can become available before any demand is realized for it.

We consider four scenarios to generate the cumulative probability ⇡t
p for product p being available

on day t. These scenarios are generated as follows. First, we select a random number X to have

control over the probability increase. For the first two scenarios, this number is selected from

the interval of [0.05, 0.10] and for the last two scenarios from [0.4, 0.5]. The probability for the

first day in this interval is then set to ⇡1
p = X. For the next days, we proceed as follows:
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Scenario LG (Low starting point- Gradual increase): We generate a random number Y in the

interval [0, 1� ⇡t�1
p ]. If Y > X then Y is set equal to X. The accumulated probability on day t

is then calculated as ⇡t
p = ⇡t�1

p + Y . We repeat this procedure for every day of the interval.

Scenario LS (Low starting point- Skewed): We randomly select a day t0 between the order day

and the due date. The probability of the product being available on any day before t0 is randomly

selected from Y = min{0.01, rand[0, 1� ⇡t�1
p ]}. If Y > X then Y is set equal to X. For every

day after day t0 until the due date, Y = min{0.4, rand[0, 1� ⇡t0�1
p ]}.

Scenario HA (High starting point- Abrupt increase): This scenario is similar to the first one but

with di↵erent starting values for X.

Scenario HS (High starting point- Skewed): We randomly select a day t0 between the order day

and the due date. The probability of the product being available on any day before t0 is randomly

selected as Y = rand[0, 1� ⇡t�1
p ]. If Y > X then Y is set equal to X. For every day after day

t0 until the due date, Y = rand[0, 1� ⇡t0�1
p ].

Basically, under scenarios LG and HA, we gradually increase the probability of the products

becoming available. The slope of this increase di↵ers in the two scenarios. In scenarios LS and

HS, we use a random point within the first day at which the product is ordered and the day at

which it becomes available. We then generate skewed probabilities before and after this random

point. This is depicted in Figure 1, where an example with five days in the planning horizon

and the cumulative probability for each scenario is provided.

4.2. Late deliveries strategy

The defined mathematical models are oblivious to the risk aversion levels. Given enough capacity,

two solutions may di↵er only on the day at which a route is executed, but their cost is the same.

However, a solution for which a delivery is planned for day t + 1 instead of day t has a lower

associated risk, and should be preferred. In order to provide this information to the model, and

to avoid such symmetries, we apply the following strategy to encourage delivering later than

sooner, if capacity allows. We slightly modify the cost matrix cij structure to become time-
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Figure 1: Comparing di↵erent cumulative probability scenarios for a five-day planning horizon.
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dependent where ctij = cij� t/100, implying that the cost of an arc traversed one day later would

be reduced by 0.01. This value is small enough not to change the shape of the solution but it is

large enough to provide an advantage to the model to plan for later deliveries. Once a solution

is obtained, it is evaluated using the true cij matrix, not the time-dependent discounted one.

4.3. Results and analyses

This section presents the results of our computational experiments. First, we assess the e↵ec-

tiveness of the proposed solution algorithm for the a priori phase, and we then conduct a cost

analysis for each category of risk threshold and product availability scenario in the recourse

phase.

4.3.1. A priori phase

We now provide detailed information on the results obtained for each instance on the a priori

phase. Table 2 shows the average gap obtained considering each product availability scenario

and risk aversion level ✓ over all instances with the same number of customers |Nc|. The average

results obtained for the random instance sets are distinguished. The lighter the color of a cell,

the lower the gap. For both sets of instances, we observe that the combination of the product

availability scenario and ✓ can have di↵erent behaviors depending on the number of customers.
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Table 2: Average gaps (in %) obtained in the a priori phase

Instance Instance set I Instance set II

|Nc| Scenario\✓ 0.0 0.4 0.8 1.0 0.0 0.4 0.8 1.0

10

LG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20

LG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50

LG 1.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LS 2.80 0.22 0.00 0.03 1.64 0.96 0.01 0.00
HA 1.43 0.90 0.65 0.00 0.00 0.03 0.44 0.00
HS 1.48 0.56 0.19 0.00 2.53 0.57 0.88 0.00

60

LG 1.57 0.00 0.00 0.00 1.96 0.66 0.66 0.67
LS 1.81 0.00 0.00 0.00 1.39 0.48 0.05 0.66
HA 2.18 0.52 0.00 0.00 1.67 2.89 0.76 0.66
HS 1.85 1.80 0.41 0.00 2.02 0.71 1.11 4.65

80

LG 0.00 0.00 0.00 0.00 4.61 0.01 0.01 0.01
LS 0.50 0.00 0.00 0.00 14.49 0.24 0.00 0.01
HA 0.31 0.00 0.00 0.00 7.44 5.51 0.53 0.00
HS 0.31 0.00 0.00 0.00 5.75 6.03 0.01 0.01

This table highlights that when a supplier is more optimistic, i.e., has lower values of ✓, the

problem becomes more di�cult as the average gap after five hours of optimizing time remains

high. This can be explained by the increased flexibility for the delivery plan as a more optimistic

setting allows products to be delivered in more days, whereas a more pessimistic setting (cor-

responding to a higher value of ✓) yields a more constrained problem in which there are fewer

delivery options for each product. These results also show that the availability scenarios HA

and HS exhibit the same behavior, being more di�cult. This is also explained by the fact that

products become available sooner, hence increasing flexibility.

Table 3 provides more details about the impact of the ✓ on the di�culty of the a priori problem.

