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Abstract. Many planning problems in Operations Management require a prior estimation of 
the demand of the products or services involved. While most of the literature has focused 
on discrete choice models based on the Random Utility Maximization framework, several 
works on behavioral economics have provided strong empirical evidence of irrational choice 
behaviors incompatible with such a framework, such as halo effects. Random Utility 
Maximization models may therefore lead to inaccurate estimates of product demands and, 
when used to optimize assortment or inventory decisions, to sub-optimal revenues. Hence, 
more general choice models, overcoming such limitations, have been proposed. However, 
the estimation of these models remains challenging, as a delicate balance must be struck 
between the flexibility of the model, its inherent risk of overfitting, and the computational 
tractability of the estimation procedure. In this work, we address these difficulties by 
proposing an estimation method for the recently proposed Generalized Stochastic 
Preference choice model. This choice model subsumes the family of Random Utility 
Maximization models and is capable of capturing halo effects. Specifically, we show how to 
use partially-ranked preferences to model irrational customer types, and how to efficiently 
retrieve them from data. Our estimation procedure is based on column generation, where 
relevant customer types are discovered in an effective way, by exploiting a tree-like data 
structure to represent a given set of preferences. An extensive set of experiments assesses 
the predictive accuracy of the proposed approach, comparing it against rank-based 
methods with only rational preferences and with a more general benchmark from the 
literature. Our results show that irrational preferences allow to significantly enhance 
predictive accuracy on both synthetic and real datasets in the presence of irrational choice 
behaviors. Finally, our proposed model allows to generalize well on both rational and 
irrational instances, therefore favorably comparing against existing general choice models. 
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1. Introduction

Many planning problems in Operations Management require a prior estimation of the demand of

the products or services involved. Most often, a predictive model must be learned from historical

data representing the choice behavior of an agent faced with a discrete set of alternatives, called

the offer set. Such a model can then be used as a subroutine in the solution of prescriptive tasks

involving, for example, assortment or inventory decisions. A common assumption when dealing

with demand estimation is to consider product demands as independent from each other, resulting

in the independent demand model (see, e.g., Strauss et al. 2018, Talluri and Van Ryzin 2004).

However, it is well known that this assumption does not hold in many real-life scenarios and that

product demands interact through substitution and halo effects. In general, we consider product A

a substitute of product B if the presence of A in the offer set decreases the probability of B being

chosen. On the contrary, we refer to an halo effect if the presence of A in the offer set increases

the attractiveness of B, and thus its likelihood of being chosen. Discrete choice models have been

widely adopted to model substitution. Among them, the family of choice models that received the

most attention in the literature is undoubtedly the one of Random Utility Maximization (RUM)

models (Thurstone 1927, Block and Marschak 1959, Luce 1959). Choice models belonging to the

RUM family assume that a random utility is assigned to every alternative. Utilities are modeled

as random variables, and different choices about their distribution lead to different choice models.

When faced with an offer set, the decision maker samples a vector of utilities and picks the option

with the highest one, so as to maximize her expected payoff. The Multinomial Logit (MNL) model

is arguably the most famous RUM choice model. Its popularity stems from the facts that it can

be efficiently estimated, it is interpretable and, when used for decision making, it allows to benefit

from appealing theoretical and computational properties. The Multinomial Logit model lacks,

however, in terms of flexibility. In particular, it obeys the axiom of Independence of Irrelevant

Alternatives (IIA) (Arrow 1951), and is therefore incapable of capturing complex substitution

behaviors. Thus, many models have been proposed in the last decades to overcome its limitations,

such as the Nested Logit model, the Mixed Multinomial Logit model and, more recently, the

Markov chain (Blanchet et al. 2016) and the Rank-based (Farias et al. 2013) choice models, each

providing different trade-offs between flexibility and tractability. However, these models all belong

to the RUM family and therefore obey the so-called Regularity assumption, which states that the

introduction of an option in the offer set cannot increase the probability of another alternative

being chosen. Hence, they cannot be used as they are to capture halo effects. Nevertheless, many

studies in the literature of behavioral economics corroborated the reproducibility and robustness

of this type of choice behaviors (see, e.g., Simonson 1989, Huber et al. 1982), incompatible with

the theory of utility maximization and therefore referred to as irrational. For example, in the
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context of grocery shopping, when two complementary products (e.g., pasta and tomato sauce)

are present in the assortment, the perceived attractiveness of both is likely to increase. One may

also observe asymmetric, or decoy effects (see, e.g., Ariely 2008) when the addition of an option

(the decoy) to the offer set increases the choice probability of another alternative perceived as

better. This motivated the recent interest in more general choice models, capable of overcoming the

limitations of the RUM framework and of capturing more complex choice behaviors. Unfortunately,

many of these choice models lack efficient estimation schemes, and their performance on non-RUM

instances has not been well understood yet (see, e.g., Jagabathula and Rusmevichientong 2019).

Also, the minimal assumptions these models make about the distribution of choice probabilities

may increase the risk of capturing spurious patterns from data, i.e., overfit. For example, results

from Chen et al. (2019) and Chen and Mǐsic (2019), where the authors propose an irrational choice

model based on decision trees, confirm that such models may well capture irrational behaviors, but

may struggle with rational ones. Finding the delicate balance between flexibility and predictive

accuracy is therefore of crucial importance for the practical utility of such models. The Generalized

Stochastic Preference (GSP) choice model, an extension of rank-based choice models introduced by

Berbeglia (2018) to capture halo effects, is one of the recently proposed models that fits into this

stream of literature. Despite being theoretically attractive, the estimation of the GSP choice model

poses significant challenges both from the computational and predictive points of view. The authors

suggest that estimation procedures originally developed for rational rank-based choice models (see,

e.g., Farias et al. 2013, van Ryzin and Vulcano 2015, Bertsimas and Mǐsic 2016) may be adapted to

their irrational choice model. Nevertheless, no empirical study has been reported in order to assess

the estimation efficiency and predictive accuracy of the GSP choice model. Given the flexibility of

the model, its estimation avoiding overfitting is a challenging task.

Contributions. In this work, we propose an estimation method for the GSP choice model. Specif-

ically, we show how to use partially-ranked preferences to model irrational customer behaviors, and

how to efficiently estimate them from choice data by adapting the column generation approach

proposed by Jena et al. (2020). Partially-ranked preferences allow us to circumvent several diffi-

culties regarding the adaption of estimation methods for strictly ranked preferences. In particular,

our objective is to train the choice model so as to maximize its predictive accuracy. This is differ-

ent from Farias et al. (2013), who focus on worst-case revenue prediction for a given assortment

of items. Also, our estimation method can easily handle both rational and irrational customer

behaviors. In contrast, it is not clear how the Mixed Integer Programming (MIP) formulation of

the Market Discovery subproblem from van Ryzin and Vulcano (2015) should be adapted to allow

for the discovery of irrational preferences. Finally, the Growing Preference Tree (GPT) algorithm
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of Jena et al. (2020) provides a strong computational advantage in terms of scalability, especially

important when dealing with irrational customer behaviors (discussed in the following) and gener-

alizes well to unseen offer sets when tested on RUM instances. The application of partially-ranked

preferences for tackling the estimation of generalized stochastic preferences thus looks promising.

An appealing property of our approach stems from the fact that the irrationality, and thus the

flexibility of the choice model is increased in an adaptive, data-driven way. By increasing the set

of possible customer behaviors only when required to better explain the given data, we may limit

the risk of overfitting and speed up the estimation procedure. We run an extensive set of experi-

ments to assess the predictive performance of the proposed choice model. Using the methodology

delineated by Jagabathula and Rusmevichientong (2019), we characterize the rationality loss of

both generated and real instances. This allows us to observe that irrational customer types can

significantly improve predictive accuracy on instances presenting halo effects among alternatives.

We also compare our approach against the Pairwise Choice Markov Chain (PCMC) model pro-

posed by Ragain and Ugander (2016), a general choice model able to capture complex substitution

and halo effects. In the experiments reported by the authors, this choice model was shown to

outperform both the Multinomial Logit and the Mixed Multinomial Logit in terms of predictive

accuracy. Moreover, the PCMC choice model requires only little parameter tuning, thus allowing

us to fit it with minimal effort on the large set of instances used in our experiments. Our results

show that rank-based approaches generally outperform the PCMC choice model on both rational

and irrational instances.

Organization of the paper. In Section 2, we review the literature on irrational choice models.

In Section 3, we introduce the GSP choice model from Berbeglia (2018) and our corresponding

partially-ranked representation. We show how to estimate the proposed choice model in Section

4. The numerical results of our experiments on both synthetic and real instances are reported in

Section 5. Finally, concluding remarks are reported in Section 6.

