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Abstract. In this paper, we consider routing problems with identical vehicles. In their 
standard formulations, decision variables (such as the routing decisions and delivery 
quantities) often have a vehicle index present. For such formulations, alternative solutions 
exist since the vehicles are identical, and routes can be assigned to different vehicles 
without changing the objective function value. The existence of these symmetrical solutions 
causes duplication in the branch-and-bound tree and leads to long computing time. To date, 
some symmetry breaking constraints have been proposed to deal with this issue. However, 
to the best of our knowledge, no direct comparison among them has been performed yet. 
In this paper, besides comparing these symmetry breaking constraints, we propose new 
constraints and ways for formulating routing problems. Moreover, in order to better exploit 
each of the formulations, we propose and test several input ordering techniques. We 
analyze all these on a multi-vehicle inventory routing problem and present and discuss 
detailed and extensive computational experiments.  Our experiments show that the best 
method to break symmetry is to give an order to the customers. Even after combining this 
method with other symmetry breaking constraints, it remains the most dominant one. Our 
results also demonstrate the interdependence between symmetry breaking and input 
ordering techniques.   
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1. Introduction

The e↵ectiveness of solving combinatorial optimization problems using a branch-and-bound/cut

(B&B/C) algorithm relies mainly on the structure of its mathematical formulation. Therefore,

the formulation not only needs to be mathematically correct but also it has to be good (Sherali

and Driscoll, 2000). Good formulations are known to encompass two important characteristics:

they are tight and free from solution symmetry (Sherali and Smith, 2001). In branching tech-

niques, a relaxed version of the problem is solved iteratively, and the search space is explored

(Barnhart et al., 1993). Therefore, by tightening the constraints, fewer subproblems need to

be solved (integrality is achieved faster), and by breaking the symmetries visiting equivalent

solutions can be avoided. Once applied, both of these techniques result in faster computa-

tion and dramatically better performance. Most of the research focus, however, has been on

tightening the formulation rather than breaking the symmetry (Sherali and Smith, 2001). A

problem is called symmetric if by changing its variables, the structure of the problem does not

alter (Margot, 2010). Several research communities have studied various techniques for dealing

with symmetric problems, yielding similar approaches (Puget, 2005). These techniques can be

applied to variables, values, or both (Walsh, 2006). Additionally, input ordering strategies are

proven to be e↵ective in symmetry breaking (Jans and Desrosiers, 2013; Coelho and Laporte,

2014; Aziez et al., 2020).

In this paper, we focus on the symmetry that is present in vehicle routing problems with

multiple identical vehicles. The Vehicle Routing Problem (VRP) is one of the most studied

problems in combinatorial optimization. In its classical version, originating from a depot, a

set of vehicles with a limited capacity distribute a single product to several customers and

return to the depot. The demand for each customer must be met while the (routing) cost

needs to be minimized. Standard formulations for the VRP, in which customers and routes are

assigned to specific vehicles, give rise to many alternative solutions with the same total cost.

For any given solution, we can indeed permute the vehicles to obtain an equivalent solution

with exactly the same value for the objective function. The alternative optimal solutions
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cannot be pruned merely based on the obtained dual bound. In the absence of some form of

symmetry breaking, each path to an alternative optimal solution has to be explored until a

feasible solution is obtained. Depending on the bounds, a number of paths to alternative but

equivalent non-optimal solutions might also have to be explored. The presence of symmetry in

these problems causes, hence, much duplication in the B&B search, which consequently slows

down the solution process. The inherent symmetry makes such problems extremely di�cult, if

not downright impossible, to be solved to optimality in a reasonable time using integer linear

program (ILP) solvers.

An extension of the VRP is the Inventory-Routing Problem (IRP), where the quantities de-

livered to customers over time are also decision variables. In the IRP, as the name suggests,

the goal is to optimize the integration of inventory and routing decisions. To date, several

symmetry breaking constraints are proposed in the VRP/IRP literature. However, to the best

of our knowledge, no direct comparison among di↵erent symmetry breaking constraints has yet

been yet performed. This paper aims to provide such comparisons as a guideline for symmetry

breaking in the integrated routing problems. In this paper, our approach to break symmetry is

to change the a priori formulation. This can be done in two di↵erent ways. The first one is to

add symmetry breaking constraints (SBC) to the original formulation while the second one is

to reformulate the problem using new decision variables so that the new formulation no longer

allows symmetric solutions.

The contributions of this paper are as follows. Given the limited number of symmetry breaking

constraints presented for multi-vehicle routing problems and the fact that no direct compari-

son has been yet performed to evaluate the relative e↵ectiveness of these constraints, our first

contribution is to propose several new SBCs and compare them in a computational experi-

ment against the already existing ones. Besides comparing several existing symmetry breaking

techniques from the literature, we propose new techniques and a new formulation for IRPs.

Moreover, in order to better exploit each of the formulations, we propose and test several in-

put ordering techniques. We analyze all these for a multi-vehicle IRP and present and discuss
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detailed and extensive computational experiments.

The remainder of this paper is organized as follows. In Section 2, we provide a review of the

related literature. In Section 3, we present the formal description and mathematical formulation

of the problem. We consider several symmetry breaking techniques that are elaborated in

Section 4. We present our extensive computational results along with elaborate sensitivity

analyses and discussions of the results in Section 5. Finally, conclusions are drawn in Section

6.

2. Literature review

In the last decade, growing attention has been observed in the Mixed Integer Programming

(MIP) community on how to handle the symmetry issue. Plastria (2002), Puget (2005), and

Margot (2010) provide a detailed overview of several techniques for symmetry breaking.

Notably, the literature on symmetry breaking suggests that the input parameters’ order can

have a significant e↵ect on computational performance (Jans and Desrosiers, 2013). This has

been confirmed for the multi-vehicle routing problem in the experiments of Coelho and Laporte

(2014). They test three specific orderings against a random one. The results indicate that

ordering the customers based on either the highest demand or on the highest distance yields

improved results. Nevertheless, most attempts in the literature focus on applying symmetry

breaking techniques.

Generally, one can classify these symmetry breaking approaches into two broad categories.

The first category is to change the formulation, so that (some of) the alternative solutions are

excluded, and then the new formulation is solved using a standard B&B-based solver. The

second one is to exploit an algorithm, so that symmetry is detected and dealt with during the

B&B process. In this section, we review research on symmetry breaking techniques first and

then draw particular attention to the papers on symmetry breaking for routing problems.
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2.1. Problem reformulation

As the name suggests, the main idea here is to reformulate the problem by adding several SBCs.

The reformation results in some symmetric solutions to become infeasible (Costa et al., 2013).

Therefore, either symmetry breaking inequalities need to be added to the model to reduce the

number of possibilities for di↵erent solutions or, the original problem has to be reformulated

so that it becomes asymmetric.

