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Abstract. The classical Prize-collecting Steiner Tree Problem aims at finding a connected 

subgraph that maximizes the revenues collected from connected vertices minus the costs 

to utilize the connecting edges.  We consider a multi-period variant in which, additionally: 

(a) vertices are allowed to be added to the tree at different time periods; (b) a predefined 

budget is imposed on edges selected over specified sets of time periods; and (c) the total 

length of the edges that can be added over a time period is limited.  We propose a branch-

and-cut algorithm that satisfactorily solves in reasonable time benchmark instances from 

the literature, adapted to a multi-period setting, with up to 3300 vertices and 300 terminal 

vertices. 
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1. Introduction

The Steiner Tree Problem (STP), also called Steiner Tree Problem in Graphs (Lucena
and Beasley, 1998; Lucena and Resende, 2004; Rosseti et al., 2003), consists of building a tree
of minimal weight from an undirected graph with non-negative edge weights and a subset
of its vertices (named terminals). A feasible solution must include all terminal vertices, but
may also contain additional non-terminal vertices.

Given a graph G which associates a prize to each vertex and a cost to each edge, the
Prize-collecting Steiner Tree Problem (PCST) aims to build a connected subgraph of G,
maximizing the sum of the selected vertices’ prizes reduced by the sum of the selected edges’
costs (Ljubić et al., 2005). The PCST is NP-hard (Karp, 1972), but several exact methods
have been proposed to solve large instances to optimality (Canuto et al., 2001; Da Cunha
et al., 2009; Feofiloff et al., 2007; Fischetti et al., 2017; Gamrath et al., 2017; Johnson et al.,
2000; Klau et al., 2004; Ljubić et al., 2005, 2006; Lucena and Resende, 2004). Furthermore,
real-world problems related to network expansion can be modeled based on the PCST,
leading to variants of this classical problem (Arulselvan et al., 2011; Costa et al., 2006,
2009; Gollowitzer and Ljubić, 2011; Suhl and Hilbert, 1998). In this paper, we propose an
exact method for a variant of the PCST, denoted as the Multi-period Prize-collecting Steiner
Tree Problem with Budget Constraints (MPCSTB). This problem takes into account three
additional elements when compared to the classical PCST:

1. Vertices and edges can be added to the solution in different time periods, chosen from a
discrete set forming the time horizon. The prize associated to the insertion of a vertex
may depend on the time period in which it is added.

2. Budgets may be defined for different sets of time periods, limiting the sum of the costs
of the edges that can be added during specific periods of the planning horizon.

3. The total length of edges added to the subgraph may be limited over each time period.

These elements are important to consider when attempting to model a network design
problem, for example, for the natural gas industry. In this context, a physical network is
composed by pairs of cities which are joined by pipeline stretches. The distribution center
can be modeled as the root of the pipeline network. Therefore, a city is said to be connected
to the pipeline network if there is a pipeline path from the distribution center leading to this
city. Natural gas flows in both directions of a pipeline stretch, leading to the pipeline network
representation as an undirected graph. Naturally, various cities can be connected at different
time periods, as long as a path is available due to the construction of pipeline stretches to
guarantee the connection. The period in which a city is incorporated into the network results
in different profits, usually related to the demand of that city, from the corresponding period
to the end of the time horizon. These profits are represented as prizes, which are associated to
the vertices of the undirected graph (i.e., the cities they represent). Similarly, building a new
pipeline stretch involves costs that are associated to the corresponding edge of the undirected
graph. At each set of time periods, budget constraints may restrict the maximum amount
that can be spent on building pipeline stretches. Further, physical and logistical restrictions
may require a distance limit on the maximum stretch length that can be built at each time
period. Overall, the problem at hand can thus be used to model the expansion of a gas
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network throughout a number of future periods, maximizing the difference between the sum
of the profits of the incorporated cities and the cost of the new pipeline stretches built.

Problem definition: We now formally define the problem considered in this paper.

Definition 1 (Multi-period Prize-collecting Steiner Tree Problem with Budget Constraints,
MPCSTB). Let T = {1, . . . , |T |} be a time horizon over which is defined a function distance-
Limit : T → Q+. Let T̂B = {TB}, where TB ⊆ T is a subset of the time horizon over which
is defined a function budgetLimit : T̂B → Q+. Let G = (V,E) be an undirected graph with
a revenue function r : (V, T )→ Q+ defined on its vertices, a cost function c : (E, T )→ Q+

defined on its edges and a distance function d : E → Q+ defined on its edges. There is
a specially identified root vertex v0 ∈ V that represents all vertices that are already con-
nected to the network. Furthermore, let Z = (VZ , EZ) be a subgraph of G with functions
α : VZ → T and β : EZ → T mapping its vertices and edges to the time horizon, respec-
tively. Finally, let Zt = (VZt , EZt) be the subgraph of Z where VZt = {v ∈ VZ | α(v) ≤ t}
and EZt = {e ∈ EZ | β(e) ≤ t}. The MPCSTB consists of finding a subgraph Z and the
corresponding functions α and β, which maximize:

profit(Z) =
∑
v∈VZ

r(v, α(v))−
∑
e∈EZ

c(e, β(e)) (1)

subject to: ∑
e∈EZt

c(e, β(e)) ≤ budgetLimitTB , ∀TB ∈ T̂B (2)

∑
e∈EZt\EZt−1

d(e) ≤ distanceLimitt, ∀t ∈ T (3)

and Zt is connected.

The set of all vertices V can be divided into terminal vertices, representing vertices that
have profit greater than zero, and Steiner vertices, that represent vertices that have profit
equal to zero. Figure 1 illustrates an example of a MPCSTB instance (based on a PCST
instance given in Ljubić et al. (2006)) with three time periods. Each edge has fixed costs and
a length (in kilometers), hollow circles represent terminal vertices and filled circles represent
Steiner vertices. Each time period has a distance limit of 11 kilometers. The three-period
time horizon has a budget limit of 100 units. Figure 2 shows a feasible state of the network
at the first period of the planning horizon, Figure 3 shows a feasible network state at the
second period and Figure 4 shows the final feasible, but not optimal, solution for all three
periods.

Academic contributions: A slightly simpler problem than the one considered here has
been introduced by Suhl and Hilbert (1998), who use a branch-and-cut algorithm to solve an
integer programming formulation based exclusively on edge decision variables. We extend
the problem by incorporating budget constraints that can be imposed for different subsets
of time periods, which are common in projects such as those related to transportation and
energy infrastructure expansion. We provide an intuitive mathematical formulation using
both vertex and edge variables, and propose a branch-and-cut algorithm to solve the model.
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Figure 1: Example of a MPCSTB instance. Figure 2: First period feasible network.

Figure 3: Second period feasible network.
Figure 4: Feasible, but not optimal net-
work.

In contrast to undirected generalized subtour elimination constraints (as used by Suhl and
Hilbert (1998)), our mathematical formulation considers cut constraints. Our branch-and-cut
algorithm uses two separation procedures, an integer and a fractional procedure, whereas
Suhl and Hilbert (1998)’s work has no mention of a fractional separation procedure. We
also present a primal heuristic that considerably improves the upper bounds. We have
reimplemented Suhl and Hilbert (1998)’s model to compare results obtained on two different
sets of instances. One of these was artificially generated while the other one is based on real-
world instances from a gas company. Our algorithm outperforms Suhl and Hilbert (1998)’s
results for the artificial instances, where we solve instances of size up to 3300 vertices and
18073 edges. On the instance set inspired by real-world data, both models present similar
performance. In summary, our exact method is able to solve reasonably large instances for a
natural extension of the PCST, finding solutions of high quality for realistic problem sizes in
a reasonable amount of computing time. The computational experiments focus on evaluating
the performance of our model and on exploring the impact of different budget limitations.