2. Related work

In order to define the notion of a rational agent, most economists rely on a set of consistency prin-

ciples of rationality, which includes, among others, the aforementioned Regularity assumption and

the more famous axiom of Independence of Irrelavant alternatives (IIA). This set of assumptions

aims at describing how a rational agent is supposed to make her decisions across different offer

sets. However, a vast body of literature has provided strong empirical evidence of choice behaviors

incompatible with the theory of rational choice (we refer to Rieskamp et al. (2006) for an excellent

overview on the topic). The RUM framework is flexible enough to explain most of these choice
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behaviors, but cannot account for violations of the Regularity assumption. To overcome such limi-

tation, more general theories of choices have been developed in psychology, such as Decision Field

theory (Busemeyer and Townsend 1993, Roe et al. 2001) and the Leaky competing accumulator

model (Usher and McClelland 2004). These models belong to the broader class of Sequential Sam-

pling models, which mimic the evolution of the decision-making process over time, and can account

for violations of the rationality principles, including the Regularity one. They lack, however, prac-

tical estimation algorithms, and are usually adopted from a descriptive point of view more than a

predictive one. Other works, such as Tversky and Simonson (1993) and Rooderkerk et al. (2011),

embed alternatives into an attribute space, where context-dependent features are computed in order

to determine the utility of each of the alternatives. These approaches have usually been applied to

small, controlled experiments, and rely on the existence of two metric features, along which cus-

tomer preferences are supposed to monotonically increase or decrease. This is a key difference with

respect to our approach, where no item feature is supposed to be given. Decomposing the utility

into two components, item-specific and context-dependent, is also the starting point of Maragheh

et al. (2018) and Seshadri et al. (2019), who propose a second-order extension of the MNL model in

order to capture positive pairwise product interactions. However, these models do not subsume the

RUM framework and thus, as pointed out by Jagabathula and Rusmevichientong (2019), are not

guaranteed to provide a better fit than RUM methods, even when applied to irrational instances.

The same limitation holds for other models such as the General Attraction Model from Gallego

et al. (2014), the Perception-adjusted choice model (Echenique et al. 2018) and the General Luce

Model (Echenique and Saito 2019). Feng et al. (2018) propose a welfare-based framework, which

subsumes the RUM framework and can be used to obtain choice models able to capture violations

of the regularity assumption. The estimation of these choice models, however, is left by the authors

as an open research question. Another general approach for which no empirical result has been

reported is the Generalized Stochastic Preference choice model (Berbeglia 2018), an extension of

rank-based choice models (see, e.g., Farias et al. 2013, van Ryzin and Vulcano 2015) that allows

for irrational customer behaviors. This model subsumes the RUM family of models and generalizes

the non-RUM approach from Kleinberg et al. (2017) by allowing for heterogeneity in customer

preferences. Despite its flexibility, the GSP choice model imposes some structure on the choice

probabilities, and some examples are provided by the authors describing choice behaviors that do

not belong to the GSP class. Ragain and Ugander (2016) propose the Pairwise Choice Markov

Chain model, where each alternative is represented as a node of a continuos time Markov Chain.

Given an offer set, the choice probabilities are given by the stationary distribution of the sub-chain

consisting of the nodes indexed by the available alternatives. Although the PCMC choice model is

On the Estimation of Discrete Choice Models to Capture Irrational Customer Behaviors 

4 CIRRELT-2020-32



able to capture both substitution and halo effects, it obeys the axiom of uniform expansion intro-

duced by Yellott (1977). The authors argue that such property may be desirable in the context of

discrete choice modeling.

Some more general choice models have been proposed in the literature, which are able to represent

any discrete choice function. In particular, Osogami and Otsuka (2014) propose an extension of

the MNL model aming at capturing high-order product interactions. They show that the resulting

model can be represented as a Restricted Boltzman Machine (RBM), a probabilistic graphical

model whose units are divided into two groups, visible and hidden. Visible units are used to encode

a binary representation of the offer set and of a given choice, while hidden units learn a latent

representation of the input. Given enough hidden units, these models can represent any sort of

irrational behavior. An approach based on tree ensembles has recently been proposed by both

Chen et al. (2019) and Chen and Mǐsic (2019), who show that any discrete choice model can be

represented as a distribution over decision trees.

As previously mentioned, choice models with rather flexible structures pose some crucial chal-

lenges, whose solution greatly impacts the predictive accuracy of the trained choice models. In

particular, one needs to balance between flexibility of the choice model, tractability of its estimation

procedure, and risk of overfitting when limited amount of data is available. Chen and Mǐsic (2019)

and Chen et al. (2019) tackle these difficulties by proposing regularization methods whose effect is

to restrict the search space in a principled way. It may be argued, nevertheless, that less general

choice models may be more effective in exploring search spaces that are smaller by definition, and

that imposing some structure on the choice probabilities may provide important inductive bias

to improve generalization over unseen offer sets when limited amount of data is available. This

observation motivates the focus of this paper. In particular, we propose an estimation method for

the Generalized Stochastic Preference choice model, which is flexible enough to subsume the RUM

family of models and to capture halo effects, but still imposes some structure on the choice proba-

bilities. Moreover, we compare the generalization performances of the resulting model against the

PCMC choice model, another approach from the literature making minimal assumptions about the

distribution of choice probabilities among alternatives.

We conclude this section by mentioning an interesting line of work from the machine learning

community, proposing general approaches based on Neural Networks to approximate the complex,

high-order interactions among alternatives (see, e.g., Pfannschmidt et al. 2019, Rosenfeld et al.

2020, Mottini and Acuna-Agost 2017). Despite their flexibility, however, these models have only

been applied to settings with product features and large number of training offer sets. Their

adaptation to a setting close to ours, where no item featurization is given and the amount of offer

sets seen at training time is relatively small, has not been explored yet and does not seem trivial.
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3. The choice model

Consider a set of products N = {0, ...,N − 1}, with label 0 representing the no-purchase option.

Further, let σ denote both a subset of products in N , and a linear order defined over such products,

so that the rank (or position) of product j according to σ is given by σ(j) ≥ 0. A Generalized

Stochastic Preference (Berbeglia 2018) consists of a ranking σ⊆N , and an index i, with 0≤ i < |σ|.

When faced with an offer set S ⊆ N , a customer C(σ, i) picks the alternative ranked ith in the

subsequence of σ that only contains items also available in S. Equivalently, let σS ⊆ σ denote

the sequence of products obtained removing from σ every product j /∈ S. The customer will then

choose product j∗ so that σS(j∗) = i. If |σS| ≤ i, the customer will leave without any purchase.

The particular case of i= 0 corresponds to customers who always pick their favorite (i.e., highest

ranked) product among the available ones. For this reason, we refer to customers C(σ,0) as rational

behaviors, and to the index i of a generalized stochastic preference as its irrationality level. The

GSP choice model is then defined by a probability distribution λ ∈ RK over K customer types

{Ck(σk, ik)}Kk=1. It should be noticed that, since every RUM choice model can be equivalently

represented as a distribution over rational stochastic preferences (see, e.g., Block and Marschak

1959), the GSP choice model naturally subsumes the RUM family of models. Further, Berbeglia

(2018) shows how the GSP choice model can be used to explain the results of several controlled

experiments from the literature in behavioral economics providing violations of the regularity

assumption. From a modeling perspective, we also note that including the 0 (i.e., no-purchase)

option among the ranked alternatives has a useful implication in practice. In particular, contrary

to the original formulation in Berbeglia (2018), this allows us to capture violations of the regularity

assumption also for the no-purchase option (we refer to Appendix A for more details). Several

studies, indeed, have shown that customers’ willingness to purchase and overall satisfaction may

decrease in the presence of too many alternatives among which a choice has to be made (see, e.g.,

Iyengar and Lepper 2000, Schwartz 2004).

The estimation of the GSP choice model poses significant computational challenges, given that

the space of rational customer types alone is factorially large. Estimation procedures developed

for rational, rank-based models such as those from van Ryzin and Vulcano (2015) and Bertsimas

and Mǐsic (2016) cannot be easily adapted to account for learning irrational preferences, nor does

their scalability look promising to tackle the even bigger search space implied by the presence of

irrational behaviors (see, e.g., Berbeglia et al. 2018, Jena et al. 2020). For these reasons, we decided

to adopt the partially-ranked framework from Jena et al. (2020) to represent generalized stochastic

preferences. Besides providing a more intuitive, behavioral representation of an agent’s decision

process, partially-ranked preferences allow for fast estimation schemes and have been shown to

generalize well on unseen offer sets. Starting from the observation that, for rational customer
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behaviors, low-ranked alternatives have a relatively low impact in explaining choice data, Jena

et al. (2020) propose to strictly rank only few, relevant alternatives for each preference list, while

allowing for ties among the rest of them. Alternatives with the same rank may then be grouped

into so-called indifference sets.