2.1.1. Symmetry breaking constraints

In many cases, the symmetry inherent in a formulation can be reduced by a priori fixing some

variables. Such a variable reduction technique has been applied for many di↵erent problems,

such as partitioning problems (Caprara, 1998), the problem of scheduling a doubles tennis

tournament (Ghoniem and Sherali, 2010), grouping objects in identical clusters (Sherali and

Desai, 2005; Denton et al., 2010), job grouping (Jans and Desrosiers, 2013), and the safe set

and connected safe set problems (Hosteins, 2020).

Another popular approach for adding SBCs is to impose a hierarchy. The symmetry can be

caused by permuting the identical objects. Therefore, to break symmetry, one can impose an

increasing or decreasing order according to some specific rules. There are several applications

for this technique, such as in the area of telecommunication network design (Sherali et al., 2000),

process scheduling problems (Mouret et al., 2011), temporal bin packing problem (De Cauwer

et al., 2016), an integrated process configuration, lot-sizing, and scheduling problem (Mart́ınez

et al., 2019), stochastic edge partition problem (Taşkın et al., 2009), blockmodelling (Proll,

2007), minimizing the total treatment time in cancer radiotherapy (Wake et al., 2009), a com-

bined lot sizing and scheduling problem (Kim et al., 2010), among others. In some papers,

a lexicographic order is considered (e.g., (Jans, 2009; Liberti and Ostrowski, 2014; Bendotti

et al., 2020)).

In most studies, It should be noted that a combination of variable reduction and order imposing

is considered, e.g., in Hosteins (2020) and Sherali and Desai (2005); Vo-Thanh et al. (2018).
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Another technique that has been proposed in the literature to deal with symmetry is objec-

tive perturbation (Ghoniem and Sherali, 2011). This technique is used in conjunction with

hierarchical symmetry breaking constraints, a priori added to the formulation.

For the routing problem, Coelho and Laporte (2013a) propose symmetry breaking constraints

for the multi-vehicle IRP, which impose a hierarchy on the vehicles. Adulyasak et al. (2014)

use some other symmetry breaking constraints imposing a lexicographic ordering, as also done

in Jans and Desrosiers (2010).

2.1.2. Asymmetric representatives formulation

The asymmetric representatives formulation (ARF) is another technique for breaking the sym-

metry. As the name suggests, instead of using the original formulation, a new formulation free

from symmetry is proposed. The ARF is first introduced by Campêlo et al. (2008) for the

node coloring problem. Melo and Ribeiro (2015) use the ARF for the freight consolidation and

containerization problem, and Jans and Desrosiers (2013) apply it to the job grouping problem.

In Braga et al. (2017), it is proposed to solve a minimum chromatic violation problem. In order

to find an optimal orthogonal blocking pattern for an orthogonal design, Vo-Thanh et al. (2018)

also use the ARF. Jans and Desrosiers (2010) indicate that the ARF idea can also be applied

to multi-vehicle routing problems, and it has provided excellent results in its application to the

multi-pickup and delivery problem with time windows (Aziez et al., 2020).

2.2. Algorithmic symmetry breaking

Another stream of research focuses on detecting and dealing with the symmetry issue in the

solution algorithm. Modern MIP solvers are already equipped with these strategies. Although

not well documented, techniques such as orbital fixing (Pfetsch and Rehn, 2019) are used to

solve NP-hard problems. As this is not the focus of our approach, we only provide some brief

references.
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Margot (2002) proposes algorithms for isomorphism pruning and variable fixing, which can

be used when the symmetry group is (partially) known and part of the input. Isomorphism

pruning is also used to solve the football pool problem (Linderoth et al., 2009).

An alternative method is the orbital branching method proposed by Ostrowski et al. (2011).

Research related to this latter approach includes the works on orbital branching (Ostrowski

et al., 2011, 2015), orbitopal fixing (Kaibel et al., 2007), orbital independence (Dias and Liberti,

2019), and an isomorphism pruning algorithm and variable setting procedures using orbits of

the symmetry group (Margot, 2003), and subtree splitting strategy (Fidalgo et al., 2018).

Interested readers are referred to Pfetsch and Rehn (2019) for a computational performance

comparison of several of these algorithms.

2.3. Positioning of this paper

Currently, it is not clear which of the proposed approaches is the best. Therefore, the ultimate

goal of this paper is to compare the e↵ectiveness of various SBCs and reformulations for multi-

vehicle routing problems in a comprehensive computational experiment. We test the symmetry

breaking constraints used in Coelho and Laporte (2013a), and Adulyasak et al. (2014), as well

as the reformulation, suggested in Jans and Desrosiers (2010). Besides, we propose various

other new symmetry breaking constraints. In a first experiment, nine di↵erent SBCs and all

their combinations are tested on the data set from Archetti et al. (2007). Recent research (Jans

and Desrosiers, 2010, 2013; Coelho and Laporte, 2013a) indicates that the input parameters’

order can impact the computational performance of symmetry breaking constraints. We assess,

in the second set of computational experiments, the impact of several input ordering strategies.

In addition to the three strategies proposed by Coelho and Laporte (2014), we develop and test

several new strategies.
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3. Description of the Problem and Mathematical Formulation

We consider a multi-vehicle IRP with a single product and symmetric routing costs, as described

by Coelho and Laporte (2013a). We define an undirected graph G = (V , E), where V =

{0, . . . , n} is the vertex set and E = {(i, j) : i, j 2 V , i < j} is the edge set. The supplier is

indicated by vertex 0, while the n customers are represented by the set of remaining vertices

V 0 = V \{0}. The problem is defined over a planning horizon with length p, and T is the set

of all periods. For each customer i and period t, the demand dti is known. In this problem, we

consider two di↵erent types of costs. First, a routing cost cij is incurred if a vehicle travels on

the edge (i, j) 2 E . Second, an inventory holding cost hi has to be paid for each unit of product

that remains in inventory at the end of a period either at the plant (i = 0), or at one of the

customers (i 2 V 0). The quantity of inventory held at each customer i is limited by Ci. For each

period t 2 T , rt represents the amount of the product newly made available at the supplier

(e.g., through predetermined production or delivery). This amount is a known parameter. No

backlogging is allowed, and we assume that the supplier has su�cient inventory to meet the

demand of all customers in each period. There might be some initial inventory available at the

beginning of the planning horizon, either at customers or at the supplier. This initial inventory

level is represented by the parameter I0i (i 2 V). We further assume zero leadtimes, i.e., a

demand in period t can be satisfied by the quantity rt. A set K = {1, . . . , K} of identical

vehicles is available to perform the routes from the suppliers to a subset of customers. Each

vehicle k has a capacity Q, and can perform at most one route per period.