Paper outline: The remainder of the article is organized as follows: Section 2 provides
a review on the literature related to the problem. Section 3 introduces a mixed-integer
linear programming formulation while Section 4 provides a branch-and-cut algorithm for
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the problem. Computational results are reported in Section 5. Finally, Section 6 draws
conclusions and indicates possible future work directions.

2. Related Literature

2.1. Network design problems

The MPCSTB generalizes the PCST, and therefore extends classical network design prob-
lems. Network design problems aim at identifying a subset of edges in a graph that have
minimum total cost while satisfying all constraints, for example, those required to connect
pairs of origin and destination vertices in order to route commodities. Solution algorithms for
these problems can be classified into exact and heuristic approaches. Examples of common
exact techniques used include cutting planes (Poss, 2012) and branch-and-bound (Humpola
and Fügenschuh, 2015). Additionally, when modeling a network design problem, its op-
eration, its expansion or both may be of interest. Depending on the application context,
flow-related constraints may be added. Borraz-Sánchez et al. (2016), for example, are in-
terested in finding the optimal solution that would capture physical, operational or even
contractual constraints. Their work focuses on adjusting the network’s parameters, includ-
ing regular pipelines, valves, short pipes, control valves, compressor stations, and regulators,
instead of focusing solely on the network expansion, as we do here.

2.2. PCST

Our problem, the MPCSTB, is an extension of the PCST. Lucena and Resende (2004)
propose an integer programming formulation of the PCST problem and describe an algorithm
based on polyhedral cutting planes to obtain lower bounds for the problem. Later, Ljubić
et al. (2005) introduced a branch-and-cut algorithm based on a directed graph model where
they efficiently separate sets of violated inequalities using a maximum flow algorithm. Ljubić
et al. (2006) aim to solve large and difficult instances of the PCST to optimality in reason-
able computing times using a branch-and-cut algorithm that adds violated cut constraints
between an artificial root and the selected customer vertices.

Uchoa (2006) suggests applying redefined reduction tests, proven to be effective on the
Steiner Tree Problem in Graphs. Da Cunha et al. (2009) generate primal and dual bounds
to the problem, making use of a Lagrangian Non Delayed Relax and Cut algorithm. Finally,
even if the PCST has proven to be a challenging NP-hard problem, Fischetti et al. (2017)
present a simple solution method and obtain high quality solutions for hard instances from
the literature. They use a model that exclusively uses node variables, which proves to be
successful for instances where all edges have the same cost.

Additionally, metaheuristics have been developed to find quality solutions to the PCST.
Canuto et al. (2001) develop a multi-start local-search-based algorithm with perturbations.
Klau et al. (2004) propose a memetic algorithm with incorporated local improvement. For
a general overview of the methods developed to solve the PCST, we refer to Costa et al.
(2006).

2.3. PCST with budget constraints

Several works have proposed to add budget constraints to the PCST. Johnson et al. (2000)
define the so-called quota version of the PCST by searching for the tree with minimum total
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edge costs that contains vertices whose total prize is at least a given quota. Additionally,
Johnson et al. (2000) consider the PCST with budget constraints, i.e., finding the tree with
maximum prize, given that the total edge cost is within a given budget. The authors define
the quota problem as a generalization of the k-Minimum Spanning Tree (k-MST) problem
and propose to extend constant-factor approximation algorithms to solve it. The k-MST
problem looks for a tree of minimum cost that has exactly k vertices, consequently forming
a subgraph of a larger graph. For the (unrooted) budget problem, Johnson et al. (2000)
propose to incorporate it into a practical heuristic, involving the performance of multiple
runs of the Goemans-Williamson algorithm (Goemans and Williamson, 1997) and the use of
an increasing sequence of prize multipliers.

Costa et al. (2009) define the Steiner tree problem with revenues, budget and hop con-
straints. This problem is a variant of the PCST problem with additional budget and hop
constraints. Budget constraints impose limits on the total cost of the network, whereas hop
constraints impose limits on the number of edges between each vertex and the root. For the
PCST with budget constraints, the authors show that branch-and-cut algorithms using cut
constraints (instead of generalized subtour elimination constraints) obtain the best results
to date. Also, for several variants of the Steiner Tree problem, directed models are proven
to be easier to solve than their undirected counterpart (see, e.g., Chopra and Rao (1994a),
Chopra and Rao (1994b), Feremans et al. (2002), Ljubić et al. (2005) and Magnanti and
Raghavan (2005)).

2.4. Multi-period PCSTs with budget constraints

To the best of our knowledge, Suhl and Hilbert (1998) constitute the only attempt to
solve the MPCSTB. A gas network is represented by an undirected graph. Vertex profits are
represented by negative edge weights, allowing the authors to use a formulation exclusively
based on edge variables. A part of the graph may already have been connected in previous
periods and at every subsequent period, the solution must be a tree. The task is to maximize
the profit obtained by connecting vertices to the network over a multi-period study horizon.
Furthermore, budget and distance constraints restrict the number of node connections per
time period. The authors make use of an integer programming formulation leading to a
branch-and-cut algorithm, along with an optimization software system (called MOPS (Suhl,
1994)) for solving the large-scale problem.

In this paper, we attempt to solve the MPCSTB with more general budget constraints
using branch-and-cut with two separation procedures: one to separate integer solutions and
another to separate fractional ones. In addition, we apply an algorithm to tighten the upper
bound of the problem, helping to prove optimality. The mathematical formulation is given
in Section 3 and the solution method is described in Section 4.

3. Mathematical Formulation

In this section, we present an integer programming formulation for the MPCSTB. Even
though the MPCSTB assumes that edges are undirected, we provide a formulation that is
based on directed arcs, given that those formulations have been shown to provide stronger
linear programming (LP) relaxation bounds (see, e.g., Chopra and Rao (1994a,b); Feremans
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et al. (2002); Fischetti (1991); Goemans and Myung (1993); Ljubić et al. (2005); Magnanti
and Raghavan (2005); Magnanti and Wolsey (1995)).

We denote by T the planning horizon (for example, 2021 to 2025), composed of time
periods t ∈ T (which may, for example, represent one year each). We also denote by
T̂B = {TB} the set of all subsets of consecutive time periods from T . Let G = (V,A) be a
directed graph with vertex set V = {0, ..., n} and arc set A = {a = (i, j) : i, j ∈ V }, where
each arc a ∈ A has an associated construction cost cta, depending on the time period t when
it is constructed. For W ⊆ V , define AW as the set of arcs with both endpoints in W . We
assume that there is a root vertex, denoted as v0 ∈ V that represents all vertices that are
already connected to the network at the beginning of the planning horizon. If the instance
does not have an actual root vertex, an artificial one will be created. This root vertex v0 is
assumed to be available throughout all time periods. In order to guarantee that the final
network is connected, one needs to ensure that all selected vertices are connected to the root
vertex v0. To this end, let δ−(W ) := {(i, j) ∈ A|i /∈ W, j ∈ W}, ∀W ⊆ V , which denotes the
set of arcs that have their origin vertex outside W , and their destination vertex within W .

