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Abstract. Mobile clinic deployments are commonly used to provide healthcare services as 
part of humanitarian relief efforts. In this study, humanitarian relief is quantified as the 
benefit of covering locations and servicing the population. We present a multiperiod location 
routing problem (MLRP) model for the tactical planning of mobile clinic deployment that 
captures the time dependency nature of mobile clinic deployments for humanitarian relief. 
To solve the MLRP, we propose a set packing formulation that relies on the generation of 
routes. The optimization of the proposed model yields the selection of depots and the routes 
that will be performed at each time period through the planning horizon, i.e., the tactical 
plan. Results are presented for real world data from a mobile clinic deployment in Iraq, 
including sensitivity analyses on the modeling of covering and continuity, and the effect of 
strategic decisions, e.g., number of mobile clinics. Managerial insights are also presented. 
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1 Introduction

This paper presents an analytical approach and managerial insights to support mobile
clinics deployment for humanitarian relief. As part of the 2030 Sustainable Development
Goals, members of the United Nations (UN) pledged to “Ensure healthy lives and pro-
mote well-being for all at all ages” (UN, 2015). Therefore, the World Health Organization
(WHO), a specialized agency of the UN, and its partners resort to mobile clinics to ad-
minister healthcare services to populations that do not have access to healthcare (WHO,
2016). A mobile clinic is a vehicle which transports healthcare providers and equipment
to provide ambulatory health services (McGowan et al., 2020). In rural areas and in
areas affected by conflit or disaster (Blackwell and Bosse, 2007; Gibson et al., 2011; Fox-
Rushby and Foord, 1996), mobile clinics are often the only way to conduct healthcare
(Du Mortier and Coninx, 2007). In fact, they allow for quick response and flexibility due
to their ability to move (Wray et al., 1999), and can be equipped to respond to multiple
healthcare issues (Blackwell and Bosse, 2007). They can also be used to prevent hospital-
izations (Guo et al., 2001). On the other hand, according to the International Federation
of the Red Cross and Red Crescent Societies (IFRC), mobile clinics are expensive to
operate and their deployment represents a logistical challenge (Du Mortier et al., 2006).

The temporary nature of mobile clinics has led to a scarceness of documentation
related to operations and procedures (Lehoux et al., 2007), even though two guides
were commissioned in an effort to support their deployment for humanitarian relief (see
Du Mortier et al., 2006; Du Mortier and Coninx, 2007). Eight questions to guide decision
makers throughout the strategical, tactical, and operational planning were identified. The
strategical questions include: “what is happening?”, “what is important?”, “what can be
done?”, and “with what will it be done?”. During the strategic phase, decision makers
must determine the appropriate numbers of mobile clinics, healthcare practitioners, and
medical equipment, as well as the available budget. They must also select which locations
will receive healthcare services by the mobile clinics. At the tactical phase decision
makers must answer: “what will be done?” and “how will it be done?”. According to the
strategical decisions, decision makers must schedule the mobile clinics, which includes
the frequency of visits, the days, and the time of day to deploy the mobile clinics to
each location. Additionally, depending on the healthcare condition of the patients, more
than one visit may be required to provide the needed healthcare. Finally, the operational
questions include the “implementation” and “what was done?” (i.e., after action reports).

This paper focuses on the optimization of the tactical plan, given its day-by-day ex-
ecution, while also using the tactical-planning model to study the impact of strategical
decisions. We aim to bridge the gap in the scientific literature relative to the complex-
ity of mobile clinics deployment for humanitarian relief. We therefore model the tactical
planning of mobile clinics deployment as a multiperiod location routing problem (MLRP),
an extension of the location routing problem (LRP) (Prodhon and Prins, 2014), that is
well suited to capture the time dependency of mobile clinics deployment. Multiple-period
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representation of time provides the means to capture the fact that the time and frequency
of visits can encourage or discourage patients from seeking healthcare (McGowan et al.,
2020), as well as the impact of providing healthcare during a given moment in time (e.g.,
half day, day, week) on service in subsequent periods. In the MLRP, we consider a homo-
geneous fleet, as medical staff is assigned to teams of the same composition (Du Mortier
and Coninx, 2007), and multiple origin and destination depots, as humanitarian crises
can affect people over large areas.