Moreover, we define the following decision variables. The routing variables xkt
ij indicate the

number of times edge (i, j) is used by vehicle k in period t. The binary variables ykti are equal

to one if and only if vertex i is visited by vehicle k in period t. The variables I ti represent

the inventory level at vertex i 2 V at the end of period t 2 T . Finally, variables qkti are the

quantity delivered by vehicle k to customer i in period t. The problem can then be formulated
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as follows (Coelho and Laporte, 2013a):

minimize
X

i2V

X

t2T

hiI
t
i +

X

(i,j)2E

X

k2K

X

t2T

cijx
kt
ij , (1)

subject to

I t0 = I t�1
0 + rt �

X

k2K

X

i2V 0

qkti t 2 T (2)

I ti = I t�1
i +

X

k2K

qkti � dti i 2 V 0 t 2 T (3)

I t�1
i +

X

k2K

qkti  Ci i 2 V 0 t 2 T (4)

qkti  Ciy
kt
i i 2 V 0 k 2 K t 2 T (5)

X

i2V 0

qkti  Qykt0 k 2 K t 2 T (6)

X

j2V,i<j

xkt
ij +

X

j2V,j<i

xkt
ji = 2ykti i 2 V k 2 K t 2 T (7)

X

i2S

X

j2S,i<j

xkt
ij 

X

i2S

ykti � yktm S ✓ V 0 k 2 K t 2 T m 2 S (8)

X

k2K

ykti  1 i 2 V 0 t 2 T (9)

I ti , q
kt
j � 0 i 2 V j 2 V 0 k 2 K t 2 T (10)

xkt
0i 2 {0, 1, 2} i 2 V 0 k 2 K t 2 T (11)
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xkt
ij 2 {0, 1} i, j 2 V 0 k 2 K t 2 T (12)

ykti 2 {0, 1} i 2 V k 2 K t 2 T . (13)

The objective function (1) minimizes the inventory and routing costs. Constraints (2) and (3)

are the demand balance equations at the supplier and the customers, respectively. Constraints

(4) impose that the inventory level just after delivery cannot be higher than the maximum

allowed inventory level at each customer. Constraints (5) impose that the quantity delivered to a

customer by a vehicle is zero unless the customer is visited by the vehicle. Constraints (6) impose

the vehicle capacity limit and ensure that the ykt0 variable is one if vehicle k makes any delivery

in period t. Further, we have traditional degree constraints (7) and the subtour elimination

constraints (8). No split deliveries are allowed, as imposed by constraint (9). Constraints

(10)�(13) enforce the appropriate integrality and non-negativity conditions on the variables.

This problem is NP-hard since the vehicle routing problem is a special subcase (Laporte, 2009).

4. Symmetry Breaking and Input Ordering Techniques

As discussed before, an e�cient way to break the existing symmetry in the VRPs is to add

symmetry breaking valid inequalities to the standard formulation presented in Section 3. In

Section 4.1, we introduce the general symmetry breaking techniques used in the VRP literature

and some new constraints and formulation. Then, in Section 4.2, we present and discuss several

input ordering techniques.

4.1. Symmetry Breaking Constraints

4.1.1. Vehicle Constraints (VC)

ykt0  yk�1,t
0 k 2 K\{1} t 2 T . (14)
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Constraints (14) assure that vehicle k is used in a specific period t only if vehicle k � 1 is used

as well (Coelho and Laporte, 2014; Adulyasak et al., 2014).

4.1.2. Variable Reduction (VR)

X

k>i

ykti = 0 i 2 V 0 t 2 T . (15)

Using constraints (15), each customer (if visited) is always assigned to a vehicle with an index

lower than or equal to its own index. Such logic has been used for other problems such as

grouping jobs on identical machines (Jans and Desrosiers, 2013).

4.1.3. Hierarchical constraints Type 1 (HC1)

Coelho and Laporte (2014) used the following constraints in addition to constraints (14), to

impose a hierarchical order on the assignment of customers to vehicles:

ykti 
i�1X

j=1

yk�1,t
j i 2 V 0 k 2 K\{1} t 2 T . (16)

Inspired by Fischetti et al. (1995), constraints (16) ensure that if customer i is served by

vehicle k, then at least one other customer with a smaller index is served by vehicle k � 1.

Similar constraints are also used by Albareda-Sambola et al. (2011) for a capacity and distance

constrained plant location problem.

4.1.4. Hierarchical constraints Type 2 (HC2)

In this method in addition to constraints (14), we have the following constraints.

ykti 
i�1X

j=1

yltj k 2 K\{1} l 2 {1, 2, . . . , k � 1} i 2 {k, k + 1, . . . , n} t 2 T . (17)

These constraints impose that if customer i is served by vehicle k, then each vehicle with an

index smaller than k, must visit a customer with an index lower than i.
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4.1.5. Hierarchical constraints Type 3 (HC3)

In addition to constraints (14) and (16), we have the following constraints.

(k � 1)ykti 
i�1X

j=1

k�1X

l=1

yltj i 2 V 0\{1} k 2 K\{1} t 2 T . (18)

Using these constraints, customers with lower indices always have a priority on vehicles also

with lower indices

4.1.6. Ordering by routing cost (COS)

As the name suggests, this set of constraints breaks the symmetry by ordering the routes based

on their total transportation costs (Adulyasak et al., 2014).

X

(i,j)2E

cijx
k�1,t
ij �

X

(i,j)2E

cijx
kt
ij k 2 K\{1} t 2 T . (19)

4.1.7. Ordering by the quantity delivered per route (QUA)

Another alternative to assigning routes to dispatched vehicles is to order them by their total

quantity delivered (Adulyasak et al., 2014) as presented below.

X

i2V 0

qk�1,t
i �

X

i2V 0

qkti k 2 K\{1} t 2 T . (20)

4.1.8. Ordering by the number of customers per route (CUS)

The routes can also be ordered based on the number of customers they are serving.

X

i2V 0

yk�1,t
i �

X

i2V 0

ykti k 2 K\{1} t 2 T . (21)

4.1.9. Lexicographic ordering (LEX)

The lexicographic ordering constraints with the use of power of two is originally presented in

Jans (2009) for a production planning problem with parallel machines and by Adulyasak et al.
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(2014) for the IRP.

X

i2V

2n�iyk�1,t
i �

X

i2V

2n�iykti k 2 K\{1} t 2 T . (22)

In Table 1, we provide a summary on the SBCs used in the literature.

Table 1: The symmetry breaking constraints used in selected papers

Author (Year) Instance set SBC Solution Algorithm

Alkaabneh et al. (2020) Alkaabneh et al. (2020) VC Benders decomposition

Coelho and Laporte (2013a) Archetti et al. (2007) VC-HC1 Branch and Cut

Coelho and Laporte (2013b) Coelho and Laporte (2013b) VC-HC1 Branch and Cut

Adulyasak et al. (2014) Archetti et al. (2007) - Adapted VC- COS-QUA- LEX Branch and Cut + ALNS

Archetti et al. (2017) Archetti et al. (2007) VC-LEX Tabu search based matheuristic

Archetti et al. (2014) Adulyasak et al. (2014) VR-VC-LEX Branch and Cut

Lmariouh et al. (2017) Lmariouh et al. (2017) VC-HC1 Branch and Cut

Coelho and Laporte (2015) Archetti et al. (2007) VC-HC1 Branch and Cut

Larrain et al. (2017) Larrain et al. (2017) VC-HC1 Variable MIP Neighborhood Descent

Rodŕıguez-Mart́ın et al. (2019) Rodŕıguez-Mart́ın et al. (2019) VR Branch and Cut

4.1.10. Asymmetric Representatives Formulation (ARF)

In addition to the previously mentioned SBCs, we introduce a new formulation for the prob-

lem in this section. The formulation is based on the idea of the Asymmetric Representatives

Formulation.