Building on that work, we thus define a partially-ranked preference with irrationality

C(P (σ), I(σ), i), where alternatives belonging to σ are further distinguished into a set P (σ) ⊆

N of strictly ranked alternatives and an indifference set I(σ) ⊆ N \ P (σ), so that σ(j) =

σ(j′) for all j, j′ ∈ I(σ), and σ(j)<σ(j′) for all j ∈ P (σ), j′ ∈ I(σ). The inclusion of P (σ)∪ I(σ)⊆

N may be strict, in which case customers are assumed to form so-called consideration sets (see,

e.g., Aouad et al. 2015, Jagabathula and Vulcano 2018). Note that the irrationality level of a

partially-ranked preference must be smaller than the number of strictly ranked products, that is,

i < |P (σ)|, since alternatives in the indifference sets all have the same rank. For ease of notation, let

PS(σ) = P (σ)∩S and IS(σ) = I(σ)∩S denote the strictly ranked preference list and the indiffer-

ence set, respectively, obtained after removing from σ every product not available in a given offer

set S. A customer C(P (σ), I(σ), i) will then pick the alternative ranked ith in PS(σ) if i < |PS(σ)|,

or an alternative chosen uniformly at random in IS(σ) when |PS(σ)| ≤ i < |PS(σ)∪ IS(σ)|. When

i≥ |PS(σ)∪ IS(σ)|, the customer leaves without any purchase.

offer set S PS(σ) IS(σ) ChoiceC1
ChoiceC2

{2,5,1} (2,5) {1} 2 5
{2,1,4} (2) {1,4} 2 ∼Unif{1,4}
{1} () {1} 1 0
{1,4} () {1,4} ∼Unif{1,4} ∼Unif{1,4}

Table 1 Choice behavior of two customers C1 and C2 across different offer sets.

In Table 1, we give an example of the choice behavior of two hypothetical customers

C1

(
(2,3,5),{1,4},0

)
and C2

(
(2,3,5),{1,4},1

)
, who differ only for their irrationality level. As a

consequence, for each offer set S, we have that PS(σ1) = PS(σ2) and IS(σ1) = IS(σ2).

4. Estimation procedure

Jena et al. (2020) have shown that rational, partially-ranked preferences can be efficiently learned

from data. Although their Growing Preference Tree (GPT) algorithm was originally proposed

for the estimation of rational preferences, it can be easily adapted to handle partially-ranked

preferences with irrationality. In this section, we show how the GPT algorithm can be extended

to estimate generalized partially-ranked preferences. We refer to Jena et al. (2020) for a deeper

analysis of the algorithm performances on RUM instances, and for more implementation details.
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We assume that training data is available in the form of T observations T = {(St, ct)}Tt=1 with St

and ct representing the offer set and the choice, respectively, that have been observed in period t.

LetMtrain = {S1, ..., SM} denote the collection of offer sets over which choice data is available. We

can further preprocess dataset T in order to obtain a vector of empirical probabilities vvv ∈ RN ·M

so that, for each j ∈N and S ∈Mtrain, the probability of item j being chosen from offer set S is

given by vj,S.

The GPT algorithm fits into the general column-generation framework proposed for the esti-

mation of a general class of nonparametric choice models by van Ryzin and Vulcano (2015). In

line with this framework, customer behaviors are represented as a choice matrix AAA ∈ R(N ·M)×K ,

encoding K behaviors for M offer sets, whose elements give the probability of customers choosing

an item from a given offer set. In particular, based on the choice behaviors of a partially-ranked

list with irrationality i defined in Section 3, the elements of the matrix AAA may be computed as

follows:

Akj,m =


1 if j ∈ PSm(σ) and j ranked ith in PSm(σ),

1

|ISm(σ)|
if j ∈ ISm(σ) and |PSm(σ)| ≤ i < |PSm(σ)∪ ISm(σ)|,

0 otherwise.

(1)

Given a distribution λλλ ∈RK over the customer types, the predicted probability xj,m of a random

customer choosing alternative j from the offer set Sm is then given by xj,m =
∑

kA
k
j,mλk. One can

thus define the best distribution λλλ, that is, the one for which the predicted probabilities are the

closest to the observed ones, and obtain λλλ by solving the following optimization problem:

min
λλλ
L(xxx,vvv) (2a)

s.t. AAAλλλ=xxx (2b)

111Tλλλ= 1 (2c)

λλλ≥ 0. (2d)

Here, L(xxx,vvv) can be any convex loss function measuring the distance between the predicted

probabilities xxx and the observed ones vvv. For example, one may minimize the L1 error between the

two probability distributions, in which case we have

L(xxx,vvv) =
∑

S∈Mtrain

∑
i∈S

|xi,S − vi,S|. (3)
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Minimizing the L1 error generally leads to sparse models. Moreover, objective function (3) can

be easily linearized (see, e.g., Bertsimas and Mǐsic 2016), thus leading to computationally effective

solution methods.

The Kullback-Leibler divergence is another popular measure of the distance between two prob-

ability distributions. It is strictly convex and leads to the same solution as Maximum Likelihood

Estimation (see, e.g., Jagabathula and Rusmevichientong 2019). It is computed as

L(xxx,vvv) =− 1

T

∑
S∈Mtrain

TS
∑
i∈S

vi,s log
xi,S
vi,S

, (4)

where TS is the number of samples showing S as offer set.

Discovering new customer types. Again, it should be noticed that solving problem (2) over the

factorially large set of possible customer types is not tractable. Hence, in practice, one may proceed

by iteratively (i) solving problem (2) over a restricted set of behaviors, and (ii) identifying new,

relevant behaviors by solving a subproblem. These steps are then repeated until the loss function

achieves a small enough value εth. In particular, let ααα∈RN ·M and ν ∈R denote the dual variables

associated with constraints (2b) and (2c), respectively. The customers (i.e., preference sequences)

worth adding to the model in order to improve its fit of the data are those whose corresponding

choice vector aaa, computed as in (1), has a negative reduced cost, i.e., rc(aaa) =−αααaaa− ν < 0. While

finding new preference sequences with negative reduced costs generally tends to be computationally

expensive, the GPT algorithm exploits the structure of partially-ranked preferences to efficiently

identify such columns. Indeed, partially-ranked preferences allow for using an efficient tree-like data

structure, where deeper levels correspond to behaviors with more refined ranked lists. Specifically,

consider a given partially-ranked behavior Ck. A behavior Cj is considered a child, or sub-behavior

of Ck, if P (σj) = (P (σk), `) with ` ∈ I(σk). When searching for new customer behaviors, one may

thus restrict the search for promising behaviors among the sub-behaviors of {C1, ...,CK}, at any

given iteration.

In Figure 1, we give an example of the sub-behaviors obtained from customer C((2,{1,3,4},0).

The two main advantages of the exploration strategy employed by GPT are the following:

1. The number of strictly ranked objects increases in an adaptive, data-driven way, with more

refined preference lists added only when needed. Besides allowing to avoid the computational

burden of strictly ranking all the products in a preference list, Jena et al. (2020) show that the

explanatory power of indifference sets tends to improve generalization on new offer sets.

2. Since the irrationality level i of a partially-ranked behavior is bounded by the number of

strictly ranked products, i.e., 0≤ i < |P (σ)|, the GPT search procedure prioritizes customers with

low irrationality levels. This seems to be a behaviorally-plausible inductive bias, which may reduce

the risk of overfitting, especially when only a limited amount of data is available.
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2

1 1 3 3 4 4

C0

C1 C2 C3 C4 C5 C6

Customer P(σ) I(σ) i

C0 (2) {1,3,4} 0
C1 (2,1) {3,4} 0
C2 (2,1) {3,4} 1
C3 (2,3) {1,4} 0
C4 (2,3) {1,4} 1
C5 (2,4) {1,3} 0
C6 (2,4) {1,3} 1

Figure 1 (Left) Tree representation of sub-behavior generation. A path in the tree corresponds to a sequence of

strictly ranked products. Dashed nodes correspond to irrational behaviors. (Right) The corresponding

explicit behaviors description.

Observe that customers that differ only in their irrationality level, such as C1 and C2 in the

example of Figure 1, generate the same sets of sub-behaviors. Hence, only one of them needs to be

splitted at generation time. Further, in order to accelerate the generation of sub-behaviors, Jena

et al. (2020) suggest to restrict the number of behaviors to split to a fixed amount δ, which may be

sampled among {Ck : λk > 0} according to the corresponding probabilities. In this case, we sample

only once among the set of behaviors CP (σ),I(σ) = {Ck(P (σk), I(σk), ik) : P (σk) = P (σ) and I(σk) =

I(σ), k= 1, ...,K}, with a probability λ̃P (σ),I(σ) =
∑

k:Ck∈CP (σ),I(σ)
λk.