The results shown in this table are aggregated over all scenarios and all planning horizons. For

each set of instances identified by the number of products, the number of customers, and ✓, we

provide the upper bound (UB), the lower bound (LB), the optimality gap (%), and the execution
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time in seconds. We observe that for all instances with optimal solutions, an increase in the

value of ✓ results in a cost increase. In other words, the more pessimistic the supplier is, the

higher is the estimated cost. In order to prevent further bumping costs, a pessimist supplier is

willing to consider a distribution plan with a higher a priori cost.

Table 3: Average a priori results over all scenarios and all planning horizons

Instance Instance set I Instance set II

|Nc| ✓ UB LB Gap (%) Time (s) UB LB Gap (%) Time (s)

10

0.0

5,899.09 5,899.08 0.00 3 5,663.20 5,663.19 0.00 4
20 7,668.25 7,668.25 0.00 86 6,929.67 6,929.66 0.00 68
50 9,138.16 8,951.15 1.72 12,244 9,787.23 9,670.35 1.04 9,331
60 9,037.69 8,846.88 1.85 17,466 9,249.41 9,053.22 1.76 10,918
80 8,167.79 8,135.00 0.40 17,378 9,112.15 8,361.53 8.07 18,002
10

0.4

6,415.70 6,415.70 0.00 2 5,946.66 5,946.66 0.00 2
20 8,192.11 8,192.11 0.00 30 7,421.07 7,421.04 0.00 39
50 10,113.57 10,063.35 0.42 9,495 11,054.12 11,008.31 0.39 5,965
60 10,001.02 9,938.68 0.58 9,480 11,276.80 11,135.88 1.18 10,322
80 9,175.01 9,175.00 0.00 2,686 9,774.39 9,503.67 2.96 13,538
10

0.8

6,675.81 6,675.81 0.00 2 6,123.92 6,123.92 0.00 1
20 8,508.09 8,508.09 0.00 28 7,752.52 7,752.49 0.00 11
50 10,713.28 10,687.90 0.21 6,433 12,169.65 12,128.92 0.33 4,934
60 10,606.47 10,593.59 0.11 5,917 12,528.87 12,446.54 0.64 10,914
80 9,629.30 9,629.30 0.00 82 10,229.79 10,208.01 0.22 9,073
10

1.0

7,283.24 7,283.24 0.00 2 6,214.57 6,214.57 0.00 1
20 8,745.59 8,745.58 0.00 25 7,971.69 7,971.69 0.00 10
50 11,352.35 11,347.26 0.04 6,010 13,816.07 13,816.07 0.00 1,508
60 11,453.80 11,453.30 0.00 2,767 15,869.19 15,632.76 1.66 10,890
80 10,905.28 10,905.28 0.00 27 11,092.13 11,091.23 0.01 143

Table 4 isolates the e↵ect of di↵erent scenarios by aggregating the data over all risk thresholds ✓

and the number of customers |Nc|. Once again, we present results for two sets of instances. For

all the cases when an optimal solution or very small gaps are obtained, we observe that scenarios

with high starting points (i.e., HA and HS) yield lower costs.
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Table 4: Average a priori results over all ✓ and all planning horizons

Instance Instance set I Instance set II

|Nc| Scenario UB LB Gap (%) Time (s) UB LB Gap (%) Time (s)

10

LG

6,924.33 6,924.33 0.00 2 6,077.44 6,077.43 0.00 2
20 7,833.30 7,833.30 0.00 7 7,375.52 7,375.52 0.00 9
50 10,787.38 10,758.60 0.27 6,854 12,747.57 12,747.47 0.00 3,052
60 10,829.26 10,792.19 0.36 6,268 14,106.38 13,986.00 0.98 11,302
80 10,291.74 10,291.74 0.00 3,895 10,517.39 10,415.24 1.16 4,581
10

LS

6,568.70 6,568.70 0.00 2 6,050.90 6,050.90 0.00 1
20 8,401.77 8,401.77 0.00 32 7,581.94 7,581.91 0.00 20
50 10,524.25 10,484.81 0.36 7,534 11,941.61 11,867.02 0.65 5,517
60 10,351.24 10,310.38 0.38 7,141 12,343.61 12,266.12 0.64 11,111
80 9,530.07 9,519.90 0.12 5,130 10,253.23 9,893.20 3.68 9,061
10

HA

6,422.29 6,422.29 0.00 2 5,912.29 5,912.29 0.00 2
20 8,124.70 8,124.69 0.00 49 7,412.26 7,412.22 0.00 33
50 9,953.52 9,876.15 0.71 8,974 11,034.79 11,020.34 0.12 6,621
60 9,870.11 9,815.28 0.50 6,629.54 10,609.81 10,433.98 1.49 9,247.28
80 8,206.19 8,180.92 0.35 6,766.15 10,196 10,195.30 0.00 2,192.82
10

HS

6,358.52 6,358.52 0.00 2 5,907.71 5,907.71 0.00 3
20 8,118.02 8,118.02 0.00 60 7,369.57 7,369.57 0.00 51
50 10,003.53 9,944.05 0.55 8,878 11,103.10 10,988.81 1.00 6,832
60 9,964.82 9,862.26 0.96 12,281 11,309.95 11,028.92 2.12 10,534
80 8,224.38 8,224.42 0.24 9,738 10,213.33 10,212.86 0.00 3,063

Our computational results indicate that all the small size instances (with 10 and 20 customers)

are solved to optimality in the a priori phase. With respect to the risk threshold, a higher

value of ✓ generally yields an easier instance. This is quite expected, given that a higher value

of ✓, fewer routing decisions must be taken. In this situation, the supplier takes a pessimistic

approach and only plans deliveries as late as possible; if no capacity is left on the vehicle then

a more expensive distribution method must be used. This also explains the high costs of these

solutions.