The customers that are served in the same route are grouped into clusters. The main di↵erence

with the traditional formulation is that the smallest customer identifies a cluster in it. Let

variables vkti be equal to one if customer i belongs to cluster k in period t, i.e., customer i

belongs to the cluster in which customer k is the smallest indexed customer. If the variable vkti

equals 1, this means that cluster k will be used in period t, and hence, all the customers that

are in this cluster will be visited by the same vehicle in period t. Furthermore, let variables xkt
ij

be equal to one if arc (i, j) is used in cluster k in period t, i.e., arc (i, j) belongs to the cluster
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in which customer k is the smallest indexed customer. Variables qkti represent the quantity

delivered to customer i belonging to cluster k 2 V 0 in period t. Variables I remain unchanged.

X

i2V

X

j2V,j>i

X

k2V 0

X

t2H

cijx
kt
ij +

X

i2V

X

t2H

hiI
t
i (23)

subject to (2)–(4) and to:

qkti  Civ
kt
i i, k 2 V 0 t 2 T (24)

X

i2V 0

qkti  Qvktk k 2 V 0 t 2 T (25)

X

j2V 0

xkt
0j = 2vktk k 2 V 0 t 2 T (26)

X

j2V,j<i

xkt
ji +

X

j2V,j>i

xkt
ij = 2vkti i, k 2 V 0 t 2 T (27)

X

k2V 0

vkti  1 i 2 V 0 t 2 T (28)

X

k2V 0

vktk  K t 2 T (29)

vkti = 0 i, k 2 V 0, k > i, t 2 T (30)

qkti = 0 i, k 2 V 0, k > i, t 2 T (31)

xkt
ij = 0 i, j, k 2 V 0, k, j > i, t 2 T (32)
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xkt
0j = 0 j, k 2 V 0, k > j t 2 T (33)

xkt
ij  1 (i, j) 2 E , k 2 V 0, t 2 T (34)

vkti � vktk  0 i, k 2 V 0, t 2 T (35)

Constraints (24) indicate that the amount delivered to any visited customer has to respect its

capacity. Constraints (25) ensure that the capacity of the vehicle is respected. The vehicles

leave from the depot and return to it after vising a customer, as shown by constraints (26).

Constraints (27) are the equivalent of the degree constraints. By constraints (28), each customer

can be assigned only to one cluster, where the number of clusters needs to be at most equal

to the total number of available vehicles, as in constraints (29). No visit and no delivery can

take place for all customers with an index less than the vehicle index (constraints (30) –(33)).

Constraints (34) show that each arc (i, j) can belong to only one cluster. Customer i always

belongs to a cluster in which customer k is the smallest indexed customer; (35) guarantees this.

4.2. Input ordering techniques

The impact of input ordering for di↵erent classes of SBCs is analyzed first by Jans and Desrosiers

(2013) for a job grouping problem. Later Coelho and Laporte (2014) analyze the impact of

three input orderings for a multi-vehicle IRP. They propose ordering customers based on the

following three criteria: 1) highest demand, 2) smallest distance, and 3) the largest distance.

They conclude that the highest demand and the largest distance orderings have the most

significant positive impact on the total CPU time. Continuing this line of research, here we

propose the following input ordering criteria for the customers: 1) largest distance, 2) highest

demand, 3) farthest from the last inserted (starting with the largest distance), 4) farthest

from all inserted (starting with the largest distance), 5) highest sum of normalized demand
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and normalized distance, 6) highest of either normalized demand and normalized distance,

7) highest product of normalized demand and normalized distance.

The normalized demand for a customer is calculated as the demand for that customer divided

by the maximum demand of all customers. Demand is calculated as the total demand over the

whole planning horizon. The normalized distance for a customer is calculated as the distance

from the depot to that customer divided by the maximum distance between the depot and a

customer.

Furthermore, we propose and test the inverse ordering criteria as 1) smallest distance, 2) lowest

demand, 3) closest to the last inserted (starting with the smallest distance), 4) closest to

all inserted (starting with the smallest distance), 5) lowest sum of normalized demand and

normalized distance, 6) lowest of either normalized demand and normalized distance, 7) lowest

product of normalized demand and normalized distance.

5. Computational Experiments

We have implemented a branch-and-cut algorithm capable of solving the formulation presented

in Section 3 using CPLEX 12.8 and IBM Concert Technology in C++. All experiments are

conducted on an Intel Core i7 processor running at 3.4 GHz with 64 GB of RAM installed with

the Ubuntu Linux operating system. The maximum execution time is 3,600 seconds.

Concerning the B&C algorithm, all the formulation variables are explicitly handled by the

algorithm, but not all subtour elimination constraints (8). These are not explicitly included

in the initial subproblem but are dynamically generated as cuts. These formulations can then

be solved by B&C as follows. At a generic node of the search tree, a linear program with

relaxed integrality constraints is solved, a search for violated constraints (8) is performed, and

violated valid inequalities are added to the current program which is reoptimized. This process

is reiterated until a feasible or dominated solution has been reached, or until no more cuts can

be added. At this point, branching on a fractional variable occurs.
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We conduct all our experiments on the classical instances introduced by Archetti et al. (2007).

For years, these widely used instances have been utilized as the testbed to compare di↵erent IRP

algorithms. These benchmarks instances are identified by the number of customers (ranging

from five to 50), periods (either three or six), and inventory costs (high versus low). For each

combination, five instances are generated randomly, which results in a total of 160 instances.

In our experiments, we solve each instance with either two or three vehicles. Moreover, we

modify the customer order in each instance, based on the 14 ordering criteria presented in

Section 4.2. We also include the initial random input order from the benchmark instances in

our experiments.

5.1. Results from the standard formulation

To begin our analysis, we compare the average results from running all instances over all input

ordering techniques. As presented in Table 2, we examine the addition of V R, V C, and both

of them (indicated as V CV R) to the standard formulation (SF ), which is the model presented

in Section 3 solved by B&C.