We introduce binary variables yti ∈ {0, 1},∀i ∈ V, ∀t ∈ T , which take value 1 if vertex
i is connected for the first time in time period t, and 0 otherwise. We also use binary arc
variables xtij ∈ {0, 1},∀(i, j) ∈ A,∀t ∈ T , which take value 1 if arc (i, j) is constructed (for
the first time) in time period t, and 0 otherwise. Constant ctij denotes the cost to install
arc (i, j) in the beginning of time period t. The arc installation costs need to be payed only
once: at the time period when they are built. However, note that the arc installation at an
early time period may involve maintenance costs for the following time periods. Constants rti
represent the revenues collected when connecting vertex i to the existing network in period
t. Note that the revenue constant may also contain revenues from subsequent time periods.
Constants dij denote the distances between vertex i and vertex j.

In the Steiner tree literature, the profit function (1) given in Section 1 is known as the Net
Worth Maximization function (Johnson et al., 2000). Equivalently, the so-called Goemans
and Williamson Minimization function (Goemans and Williamson, 1997) aims at finding a
subtree that minimizes the objective function

∑
T (
∑

v/∈VZ rt(v)+
∑

e∈AZ
ct(a)). In this work,

we use the Goemans and Williamson Minimization function, given by Equation (4), as it is
common in the literature (see, e.g., Canuto et al. (2001), Goemans and Williamson (1997),
Ljubić et al. (2005) and Ljubić et al. (2006)). The MPCSTB problem can be formulated as
follows:

Min
∑
t∈T

(∑
i∈V

rti(1− yti) +
∑

(i,j)∈A

ctijx
t
ij

)
(4)

Subject to:
Cut constraints

t∑
t′=1

∑
(u,v)∈δ−(W )

xt
′

uv >
t∑

t′=1

yt
′

i , ∀W ⊆ V \ {v0}, i ∈ W, t ∈ T (5)
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Multi-period constraints ∑
t∈T

xtij 6 1, ∀(i, j) ∈ A (6)

∑
t∈T

yti 6 1, ∀i ∈ V (7)

Side constraints ∑
t∈TB

∑
(i,j)∈A

ctijx
t
ij 6 budgetLimitTB , ∀TB ∈ T̂B (8)

∑
(i,j)∈A

dijx
t
ij 6 distanceLimitt, ∀t ∈ T (9)

Connectivity constraints

t∑
t′=1

∑
j∈V

xt
′

ji >
t∑

t′=1

yt
′

i , ∀i ∈ V \ {v0},∀t ∈ T (10)

Variable domains
xtij ∈ {0, 1},∀(i, j) ∈ A, t ∈ T (11)

yti ∈ {0, 1},∀i ∈ V, t ∈ T. (12)

The exponentially large set of cut constraints (5) ensures that, for each time period, all
selected network vertices are also connected to the root vertex. A subset W of vertices i that
does not contain the root vertex v0 is created. While attempting to connect i to the network,
the set of cut constraints forces that an arc coming from δ−(W ) is also connected, i.e., an
arc that will connect the set where v0 is present to the complementary set W where v0 is
not present. Inequalities (6) and (7) ensure that each vertex and arc can be selected at most
once throughout the planning horizon. Constraints (8) express the maximum budget allowed
for specified subsets of time periods and constraints (9) limit the total length of edges that
can be added over each time period. The constraint set (10) guarantees that every selected
vertex has exactly one predecessor on its path from the root. This connectivity constraint
set is commonly seen in PCST formulations (Costa et al., 2009; Ljubić et al., 2005, 2006).

To improve the efficiency of the model, the following valid inequalities are added to the
formulation above:

Valid inequalities

t∑
t′=1

yt
′

i >
t∑

t′=1

xt
′

ij, ∀i ∈ V \ {v0}, ∀(i, j) ∈ A,∀t ∈ T (13)

xtij + xtji 6 1, ∀i ∈ V \ {v0},∀(i, j) ∈ A,∀t ∈ T. (14)
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The valid inequalities (13) act as connectivity constraints: if arc (i, j) is available at
time period t, vertex i has to be connected to the network at that time period or before.
Constraints (14) show that every arc adjacent to a vertex in the solution tree can be selected
only in one direction. These inequalities are commonly included in PCST formulations (see,
e.g., Ljubić et al. (2005, 2006)) and are a special case of the cut constraints (5), written in
their equivalent GSEC form (Ljubić et al., 2006). Adding these inequalities, specially all at
once, may enlarge the LP. However, as they do not have to be separated implicitly during
the branch-and-cut algorithm, they present a speed-up that outweighs the enlargement of
the LP.

Since an artificial root vertex may be used to represent the connected network, some
related constraints may be added to the above formulation:

Artificial root vertex constraints∑
j∈V

xt=1
v0j

= 1 (15)

yt=1
v0

= 1 (16)

Symmetry constraints

xt=1
v0j

+ yt=1
i 6 1, ∀(i, j) ∈ A | j > i. (17)

Constraints (15) guarantee that only one arc is chosen among the artificial root and any
other vertex. This artificial arc has zero cost and does not alter the objective function value.
Likewise, the artificial root vertex has no revenue and therefore has no effect on the objective
function value of the model. In the same manner, constraints (16) ensure that the artificial
root vertex enters the connected network at time period 1, i.e., the first time period of the
planning horizon, since the root vertex represents the previously connected network. Finally,
constraints (17) impose that the vertex adjacent to the root is the one with the smallest index.
These constraints aim at excluding a plethora of symmetric solutions, therefore considerably
reducing the solution time in a branch-and-bound framework (Gamrath et al., 2017).

The generation of the entire set of cut constraints (5) constitutes a critical issue for the
integer programming (IP) model. Depending on the size of the graph, the number of cut
constraints can be too large and render the corresponding IP model intractable. The number
of cut constraints (5) actually violated by an integer solution obtained from a reduced model
(without constraints (5)) is typically rather small compared to the total number of potential
constraints (5). It is therefore common to add only those constraints that are violated during
the branch-and-bound algorithm.

It is important to note that two separation procedures are used in this model: one to
separate integer infeasible solutions and another to separate fractional solutions, both of
them based on the cut constraint set (5). The separation procedures exploit the fact that
constraints (5) imply the connectivity of the root to all other selected vertices (Costa et al.,
2009). During the separation phase applied at each node of the branch-and-bound tree, we
add constraints of type (5) that are violated by the current LP-relaxation solution (Ljubić
et al., 2005). Further information concerning the separation procedures is provided in Section
4.1.
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3.1. A note on Generalized Subtour Elimination Constraints vs. Cut Constraints

The classical generalized subtour elimination constraints (GSECs) are used in the Dantzig-
Fulkerson-Johnson formulation and were introduced by Dantzig et al. (1954) for the Travel-
ling Salesman Problem.

In our formulation, we use cut constraints (5) to guarantee connectivity in the network.
They ensure that, if there is a W ⊆ V that includes a vertex i, but not the root vertex v0
and the vertex i is connected, one of the arcs in the set of all incoming arcs in W must be
chosen to be in the solution. Note that disconnectivity would imply the existence of a cut
separating v0 and i, which would clearly violate the corresponding cut constraint (Arulselvan
et al., 2011).