From a practical standpoint, the decision of whether to incorporate irrational behaviors or not

resolves to setting a single, binary hyperparameter. This makes model selection extremely easy

in practice, allowing practitioners to understand whether going beyond RUM is actually needed

for the given data. Also, other regularization methods based on limiting the irrationality levels of

customer types are straightforward to implement. For example, one may decide to avoid generating

customer types with an irrationality level above a certain value ith. In our experiments, however,

we found that naturally increasing customers’ irrationality in a data-driven way during the GPT

exploration procedure worked well in practice, confirming the practical utility of indifference sets

for avoiding overfitting.

5. Computational results

In this section, we report the results of our experiments on both synthetic and real datasets.

The goal is to understand whether irrational, partially-ranked behaviors can improve predictive

accuracy on new offer sets. In all our experiments, we compare two variants of the partially-

ranked choice model estimated using GPT, namely GPT-rat and GPT-irrat, obtained with and

without irrational behaviors, respectively. We further compare the GPT-based approaches with

two benchmarks: the enumerative rank-based choice model (RB) with fully-ranked lists obtained
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by enumerating all the N ! possible preferences, and the pairwise choice markov chain (PCMC)

proposed by Ragain and Ugander (2016). Section 5.1 focuses on the generalization performances

of the various approaches on a set of synthetic instances. In Section 5.2, we test the models on a

set of publicly available datasets used in transportation for mode choice analysis.

5.1. Numerical results on synthetic instances

Data Generation. We generate choice data samples according to two ground-truth models, specif-

ically the Halo-MNL model proposed by Maragheh et al. (2018) and the GSP model. Both of them

allow us to control the amount of irrationality resulting in the generated instances and to inves-

tigate its impacts on the performance of the various approaches. For each ground truth model,

instances were generated as follows:

• Halo-MNL: this choice model is parametrized by a pairwise interaction matrix U , whose

diagonal terms uii represent the item-specific utilities. Given the offer set S, the overall probability

of choosing product i is given by

P (i|S) =
exp(uii +

∑
k/∈S uki)∑

j∈S exp(ujj +
∑

k/∈S ukj)
.

It is easy to see that by setting to zero the off-diagonal terms of matrix U , we obtain an MNL

model. Following Chen and Mǐsic (2019), we draw the elements uii ∼Unif[−1,1]. We vary the irra-

tionality of the instances by varying the number of pairwise interactions. Specifically, we generate

instances where 0%, 10% and 25% of the couples present a positive interaction, obtained by setting

the corresponding off-diagonal terms to -1. We simulate both symmetric halo effects, where two

products increase each other’s attractiveness, and asymmetric halo effects, also known as decoy

effects, where only one of two products benefits from the presence of the other (the decoy) in the

offer set. In order to investigate more complex interaction scenarios, we generalize the Halo-MNL

model so as to include multiple customer segments, whose probability is drawn uniformly from

the unit simplex. In our experiments, we have used either one or ten customer segments. We note

again that when setting the number of pairwise interactions to zero, we end up obtaining rational

instances generated under MNL and MMNL ground-truth models, depending on the number of

customer segments, 1 and 10, respectively.

• GSP: We remind from Section 3 that a generalized stochastic preference is defined as C(σ, i),

where σ is a ranking over the N alternatives, and i is the irrationality level of the customer type.

Instances generated under this ground-truth model contain either 10 or 100 customer types, whose

probabilities are randomly drawn from the unit simplex. For each instance, we consider 10%, 20%

or 50% of the customer types as irrational, meaning their index i is greater than one. Specifically,

the irrationality level i of each of these customer types was randomly chosen in {1,2, ..., imax}.
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We used imax = 1,5, and 9 to simulate various levels of irrationality. Rational instances have been

obtained by setting the percentage of irrational behaviors to zero.

In all the experiments reported in this section, we used a number of products N = 10, one of

which represents the no-purchase option. For each ground-truth model, we generate either 3,000 or

50,000 transactions, for a total of 10, 20 or 50 training offer sets. This simulates different amount

of training data. When using 50,000 transactions, in particular, the goal is to simulate the scenario

in which we train the models based on empirical probabilities that are close to the true ones (i.e.,

those from the ground-truth model), and the effect of any sampling noise becomes negligible. This

corresponds to the setting already used, for example, in Bertsimas and Mǐsic (2016) and Chen and

Mǐsic (2019), where choice models are trained on ground truth probabilities. We further assume

that the number of transactions is equally distributed among the training offer sets, which all have

dimension |S| ≥ 3 and contain the no-purchase option.

Estimation of the choice models. Following Jagabathula and Rusmevichientong (2019), we train

all the rank-based approaches by minimizing the average Kullback-Leibler (KL) divergence (4)

between predicted probability distributions and the empirical ones over training offer sets. As

already observed, it is well known that minimizing the KL divergence is equivalent to max-

imum likelihood estimation in terms of optimal solution retrieved (see, e.g., Jagabathula and

Rusmevichientong 2019). For the GPT-based approaches, training stops either when the train-

ing objective function reaches a value smaller then εth = 0.005 or when no negative reduced cost

column has been found at a given iteration. The PCMC choice model is trained by maximum like-

lihood estimation. For our experiments, we use the code provided by the authors (code available at

https://github.com/sragain/pcmc-nips). We refer the reader to Appendix B for more details

on the implementation of the PCMC choice model.

Loss of Rationality. We investigate the level of irrationality present in the instances we generated.

In line with the methodology proposed by Jagabathula and Rusmevichientong (2019), we fit the

enumerative rank-based choice model, RB, to all our training instances. It is well known, indeed,

that any RUM choice model can be equivalently represented as a probability distribution over

rankings of alternatives (Block and Marschak 1959). Thus, by fitting such model to a given instance,

the resulting objective function indicates what the authors define as the Loss of rationality (LoR)

of that instance, which can be interpreted as a measure of the minimum amount of choice data

that cannot be explained by using any choice model belonging to the RUM family. Figure 2

reports the LoR value distributions over instances grouped by category (Rational and Irrational),

ground-truth models (Halo-MNL and GSP) and number of customer types (in parenthesis). As

already mentioned, rational instances for Halo-MNL(1) and Halo-MNL(10) correspond to instances
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Figure 2 Distributions of Loss of Rationality for generated instances, grouped by ground-truth models and

number of customer behaviors.

generated under MNL and MMNL ground-truth models, respectively. Also, rational GSP ground-

truth models are equivalent to Rank-Based models with the same number of preference lists. It

is interesting to note, in particular, that the aggregation of a high number of irrational customer

types seems to result into a rational choice behavior at the population level (see Halo-MNL(10)

and GSP(100) in Figure 2). We report in Figure 2 a red dashed line, corresponding to a Loss of

rationality of 0.008, which visually separates the generated instances based on their irrationality

level. Essentially, rationally-generated instances tend to fall below this threshold, but also the

irrationally-generated ones in which many customer types are aggregated. In the following, we

interpret this value as a threshold to understand whether an instance contains significant amount

of irrational choice behaviors. In Appendix C, we further show that the LoR of a given instance can

be impacted by other factors as well, such as the number of choice samples and offer sets available

for training.

Generalization performances. We now focus on the generalization performance of the various

approaches when tested on new offer sets. This has been measured in terms of average L1 error

between the predicted probability distribution xxx and the ground-truth probability distribution vvv

on new offer sets, and has been computed as
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L1(xxx,vvv) =
1

|Mtest|
∑

S∈Mtest

∑
i∈S

∣∣xi,S − vi,S∣∣, (5)

where Mtest is the collection of all possible offer sets that have not been used for training. This

means that, once we generate the 512 offer sets of dimensions 3 ≤ |S| ≤ 10 (and containing the

no-purchase option), M = 10,20 or 50 of them are used for training and |Mtest| = 512−M are

used for testing. As noted in Ragain and Ugander (2016), equation (5) can be interpreted as the

expected L1 prediction error given a randomly drawn offer set.