Note that CPLEX 12.8 already includes some automatic symmetry breaking. However, its

documentation does not give any further information on what exactly is done. In the default

setting, CPLEX chooses the best level of symmetry breaking automatically. The symmetry

breaking techniques can also be turned o↵ or set to a specific level. Previous research on a

job grouping problem (Jans and Desrosiers, 2013) shows that setting the CPLEX symmetry

breaking to the highest level does not significantly improve CPU time, whereas turning them

o↵ leads to a substantial increase in CPU time for the standard symmetric formulation. For

formulations that explicitly incorporate symmetry breaking constraints, di↵erent settings did

not have any significant e↵ect. Therefore, we choose to use the default symmetry breaking

setting, and the results presented in the tables for SF are obtained using CPLEX in its default

setting.

Results in Table 2 show that adding either variable reduction (V R) or vehicle constraints (V C)
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reduces the average obtained gap (Gap), the average time (T ime), the total number of unsolved

instances (#Unsolved), and increases the total number of optimal solutions (#Opt) compared

to the standard formulation. While V R is more e↵ective than V C, the results show that adding

both of these constraints to SF provides the best results. As shown in Table 2, by using both

of these constraint sets, all 2,400 instances run with two vehicles yield a feasible solution, and

1,664 optimal cases are found; with three vehicles the number of unsolved cases reduces to 18

(from 257), and a total of 960 cases with an optimal solution are obtained.

Table 2: Results of the standard formulation

2 vehicles 3 vehicles

Average Sum Average Sum

UB LB Gap Time #Opt #Unsolved UB LB Gap Time #Opt #Unsolved

SF 8012.20 7668.87 3.33 1803 1353 3 8624.90 7828.34 13.56 2987 478 257

V C 7997.73 7694.64 2.86 1654 1466 5 8603.37 7869.32 12.45 2924 532 269

V R 7949.77 7745.06 1.87 1398 1626 1 8993.34 8092.76 8.31 2552 845 22

V CV R 7950.21 7753.60 1.79 1336 1664 0 8988.68 8108.05 8.03 2405 960 18

5.2. The impact of symmetry breaking constraints

In Section 4, we proposed several techniques for breaking the symmetry in a mathematical

formulation, and we now analyze their e↵ectiveness. First, we study each technique separately,

and then we investigate the combined e↵ects of di↵erent techniques.

• Individual constraint e↵ect

The SBCs presented in Section 4 are compared, and the results are summarized in Table

3. These results present averages over all the input ordering techniques.

The best techniques seem to beHC1, HC2, andHC3, while the worst results are obtained

with COS, QUA, and CUS.

For the cases with two and three vehicles, among the three best-performing methods,

HC1 performs slightly better than HC3 in terms of the average gap, time reduction, and
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the number of optimal solutions found. QUA and CUS techniques seem not to be as

e�cient as the others for both cases with two or three vehicles. In terms of the number

of unsolved instances, the performance of COS is similar to CUS, but for the cases with

three vehicles, COS has more di�culty in finding a feasible solution for instances. The

lexicographic ordering (LEX) is somewhere in between, as its performance decreases in

instances with many nodes.

Table 3: Results for single symmetry breaking constraints

2 vehicles 3 vehicles

Average Sum Average Sum

UB LB Gap Time #Opt #Unsolved UB LB Gap Time #Opt #Unsolved

HC1 7938.69 7766.77 1.55 1262 1720 0 9000.39 8129.95 7.74 2365 955 9

HC2 7969.68 7723.86 2.27 1519 1561 0 8864.26 7934.04 11.45 2741 674 159

HC3 7940.69 7766.68 1.58 1268 1717 0 9023.07 8124.87 7.96 2371 970 14

COS 8028.00 7703.92 3.11 1600 1522 17 7849.64 7880.39 11.64 2726 646 582

QUA 8011.96 7686.87 3.13 1677 1462 14 8261.71 7857.65 12.87 2925 535 396

CUS 8027.91 7696.30 3.16 1660 1479 17 8388.33 7877.85 12.59 2783 629 393

LEX 7972.62 7737.82 2.31 1379 1644 5 9031.25 8080.52 8.93 2472 878 102

dark gray: worst results – light gray: best results

• Constraints combined e↵ect

Since the HC1 has shown the best results so far, we focus on its impact when combining

it with other constraints. Table 4 summarizes the results. Once again, these results are

obtained averaging over all the input ordering techniques. As constraints (16) are written

for each i 2 V 0, by increasing the number of customers, we add more constraints to the

model. This might increase the burden on the model. Therefore, we also examine the

e↵ect of adding these constraints only for the first half of the customers (half) or only

the first quarter of the customer list (quarter). At the same time, we avoid the large

coe�cients used in the constraints for the LEX. The results obtained with HC1 are

used as benchmarks in Table 4 and shown in bold characters.
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Table 4: Combined HC1 results

2 vehicles 3 vehicles

Average Sum Average Sum

UB LB Gap Time #Opt #Unsolved UB LB Gap Time #Opt #Unsolved

HC1 7938.69 7766.77 1.55 1262 1720 0 9000.39 8129.95 7.74 2365 955 9

HC1 half 7940.55 7763.46 1.60 1281 1699 0 8994.33 8127.30 7.75 2398 968 15

HC1 quarter 7945.97 7759.74 1.71 1334 1679 0 9001.06 8104.22 8.17 2559 865 17

HC1 V R 7939.48 7765.73 1.58 1271 1716 0 9001.47 8127.55 7.76 2370 951 10

HC1 half V R 7938.38 7765.07 1.56 1272 1704 0 8984.41 8130.37 7.62 2362 974 16

HC1 quarter V R 7940.19 7765.00 1.59 1286 1703 0 8984.75 8127.69 7.70 2343 999 13

HC1 LEX 7937.91 7765.33 1.56 1293 1711 0 9023.35 8124.72 7.97 2375 944 8

HC1 LEX half 7944.45 7760.83 1.68 1305 1703 0 8995.45 8124.21 7.89 2387 957 18

HC1 LEX quarter 7943.43 7764.73 1.60 1280 1710 0 9002.01 8126.99 7.67 2402 959 15

HC1 LEX V R 7939.36 7764.90 1.57 1298 1704 0 9021.14 8124.34 7.93 2374 946 10

HC1 half LEX half V R 7952.33 7755.00 1.82 1353 1683 0 9014.37 8111.08 8.26 2407 939 28

HC1 quarter LEX quarter V R 7945.53 7763.05 1.64 1286 1706 0 9000.58 8124.12 7.72 2378 961 19

The results presented in Table 4 show that for instances solved with two vehicles, all

combinations can obtain a feasible solution (no unsolved cases). Moreover, HC1 re-

mains the best method with respect to the number of optimal solutions obtained and

the gap. For the cases with three vehicles, however, the situation is di↵erent. It is the

HC1 quarter V R method that solves 999 cases to optimality, but the lowest number of

unsolved cases is obtained by combing HC1 with LEX.