Even though the lower bounding procedure presented in Lucena and Resende (2004) is
based on undirected GSECs, Chopra and Rao (1994a) were able to show for the STP that
directed GSECs prevail over directed counterparts of several other facet defining inequalities
of the undirected (GSEC) formulation. Directed GSEC formulations are therefore preferable
in practice (Ljubić et al., 2006), as directed models have demonstrated better results than
the undirected counterparts for several variants of the STP (Chopra and Rao, 1994a,b;
Costa et al., 2009; Feremans et al., 2002; Ljubić et al., 2005; Magnanti and Raghavan,
2005). Moreover, Fischetti (1991) shows that the cut constraints (5) can be rewritten as a
directed version of the undirected GSECs. Finally, the model chosen in this work (using cut
constraints (5)) is also less dense than the equivalent model based on directed GSECs, which
is computationally preferable within a branch-and-cut framework (Ljubić et al., 2005). A
computational comparison of one model with the model using the undirected GSECs can be
found in Section 5.

3.2. Comparison to existing MPCSTB formulation

To the best of our knowledge, Suhl and Hilbert (1998) constitutes the only work that
models the MPCSTB. The authors use a formulation exclusively based on arc variables,
transforming all vertex variables into arc variables. Such a transformation replaces each
vertex variable y by an arc variable x, which means that their formulation has the exact
same number of variables than ours. The authors use the undirected GSEC inequalities
to exclude cycles at each time period, which, as discussed in Section 3.1, is a methodology
corroborated by the literature (Chopra and Rao, 1994a,b; Costa et al., 2009; Feremans et al.,
2002; Fischetti, 1991; Ljubić et al., 2005, 2006; Magnanti and Raghavan, 2005) to be weaker
than the one we propose. Moreover, the authors use branch-and-cut and insert violated
subtour elimination constraints if the IP solution presents disconnected cycles. However, they
do not mention any fractional separation algorithm to dynamically identify the constraints
that have to be added to the model. Further, given that their work does not propose a
primal heuristic to produce upper bounds, the instances solved are small in comparison to
those that are solved to optimality in our work, as shown in Section 5. Finally, our side
constraints that consider the budget limit (8) are broader than those considered in Suhl
and Hilbert (1998) due to the flexibility of choosing subsets that may contain multiple time
periods.
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4. Branch and Cut Algorithm

4.1. Separation algorithms

An efficient separation of violated inequalities is crucial to tackle complex problem in-
stances. We separate the constraints of type (5) during the optimization process using the
separation procedures described in Sections 4.1.1 and 4.1.2.

4.1.1. Integer infeasible solutions

Our branch-and-cut approach includes cutting off infeasible integer points as well as
infeasible fractional ones. We describe the algorithm used to separate the integer infeasible
solutions. Such solutions may have been enumerated during the branching procedure or may
even have been detected by the heuristics of the MIP solver, since the set of constraints (5)
is not provided and therefore the solver is not given the complete structure of the problem.

In order to separate integer infeasible solutions, we find the connected components of a
selected vertex. If these do not include the root vertex, we add the corresponding cut. The
algorithm (see Algorithm 1) that separates the integer infeasible solutions has a complexity
of O(n+m), where n is the number of vertices and m is the number of arcs. It is important
to mention that we employ a Breadth-first search (BFS) (Cormen et al., 2009) to identify all
connected nodes, starting at the tree root and exploring all neighbor nodes at the present
depth prior to moving on to nodes at the next depth level.

Algorithm 1 Separation procedure at integer nodes

Input: The connected components of the current integer infeasible solution at time period
t, found by a BFS.

2: Output: A set of violated inequalities incorporated into the current LP.
while !(Exist only one connected component including the root node) do

4: for Each connected component that does not include the root node do
Create set W that does not include the root node and contains the connected

component.
6: Create set W = V \ W , complementary to set W , containing the root and all

other vertices.
for w ∈ W do

8: Add the violated cut
∑

t′≤t
∑

v∈W xt
′
vw ≥

∑
t′≤t y

t′
w to the LP.

end for
10: end for

end while

4.1.2. Fractional infeasible solutions

For fractional solutions, cut constraints are separated by calculating the maximum flow
value (Fischetti et al., 2017). Maximum flow problems aim to find the maximum possible
flow rate through a network. The max-flow min-cut theorem (see, e.g., Conforti et al. (2014))
states that the maximum value of a flow from source s to sink t is equal to the minimum
capacity of an s− t cut in a network.

For W ⊆ V , define AW as the set of arcs with both endpoints in W . Denote (x̂, ŷ) the
corresponding LP relaxation solution. Then, a support graph GW = (W,AW , x̂) is built as
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a result of the LP solution: the arc capacities are defined as x̂tij for all (i, j, t) ∈ AW and the
support graph vertices are those where ŷti 6= 0. Subsequently, the maximum flow is calculated
from the root node v0 to each vertex i ∈ W that has ŷti > 0. A violated inequality is added
to the LP for each maximum flow value smaller than ŷti . Such violated inequality is induced
by the corresponding min-cut in the graph GW (see, e.g., Gollowitzer and Ljubić (2011)).

The outline of the separation procedure is given in Algorithm 2. Ljubić et al. (2005)
originally presented the procedure for a single time period. The separation algorithm is
executed independently for every time period of the planning horizon.

Algorithm 2 Separation procedure at fractional nodes

Input: A support graph GW = (W,AW , x̂).
Output: A set of violated inequalities incorporated into the current LP.

3: for i ∈ W | ŷti > 0 do
f = MaxFlow(GW , x̂, v0, i,Wv0 ,Wi);
Detect the cut δ+(Wv0) such that x̂(δ+(Wv0)) = f, v0 ∈ Wv0 ;

6: if f < ŷti then
Insert the violated cut x(δ+(Wv0)) ≥ yti into the LP;

end if
9: end for

The input of the algorithm is a support graph of the form GW = (W,AW , x̂) that
is built from the set of vertices W ⊆ V , the set of arcs AW and the relaxed solution
(x̂, ŷ). We compute the maximum flow on the support graph for all (v0, i) pairs of ver-
tices, where i ∈ W and ŷti > 0. Goldberg’s implementation (Cherkassky and Goldberg,
1995) of the push-relabel maximum flow algorithm returns the maximum flow value f =
MaxFlow(GW , x̂, v0, i,Wv0 ,Wi), as well as sets Wv0 , v0 ∈ Wv0 and Wi, i ∈ Wi that together
define the minimum cut with value f (see, e.g., Ljubić et al. (2005)). Subset Wv0 ⊂ W
contains root vertex v0 and induces a minimum cut closest to v0. Therefore, as established
by the max-flow min-cut theorem, x(δ+(Wv0)) = f . At the same time, subset Wi ⊂ W
contains vertex i and induces a minimum cut closest to i, i.e., x(δ−(Wi)) = f . Finally, if
f < ŷti , we add the violated cut x(δ+(Wv0)) ≥ yti to the model.

4.2. Primal heuristic

We use a primal heuristic to improve the upper bound of the problem (i.e., the best
known integer feasible solution). Our heuristic is only called at the root node of the branch-
and-bound tree, before the branching is performed, once the linear program is solved and no
more violated inequalities are found. It is based on Ljubić et al. (2005)’s work and expanded
to the multi-period setting with budget constraints.

The general idea of the heuristic is to pick the most promising vertices based on the LP
relaxation solution and, using Kruskal’s minimum spanning tree heuristic (Cormen et al.,
2009), select a set of promising edges to connect these vertices. In order to respect the
budget and distance constraints, a second step of the heuristic consists in deciding in which
time period each of the selected vertices and arcs are built. The first step taken by the
algorithm is the selection of a set of vertices S from graph G = (V,A, c) that will be part of
the heuristic solution. To select the most promising vertices, we use the information of the
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fractional values of the y variables in the LP relaxation solution of the current node in the
branch-and-cut tree. For each vertex, we sum over the y values of all time periods. If the
sum is greater than 0.5, the vertex is selected and added to set S.