Irrational instances LoR RB GPT PCMC

% irrat rat rat irrat % change -

Halo-MNL(1) 10 0.0103 0.2185 0.2325 0.1785 -23.2 0.2610
25 0.0244 0.3239 0.3285 0.2838 -13.6 0.3804

avg (all) 0.0173 0.2712 0.2805 0.2312 -17.6 0.3207

Halo-MNL(10) 10 0.0035 0.1453 0.1233 0.1208 -2.0 0.2195
25 0.0044 0.1691 0.1650 0.1551 -6.0 0.2518

avg (all) 0.0040 0.1572 0.1442 0.1379 -4.3 0.2356

GSP(10) 10 0.0171 0.2402 0.2202 0.2188 -0.6 0.4273
20 0.0286 0.2798 0.2638 0.2502 -5.2 0.4625
50 0.0573 0.3785 0.3712 0.3352 -9.7 0.5312

avg (all) 0.0343 0.2995 0.2851 0.2681 -6.0 0.4737

GSP(100) 10 0.0034 0.1683 0.1483 0.1539 3.8 0.2890
20 0.0043 0.1820 0.1657 0.1673 1.0 0.3009
50 0.0082 0.2208 0.2123 0.2042 -3.8 0.3394

avg (all) 0.0053 0.1904 0.1754 0.1751 -0.2 0.3098

avg (all) 0.0170 0.2355 0.2247 0.2102 -6.5 0.3568

Rational instances

MNL - 0.0034 0.1207 0.1011 0.1072 6.0 0.1404
MMNL(10) - 0.0027 0.1280 0.0843 0.0888 5.3 0.1529
RB(10) - 0.0060 0.1560 0.1449 0.1583 9.2 0.3841
RB(100) - 0.0033 0.1542 0.1351 0.1429 5.8 0.2793

avg(all) 0.0039 0.1397 0.1163 0.1243 6.8 0.2392

Table 2 Average L1 test errors for each approach under various ground truth models. Each line averages over

instances generated with different number of training offer sets (10,20 and 50) and transactions (3,000 and

50,000). For Halo-MNL, each group aggregates instances with both symmetric and asymmetric interactions. For

GSP, each group aggregates instances with different irrationality levels.

Table 2 reports the L1 test errors of each approach on sets of instances grouped by ground-

truth models and number of customers types, indicated in parenthesis. The value of column “%

irrat” further divides each group based on the characteristics of the ground-truth model generating
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the corresponding set of instances. For Halo-MNL instances, this column indicates the amount

of pairwise interactions among products, while, for GSP instances, it indicates the percentage of

irrational behaviors. For GPT-based approaches, we further report in “% change” the percentage

change in performance obtained by considering irrational behaviors in the estimation procedure.

We focus first on the set of irrational instances. It is possible to observe how the performance

of the rational choice models, RB and GPT-rat, quickly deteriorates as the Loss of Rationality

increases. Such trend is significantly less pronounced for GPT-irrat, which can benefit from the

generalization power of irrational behaviors. In particular, GPT-irrat seems to behave particularly

well in capturing positive interactions on Halo-MNL instances with one customer type, with average

test error improvements ranging between 17% and 23%. We remind that the ground-truth model in

this set of instances assumes either asymmetric (decoy) or symmetric interactions among products.

The latter, in particular, were found to result in slightly higher LoR, for an average value of 0.0229

compared to an average LoR of 0.0136 for asymmetric interactions. The difference in performance

between the two methods is also significant on GSP instances with 10 customer types with high

numbers of irrational behaviors: up to 9.7% for instances with 50% of irrational behaviors. However,

for smaller percentages of irrational behaviors the performance gain of GPT-irrat is less strong. This

is probably due to the more complex interactions among alternatives resulting under a GSP ground-

truth model. Further analysis has shown that when given enough training data, both in terms of

number of training choice samples and number of training offer sets, the performance improvement

of GPT-irrat can be as high as 27% on the same set of instances (see Table 10 in Appendix C).

As previously observed, Halo-MNL and GSP instances with many irrational behaviors seem to

result in more rational interactions at the population level, thus leading to smaller differences in

performance between the GPT-rat and GPT-irrat approaches (not necessarily in favor of GPT-

irrat). We finally note that GPT-based approaches clearly outperform the two benchmarks, RB

and PCMC. The latter, in particular, struggles to generalize well on the GSP(10) set of instances,

confirming that the choice behaviors resulting in this case are particularly hard to capture.

We now move our attention to the set of rational instances, where, as one may expect, the

flexibility of GPT-irrat may increase the risk of overfitting, thus leading to worse generalization

when compared to GPT-rat. This also favorably compares with RB-rat, confirming the results

of Jena et al. (2020) on the generalization power of partially-ranked lists. Further, as already

mentioned in Jena et al. (2020) and van Ryzin and Vulcano (2015), using all N ! fully-ranked

preferences for training the RB model increases the risk of overfitting the training set. This supports

the hypothesis that adding only relevant types to the estimated choice model is crucial for its

generalization performance. Finally, we observe that the PCMC model is clearly outperformed by

rank-based methods on this set of instances as well.
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Impact of the irrationality level of GSP customer types. To explore the impact of the limited

irrationality assumption intrinsic to the GPT algorithm, in Table 3 we further analyze the perfor-

mance of GPT-based approaches, with and without irrational behaviors respectively, on the set of

instances GSP(10). In particular, for each “% irrat” value reported in Table 2, we disaggregate the

performance of GPT-rat and GPT-irrat on instances grouped by maximum irrationality level imax

of the customer types used to generate the ground-truth models. While particularly high levels of

LoR RB GPT

% irrat imax rat rat irrat % change

GSP(10) 10 1 0.0189 0.2518 0.2265 0.2121 -6.3
5 0.0186 0.2465 0.2335 0.2356 0.9
9 0.0137 0.2222 0.2006 0.2087 4.0

avg (all) 0.0171 0.2402 0.2202 0.2188 -0.6
GSP(10) 20 1 0.0288 0.2885 0.2696 0.2394 -11.2

5 0.0366 0.3177 0.3024 0.2853 -5.7
9 0.0204 0.2333 0.2196 0.2259 2.9

avg (all) 0.0286 0.2798 0.2638 0.2502 -5.2
GSP(10) 50 1 0.0519 0.3892 0.3866 0.3257 -15.8

5 0.0762 0.4623 0.4525 0.4177 -7.7
9 0.0440 0.2840 0.2746 0.2623 -4.5

avg (all) 0.0573 0.3785 0.3712 0.3352 -9.7

avg (all) 0.0343 0.2995 0.2851 0.2681 -6.0

Table 3 Test errors comparison between RB-rat, GPT-rat and GPT-irrat on GSP instances with 10 customer

types, grouped based on the percentage of irrational behaviors in the ground truth model, and their irrationality

levels. The metric reported is the average L1 error per offer set

irrationality may not be very common in practice, they allow us to analyze possible limitations

of our approach. In column “% change”, we thus report the percentage change in performance

obtained by GPT-irrat when compared to GPT-rat. It can be noticed that when capturing the

behavior of customers with limited levels of irrationality, the average performance gain of GPT-

irrat can be as high as 15.8%. It is also interesting to note a decrease in the Loss of Rationality

of instances generated for imax = 9 and, coherently, an improvement in the predictive accuracy

of rational rank-based methods on the same set of instances. Indeed, given an offer set S and a

generalized stochastic preference C(σ,9), it is often the case that |σS|< i. We recall from Section

3 that, in such cases, the considered customer type leaves with no purchase. Intuitively, such a

behavior can be more easily approximated by a rational choice model imposing a high probability

mass on the no-purchase option. This also translates into predictions that are more accurate on

average than those obtained for smaller levels of irrationality imax.
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We conclude this section by referring the interested reader to Appendix C, where we present

an analysis of the impact of data availability on the performance of the various approaches. In

summary, we noticed that higher amounts of training data, both in terms of number of training

offer sets M and number of samples T available for training, can further increase the performance

gap between GPT-rat and GPT-irrat on irrational instances. As one may expect, large numbers

of training offer sets also benefit the enumerative approach (RB), since it decreases the risk of

overfitting. Finally, we observed that the PCMC approach becomes closer to GPT-based approaches

in terms of generalization error when 50 offer sets and 3,000 choice samples are available at training

time, but it is always outperformed on average by either GPT-rat or GPT-irrat on rational and

irrational instances, respectively.

5.2. Numerical results on mode choice datasets

In this section, we test all approaches on real-world instances, used in transportation for mode

choice analysis, and all publicly available. Namely,

• swissmetro (Bierlaire et al. 2001): 10,758 choices made by people among car (when available),

train and maglev (a type of train exploiting magnetic repulsion in order to alleviate the friction

of traditional transportation systems), for traveling among major urban centers in Switzerland.

Both train and maglev can operate at three different time intervals, specifically every 30, 60 or

120 minutes the former, and every 10, 20 or 30 minutes the latter. Following Osogami and Otsuka

(2014), we consider each case as a separate option, resulting in a total number of 7 alternatives.