• ARF The ARF formulation proves several optimal solutions but leaves many instances

without any feasible solutions as well. In Table 5, we compare the results of the standard

formulation (SF ) and the ARF . The table shows that the ARF obtains fewer optimal

solutions in cases with two vehicles, and many more cases remain unsolved. For cases

with three vehicles, ARF finds more optimal solutions and has more unsolved instances.

As before, the presented results are the averages over all the input ordering techniques.
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Table 5: Comparison of the results obtained with ARF versus SF

2 vehicles 3 vehicles

#Opt #Unsolved #Opt #Unsolved

SF 1353 3 478 257

ARF 852 752 678 877

In order to analyze the gap and the CPU time of ARF , we compare ARF with HC1, only

on the instances for which ARF obtains a feasible solution. These results are averaged

over solutions obtained with all input ordering techniques. HC1 is selected as it has been

proven to be the best technique so far. Table 6 provides an overview of the results. From

this table, we observe that HC1 clearly outperforms the ARF .

Table 6: Comparison between ARF and HC1, only on instances for which ARF provides a solution

2 vehicles 3 vehicles

Average Sum Average Sum

UB LB Gap Time #Opt #Unsolved UB LB Gap Time #Opt #Unsolved

HC1 6774.53 6692.37 0.76 784.65 1378 0 7393.20 6933.50 4.05 1707.79 906 0

ARF 7006.18 6578.40 4.90 1978.07 852 0 7605.76 6896.79 7.53 2149.60 678 0

Tables 7 and 8 provide more details on the performance of the ARF . The results presented

in these two tables are obtained for the original instances of Archetti et al. (2007) in which

the input ordering is random. For each combination of the number of periods (H), Inventory

(low versus high costs), and the number of customers (n), the average gap (in %), and time

(in seconds), over five instances, are obtained. Out of these five instances, the percentages

of optimal solutions obtained (%Opt) and unsolved cases (%Unsolved) are also shown in the

tables. For cases with two vehicles, the SF solves all instances of the instance sets. However,

the performance of ARF very much depends on the size of the instance, and particularly the

number of customers. The results show that for instances with six periods and 25 customers
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or fewer, ARF outperforms SF . With three vehicles, we observe that ARF outperforms SF

for instances with both three and six periods and up to 25 customers.

5.3. Impact of input ordering

In our second set of experiments, we study the impact of the input ordering on the performance

of the algorithm. We consider several input orderings and enumerate them as follows: 1) ran-

dom, 2) largest distance, 3) highest demand, 4) farthest from the last inserted (starting with

the largest distance), 5) farthest from all inserted (starting with the largest distance), 6) highest

sum of normalized demand and normalized distance, 7) highest of either normalized demand

and normalized distance, 8) highest product of normalized demand and normalized distance,

9) smallest distance, 10) lowest demand, 11) closest to the last inserted (starting with the

smallest distance), 12) closest to all inserted (starting with the smallest distance), 13) lowest

sum of normalized demand and normalized distance, 14) lowest of either normalized demand

and normalized distance, 15) lowest product of normalized demand and normalized distance.

Note that pairs 2–8 are the opposite of 9–15. Random input ordering is, in fact, the order

presented in the benchmark instances of Archetti et al. (2007).

Table 9 shows the total number of optimal solutions obtained for the cases with two and three

vehicles. For each symmetry breaking technique (presented in columns), we identify the best

ordering technique (in light gray) and the worst one (in dark gray). For example, with respect

to the total number of optimal solutions obtained, for SF the best input ordering is order 8.

highest product of normalized demand and normalized distance ordering and the worst ones

are order 9. closest to all inserted (starting with the largest distance), 12. lowest of either

normalized demand, 14. lowest of either normalized demand and normalized distance, and 15.

lowest product of normalized demand and normalized distance, techniques. As shown in Table

9, although we cannot identify one globally best or worst input ordering technique, we can

observe that some of them generally work better with certain symmetry breaking constraints.

22

Comparison of Symmetry Breaking and Input Ordering Techniques for Routing Problems

CIRRELT-2020-22



Table 7: Comparision of ARF and SF for the random input ordering and with 2 vehicles

ARF SF

H Inventory n Gap %Opt %Unsolved Time Gap %Opt %Unsolved Time

3 high

5 0.00 100.00 0.00 1 0.00 100.00 0.00 2

10 0.00 100.00 0.00 18 0.00 100.00 0.00 9

15 0.00 100.00 0.00 178 0.00 100.00 0.00 21

20 1.77 60.00 0.00 2202 0.15 80.00 0.00 1037

25 1.83 40.00 0.00 3236 0.00 100.00 0.00 880

30 5.09 0.00 20.00 3602 0.00 100.00 0.00 817

35 5.44 0.00 60.00 3605 0.00 100.00 0.00 344

40 Unk 0.00 100.00 3610 0.81 60.00 0.00 2093

45 Unk 0.00 100.00 3623 0.99 60.00 0.00 2461

50 Unk 0.00 100.00 3656 2.94 0.00 0.00 3600

3 low

5 0.00 100.00 0.00 1 0.00 100.00 0.00 0

10 0.00 100.00 0.00 26 0.00 100.00 0.00 8

15 0.00 100.00 0.00 315 0.00 100.00 0.00 44

20 3.01 40.00 0.00 2298 1.31 80.00 0.00 786

25 13.08 0.00 0.00 3601 0.52 60.00 0.00 1484

30 17.60 0.00 20.00 3602 0.00 100.00 0.00 779

35 8.47 0.00 40.00 3606 0.00 100.00 0.00 332

40 17.73 0.00 60.00 3612 3.89 60.00 0.00 2052

45 Unk 0.00 100.00 3643 8.40 60.00 0.00 2022

50 Unk 0.00 100.00 3675 10.95 20.00 0.00 3368

6 high

5 0.00 100.00 0.00 5 0.00 100.00 0.00 28

10 0.00 100.00 0.00 606 1.27 40.00 0.00 2914

15 0.93 40.00 0.00 2857 2.77 0.00 0.00 3601

20 3.00 0.00 0.00 3600 5.90 0.00 0.00 3600

25 5.45 0.00 20.00 3601 6.07 0.00 0.00 3600

30 19.16 0.00 80.00 3602 9.37 0.00 0.00 3600

6 low

5 0.00 100.00 0.00 9 0.00 100.00 0.00 90

10 0.00 100.00 0.00 1573 3.30 40.00 0.00 2857

15 1.33 40.00 0.00 3432 8.45 0.00 0.00 3600

20 7.81 0.00 0.00 3601 12.37 0.00 0.00 3601

25 10.08 0.00 0.00 3601 13.95 0.00 0.00 3600

30 Unk 0.00 100.00 3603 21.46 0.00 0.00 3601
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Table 8: Comparision of ARF and SF for the random input ordering and with 3 vehicles