Next, a distance network GS is calculated for S, where GS = (S, S×S, dS). We define the
length dS of an edge inGS as the length of the shortest path connecting the two corresponding
vertices of the edge in G. The shortest path matrix is calculated using the Floyd-Warshall
algorithm (see, e.g., Cormen et al. (2009)) based on modified edge length fromG. Specifically,
we determine the length of an edge connecting two vertices in S as the value 1 minus the
solution value of that edge, which is defined next. The solution value of an edge is the
maximum value between the solution values of the x variables in the LP solution in the
two arcs that define that edge. To be precise, we assign to each edge (i, j, t) the cost
(1 −max{x̂tij, x̂tji}) where x̂tij is the value of the corresponding x variable in the fractional
solution of the current branch-and-bound node. The shortest path is therefore based on the
x variables that have high fractional values in the LP relaxation solution.

We then compute Kruskal’s minimum spanning tree Z = (S,AZ) (Cormen et al., 2009)
on GS. Naturally, there are vertices on the shortest paths that correspond to arcs in AZ .
Therefore, we define the set S ′ of vertices in G as the union of S and the set of all vertices
that lie on the shortest paths. Consequently, GH = (S ′, AH , c) is defined as the subgraph
of G induced by the vertex set S ′. Notice that in GH , the cost of each arc is equivalent to
the original cost in the problem instance. GH is clearly connected, allowing us to compute
Kruskal’s minimum spanning tree (MST) Z ′ = (S ′, AZ′). Given that this heuristic produces
a single-period solution, we need to manually separate it into several time periods.

The second step therefore separates the solution given by the MST Z ′ into several time
periods such that both budget and distance constraints are satisfied. We use a greedy
algorithm based on the fractional solution values of the y variables for each vertex in Z ′.
The initial vertex is set as v0, no matter whether the instance has an actual root node or if
that root node is artificially created. According to the structure of the minimum spanning
tree, there may be several vertices that can now be connected to i. If there is only one
vertex, then this vertex is connected. If there are several vertices, the greedy algorithm will
select the vertex i with the highest fractional y solution value. If at the end of the planning
horizon there are still nodes from Z ′ to be inserted in the multi-period solution Z ′′, these
nodes are discarded in order to respect the budget and distance limits constraints.

Our primal heuristic for the MPCSTB runs in linear time and is depicted in Algorithm
3. The heuristic solution is integer feasible, ensuring that the vertices in S ′ are connected (as
guaranteed by the Floyd-Warshall algorithm). Moreover, they are connected in an efficient
way through a minimum spanning tree, that, by definition, connects all vertices in S ′ without
cycles and with the minimum possible total arc weight. We also guarantee to respect the side
constraints, separating the resulting minimum spanning tree Z ′ by time periods, applying a
greedy algorithm. This algorithm, while respecting the budget and limit constraints, chooses
to insert in the heuristic solution the maximum number of vertices of Z ′ possible in the first
period, the maximum number of remaining vertices of Z ′ in the second period and so forth.
In sum, all constraints in the problem are respected, guaranteeing a viable heuristic solution.
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Algorithm 3 Primal Heuristic

Input: Solution of LP relaxation (x̂, ŷ).
Output: A heuristic solution Z ′′.
if
∑

t∈T ŷ
t
i ≥ 0.5 then

4: S ← S ∪ {i};
end if
Calculate x̂ij = max{x̂tij} | ∀i, j ∈ S;
Calculate lS = (1−max{x̂ij, x̂ji}) | ∀i, j ∈ S;

8: Calculate dS = Floyd-Warshall(lS);
Compute distance network GS = (S, S × S, dS);
Compute Kruskal’s Z = (S,AZ) in GS;
Define Ssp as the set of all vertices on the shortest paths in AZ ;

12: Define S ′ = S ∪ Ssp;
Define GH = (S ′, AH , c);
Compute Kruskal’s Z ′ = (S ′, AZ′);
Separate single-period Z ′ into multi-period Z ′′ by greedy algorithm.

5. Computational Results

We will now computationally evaluate the performance of our proposed algorithm. Our
computational experiments have been performed on two different sets of instances:

• The “PUCNU”1 dataset (Fischetti et al., 2017), whose instances are based on the PUC
series (Rosseti et al., 2003) for the classical STP. These instances were designed for a
single time period and, for the purpose of testing our model, they were transformed
into multi-period instances with a number of periods equal to 2, 3, 5 or 8.

• The incomplete graph instances “IG instances”2, which we have generated by randomly
selecting points in a defined Cartesian plan. These are instances with incomplete
graphs, that is, edges are defined for only a subset of all vertex pairs with a cost equal
to the Euclidean distance between the vertices. Note that the graphs are incomplete,
but connected. Multi-period instances are created with a number of periods equal to
2, 3, 5, 8, 10 or 15.

Computational experiments were carried out on a Linux Mint 18.3 Cinnamon 64-bit
operating system, version 3.6.7, using a single CPU with 3.40 GHz Intel processor and
16 GB of RAM. All runs had a time limit of 1 hour. The algorithm is written in the
Java programming language. The commercial packages ILOG CPLEX and ILOG Concert
Technology, version 12.7.1 (IBM, 2017) were used to solve the ILP. The cut constraints (5) are
not part of the initial formulation, but dynamically added. Integer infeasible points are cut
off by means of a LazyConstraintCallback, executing our separation algorithm, detailed
in Section 4.1.1. Fractional infeasible points are cut off by means of a UserCutCallback,

1Publicly available at http://dimacs11.zib.de/instances/PCSPG-PUCNU.zip .
2Publicly available at https://github.com/larissaftf/IG-instances .
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executing the separation procedure explained in Section 4.1.2. It is important to note that the
UserCutCallback is used within the cut loop that CPLEX calls at each node of the branch-
and-cut algorithm, once CPLEX has ended its own cut generation. After that, CPLEX calls
a HeuristicCallback, executing our primal heuristic, as described in Section 4.2. The
algorithm terminates after proving optimality or after reaching the given time limit.

5.1. Distance and budget limits

It is important to mention that all sets of instances make use of the artificial root con-
straints (15), (16) and (17) and compel us to define the distance and budget limits in a
way that challenges the algorithm to solve the problem. To define a tight distance limit
per period, we use the average distance of the edges added throughout the entire planning
horizon, refered to as d, divided by the number of periods in the planning horizon |T |, given
in equation (18):

distanceLimitt = d
|T | , ∀t ∈ T. (18)

Equation (19) defines the total average distance d as the product between the average
distance Da of building an edge and the number of terminals Tn that would maximize the
number of ways to combine k terminals from a set of nT terminals.

d = Da × Tn (19)

In order to define a tight distance limit, we consider the k-combination of a set of terminals
TL, which is defined as a subset of k distinct elements of TL. If the set has nT elements, the
number of k-combinations is equal to the binomial coefficient, as in equation (20):(

nT

k

)
= nT !

k!(nT−k)! . (20)

The value of k that maximizes the number of ways to combine k terminals from a set of
nT terminals is at nT/2. Hence, the distance limit for each time period is calculated as the
number of terminals (nT ) times the average distance Da divided by 2 times the number of
total periods, as in equation (21):

distanceLimitt = nT×Da

(2×|T |) , ∀t ∈ T. (21)

A tight budget limit is defined in a similar way, but considering the number of time
periods in the subset for which it is defined, i.e., |T̂B|. Ca is the average cost of building an
edge. The percentage rate pr has the purpose of making the budget limit even tighter, as
shown in equation (22):

budgetLimitTB = nT×Ca×pr×|T̂B |
(2×|T |) , ∀TB ∈ T̂B. (22)
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5.2. Modified PUCNU instances

The test instances known as “PUC series” were introduced by Rosseti et al. (2003) with
the purpose of evaluating and comparing existing and newly developed algorithms for the
Steiner problem in graphs. Such instances are not amenable to reductions proposed by
preprocessing techniques. They also presented large integrality gaps between the optimal
integer solution and that of the LP relaxation. Moreover, they are prone to a lot of symmetry,
which made them difficult to solve to optimality for both exact methods and heuristics.