• sfwork and sfshop (Koppelman and Bhat 2006): 3,157 and 5,029 observations, respectively,

on the transportation modes chosen by people to commute and to travel to a shopping center in

the San Francisco Bay Area. We note that these sets of instances are the same used in the work of

Ragain and Ugander (2016).

Basic statistics describing the three sets of instances are summarized in Table 4.

sfshop swissmetro sfwork

nb samples 3157 10758 5029
nb offer sets 10 18 12
nb alternatives 6 7 8
size of offer sets {4,5,6} {2,3} {6,7,8}

Table 4 Statistics describing the mode choice datasets.

Since none of these datasets contains the no-purchase option, we slightly modify the behavior of

partially-ranked lists with irrationality so that, when faced with an offer set S, customer C(σ, i)

chooses uniformly at random among the available alternatives whenever i≥ |PS(σ)∪ IS(σ)|. In line

with other works (see, e.g., Jagabathula et al. 2020, Chen and Mǐsic 2019, Osogami and Otsuka
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2014), in order to assess the predictive accuracy of the various approaches on this set of real

instances, we measure the average KL divergence (4) between predicted and empirical probability

distributions over test offer sets. Given the limited amount of available data, we decided to report

leave-one-out crossvalidated results. Specifically, given M offer sets, we use M − 1 of them for

training and the last one to test the estimated choice model. The average of the M different

evaluation metrics obtained in this way is reported in Table 5. In line with our results on synthetic

instances (see Section 5.1), we notice that GPT-irrat is able to improve the predictive accuracy

on the sfshop set of instances that, according to the corresponding LoR, contains a significant

amount of irrational choice behaviors. Also, GPT-irrat achieves better generalization on average

on the swissmetro dataset, which, despite characterized by low loss of rationality, has been shown

to contain halo effects (Osogami and Otsuka 2014). This gives some insights on the limitations of

using the LoR metric for model selection.

LoR RB GPT PCMC
rat rat irrat -

sfshop 0.0124 0.4510 0.4093 0.3561 0.2745
sfwork 0.0066 0.0450 0.0527 0.0533 0.0612
swissmetro 0.0023 0.0571 0.0590 0.0474 0.0326

Table 5 Test error comparison on real instances for mode choice analysis. The metric reported is the average

Kullback-Leibler divergence, obtained using leave-one-out cross-validation for each set of instances.

It is important to notice the particularly good performance of PCMC. Contrary to our generated

instances, the set of instances used in these experiments contains only a relatively small number of

interactions among alternatives to capture. In the swissmetro dataset, for example, the options

corresponding to the different time intervals for the train are mutually exclusive. Hence, only one

of those options can be present in a given offer set. The same is true for the three alternatives

relative to the maglev mode of transportation. Using 17 offer sets for training, the PCMC choice

model is able to learn good estimates of the pairwise transition matrix parametrizing the model. A

similar situation characterizes also the sfshop and sfwork datasets, where 2 out of 6 and 4 out of

8 alternatives, respectively, are always present in the choice set. Thus, no transition rate needs to

be estimated among those options. This hypothesis is further confirmed by the good performance

of RB, especially when compared to GPT-rat on the set of more rational instances, i.e., on sfwork

and swissmetro. The dimension of the dataset and the number of samples allow RB to generalize

well on the test set, without overfitting. Even if given enough data, however, RB cannot learn

the irrational interactions that allow GPT-irrat to better generalize on new offer sets for sfshop

and swissmetro instances. In Appendix D, we report a set of experiments where we reproduce
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this scenario, by generating instances where 6 out of 10 products are always present in the offer

set. Confirming our previous hypothesis, our results show that PCMC benefits from the limited

amount of interactions (both in terms of substitutions and halo effects) resulting from this set of

instances, obtaining a predictive accuracy competitive with rank-based methods.

6. Conclusion

In this paper, we proposed an estimation method for the Generalized Stochastic Preference choice

model introduced by Berbeglia (2018). In order to do so, we show how to adapt the partially-ranked

representation of rank-based preferences proposed by Jena et al. (2020) to the case of irrational

behaviors. This allows us to adapt their column generation approach to efficiently estimate the

choice model from choice data. We ran an extensive set of experiments in order to understand

whether irrational behaviors can help improving generalization to unseen offer sets. In line with

previous works on general choice models overcoming the RUM limitations (see, e.g., Chen and

Mǐsic 2019, Chen et al. 2019), we observed that deciding whether to add irrational behaviors highly

depends on the specific dataset at hand, with a significant impact on the predictive accuracy of the

estimated choice model. In our experiments, given the limited amount of products, we were able

to follow the method of Jagabathula and Rusmevichientong (2019) as a possible model-selection

criterion. Although the authors give conditions in which this method can be applied efficiently, it

is not tractable in general. Moreover, as we show in Section 5.2 and in Appendix C, the loss of

rationality metric can be influenced by sampling noise and number of training offer sets. Hence, it

is difficult to assess when the loss of rationality is high enough to justify going beyond the RUM

framework. As a consequence, particular attention must be paid when applying these models to

a given instance, since they may lead to worse predictive accuracy than RUM methods whenever

the presence of irrational behaviors is negligible (see, e.g., Chen et al. 2019, Chen and Mǐsic

2019). One may thus resort to model selection techniques more in line with the machine learning

literature, such as cross-validation, to understand which approach to choose in those cases. An

appealing feature of our approach consists in the fact that choosing whether to go beyond the RUM

framework or not resolves to setting a single, binary hyperparameter. This greatly simplifies the

model selection process, making it easier for practitioners to understand whether going beyond the

RUM framework is actually needed. Indeed, within the same framework, it is possible to exploit

the explanatory power of both partially-ranked preference lists which, since subsuming fully-ranked

preferences (see, e.g., Farias et al. 2013), can theoretically represent any RUM choice model, and

irrational behaviors, which, as we have shown, can significantly enhance accuracy on irrational

instances. Our approach is thus capable of providing accurate estimates of product demands on

both rational instances (see also Jena et al. 2020) and irrational ones. This is not necessarily true
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for other general choice models that have been proposed in the literature, whose regularization

methods have no clear connection to the irrationality level of a given instance, and to the expressive

power of the obtained choice model.
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Appendix

A. Regularity violation of the no-purchase option

The Generalized Stochastic Preference choice model as defined by Berbeglia (2018) does not account for

violations of the regularity assumption for the no-purchase option (see Berbeglia 2018, Lemma 1). Given two

offer sets S ⊆ S′ ⊆N , in particular, the authors show that every customer choosing the no-purchase option

from S′, by definition, must choose the no-purchase option from S as well. However, we can circumvent such

limitation by allowing a customer type C(σ, i) to rank the no-purchase option in σ. Consider, for example,

two offer sets S = {0,1,2} and S′ = {0,1,2,3}, where S ⊂ S′, and a customer type C
(
(3 0 1 2),1

)
. Her choice

behavior is reported in Table 6. It is easy to see that, by introducing the option 3 in the offer set, we can

increase the probability of option 0 being chosen and, thus, of the customer leaving without any purchase.

S σS Choice

{0,1,2} (0 1 2) 1
{0,1,2,3} (3 0 1 2) 0

Table 6 Choice behavior of customer C
(
(3 0 1 2),1

)
faced with two different offer sets.

B. Details on the implementation of PCMC

In this section, we elaborate on the implementation details of the PCMC choice model. The model is trained

by Maximum Likelihood Estimation, and a Sequential Least SQuares Programming (SLSQP) solver (Nocedal

and Wright 2006) is used to optimize the corresponding objective function, which is concave in general. The

authors suggest to use additive-smoothing to avoid some numerical issues involved in the training of the

model. In particular, given an offer set of size |S| and an additive smoothing parameter α, the probability

of choosing alternative j is computed at training time as

P (j|S) =
TjS +α

TS +α|S|
,

where TS is the number of training samples showing offer set S, and TjS the number of times alternative j is

chosen from the offer set S. In Table 7, we investigate the change in performance due to different stopping

criteria and values of parameter α. In particular, we implemented stopping criteria based on

1. The maximum number of iterations to be performed by the solver: this is set to 25, which is the default

value in the code provided by the authors. The corresponding results are reported in column “PCMC-25”

2. The absolute change in the objective function between two consecutive iterations: the algorithm is

stopped when this change is smaller than 10−6, and the corresponding results are reported in column “PCMC-

∞”.