ARF SF

H Inventory n Gap %Opt %Unsolved Time Gap %Opt %Unsolved Time

3 high

5 0.00 100.00 0.00 2 0.00 100.00 0.00 7

10 0.00 100.00 0.00 39 0.00 100.00 0.00 402

15 0.00 100.00 0.00 795 1.69 60.00 0.00 1563

20 2.64 40.00 0.00 2546 5.39 40.00 0.00 2381

25 5.69 0.00 0.00 3601 9.71 0.00 0.00 3600

30 7.71 0.00 40.00 3601 6.56 20.00 0.00 3406

35 4.21 0.00 60.00 3604 4.20 0.00 0.00 3600

40 Unk 0.00 100.00 3612 8.58 0.00 0.00 3600

45 Unk 0.00 100.00 3618 7.79 0.00 0.00 3600

50 Unk 0.00 100.00 3640 10.88 0.00 0.00 3600

3 low

5 0.00 100.00 0.00 1 0.00 100.00 0.00 13

10 0.00 100.00 0.00 55 0.00 100.00 0.00 731

15 0.00 100.00 0.00 604 2.42 60.00 0.00 1963

20 7.38 40.00 0.00 2706 17.61 20.00 0.00 2903

25 20.29 0.00 0.00 3601 22.95 0.00 0.00 3600

30 19.70 0.00 20.00 3603 16.80 0.00 0.00 3600

35 19.60 0.00 60.00 3607 17.82 0.00 0.00 3600

40 21.04 0.00 80.00 3608 40.38 0.00 0.00 3600

45 Unk 0.00 100.00 3627 25.57 0.00 20.00 3600

50 Unk 0.00 100.00 3625 33.76 0.00 20.00 3600

6 high

5 0.00 100.00 0.00 35 3.99 0.00 0.00 3600

10 0.73 60.00 0.00 2143 11.50 0.00 0.00 3602

15 1.73 0.00 0.00 3600 15.89 0.00 0.00 3600

20 5.84 0.00 0.00 3601 17.44 0.00 20.00 3600

25 7.11 0.00 0.00 3601 17.43 0.00 40.00 3600

30 Unk 0.00 100.00 3604 Unk 0.00 100.00 3600

6 low

5 0.00 100.00 0.00 45 6.03 0.00 0.00 3601

10 1.27 20.00 0.00 2917 18.08 0.00 0.00 3601

15 3.56 0.00 0.00 3600 26.63 0.00 0.00 3601

20 9.40 0.00 0.00 3600 34.03 0.00 0.00 3600

25 17.48 0.00 20.00 3602 37.64 0.00 40.00 3600

30 19.96 0.00 80.00 3602 Unk 0.00 100.00 3600
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Table 9: Number of optimal solutions obtained

2 vehicles 3 vehicles Performance

Constraints Total

Ordering SF V R HC1 HC2 HC3 COS QUA CUS LEX SF V R HC1 HC2 HC3 COS QUA CUS LEX Best Worst

1 93 112 119 101 118 101 93 102 114 30 55 69 43 67 43 32 41 63 3 3

2 91 109 113 102 115 100 96 97 105 33 59 68 43 71 43 35 43 64 0 1

3 91 112 119 102 118 105 102 98 111 34 62 70 51 71 45 39 42 60 4 0

4 91 112 119 109 115 102 98 97 116 32 66 69 47 70 43 35 41 67 3 1

5 89 109 118 108 117 102 98 97 113 33 62 71 47 70 41 36 42 65 0 0

6 89 109 118 111 117 101 96 98 112 30 63 72 52 74 43 36 41 69 1 1

7 90 112 118 105 118 99 98 96 110 35 66 70 50 73 40 40 42 66 4 2

8 95 108 117 112 116 101 100 101 112 31 67 73 54 75 44 35 41 65 6 1

9 88 104 111 98 110 98 98 98 105 32 47 54 39 53 42 38 41 51 0 6

10 91 110 114 107 116 98 96 98 112 32 57 56 48 63 45 40 41 54 1 2

11 91 104 109 101 112 95 97 96 106 31 45 54 39 55 41 32 43 50 0 3

12 88 107 112 100 111 107 95 97 108 29 48 58 41 54 43 32 44 51 2 3

13 90 108 113 100 112 107 96 101 104 32 52 60 41 61 44 32 42 52 1 1

14 88 101 108 103 109 104 97 104 106 32 47 57 38 55 43 34 42 50 1 6

15 88 109 112 102 113 105 102 99 107 32 49 54 41 58 46 39 43 51 2 2

Total 1353 1626 1720 1561 1717 1522 1462 1479 1644 478 845 955 674 970 646 535 629 878

For each column: dark gray: worst results – light gray: best results

The overall best result with respect to the number of optimal solutions (combined for two

and three vehicles) is obtained by HC3 in combination with ordering 6, 7 and 8. All lead

to 191 optimal solutions. Furthermore, HC1 in combination with ordering 6 and 8 comes

very close with 190 optimal solutions. All these combinations have none or only one unsolved

instance. Other formulations, in combination with their own best ordering, do not obtain the

same results. LEX obtains a total of 183 optimal solutions with input ordering 4.
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Table 10: Number of unsolved instances

2 vehicles 3 vehicles Performance

Constraints Total

Ordering SF V R HC1 HC2 HC3 COS QUA CUS LEX SF V R HC1 HC2 HC3 COS QUA CUS LEX Best Worst

1 0 0 0 0 0 0 4 0 0 17 1 0 12 1 34 35 26 6 1 1

2 0 0 0 0 0 2 2 0 1 19 0 0 11 0 34 32 17 4 3 1

3 0 0 0 0 0 0 0 2 0 21 0 1 11 0 35 24 31 4 2 0

4 0 0 0 0 0 3 1 2 1 19 0 0 7 1 42 24 27 4 2 1

5 2 0 0 0 0 0 1 1 0 14 2 0 5 0 42 25 27 6 0 1

6 0 0 0 0 0 2 1 2 0 11 0 0 6 1 40 26 29 6 1 0

7 0 0 0 0 0 1 1 1 0 18 0 0 8 0 44 23 27 5 0 1

8 0 0 0 0 0 1 0 1 0 17 0 0 2 1 35 22 25 4 2 0

9 0 1 0 0 0 1 1 0 1 17 5 3 12 1 40 27 28 6 0 3

10 0 0 0 0 0 1 0 1 0 13 1 0 13 0 40 24 28 5 0 0

11 1 0 0 0 0 0 1 3 1 18 3 2 15 1 44 26 31 14 0 4

12 0 0 0 0 0 4 1 0 0 22 3 0 11 2 37 36 27 11 0 3

13 0 0 0 0 0 1 1 1 0 19 0 0 13 1 36 32 23 8 0 0

14 0 0 0 0 0 1 0 0 1 19 7 2 17 4 40 26 27 12 0 4

15 0 0 0 0 0 0 0 3 0 13 0 1 16 1 39 14 20 7 1 1

Total 3 1 0 0 0 17 14 17 5 257 22 9 159 14 582 396 393 102

For each column: dark gray: worst results – light gray: best results, if not zero

For the number of unsolved instances, Table 10 provides a summary of the results obtained

with each SBC and the input ordering technique. In this table, we have highlighted, if not zero,

the best (in light gray) cases and the worst (in dark gray) cases.