The PUCNU instances presented in Fischetti et al. (2017) have been generated based
on the “PUC series” instances. They contain incomplete graphs with edge costs equal to 1
and vertex profits varying from 0 to 2. It is important to note that a vertex with profit 0
corresponds to a Steiner node and a vertex with profit 1 or 2 corresponds to a terminal node.
The edge costs are the same for all time periods and the profit accumulates over time: if a
vertex is selected at a certain time period, its profit is accounted for that period and for the
following periods. In these instances, costs and profits are close to each other. This allows
for many feasible solutions of high quality but make it difficult to prove optimality. Given
that the PUCNU instances were designed for a single time period, we transform them into
multi-period instances to test our algorithm.

5.2.1. Instance characteristics

Table 1 reports the characteristics of the PUCNU dataset. For each instance, it sum-
marizes the instance name, the number of vertices, the number of edges and the number of
terminal nodes (“nT”).

Table 1: Modified PUCNU instances

name |V | |E| nT
bip42nu 1200 3982 200
bip52nu 2200 7997 200
bip62nu 1200 10002 200
bipa2nu 3300 18073 300
bipe2nu 550 5013 50

cc10-2nu 1024 5120 135
cc11-2nu 2048 11263 244
cc12-2nu 4096 24574 473
cc3-10nu 1000 13500 50
cc3-11nu 1331 19965 61
cc3-12nu 1728 28512 74
cc3-4nu 64 288 8
cc3-5nu 125 750 13
cc5-3nu 243 1215 27
cc6-2nu 64 192 12
cc6-3nu 729 4368 76
cc7-3nu 2187 15308 222
cc9-2nu 512 2304 64

15

The Multi-Period Prize-Collecting Steiner Tree Problem with Budget Constraints

CIRRELT-2020-35



5.2.2. Results

We here show the results for instances with 8 time periods based on the PUCNU instances,
with two different settings: one with one budget limit for the entire time horizon (see Table
2) and another with a separate budget limit for time periods 1 to 4 and another budget limit
for time periods 5 to 8 (see Table 3).

Tables 2 and 3 show the best lower (“LB”) and upper bound (“UB”) found, the final
optimality gap, the number of nodes explored in the branch-and-bound tree, the number
of total cuts added by the model and the computing time. A time limit of one hour was
used for all experiments. However, if the time limit has been exceeded while a callback was
running, the callback has been finished before stopping the algorithm. Therefore, some time
markers may have values greater than 3600 seconds.

Table 2: Modified PUCNU instances with 8 time periods
— one budget limit for entire planning horizon

name LB UB gap(%) # nodes # cuts time(s)
bip42nu 1813.01 1831.00 0.98 34 1764 3806.37
bip52nu 1765.67 1781.00 0.86 4 1523 3650.91
bip62nu 1717.40 1733.00 0.90 1 781 3618.07
bipa2nu - - - - - Memout
bipe2nu 373.37 385.00 3.02 20 305 3605.16

cc10-2nu 1206.26 1285.00 6.13 4 2833 3612.95
cc11-2nu 2249.05 2354.00 4.46 1 606 3645.99
cc12-2nu - - - - - Memout
cc3-10nu 367.81 417.00 11.80 6 1504 3614.96
cc3-11nu 573.67 618.00 7.17 3 827 3624.34
cc3-12nu 685.50 746.00 8.11 1 361 3639.49
cc3-4nu 51.99 65.00 20.01 21 1097 3671.80
cc3-5nu 111.27 118.00 5.70 113 2180 3705.38
cc5-3nu 232.20 257.00 9.65 16 2331 3894.27
cc6-2nu 88.59 99.00 10.51 21 1022 3707.83
cc6-3nu 684.50 730.00 6.23 7 2419 3607.58
cc7-3nu 2059.48 2178.00 5.44 1 1053 3653.51
cc9-2nu 580.28 603.00 3.77 14 5506 3603.97

Table 3: Modified PUCNU instances with 8 time periods
— One budget limit for periods 1 to 4 and another for
periods 5 to 8

name LB UB gap(%) # nodes # cuts time(s)
bip42nu 1879.99 1884.00 0.21 99 3101 3630.98

Continued on next page
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Table 3 – Continued from previous page
name LB UB gap(%) # nodes # cuts time(s)

bip52nu 1833.40 1850.00 0.90 2 810 3651.62
bip62nu 1790.91 1822.00 1.71 3 820 3605.00
bipa2nu - - - - - Memout
bipe2nu 390.73 402.00 2.80 7 738 3605.25

cc10-2nu 1245.15 1323.00 5.88 6 4091 3612.79
cc11-2nu 2324.57 2423.00 4.06 0 910 3646.51
cc12-2nu - - - - - Memout
cc3-10nu 381.10 434.00 12.19 5 1324 3615.03
cc3-11nu 588.27 640.00 8.08 3 859 3623.98
cc3-12nu 711.00 744.00 4.44 2 608 3639.60
cc3-4nu 55.37 64.00 13.48 23 1042 3686.08
cc3-5nu 115.54 122.00 5.29 53 1462 3614.99
cc5-3nu 239.53 262.00 8.58 25 2508 3654.69
cc6-2nu 92.03 102.00 9.78 29 1259 3603.03
cc6-3nu 708.01 758.00 6.59 10 3049 3607.21
cc7-3nu 2124.20 2244.00 5.34 1 1461 3653.22
cc9-2nu 592.74 615.00 3.62 9 3364 3754.10

The large instances (cc12-2nu and bipa2nu) have not been solved due to a lack of
memory, i.e., CPLEX reached its memory limit and could not build the model. Instance
cc11-2nu is solved at the root node of the branch-and-bound tree (# nodes equals 0). The
gaps observed for both settings of budget limits are similar in magnitude, no matter whether
the budget limit is defined for the entire planning horizon or for the sets of periods (periods
1 to 4, and 5 to 8).