Looking at Table 2, it may appear that instances with 80 customers are easier than those with

50 customers since the gaps are lower. The execution times in Tables 3 and 4 also gives the same

impression. In fact, as previously explained, this is because large instances with 12 days do not

include many customers. Therefore, the instances of these tables are not made up of the same

number of days. Detailed results of the a priori phase are provided in Appendix A.
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4.3.2. Disruption management analysis

Tables 5–8 show how in an iterative approach, a supplier optimizes the costs based on a given

risk aversion level. We present a table for each length of the planning horizon, T= 5, 8, 10, 12.

All columns containing only zero costs are omitted from the tables. The results are averaged

over all scenarios and two sets of instances. These tables show the current day (column) and a

future day (row): for example, the routing cost of current day 1 for the future day 5 indicates

the expected routing cost to be paid on day 5, considering the available information on day 1.

Therefore, an optimistic supplier estimates the cost to be paid on day 5 when the decisions are

made on day 1 as 2, 438 for the routing cost and no expedited deliveries. As time unfolds, these

decisions may need to be revised, and finally, the supplier ends up paying 2, 437 for the routing

and a total of 66 for the expedited delivery cost.

These tables highlight how a recourse phase can significantly change the cost and take advan-

tage of new information. They also show how a too optimistic supplier (✓ = 0) relies on the

routing capacities to avoid paying the expedited delivery fees. The situation is di↵erent for a

too pessimistic supplier (✓ = 1). Initially expensive expedited delivery is planned, but to avoid

bumping costs, the supplier sticks to its a priori delivery plans.

Table 5: Averages of cost components over demand and bumping cost scenarios for instances with five days

Future days
2 3 4 5 3 4 5

✓ Current day Routing Expedited delivery

0.0

1 1,781 787 1,381 2,438 0 0 0
2 787 1,400 2,437 0 0 66
3 1,400 2,437 0 66
4 2,437 66

0.4

1 1,148 1,475 1,311 2,061 19 191 519
2 1,475 1,358 2,060 19 191 541
3 1,358 2,059 191 548
4 2,059 548

0.8

1 1,322 1,708 1,708 2,396 0 278 758
2 1,708 1,708 2,395 0 253 815
3 1,708 2,396 257 806
4 2,396 806

1.0

1 1,312 1,701 1,945 2,349 0 731 1,795
2 1,701 1,945 2,349 0 731 1,795
3 1,945 2,349 731 1,795
4 2,349 1,795
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Table 6: Averages of cost components over demand and bumping cost scenarios for instances with eight days

Future days

✓ Current day
3 4 5 6 7 8 6 7 8

Routing Expedited delivery

0.0

1 675 1,186 503 1,364 1,157 2,265 0 0 0
2 777 1,188 503 1,364 1,157 2,265 0 0 0
3 1,231 503 1,364 1,157 2,265 0 0 0
4 503 1,364 1,157 2,265 0 0 0
5 1,364 1,157 2,265 0 0 0
6 1,157 2,265 0 0
7 2,265 0

0.4

1 1,271 1,059 1,074 875 1,181 1,720 0 0 6
2 1,276 1,107 1,111 875 1,181 1,720 0 0 21
3 1,107 1,111 881 1,181 1,720 0 0 21
4 1,111 881 1,181 1,720 6 0 21
5 881 1,181 1,720 0 0 21
6 1,181 1,720 0 21
7 1,720 21

0.8

1 1,398 1,321 1,275 879 1,310 2,232 0 0 1
2 1,398 1,316 1,306 879 1,310 2,232 0 0 1
3 1,316 1,306 879 1,310 2,232 0 0 1
4 1,306 879 1,310 2,232 0 0 1
5 879 1,310 2,232 0 0 1
6 1,310 2,232 0 1
7 2,232 1

1.0

1 1,396 1,291 1,482 803 1,229 1,838 0 0 2
2 1,396 1,291 1,482 803 1,229 1,838 0 0 2
3 1,291 1,482 803 1,229 1,838 0 0 2
4 1,482 803 1,229 1,838 0 0 2
5 803 1,229 1,838 0 0 2
6 1,229 1,838 0 2
7 1,838 2
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Table 7: Averages of cost components over demand and bumping cost scenarios for instances with 10 days

Future days

✓ Current day
3 4 5 6 7 8 9 10 5 6 9 10

Expedited delivery

0.0

1 945 570 1,046 1,082 234 1,013 1,021 2,052 0 0 0 0
2 952 570 1,046 1,082 234 1,013 1,021 2,052 0 0 0 0
3 570 1,046 1,082 234 1,013 1,021 2,052 0 0 0 0
4 1,046 1,082 234 1,013 1,021 2,052 0 0 0 0
5 1,082 234 1,013 1,021 2,052 0 0 0
6 234 1,013 1,021 2,052 0 0
7 1,013 1,021 2,052 0 0
8 1,021 2,052 0 0
9 2,052 0

0.4

1 1,447 1,028 1,078 1,012 850 1,604 1,015 2,051 0 16 12 3
2 1,452 1,032 1,096 1,011 850 1,604 1,015 2,051 12 19 12 0
3 1,032 1,096 1,011 850 1,604 1,015 2,051 12 19 12 0
4 1,096 1,011 850 1,604 1,015 2,051 12 19 12 0
5 1,011 850 1,604 1,015 2,051 19 12 0
6 850 1,604 1,015 2,051 12 0
7 1,604 1,015 2,051 12 0
8 1,015 2,051 12 0
9 2,051 0