Moreover, for each stopping criterion, we compared the performance obtained by using different amounts

of additive-smoothing in the training set. Specifically, column “Crossval” reports the average generalization

error obtained using 5-folds crossvalidation to select the best α ∈ {0,0.01,0.1,1,5,10}. Column “None”

corresponds to α= 0, for which no additive smoothing was used.
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Irrational instances PCMC -25 PCMC - ∞
% irrat Crossval None Crossval None

Halo-MNL(1) 10 0.2595 0.2610 0.2897 0.2941
25 0.3756 0.3804 0.3933 0.3937

avg (all) 0.3175 0.3207 0.3415 0.3439

Halo-MNL(10) 10 0.1997 0.2195 0.2348 0.2545
25 0.2430 0.2518 0.2873 0.3010

avg (all) 0.2214 0.2356 0.2610 0.2778

GSP(10) 10 0.4293 0.4273 0.4615 0.4625
20 0.4622 0.4625 0.4927 0.4918
50 0.5283 0.5312 0.5668 0.5711

avg (all) 0.4733 0.4737 0.5070 0.5084

GSP(100) 10 0.2790 0.2890 0.3223 0.3386
20 0.2880 0.3009 0.3354 0.3478
50 0.3283 0.3394 0.3868 0.3976

avg (all) 0.2984 0.3098 0.3481 0.3613

avg (all) 0.3500 0.3568 0.3887 0.3967

Rational instances

MNL - 0.1351 0.1404 0.1930 0.2012
MMNL - 0.1381 0.1529 0.1970 0.2136
RB(10) - 0.3840 0.3841 0.4028 0.4065
RB(100) - 0.2741 0.2793 0.3167 0.3292

avg (all) 0.2328 0.2392 0.2774 0.2876

Table 7 Average L1 test errors for different PCMC implementations under various ground truth models. Each

line averages over instances generated with different number of training offer sets (10,20 and 50) and

transactions (3,000 and 50,000).

The average L1 test error has been reported over instances grouped by ground-truth models and number

of customers types, indicated in parenthesis in the first column. The value of column “% irrat” further

divides each group based on the characteristics of the ground-truth model generating the corresponding

set of instances. For Halo-MNL instances, this column indicates the amount of pairwise interactions among

products, while, for GSP instances, it indicates the percentage of irrational behaviors. We observe that

limiting the number of iterations seems to be having a major impact on the predictive accuracy of the

resulting choice model. Our intuition is that allowing the solver to proceed until convergence is reached

may end up in overfitting the training set. We also notice that the gain in performance obtained by using

additive-smoothing is not significant in general. To confirm whether the deterioration in performance of

PCMC-∞ is actually due to overfitting, in Table 8 we further compare the two variants on a set of instances

where 50,000 training samples have been generated, and we investigate the impact of the number of training

offer sets on the resulting choice model. Confirming our previous hypothesis, we notice that when significant

amount of training data is available, both in terms of number of training samples and number of training

offer sets M , the risk of overfitting decreases and a better fit at training time translates in a significant
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Irrational PCMC - 25 PCMC - ∞
M Crossval None Crossval None

Halo-MNL 10 0.3091 0.3097 0.3341 0.3332
20 0.2824 0.2801 0.2827 0.2826
50 0.2340 0.2329 0.1546 0.1570

GSP 10 0.4859 0.4873 0.5347 0.5340
20 0.4052 0.4069 0.4300 0.4322
50 0.3355 0.3383 0.2817 0.2827

avg (all) 0.3677 0.3688 0.3667 0.3675

Rational

(M)MNL 10 0.1212 0.1216 0.1518 0.1497
20 0.0921 0.0924 0.1231 0.1294
50 0.0733 0.0704 0.0659 0.0662

RB 10 0.4187 0.4291 0.4897 0.4997
20 0.3530 0.3429 0.3794 0.3893
50 0.3072 0.2961 0.2099 0.2086

all (avg) 0.3490 0.3497 0.3494 0.3506

Table 8 Average L1 test errors for different PCMC implementations under various ground truth models, on

instances with 50,000 choice samples available for training. Instances are further divided based on the number of

offer sets M observed during training.

improvement in generalization error. Nevertheless, also for this set of instances, i.e., with M = 50 offer sets

and 50,000 samples are available at training time, the performance of the best PCMC variant is worse than

the one of the GPT-based approaches (see Table 10). At this point, one may wonder whether more adaptive

stopping criteria may be used instead of fixing ahead the maximum number of iterations. However, further

experiments revealed that fixing the number of iterations to 25 worked better on average than other stopping

criteria based on

• The relative change in the objective function between consecutive iterations (< 1%),

• The maximum absolute change in the predicted probabilities over all training offer sets (< 0.001),

• The maximum absolute change in the value of the parameters of the PCMC choice model,

• The maximum number of iterations set to 100.

We thus avoid reporting the set of results corresponding to such stopping criteria, and use the PCMC-25

variant with no additive smoothing in the rest of our experiments. In particular, this is also the PCMC

implementation used for the experiments reported in Section 5.1 and Section 5.2.

C. Impact of the amount of available data

In the following, we analyze how the amount of available training data impacts the predictive accuracy of

the trained choice models. We consider the set of instances generated as outlined in Section 5, and group

them based on the number of samples available for training. We then report in Table 9 and Table 10 results

for instances consisting of 3,000 and 50,000 training samples, respectively. Each set of instances is further
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Irrational instances LoR RB GPT PCMC

rat rat irrat % change

Halo-MNL(1) 10 0.0073 0.3167 0.3157 0.2729 -13.6 0.3971
20 0.0161 0.2722 0.2805 0.2580 -8.0 0.3203
50 0.0440 0.2471 0.2581 0.2314 -10.3 0.2478

avg (all) 0.0225 0.2787 0.2848 0.2541 -10.8 0.3217

Halo-MNL(10) 10 0.0003 0.2153 0.1630 0.1486 -8.8 0.2860
20 0.0023 0.1730 0.1719 0.1592 -7.4 0.2477
50 0.0200 0.1499 0.1609 0.2013 25.1 0.1938

avg (all) 0.0075 0.1794 0.1652 0.1697 2.7 0.2425

GSP(10) 10 0.0174 0.3774 0.3434 0.3463 0.8 0.5346
20 0.0371 0.2950 0.2859 0.2772 -3.0 0.4432
50 0.0655 0.2411 0.2381 0.1953 -18.0 0.3522

avg (all) 0.0400 0.3045 0.2891 0.2729 -5.6 0.4433

GSP(100) 10 0.0011 0.2441 0.2038 0.1955 -4.0 0.3788
20 0.0035 0.2006 0.1937 0.1887 -2.6 0.2984
50 0.0222 0.1713 0.1763 0.2113 19.9 0.2283

avg (all) 0.0089 0.2054 0.1912 0.1985 3.8 0.3018

avg (all) 0.0216 0.2470 0.2355 0.2284 -3.0 0.3447

Rational instances

MNL 10 0.0003 0.1760 0.1178 0.1176 -0.2 0.2541
20 0.0013 0.1446 0.1387 0.1341 -3.3 0.1964
50 0.0186 0.1223 0.1340 0.1804 34.7 0.1407

avg (all) 0.0067 0.1476 0.1302 0.1440 10.7 0.1971

MMNL 10 0.0000 0.1850 0.0994 0.1061 6.6 0.2571
20 0.0008 0.1505 0.1403 0.1291 -8.0 0.2034
50 0.0152 0.1288 0.1446 0.1841 27.3 0.1390

avg (all) 0.0053 0.1548 0.1281 0.1398 9.1 0.1998

RB(10) 10 0.0024 0.2695 0.2544 0.2777 9.1 0.4503
20 0.0067 0.1432 0.1484 0.1682 13.3 0.3516
50 0.0252 0.0942 0.0958 0.1079 12.7 0.2680

avg (all) 0.0114 0.1689 0.1662 0.1846 11.1 0.3566

RB(100) 10 0.0003 0.2162 0.1709 0.1640 -4.1 0.3112
20 0.0017 0.1711 0.1562 0.1570 0.5 0.2482
50 0.0175 0.1442 0.1507 0.1988 31.9 0.2146

avg (all) 0.0065 0.1772 0.1593 0.1733 8.8 0.2580

avg (all) 0.0075 0.1621 0.1460 0.1604 9.9 0.2529

Table 9 Test error on generated instances with a total number 3,000 training samples. Instances are grouped

by ground-truth model, and number of offer sets available for training. For each set of instances, the average L1

test errors are reported for the various approaches.
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Irrational instances LoR RB GPT PCMC

rat rat irrat % change

Halo-MNL(1) 10 0.0052 0.3107 0.3016 0.2621 -13.1 0.3590
20 0.0110 0.2558 0.2688 0.2056 -23.5 0.3225
50 0.0203 0.2245 0.2373 0.1627 -31.4 0.2775