To analyze the impact of the different side constraints, we can compare the structure
of the best integer feasible solutions found (not necessarily optimal) for each setting. This
information is shown in Table 4 for the case where there is one budget limit for the full
planning horizon and for the case with one budget limit for time periods 1 to 4 and another
one for time periods 5 to 8. The table shows the number of terminals that are present in the
integer feasible solution found, the budget limit value and distance limit value calculated for
those instances, the total revenue obtained by the solutions and the total amount spent. It
can be seen that a budget limit for the full planning horizon allows the terminal vertices to
enter the network at an earlier time period than they would for a budget limit per subset of
time periods. That conclusion is reached due to the value of the total revenue obtained for
the different integer feasible solutions. Because of a rounding procedure at the calculation
of the budget limit, the budget limit may be one unit larger for the case where there is one
budget limit for a subset of time periods. Hence, extra terminals may be able to be selected.
However, the integer feasible solution found has a lower net worth than the net worth for
the case where there is only one budget limit per time horizon. This illustrates that, while
budget constraints on subsets of time periods are important to model real world applications,
such restrictions may lead to significantly less revenue in practice.
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Table 4: Modified PUCNU instances with 8 time periods
— Solution structure

One total budget Two budgets
name termInSol budgetLimit distLimit totalRev totalSpent totalRev totalSpent

bip42nu 61 73 13 690 73 638 74
bip52nu 62 73 13 708 73 640 74
bip62nu 67 73 13 756 73 668 74
bipa2nu 1 107 19 16 0 16 0
bipe2nu 21 23 4 238 23 222 24

cc10-2nu 34 51 9 366 51 323 46
cc11-2nu 63 90 16 688 90 619 90
cc12-2nu 1 168 30 16 0 16 0
cc3-10nu 13 23 4 150 23 134 24
cc3-11nu 14 23 4 164 22 144 24
cc3-12nu 17 28 5 194 28 196 28
cc3-4nu 3 6 1 42 3 46 6
cc3-5nu 5 6 1 56 6 52 6
cc5-3nu 6 12 2 74 11 66 8
cc6-2nu 4 6 1 42 5 39 5
cc6-3nu 21 28 5 210 28 182 28
cc7-3nu 55 79 14 597 79 532 80
cc9-2nu 15 23 4 164 23 153 24

Comparison with formulation from Suhl and Hilbert (1998)

We re-implemented Suhl and Hilbert (1998)’s model to be able to compare our results to
theirs. Tables 5 and 6 show the computational results for instances with 5 time periods, where
each time period has its individual budget. As our problem is a minimization problem and
Suhl and Hilbert (1998)’s is a maximization problem, lower bounds and upper bounds differ
in value and in meaning. For a minimization problem, the upper bound is the best integer
feasible solution found whereas the lower bound is the relaxed solution. For a maximization
problem, the upper bound is the relaxed solution and the lower bound is the incumbent
solution. To facilitate the comparison between the models, we have transformed the lower
and upper bounds of Suhl and Hilbert (1998)’s model as if their objective function was of
the Goemans and Williamson Minimization Problem. It can be seen that Suhl and Hilbert
(1998)’s model may have difficulties finding good integer feasible solutions. Our model
outperforms Suhl and Hilbert (1998)’s for all instances, except for cc3-5nu, cc5-3nu and
cc6-2nu.
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Table 5: Modified PUCNU instances — Number of peri-
ods: 5 — One budget limit per time period — MPCSTB

name LB UB gap(%) # nodes # cuts time(s)
bip42nu 1237.60 1240.00 0.19 20 1900 3741.92
bip52nu 1209.43 1217.00 0.62 34 1665 3662.16
bip62nu 1186.12 1200.00 1.16 10 1203 3611.56
bipa2nu 1726.99 1763.00 2.04 0 0 3681.66
bipe2nu 276.34 282.00 2.01 207 1617 3630.32

cc10-2nu 815.89 849.00 3.90 5 3464 3608.50
cc11-2nu 1509.45 1567.00 3.67 2 2029 3630.05
cc12-2nu - - - - - Memout
cc3-10nu 264.39 284.00 6.91 9 1888 3609.96
cc3-11nu 377.78 410.00 7.86 6 1336 3615.97
cc3-12nu 455.00 480.00 5.21 5 1014 3625.99
cc3-4nu 44.00 44.00 0.00 27 862 3352.47
cc3-5nu 63.48 70.00 9.32 31 1830 3627.00
cc5-3nu 148.45 159.00 6.63 25 3242 3601.30
cc6-2nu 51.67 58.00 10.91 30 1260 3651.13
cc6-3nu 454.00 486.00 6.58 9 3173 3605.35
cc7-3nu 1359.74 1427.00 4.71 2 1225 3635.84
cc9-2nu 380.46 392.00 2.94 6 2351 3603.07

Table 6: Modified PUCNU instances — Number of pe-
riods: 5 — One budget limit per time period — SUHL
AND HILBERT

name LB UB gap(%) # nodes # cuts time(s)
bip42nu 1205.63 1252.00 3.70 5501 6 3603.57
bip52nu 1182.78 1232.00 4.00 718 0 3600.47
bip62nu 1167.23 1212.00 3.69 398 3 3635.43
bipa2nu 1693.39 2180.00 22.32 0 1 3772.37
bipe2nu 269.93 285.00 5.29 1674 1 3601.10

cc10-2nu 778.85 851.00 8.48 23918 65 3600.37
cc11-2nu 1443.74 1706.00 15.37 6300 34 3603.86
cc12-2nu - - - - - Memout
cc3-10nu 254.29 287.00 11.40 6436 45 3600.16
cc3-11nu 361.43 434.00 16.72 2100 12 3612.27
cc3-12nu 436.81 476.00 8.23 801 3 3816.92
cc3-4nu 44.00 44.00 0.00 221 0 1.55
cc3-5nu 69.00 69.00 0.00 9731 0 61.88
cc5-3nu 148.57 157.00 5.37 200901 44 3600.86
cc6-2nu 55.00 55.00 0.00 4320 0 10.96

Continued on next page

19

The Multi-Period Prize-Collecting Steiner Tree Problem with Budget Constraints

CIRRELT-2020-35



Table 6 – Continued from previous page
name LB UB gap(%) # nodes # cuts time(s)

cc6-3nu 438.60 481.00 8.81 40801 86 3602.24
cc7-3nu 1306.80 - - 6679 51 3600.35
cc9-2nu 366.92 392.00 6.40 98784 26 3600.10

Visualization of a solution

Figure 5 visualizes the best integer feasible solution found by our model for the 5-periods
instance cc6-2nu. The figure indicates the nodes connected by a thick solid line in the first
time period, by a dashed line in the second time period, by a dotted line in the third time
period, by a dash-dot line in the fourth time period and finally by a thin solid line in the
fifth time period. The lower bound, upper bound, optimality gap, the number of nodes and
cuts, and the required computing time are as reported in Table 5.

Figure 5: Integer feasible solution found for instance cc6-2nu for a 5-periods run.

5.3. Randomly generated instances of incomplete graphs

The randomly generated instances are inspired by real-world Brazilian gas network ex-
pansion instances, which could not be directly used in this paper due to confidentiality
agreements. We will use these instances to test the scalability of our proposed approach.
The so-called “IG instances” define 95% of the nodes as Steiner nodes (with zero profit) and
5% of nodes have random fractional value profits. We first randomly selected the edges that
should be included in the graph. Then, to ensure that the graph is connected, we apply a
connected components algorithm, guaranteeing that all nodes in the graph are in the same
connected component. Moreover, we chose the generated instances of incomplete graphs
with respective densities as low as possible, without losing connectivity. The cost of the se-
lected edges are fractional and randomly drawn from a uniform distribution, proportional to
the Euclidean distance of the vertices, drawn randomly from a Cartesian plan. Since these
instances are made of incomplete graphs, they have fewer variables and fewer constraints
than complete graph instances. At first glance, incomplete graph instances seem to be easier
to solve due to the smaller number of variables. However, the opposite may be the case, as
the path to a profitable node may include several zero revenue ones along the way.
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5.3.1. Instance characteristics

We have generated instances with different numbers of vertices |V | ∈ {50, 100, 150, 200,
250, 300}. For each |V |, we randomly selected 5 instances. Table 7 reports the instance
characteristics of the IG dataset: the instance name, the number of vertices, the number of
edges, the number of terminals (“nT”) and the percentage of edges that have been retained
in the instance from the complete graph.