0.8

1 1,451 1,134 891 1,124 433 920 1,074 2,041 0 0 0 0
2 1,451 1,152 891 1,124 433 920 1,074 2,041 0 0 0 0
3 1,152 891 1,124 433 920 1,074 2,041 0 0 0 0
4 891 1,124 433 920 1,074 2,041 0 0 0 0
5 1,124 433 920 1,074 2,041 0 0 0
6 433 920 1,074 2,041 0 0
7 920 1,074 2,041 0 0
8 1,074 2,041 0 0
9 2,041 0

1.0

1 1,451 1,142 1,137 923 845 780 1,053 2,059 0 0 0 0
2 1,451 1,142 1,137 923 845 780 1,053 2,059 0 0 0 0
3 1,142 1,137 923 845 780 1,053 2,059 0 0 0 0
4 1,137 923 845 780 1,053 2,059 0 0 0 0
5 923 845 780 1,053 2,059 0 0 0
6 845 780 1,053 2,059 0 0
7 780 1,053 2,059 0 0
8 1,053 2,059 0 0
9 2,059 0
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Table 8: Averages of cost components over demand and bumping cost scenarios for instances with 12 days

Future days

✓ Current day
2 3 4 5 6 7 8 9 10 11 12 4 5 8 12

Routing Expedited delivery

0.0

1 900 320 636 566 530 783 394 559 665 658 1,545 0 0 0 0
2 320 681 566 530 783 394 559 665 658 1,545 0 0 0 0
3 681 566 530 783 394 559 665 658 1,545 0 0 0 0
4 566 647 783 423 559 665 658 1,545 0 0 0
5 647 783 423 559 665 658 1,545 0 0
6 783 423 559 665 658 1,545 0 0
7 423 559 665 658 1,545 0 0
8 559 665 658 1,545 0 0
9 665 658 1,545 0
10 658 1,545 0
11 1,545 0

0.4

1 591 923 775 776 455 809 437 622 620 669 1,535 24 0 12 25
2 923 870 806 455 809 437 622 620 669 1,536 24 0 0 0
3 869 833 467 809 447 622 620 669 1,536 0 0 0 0
4 839 467 809 447 622 620 669 1,536 0 0 0
5 467 809 447 622 620 669 1,536 0 0
6 809 447 622 620 669 1,536 0 0
7 0 447 622 620 669 1,536 0 0
8 622 620 669 1,536 0
9 620 669 1,536 0
10 669 1,536 0
11 1,536 0

0.8

1 571 878 818 916 586 717 402 700 586 684 1,544 0 0 0 0
2 878 818 916 586 717 402 700 586 684 1,544 0 0 0 0
3 818 949 614 717 402 700 586 684 1,544 0 0 0 21
4 949 614 717 402 700 586 684 1,544 10 0 10
5 614 717 402 700 586 684 1,544 0 10
6 717 402 700 586 684 1,544 0 10
7 402 700 586 684 1,544 0 10
8 700 586 684 1,544 10
9 586 684 1,544 10
10 684 1,544 10
11 1,544 10

1.0

1 570 840 868 1,085 710 623 481 648 677 642 1,545 0 0 0 0
2 840 868 1,085 710 623 481 648 677 642 1,545 0 0 0 0
3 868 1,085 710 623 481 648 677 642 1,545 0 0 0 0
4 1,085 710 623 481 648 677 642 1,545 0 0 0
5 710 623 481 648 677 642 1,545 0 0
6 623 481 648 677 642 1,545 0 0
7 481 648 677 642 1,545 0 0
8 648 677 642 1,545 0 0
9 677 642 1,545 0
10 642 1,545 0
11 1,545 0

4.3.3. Cost components analysis

Table 9 shows the average deviation of the realized cost (RC) with respect to the a priori cost

(AC) obtained in the a priori phase. The deviations are calculated as 100⇥ (RC – AC)
AC where RC

is the total cost, including routing, bumping cost, and the expedited delivery costs obtained at
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the end of the planning horizon. Table 9 provides averages over all instances and for each length

T of the planning horizon. The averages are presented for the four availability scenarios and

four ✓ values. The shade of the cell colors indicates the degree of deviation between the a priori

and the realized costs: the darker the shade, the higher the percentage of this deviation. As can

be observed from the table, irrespective of the bumping cost, a pessimistic approach leads to

close to zero deviations. Basically, under this approach, the total cost paid is always the same

as the estimated cost in the a priori phase. This stability, of course, comes at a cost. It also

should be noted that, interestingly, the results show that the highest deviations in the initial

plans are observed for the cases with ✓ = 0.4; in these plans the main source of the deviation is

the bumping costs paid for moving deliveries to other days.