avg (all) 0.0122 0.2637 0.2692 0.2101 -22.0 0.3197

Halo-MNL(10) 10 0.0001 0.1950 0.1390 0.1261 -9.3 0.2605
20 0.0002 0.1212 0.1201 0.0982 -18.2 0.2377
50 0.0009 0.0888 0.0960 0.0781 -18.7 0.1883

avg (all) 0.0004 0.1350 0.1184 0.1008 -14.8 0.2288

GSP(10) 10 0.0153 0.3924 0.3414 0.3515 3.0 0.5931
20 0.0280 0.2795 0.2708 0.2568 -5.2 0.5008
50 0.0427 0.2115 0.2158 0.1559 -27.8 0.4181

avg (all) 0.0287 0.2945 0.2760 0.2547 -7.7 0.5040

GSP(100) 10 0.0004 0.2341 0.1769 0.1697 -4.0 0.3815
20 0.0011 0.1659 0.1548 0.1472 -4.9 0.3131
50 0.0035 0.1262 0.1265 0.1184 -6.4 0.2585

avg (all) 0.0017 0.1754 0.1527 0.1451 -5.0 0.3177

avg (all) 0.0124 0.2240 0.2080 0.1862 -10.5 0.3688

Rational instances

MNL 10 0.0000 0.1379 0.0912 0.0889 -2.5 0.1054
20 0.0000 0.0801 0.0723 0.0731 1.1 0.0800
50 0.0002 0.0631 0.0613 0.0598 -2.4 0.0658

avg (all) 0.0001 0.0937 0.0749 0.0740 -1.3 0.0837

MMNL 10 0.0000 0.1540 0.0488 0.0488 0.0 0.1378
20 0.0000 0.0836 0.0469 0.0469 0.0 0.1048
50 0.0001 0.0662 0.0457 0.0457 0.0 0.0751

avg (all) 0.0000 0.1013 0.0471 0.0471 0.0 0.1059

RB(10) 10 0.0001 0.2769 0.2084 0.2274 9.1 0.4858
20 0.0004 0.1114 0.1151 0.1330 15.5 0.3979
50 0.0014 0.0411 0.0583 0.0687 17.8 0.3508

avg (all) 0.0006 0.1431 0.1273 0.1430 12.4 0.4115

RB(100) 10 0.0000 0.2037 0.1372 0.1354 -1.3 0.3724
20 0.0000 0.1130 0.1090 0.1165 6.9 0.2879
50 0.0004 0.0773 0.0831 0.0920 10.7 0.2413

avg (all) 0.0001 0.1313 0.1098 0.1146 4.4 0.3005

avg (all) 0.0002 0.1174 0.0898 0.0947 5.5 0.2254

Table 10 Test errors on generated instances with a total number of 50,000 training samples. Instances are

grouped by ground-truth model, and number of offer sets available for training. For each set of instances, the

average L1 test errors are reported for the various approaches.
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divided based on the ground-truth model used to generate data, with the number of customer types reported

in parenthesis, and on the number of offer sets M for which training data is available. In line with the results

of Table 2, we observe that GPT-irrat well captures positive pairwise interactions. Specifically, Table 9 shows

that irrational behaviors allow to improve predictive accuracy by 8% to 13% for Halo-MNL instances with

one customer type and 3,000 transactions. As one may expect, more complex choice behaviors resulting

from GSP(10) instances generally need more training offer sets to be accurately learned from data. With 50

training offer sets, however, GPT-irrat is able to improve predictive accuracy by 18% with respect to GPT

with only rational behaviors. Interestingly, PCMC seems to be competitive with GPT-based approaches when

M = 50 offer sets are observed for training, despite being always outperformed by either GPT-rat or GPT-

irrat on rational and irrational instances, respectively. As one may expect, a large number of training offer

sets seems to benefit also the fully enumerative, rank-based approach, which otherwise ends up overfitting

when M is small.

Results in Table 10 show that, for large numbers of training choice samples, the gap in performance

between GPT-rat and GPT-irrat is even more pronounced when dealing with significant presence of irrational

behaviors, with GPT-irrat improving predictive accuracy up to 31% and 27% for Halo-MNL(1) and GSP(10)

instances, respectively. Interestingly, large numbers of training samples also improve the performance of

GPT-irrat on rational instances, with a predictive accuracy deterioration of 5.5% on average, when compared

to GPT-rat, against the 9.9% deterioration obtained with 3,000 training samples. We also notice that in

this set of instances, PCMC is not competitive with rank-based approaches, resulting in significantly higher

generalization errors. This is also due to the issues related to the training of the PCMC model, on which we

elaborated in Appendix B.

We conclude this section by mentioning some key aspects regarding the use of LoR as a metric to assess

the irrationality level of a given instance. In particular, observing Table 9 and Table 10, we can notice the

following:

• LoR tends to increase with the number of training offer sets M , and

• LoR is affected by the sampling noise due to limited number of available data. High levels of LoR

may therefore be due to insufficient amount of training data more than to the irrationality level of a given

instance.

These two observations shed light on the limitation of the LoR metric as a tool for model selection, and

emphasize the importance of more robust model selection techniques based on crossvalidation, in line with

the machine learning literature.

D. Experiments on structured instances

In this section, we focus on a set of experiments that aims at investigating the performances of GPT-rat,

GPT-irrat, RB-rat and PCMC on a set of instances where only a small number of interactions among

alternatives needs to be captured. In order to do so, we generate instances as delineated in Section 5.1,

with the only difference that 6 randomly chosen alternatives out of 10 are always present, leading to a total

number of 16 offer sets that can be generated for each instance. As a consequence, we also notice that the

average dimension of an offer set for these generated instances is of 7.96 alternatives, against an average
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size of 5.5 alternatives for the set of experiments reported in Table 2. In Table 11, we report the average L1

test errors of the various approaches on different ground-truth models, with M = 10 and M = 15 training

offer sets. Coherently with our findings in Section 5 on real-world transportation mode data, the PCMC

performance is competitive with the rank-based approaches on this set of instances, achieving the best results

for Halo-MNL and MNL instances. Also, the difference in performance between RB-rat and GPT-rat is much

smaller than the one observed in Table 2. In fact, given the limited amount of interactions that needs to be

captured, the amount of training data is enough to avoid the overfitting problems characterizing the results

on generic instances. One may also notice that, for rational instances generated using MNL and MMNL as

ground-truth models, GPT-rat and GPT-irrat obtain the same test errors on average, which indicates the

algorithm ends after the first iteration, without the need of adding additional behaviors. This is explained

by the fact that, given the relatively large amount of products always present in the offer set, only limited

substitution effects need to be captured.

Irrational instances LoR RB GPT PCMC
M rat rat irrat 25

Halo-MNL(1) 10 0.0173 0.1971 0.1995 0.0909 0.0836
15 0.0209 0.1902 0.1908 0.0684 0.0634

avg (all) 0.0191 0.1937 0.1952 0.0797 0.0735
Halo-MNL(10) 10 0.0010 0.0720 0.0783 0.0737 0.0515

15 0.0014 0.0591 0.0775 0.0672 0.0451
avg (all) 0.0012 0.0655 0.0779 0.0705 0.0483

GSP(10) 10 0.0509 0.2218 0.2289 0.1966 0.3047
15 0.0586 0.2050 0.2041 0.1247 0.2722

avg (all) 0.0547 0.2134 0.2165 0.1607 0.2885
GSP(100) 10 0.0047 0.1227 0.1277 0.1257 0.1617

15 0.0063 0.1110 0.1201 0.1181 0.1322
avg (all) 0.0055 0.1168 0.1239 0.1219 0.1470

avg (all) 0.0240 0.1542 0.1598 0.1209 0.1695

Rational instances

MNL 10 0.0001 0.0409 0.0500 0.0500 0.0310
15 0.0004 0.0305 0.0671 0.0671 0.0233

avg (all) 0.0003 0.0357 0.0586 0.0586 0.0272
MMNL(10) 10 0.0001 0.0453 0.0286 0.0286 0.0303

15 0.0003 0.0409 0.0292 0.0292 0.0326
avg (all) 0.0002 0.0431 0.0289 0.0289 0.0314

RB(10) 10 0.0004 0.0284 0.0237 0.0375 0.0691
15 0.0006 0.0124 0.0279 0.0317 0.0610

avg (all) 0.0005 0.0204 0.0258 0.0346 0.0651
RB(100) 10 0.0002 0.0459 0.0606 0.0759 0.0682

15 0.0005 0.0275 0.0528 0.0649 0.0602
avg (all) 0.0004 0.0367 0.0567 0.0704 0.0642

avg (all) 0.0003 0.0340 0.0425 0.0481 0.0470

Table 11 Test error comparison on structured instances, where 6 out of 10 products are always present in the

offer set. The metric reported is the average L1 error per offer set.
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