Table 7: IG instance characteristics

name |V | |E| nT perc(%)
50 1 50 117 3 9.55
50 2 50 106 3 8.65
50 3 50 137 3 11.18
50 4 50 139 3 11.35
50 5 50 120 3 9.80

100 1 100 245 5 4.95
100 2 100 260 5 5.25
100 3 100 304 5 6.14
100 4 100 261 5 5.27
100 5 100 248 5 5.01
150 1 150 413 7 3.70
150 2 150 409 7 3.66
150 3 150 428 7 3.83
150 4 150 423 7 3.79
150 5 150 435 7 3.89
200 1 200 565 10 2.84
200 2 200 559 10 2.81
200 3 200 552 10 2.77
200 4 200 541 10 2.72
200 5 200 544 10 2.73
250 1 250 837 12 2.69
250 2 250 826 12 2.65
250 3 250 850 12 2.73
250 4 250 828 12 2.66
250 5 250 823 12 2.64
300 1 300 1215 15 2.71
300 2 300 1359 15 3.03
300 3 300 1234 15 2.75
300 4 300 1277 15 2.85
300 5 300 1275 15 2.84

5.3.2. Results

As before, we will compare between two different settings of budget limits. In all following
experiments, instances have two time periods. Table 8 shows the average results for the
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setting of one single budget limit over the 2 time periods and Table 9 summarizes the results
for the setting of one budget limit for each of the 2 time periods.

Table 8: Average results for IG instances with 2 time
periods — One budget limit over both periods

|V | LB UB gap(%) # nodes # cuts time(s)
50 12.19 12.19 0.00 9 74 11.56

100 17.08 17.08 0.00 46 869 302.79
150 21.05 22.59 6.07 138 3273 2395.95
200 27.98 29.24 4.27 150 4869 2204.92
250 32.41 35.02 7.47 248 6977 3735.59
300 36.57 45.96 20.47 67 9207 3698.31

Table 9: Average results for IG instances with 2 time
periods — One budget limit for each time period

|V | LB UB gap(%) # nodes # cuts time(s)
50 12.19 12.19 0.00 8 75 6.49

100 17.61 17,61 0.00 53 995 510.38
150 22.01 22.57 2.19 153 2965 2386.11
200 29.10 29.55 1.47 142 4390 2416.38
250 31.20 35.45 11.66 161 6918 3152.42
300 36.30 46.67 22.17 65 6959 3626.73

We now analyze the structure of the best found feasible integer solution. Table 10 indi-
cates the average number of terminals that were able to enter the network, the budget and
distance limit values, the total revenue and the total amount spent for that run. A single
budget limit for the entire horizon tends to increase the total revenue when compared to a
budget limit for each time period, because the nodes are allowed to enter the network at an
earlier time period.

Table 10: Average results for IG instances with 2 time
periods — Solution structure

One total budget Two budgets

|V | termInSol budgetLimit distLimit totalRev totalSpent totalRev totalSpent
50 2 2.00 1.60 10.90 0.27 10.90 0.27

100 2 2.00 2.00 11.03 0.66 10.50 0.66
150 3 2.00 2.00 10.18 0.65 10.18 0.63
200 3 2.00 2.00 11.53 1.04 11.13 0.95

Continued on next page
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Table 10 – Continued from previous page

|V | termInSol budgetLimit distLimit totalRev totalSpent totalRev totalSpent
250 4 2.00 2.00 12.53 0.85 12.14 0.89
300 5 3.00 3.00 14.90 2.14 15.43 2.07

Comparison with formulation from Suhl and Hilbert (1998)

Next, we compare our model results with the one of Suhl and Hilbert (1998)’s. Table 11
presents the results the latter obtains using one budget limit per time period. Comparing
their results to ours (see Table 9 for this particular setting), it seems that both models
achieve similar performance on average for the IG dataset.

Table 11: Average results for IG instances with 2 time pe-
riods — One budget limit for each time period — SUHL
AND HILBERT

|V | LB UB gap(%) # nodes # cuts time(s)
50 12.19 12.19 0.00 59 2 0.17

100 17.61 17.61 0.00 8061 28 7.85
150 22.57 22.57 0.00 214702 168 420.04
200 29.55 29.55 0.00 369445 198 971.94
250 31.10 34.67 10.26 1007466 416 3600.16
300 31.69 43.95 27.98 1062307 940 3600.15

Visualization of a solution

Figure 6 gives an illustrative example of the optimal solution found by our model for a
5-periods run of instance 100 4.

Figure 6: Optimal solution found for instance 100 4 for a 5-periods run.

Impact of number of time periods
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As a final analysis, we now explore how the number of time periods impacts the difficulty
of solving the problem. Table 12 presents results for instance 100 2 with different numbers
of time periods ranging from 2 to 15. We observe that the difficulty of solving the problem
does not grow exponentially with the increase in the number of periods. We therefore expect
that the problem can be reasonably well solved even if the number of time periods is large.

Table 12: IG instances — Instance 100 2

# per LB UB gap(%) # nodes # cuts time(s)
2 20.04 20.04 0.00 71 1059 326.21
3 33.18 33.18 0.00 55 797 244.60
5 51.09 51.09 0.00 100 1623 762.57
8 75.96 75.96 0.00 234 3666 1052.68

10 88.49 88.49 0.00 264 3551 987.62
15 116.23 116.24 0.01 542 7142 2094.73

6. Conclusions

The Multi-period Prize-collecting Steiner Tree problem with Budget constraints is a
generalization of the classical Prize-collecting Steiner Tree problem. Customers are selected
and connected by a network of minimum cost, along different time periods and respecting a
predefined budget and a predefined distance limit. Therefore, the problem involves planning
the expansion of a network throughout multiple time periods, respecting the distance limit
given per period and the budget limit given per subset of periods. The objective is to
maximize the sum of the profits of the incorporated vertices reduced by the cost of the new
edges.

The objective of this paper is to provide an algorithm that is capable of finding solutions
of high-quality to realistically sized problems in reasonable computing times. We propose a
branch-and-cut approach where the connectivity cut constraints are dynamically generated
only when they are violated. We use two separation procedures and a primal heuristic that
are vital for the performance of the algorithm. Benchmark instances from the literature,
adapted to a multi-period setting, with up to 3300 vertices and 300 terminals, are satisfacto-
rily solved with our approach. Randomly generated incomplete graph instances with up to
300 vertices, where approximately 15 are terminals, are also satisfactorily solved. We note
that these problems are generally hard to solve. Using a 60 minutes time limit, some of
the instances still presented large optimality gaps. Given the strategic nature of the prob-
lem, we suspect that the allowance of more computing time will further help to close those
gaps. Our approach was compared to Suhl and Hilbert (1998)’s model and outperformed this
benchmark on the first data set. On the second data set, both models performed similarly
well.

Possible future work includes (a) the use of different budget and distance limits for
subset-sets of time periods; and (b) introducing stochasticity to the model, given that several
parameters (such as profits) may not be subject to uncertainty.
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Ljubić, I., Weiskircher, R., Pferschy, U., Klau, G. W., Mutzel, P., and Fischetti, M. (2005).
Solving the prize-collecting Steiner tree problem to optimality. In ALENEX/ANALCO,
pages 68–76.

26

The Multi-Period Prize-Collecting Steiner Tree Problem with Budget Constraints

CIRRELT-2020-35
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