Table 9: Average percentage increase of the realized cost value to the a priori cost

Low bumping High bumping

T Scenario\✓ 0.0 0.4 0.8 1.0 0.0 0.4 0.8 1.0

5

LG 3.34 0.04 0.04 0.04 5.82 0.04 0.04 0.04
LS 3.73 0.27 0.48 0.04 6.57 0.27 1.60 0.04
HA 49.83 57.75 0.56 0.04 5.94 200.10 0.56 0.04
HS 2.57 64.73 1.78 0.04 5.00 230.12 3.97 0.04

8

LG 5.45 0.06 0.06 0.06 108.78 0.25 0.06 0.06
LS 7.63 0.71 0.06 0.06 25.83 2.60 0.06 0.06
HA 7.65 57.75 2.26 0.06 28.78 200.10 7.76 0.06
HS 7.64 38.80 4.34 0.43 25.78 139.76 15.20 0.03

10

LG 0.83 0.06 0.06 0.06 2.96 0.06 0.06 0.06
LS 0.83 0.06 0.06 0.06 3.28 0.09 0.06 0.06
HA 0.78 20.21 0.07 0.06 2.89 69.54 0.07 0.07
HS 0.83 33.45 2.56 0.06 2.94 113.49 6.53 0.06

12

LG 7.49 0.06 0.06 0.06 22.33 0.06 0.06 0.06
LS 7.49 0.06 0.06 0.06 22.33 0.06 0.06 0.06
HA 7.49 19.74 5.36 0.06 22.33 55.63 15.65 0.06
HS 7.49 59.20 4.53 0.06 22.33 206.55 9.78 0.06

For each scenario and each value of ✓, Tables 10 and 11 show the distribution of the routing,

the bumping cost, and the expedited delivery cost. As before, the table is organized for each

planning horizon, with respect to the four availability scenarios and four values for ✓. Generally,

the main contributor to the total cost is the routing cost. However, depending on the scenario

and the risk threshold, the proportions change. When the supplier is an optimist, the routing,

bumping, and expedited delivery costs are the main contributors. The highest proportion of

the bumping cost is paid for ✓ = 0.4 and scenario HS. These tables confirm that a pessimistic

supplier (✓ = 1.0) obtains more stable solutions which come at the expense of more costly
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expedited deliveries.

Table 10: Final cost components distribution (averages over all instances with low bumping cost)

Routing Bumping Expedited Routing Bumping Expedited Routing Bumping Expedited Routing Bumping Expedited
T Scenario\✓ 0.0 0.4 0.8 1.0

5

LG 98.23% 0.85% 0.92% 80.91% 0.00% 19.09% 80.91% 0.00% 19.09% 80.91% 0.00% 19.09%
LS 98.23% 0.85% 0.92% 99.79% 0.00% 0.21% 90.82% 0.36% 8.82% 80.91% 0.00% 19.09%
HA 91.11% 7.97% 0.92% 71.38% 27.55% 1.07% 98.08% 0.00% 1.92% 80.91% 0.00% 19.09%
HS 98.23% 0.85% 0.92% 67.96% 31.01% 1.03% 98.61% 1.13% 0.26% 81.38% 0.00% 18.62%

8

LG 91.19% 8.81% 0.00% 100.00% 0.00% 0.00% 99.99% 0.00% 0.01% 99.99% 0.00% 0.01%
LS 90.74% 9.26% 0.00% 99.55% 0.45% 0.00% 100.00% 0.00% 0.00% 99.99% 0.00% 0.01%
HA 90.22% 9.78% 0.00% 70.70% 28.85% 0.45% 98.76% 1.24% 0.00% 99.99% 0.00% 0.01%
HS 90.25% 9.75% 0.00% 73.96% 26.02% 0.02% 97.19% 2.80% 0.01% 99.99% 0.00% 0.01%

10

LG 83.75% 16.25% 0.00% 99.95% 0.00% 0.05% 99.95% 0.00% 0.05% 99.95% 0.00% 0.05%
LS 87.86% 12.14% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 99.95% 0.00% 0.05%
HA 88.07% 11.93% 0.00% 80.84% 18.89% 0.27% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
HS 88.01% 11.99% 0.00% 76.63% 23.21% 0.15% 99.14% 0.86% 0.00% 100.00% 0.00% 0.00%

12

LG 92.14% 7.86% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
LS 92.10% 7.90% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
HA 91.91% 8.09% 0.00% 83.54% 16.46% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
HS 96.35% 3.65% 0.00% 67.62% 32.38% 0.00% 84.88% 15.12% 0.00% 100.00% 0.00% 0.00%

Average 91.77% 8.00% 0.23% 85.80% 12.80% 1.40% 96.77% 1.34% 1.89% 95.25% 0.00% 4.75%

Table 11: Realized cost components distribution (averages over all instances with high bumping cost)

Routing Bumping Expedited Routing Bumping Expedited Routing Bumping Expedited Routing Bumping Expedited
T Scenario\✓ 0.0 0.4 0.8 1.0

5

LG 96.37% 2.71% 0.92% 80.91% 0.00% 19.09% 80.91% 0.00% 19.09% 80.91% 0.00% 19.09%
LS 98.11% 0.00% 1.89% 99.79% 0.00% 0.21% 86.80% 1.28% 11.92% 80.91% 0.00% 19.09%
HA 96.37% 2.71% 0.92% 44.02% 53.65% 2.33% 98.08% 0.00% 1.92% 80.91% 0.00% 19.09%
HS 96.37% 2.71% 0.92% 41.79% 56.41% 1.80% 97.14% 1.91% 0.95% 81.38% 0.00% 18.62%

8

LG 75.84% 24.16% 0.00% 99.99% 0.00% 0.01% 99.99% 0.00% 0.01% 99.99% 0.00% 0.01%
LS 81.17% 18.83% 0.00% 98.40% 1.60% 0.00% 99.83% 0.00% 0.17% 99.99% 0.00% 0.01%
HA 81.01% 18.99% 0.00% 44.48% 54.79% 0.73% 95.01% 4.98% 0.01% 99.99% 0.00% 0.01%
HS 80.81% 19.19% 0.00% 46.97% 53.01% 0.01% 91.38% 8.61% 0.01% 99.82% 0.00% 0.18%