The last two columns in both Tables 9 and 10 provide a general performance summary for

each input ordering technique. The columns Best and Worst count the number of symmetry

breaking constraints yielding the best or worst results using that input ordering technique.

It should be noted that the Best non-zero results are reported in Table 10. For example,

concerning the total number of optimal solutions, the random ordering technique is the best

one to be used with three symmetry breaking constraints, and it is also the worst for a total of

three other constraints.
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5.4. Categorizing the results based on the inventory costs

As the problem at hand contains an objective function with both transportation and inventory

costs, the classical instances are divided into two general groups of high versus low inventory

cost levels. In this section, we examine each symmetry breaking constraint and input ordering

in these two general sub-classes of the benchmark instances. The idea is that some of the

symmetry breaking techniques or input ordering methods might work better with specific classes

of instances. When the inventory cost is low, more e↵ort is needed to optimize the problem, as

the VRP part becomes highly relevant. This can be observed in Table 11, which summarizes

the overall results for selected symmetry breaking techniques. These results are the averages

over all input orderings. For cases where the number of unsolved instances is almost equal,

the average gap is a good indicator of how di�cult each sub-class of instances is. For example,

comparing the average gap of the instances with two vehicles solved with methods HC1, HC2,

or HC3 shows that instances with high inventory costs are easier to be solved. Once more,

HC1 and HC3 seem to be the best formulations for di↵erent classes.

Table 11: Comparison between the average results obtained for high and low inventory cost instances

2 vehicles 3 vehicles

High inventory cost Low inventory cost High inventory cost Low inventory cost

Average Sum Average Sum Average Sum Average Sum

Gap Time #Opt #Unsolved Gap Time #Opt #Unsolved Gap Time #Opt #Unsolved Gap Time #Opt #Unsolved

SF 1.96 1803 677 2 4.70 1802 676 1 8.19 2967 246 129 18.93 3007 232 128

V R 1.15 1392 812 0 2.59 1404 814 1 5.22 2530 431 10 11.41 2575 414 12

HC1 0.89 1268 862 0 2.22 1256 858 0 4.88 2359 481 2 10.61 2371 474 7

HC2 1.30 1531 780 0 3.23 1508 781 0 7.23 2718 345 70 15.74 2764 329 89

HC3 0.90 1270 862 0 2.25 1266 855 0 5.07 2363 487 4 10.87 2379 483 10

COS 1.83 1596 763 5 4.39 1603 759 12 7.08 2700 332 282 16.29 2750 314 300

QUA 1.80 1676 736 4 4.47 1678 726 10 7.90 2892 285 194 17.87 2958 250 202

CUS 1.91 1664 733 6 4.41 1656 746 11 7.95 2746 324 187 17.33 2821 305 206

LEX 1.29 1375 824 3 3.32 1384 820 2 5.71 2462 444 39 12.22 2482 434 63

1.45 1508 7049 20 3.51 1506 7033 37 6.58 2637 3375 917 14.59 2679 3235 1017

For each column: dark gray: worst results – light gray: best results

For the input ordering techniques, we compare the number of optimal solutions and unsolved
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cases using HC1 technique and ARF in high and low inventory cost instances. As Table 12

shows, no significant di↵erence between these two classes of instances can be identified. The

number of solved instances and the optimal solutions obtained are similar for high versus low

category for cases with two or three vehicles. HC1 provides consistently superior performance

compared to the ARF.

Table 12: Input ordering for HC1 and ARF to compare high and low inventory cost instances

HC1 ARF

2 Vehicles 3 Vehicles 2 Vehicles 3 Vehicles

#Opt #Unsolved #Opt #Unsolved #Opt #Unsolved #Opt #Unsolved

Ordering high low high low high low high low high low high low high low high low

1 59 60 0 0 35 34 0 0 32 29 24 21 25 23 25 23

2 58 55 0 0 33 35 0 0 30 30 21 20 23 24 27 28

3 59 60 0 0 35 35 0 1 32 32 25 24 24 23 27 29

4 61 58 0 0 36 33 0 0 30 29 22 23 24 23 31 29

5 60 58 0 0 36 35 0 0 32 33 25 23 24 23 29 30

6 58 60 0 0 36 36 0 0 31 28 22 24 25 24 24 25

7 58 60 0 0 35 35 0 0 32 31 22 21 24 25 28 29

8 59 58 0 0 36 37 0 0 31 30 23 22 25 26 23 21

9 55 56 0 0 28 26 1 2 25 26 29 26 20 21 35 31

10 58 56 0 0 28 28 0 0 28 28 25 25 23 23 32 30

11 55 54 0 0 28 26 1 1 24 24 27 28 20 20 33 32

12 56 56 0 0 29 29 0 0 26 26 31 29 20 21 31 34

13 57 56 0 0 31 29 0 0 25 26 29 28 21 21 30 33

14 54 54 0 0 28 29 0 2 24 26 25 29 21 20 33 34

15 55 57 0 0 27 27 0 1 26 26 28 31 22 20 32 29

Total 862 858 0 0 481 474 2 7 428 424 378 374 341 337 440 437

6. Conclusions

The integrated routing problems are well studied in the literature, and the IRP is one of the

most popular integrated problems. As a variant of the VRP, the IRP with identical vehicles is
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also prone to the symmetry issue caused by the vehicle index present in most formulations. In

this paper, we have first provided a comprehensive list of the symmetry breaking constraints

present in the literature. We have also proposed a reformulation for the problem and introduced

several other symmetry breaking techniques. We have assessed the performance of the new

formulation, each symmetry breaking constraint individually and in combination with other

ones.

Moreover, we have evaluated several input ordering techniques. The main constraints used in

the IRP literature to break the symmetry caused by identical vehicles are vehicle constraints

(V C) and hierarchical constraints type 1 (HC1). Our extensive computational experiments

show that over all input ordering techniques, the use ofHC1 leads to the best results. Even after

combining this method with all other methods, HC1 remains the dominant technique to break

the symmetry. Despite all its success in other applications, the new ARF formulation for the

IRP does not lead to good results, especially for big size instances. Finally, our investigation on

the combined e↵ects of the input orderings and the SBCs reveals that although these two factors

are dependent on one another, the highest product of normalized demand and normalized

distance provides the highest number of optimal solutions. This method gives the worst results

only if used in combination with SBC ordering by the number of customers per route (CUS).

With respect to the number of unsolved instances, again the highest product of normalized

demand and normalized distance ordering and the lowest demand ordering methods provide

the best results for most of the SBCs. Finally, comparing the low versus high inventory costs,

as expected with high inventory costs, we are able to solve slightly more cases to optimality

and have fewer cases with unsolved status.
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