10

LG 82.71% 17.29% 0.00% 100.00% 0.00% 0.00% 99.94% 0.00% 0.06% 99.94% 0.00% 0.06%
LS 82.67% 17.33% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 99.94% 0.00% 0.06%
HA 72.22% 27.78% 0.00% 60.74% 39.07% 0.19% 99.34% 0.66% 0.00% 100.00% 0.00% 0.00%
HS 80.38% 19.62% 0.00% 70.92% 28.45% 0.63% 96.70% 3.30% 0.00% 100.00% 0.00% 0.00%

12

LG 76.17% 23.83% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
LS 82.02% 17.98% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
HA 75.53% 24.47% 0.00% 66.47% 33.53% 0.00% 91.24% 8.45% 0.31% 100.00% 0.00% 0.00%
HS 83.26% 16.74% 0.00% 40.50% 59.50% 0.00% 94.12% 5.04% 0.84% 100.00% 0.00% 0.00%

Average 83.81% 15.90% 0.29% 74.69% 23.75% 1.56% 95.65% 2.14% 2.21% 95.24% 0.00% 4.76%

4.4. Analysis of the bumping costs

Finally, we provide a general overview of the impact of the bumping cost. In Figure 2, we

present four figures, each representing the length of the planning horizon. Using average values

over all instances and for all scenarios, we compare the cost obtained in the a priori phase

and reoptimizations with low and high bumping costs. As shown in this figure, a pessimistic
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approach is more costly, but as there is almost no need to change the plans by the end of the

planning horizon, these decisions always yield the same cost. However, a risk seeking approach

yields a lower a priori cost but due to more deviations from the initial plans, the final cost is

higher.

(a) Five days (b) Eight days

(c) 10 days (d) 12 days

Figure 2: Comparing the average costs from a priori, high and low bumping cases

5. Conclusions

We have introduced and modeled a dynamic routing problem with due dates and stochastic

release dates (DRPDSR) in which deliveries may occur between release and due dates. The

dynamism comes from the fact that customers place their orders over time. The stochasticity

in the DRPDSR stems from product supply availability which is not known in advance.

To deal with uncertainty, we have introduced a binary parameter that combines stochastic

information about the products’ availability with the supplier’s risk aversion level. To our

knowledge, this notion is new in the context of stochastic vehicle routing. It enabled us to
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formulate the DRPDRS as a deterministic-equivalent a priori mathematical program which is

solved on the first day of the planning horizon and its solution is iteratively updated every

remaining day of the planning horizon by solving a recourse model. Since it is probable that not

all expectations and plans for the future are realized, the goal of the recourse is to adapt the

a priori plans to the changes so as to yield the least cost solution. We have proposed an exact

branch-and-cut algorithm for this problem.

In extensive computational experiments, we have isolated the e↵ect of bumping costs, risk aver-

sion levels, and several shapes of the realization curves of the unknown product availability. The

results show how di↵erent combinations of availability curve scenarios and risk aversion levels

result in a di↵erent total cost. We have shown how a pessimistic supplier obtains more stable

a priori solutions but more costly plans. Moreover, di↵erent risk aversion levels can lead to

less costly operations, which come at the expense of more changes as new information becomes

available.
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Appendix A. Detailed results from the a priori phase

First, we categorize in Table A.12 the instances and the results based on the thresholds, and

then the results categorized based on scenarios are provided in Table A.13. The results for two

sets of instances are shown in separate columns, and for each of them, the upper bound (UB),
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Table A.12: Average a priori results over all scenarios

Instance set I Instance set II
Products Customers ✓ UB LB Gap (%) Time (s) UB LB Gap (%) Time (s)

F
iv
e
p
la
n
n
in
g
d
ay
s

15 10

0.0

4,162.05 4,162.05 0.00 0 3,498.01 3,498.01 0.00 0
25 20 4,541.29 4,541.29 0.00 1 5,242.17 5,242.17 0.00 2
55 50 7,018.69 7,018.69 0.00 728 6,568.70 6,568.70 0.00 559
65 60 7,243.87 7,204.17 0.55 16,929 7,354.96 7,354.86 0.00 3,836
85 80 8,167.79 8,135.00 0.40 17,378 11,356.35 8,332.49 21.55 18,002
15 10

0.4

5,127.04 5,127.04 0.00 0 3,780.24 3,780.24 0.00 0
25 20 4,889.27 4,889.27 0.00 1 5,693.15 5,693.02 0.00 1
55 50 8,108.66 8,108.48 0.00 298 9,139.75 9,139.72 0.00 166
65 60 8,280.65 8,269.66 0.15 6,756 10,337.76 10,337.19 0.00 2,642
85 80 9,175.01 9,175.00 0.00 2,686 9,774.39 9,503.67 2.96 13,538
15 10

0.8

5,740.04 5,740.04 0.00 0 4,015.23 4,015.23 0.00 0
25 20 4,944.07 4,944.07 0.00 0 5,919.89 5,919.89 0.00 1
55 50 9,078.18 9,078.10 0.00 215 11,015.52 11,015.32 0.00 329
65 60 8,843.38 8,843.38 0.00 833 12,241.61 12,238.11 0.02 5,901
85 80 9,629.30 9,629.30 0.00 82 10,229.79 10,208.01 0.22 9,073
15 10

1.0

7,480.10 7,480.10 0.00 0 4,028.98 4,028.98 0.00 0
25 20 5,048.33 5,048.33 0.00 1 6,043.10 6,043.10 0.00 0
55 50 10,066.60 10,066.60 0.00 4 15,404.90 15,404.90 0.00 8
65 60 10,188.90 10,188.90 0.00 7 18,032.30 18,030.60 0.01 3,549
85 80 10,905.28 10,905.28 0.00 27 11,092.13 11,091.23 0.01 143

E
ig
ht

p
la
n
n
in
g
d
ay
s

15 10

0.0

5,879.06 5,879.06 0.00 3 6,400.41 6,400.41 0.00 1
25 20 7,580.09 7,580.09 0.00 25 5,950.35 5,950.35 0.00 17
55 50 9,236.29 9,145.59 0.98 18,001 10,875.40 10,524.75 3.13 15,971
65 60 10,831.50 10,489.60 3.16 18,003 11,143.85 10,751.58 3.52 18,001
15 10

0.4

6,120.95 6,120.95 0.00 1 6,855.87 6,855.87 0.00 1
25 20 7,872.35 7,872.35 0.00 8 6,262.96 6,262.96 0.00 9
55 50 10,096.20 10,081.41 0.16 10,209 11,506.15 11,368.75 1.17 14,350
65 60 11,721.40 11,607.70 1.02 12,204 12,215.85 11,934.58 2.36 18,002
15 10

0.8

6,315.15 6,315.15 0.00 1 7,064.11 7,064.11 0.00 1
25 20 8,152.34 8,152.34 0.00 3 6,505.95 6,505.95 0.00 4
55 50 10,515.60 10,515.58 0.00 2,389 12,363.78 12,242.23 0.99 11,18
65 60 12,369.55 12,343.80 0.21 11,001 12,816.13 12,654.98 1.27 15,927
15 10

1.0

6,411.88 6,411.88 0.00 1 7,118.85 7,118.85 0.00 0
25 20 8,289.32 8,289.29 0.00 2 6,691.55 6,691.55 0.00 1
55 50 10,943.10 10,943.10 0.00 541 12,532.90 12,532.90 0.00 1,381
65 60 12,718.70 12,717.70 0.01 5,526 13,706.08 13,234.93 3.31 18,002

10
p
la
n
n
in
g
d
ay
s

15 10
0.0

6,640.21 6,640.21 0.00 3 6,300.08 6,300.05 0.00 4
25 20 9,685.58 9,685.58 0.00 81 8,561.02 8,561.02 0.00 78
55 50 11,159.50 10,689.18 4.18 18,002 11,917.60 11,917.60 0.00 11,461
15 10

0.4
7,031.60 7,031.60 0.00 1 6,488.42 6,488.42 0.00 2

25 20 10,441.13 10,441.13 0.00 18 8,994.19 8,994.19 0.00 32
55 50 12,135.85 12,000.15 1.10 17,977 12,516.45 12,516.45 0.00 3,380
15 10

0.8
7,177.16 7,177.16 0.00 1 6,549.94 6,549.94 0.00 1

25 20 11,000.73 11,000.73 0.00 19 9,276.72 9,276.61 0.00 14
55 50 12,546.05 12,470.03 0.63 16,694 13,129.65 13,129.20 0.00 3,294
15 10

1.0
7,518.07 7,518.07 0.00 1 6,633.23 6,633.23 0.00 2

25 20 11,152.70 11,152.70 0.00 12 9,719.83 9,719.83 0.00 9
55 50 13,047.35 13,032.08 0.12 17,484 13,510.40 13,510.40 0.00 3,134

12
p
la
n
n
in
g
d
ay
s

15 10
0.0

6,915.02 6,915.02 0.00 4 6,454.30 6,454.30 0.00 11
25 20 8,866.04 8,866.04 0.00 238 7,965.15 7,965.09 0.00 176
15 10

0.4
7,383.22 7,383.22 0.00 5 6,662.10 6,662.10 0.00 5

25 20 9,565.69 9,565.69 0.00 94 8,733.98 8,733.98 0.00 115
15 10

0.8
7,470.90 7,470.90 0.00 4 6,866.38 6,866.38 0.00 4

25 20 9,935.22 9,935.22 0.00 90 9,307.53 9,307.53 0.00 26
15 10

1.0
7,722.92 7,722.92 0.00 6 7,077.21 7,077.21 0.00 1

25 20 10,492.00 10,492.00 0.00 87 9,432.27 9,432.27 0.00 30
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lower bound (LB), the percentage of the gap (Gap), and the execution time (Time in seconds)

are presented.

The results for scenarios (averaged over di↵erent values of ✓), presented in Table A.13, indicate

that scenarios LS and HS are the most di�cult ones for most instances, followed by scenario

HA. Recall that in these two scenarios, the product availability starts with a higher probability

(interval [0.40, 0.50] for scenarios HA and HS, as opposed to [0.05, 0.10] for scenarios LG and LS),

meaning that more routing decisions can be made earlier in the planning horizon. In scenarios

LG and LS, more deliveries are planned for the later days, when distribution capacity becomes

limited and recourse to expedited delivery is more frequently used.
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Table A.13: Average a priori results over all thresholds

Instance set I Instance set II
Products Customers Scenario UB LB Gap (%) Time (s) UB LB Gap (%) Time (s)

F
iv
e
p
la
n
n
in
g
d
ay
s

15 10

LG 6,650.59 6,650.59 0.00 0 3,896.24 3,896.24 0.00 0
LS 5,467.04 5,467.04 0.00 0 3,896.23 3,896.23 0.00 0
HA 5,355.79 5,355.79 0.00 0 3,767.24 3,767.24 0.00 0
HS 5,035.80 5,035.80 0.00 0 3,762.75 3,762.75 0.00 0

25 20

LG 4,921.57 4,921.57 0.00 1 5,842.87 5,842.87 0.00 1
LS 4,921.57 4,921.57 0.00 1 5,780.38 5,780.25 0.00 1
HA 4,784.28 4,784.28 0.00 1 5,634.66 5,634.66 0.00 2
HS 4,795.54 4,795.54 0.00 1 5,640.41 5,640.41 0.00 1

55 50

LG 9,304.62 9,304.62 0.00 110 13,195.85 13,195.85 0.00 118
LS 8,752.39 8,752.21 0.00 317 10,813.51 10,813.42 0.00 259
HA 8,056.66 8,056.66 0.00 197 9,087.50 9,087.34 0.00 492
HS 8,158.46 8,158.38 0.00 622 9,032.03 9,032.03 0.00 193

65 60

LG 9,452.64 9,445.18 0.10 4,507 15,362.97 15,361.62 0.01 4,603
LS 8,655.59 8,655.59 0.00 3,513 12,194.56 12,190.99 0.02 6,298
HA 8,206.19 8,180.92 0.35 6,766 10,195.76 10,195.30 0.00 2,193
HS 8,242.38 8,224.42 0.24 9,738 10,213.33 10,212.86 0.00 3,063

85 80

LG 10,291.74 10,291.74 0.00 3,895 10,517.39 10,415.24 1.16 4,581
LS 9,530.07 9,519.90 0.12 5,130 10,253.23 9,893.20 3.68 9,061
HA 9,071.28 9,064.93 0.08 5,249 9,731.90 9,425.90 3.37 13,524
HS 8,984.04 8,973.17 0.13 5,878 9,718.90 9,433.55 3.15 11,864

E
ig
ht

p
la
n
n
in
g
d
ay
s

15 10

LG 6,278.68 6,278.68 0.00 1 6,963.61 6,963.61 0.00 0
LS 6,181.94 6,181.94 0.00 1 6,931.12 6,931.12 0.00 0
HA 6,070.48 6,070.48 0.00 2 6,739.88 6,739.88 0.00 1
HS 6,195.94 6,195.94 0.00 2 6,804.63 6,804.63 0.00 1

25 20

LG 8,113.33 8,113.33 0.00 7 6,506.25 6,506.25 0.00 5
LS 7,983.31 7,983.31 0.00 8 6,373.45 6,373.45 0.00 8
HA 7,847.60 7,847.57 0.00 11 6,232.19 6,232.19 0.00 6
HS 7,949.86 7,949.86 0.00 12 6,298.93 6,298.93 0.00 11

55 50

LG 10,515.90 10,504.72 0.12 4,945 11,997.93 11,997.63 0.00 4,698
LS 10,335.16 10,317.64 0.19 6,609 12,059.35 11,835.85 1.95 11,102
HA 9,962.45 9,921.47 0.44 10,150 11,488.93 11,445.73 0.36 13,267
HS 9,977.68 9,941.86 0.39 9,437 11,732.03 11,389.43 2.99 13,814

65 60

LG 12,205.88 12,139.20 0.61 8,029 12,849.80 12,610.38 1.95 18,001
LS 12,046.90 11,965.18 0.75 10,768 12,492.65 12,341.25 1.26 15,924
HA 11,683.55 11,573.90 1.00 13,062 12,132.13 11,780.63 2.99 18,002
HS 11,687.25 11,500.10 1.68 14,823 12,406.58 11,844.98 4.24 18,004

10
p
la
n
n
in
g
d
ay
s

15 10

LG 7,247.12 7,247.12 0.00 2 6,549.94 6,549.92 0.00 3
LS 7,137.63 7,137.63 0.00 2 6,540.94 6,540.94 0.00 2
HA 7,003.65 7,003.65 0.00 2 6,497.43 6,497.43 0.00 2
HS 6,978.64 6,978.64 0.00 2 6,383.37 6,383.37 0.00 3

25 20

LG 10,812.02 10,812.02 0.00 19 9,430.13 9,430.13 0.00 22
LS 10,736.27 10,736.27 0.00 21 9,180.20 9,180.20 0.00 20
HA 10,401.49 10,401.49 0.00 41 9,026.96 9,026.85 0.00 35
HS 10,330.35 10,330.35 0.00 56 8,914.47 8,914.47 0.00 61

55 50

LG 12,541.63 12,466.45 0.68 15,507 13,048.93 13,048.93 0.00 4,341
LS 12,485.20 12,384.60 0.89 15,678 12,951.98 12,951.80 0.00 5,191
HA 11,841.45 11,650.33 1.68 16,575 12,527.95 12,527.95 0.00 6,102
HS 11,874.45 11,731.90 1.27 16,574 12,545.25 12,544.98 0.00 6,488

12
p
la
n
n
in
g
d
ay
s

15 10

LG 7520.95 7520.95 0.00 5 6899.96 6899.96 0.00 3
LS 7488.20 7488.20 0.00 5 6835.31 6835.31 0.00 3
HA 7259.22 7259.22 0.00 4 6644.61 6644.61 0.00 6
HS 7223.69 7223.69 0.00 4 6680.11 6680.11 0.00 7

25 20

LG 10031.26 10031.26 0.00 82 9065.47 9065.47 0.00 67
LS 9965.94 9965.94 0.00 95 8993.74 8993.74 0.00 49
HA 9465.44 9465.44 0.00 143 8755.23 8755.17 0.00 88
HS 9396.31 9396.31 0.00 140 8624.49 8624.49 0.00 118
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