Traditionally, MLRP formulations minimize the transportation costs as well as the
costs of opening a depot over a planning horizon. However, in humanitarian operations,
while costs are important, the primary goal is to maximize the relief provided to vulner-
able populations (Leseure et al., 2010). In this paper, we quantify humanitarian relief as
a benefit of covering locations and servicing the population, and propose a new MLRP
formulation where the benefit is maximized. This benefit is twofold: 1) coverage (also
known as physical accessibility), defined as “availability of good health services within
reasonable reach of those who need them” (WHO, 2014); and 2) continuity of care, de-
fined as “the degree to which a series of discrete health care events is experienced by
people as coherent and interconnected over time and consistent with their health needs
and preferences” (WHO, 2018). Continuity of care is important to consider as it reduces
hospitalization in children (Christakis et al., 2001), improves quality of care for patients
with chronic diseases (Gill et al., 2003), increases beneficiary satisfaction (Gray et al.,
2018), decreases the risk of emergency visits (Bayliss et al., 2015), and increases survival
in older populations (Maarsingh et al., 2016).

The contributions of this paper are as follows. First, we model coverage and continuity
of care through a benefit function. Second, we model the MLRP with a set-packing
formulation, which seeks to maximize the total benefits (Rasmussen and Larsen, 2011).
Our formulation relies on the generation of routes, which is possible in this context as
the number of stops a given mobile clinic can do is usually small. Solving our model
yields the selection of depots and the routes that will be performed at each time period
through the planning horizon. Third, this work is conducted as part of an ongoing
collaboration with an international non-governmental organization that deploys mobile
clinics for humanitarian relief. While our approach is sufficiently general to support any
mobile clinic deployment, our model is tested on real world data. We conduct sensitivity
analyses on the modeling of covering and continuity, as well as the effect of strategic
decisions (e.g., number of mobile clinics), and derive managerial insights.

The remainder of this paper is organized as follows. In Section 2 a literature review
is presented. Section 3 presents the problem definition and the proposed mathematical
model. In Section 4, computational results and managerial insights are discussed. Finally,
conclusions are derived in Section 5.

2
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2 Literature review

Humanitarian relief operations can benefit from operations research and management sci-
ence (OR/MS) techniques (Jahre et al., 2007). However, humanitarian operations have
particularities, such as the requirement of rapid response, the presence of non-traditional
networks, and the lack of information technology systems and documentation, that hinder
the direct implementation of methods and approaches developed for non-humanitarian
operations (Oloruntoba and Gray, 2006). In the literature, authors have underlined the
need for studies that aid in the planning phases of humanitarian relief (Overstreet et al.,
2011). Even though there has been a significant increase in the literature on humanitar-
ian relief, the majority of the studies have been of qualitative nature and, therefore, there
is a gap on quantitative methods (Jabbour et al., 2017). In this section, we position our
contributions in the literature. First, we discuss previous studies that propose mathe-
matical models to tackle mobile clinic deployments. Then, we examine how coverage and
continuity have been addressed in the literature. Finally, we briefly present studies that
formulate problems as location routing problems in non-humanitarian and humanitarian
context, as well as studies that consider multiperiod location routing problems.

2.1 Mobile clinics

To the best of our knowledge, three studies have proposed OR/MS approaches for mobile
clinics deployment. Hodgson et al. (1998) and Doerner et al. (2007) address mobile clinics
deployment for humanitarian relief as a covering tour problem (CTP). In the CTP, mobile
clinics are located in villages where a maximum number of patients can access it while
respecting a maximal walking distance. Hodgson et al. (1998) aim to minimize the
travel time required for a mobile clinic to cover all the demand and apply the branch-
and-cut algorithm developed by Gendreau et al. (1997). Their formulation was tested
on instances derived from a humanitarian deployment in Ghana. Doerner et al. (2007)
added two additional criteria to the objective function, i.e., minimizing the distance and
maximizing the population coverage. To solve the problem they develop two multicriteria
metaheuristics and solve instances based on a mobile clinic deployment for humanitarian
relief in Senegal.

More recently, Savaşer (2017) have proposed a periodic location routing problem
(PLRP) formulation for mobile clinics deployment in rural areas. In the PLRP, the
problem consists of selecting depots, assigning fixed periodic schedules for the mobile
clinics, and selecting routes over a planning horizon, while minimizing the total travel
distance. Routes starting and ending at a depot are planned daily but divided into two
partial routes each corresponding to a time period (i.e., half a day). Savaşer (2017) also
consider a predetermined frequency of visits at each location, and a predetermined time
between visits. The author develops a heuristic and test the model on instances derived
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from a deployment of mobile clinics in Turkey.

2.2 Coverage and continuity of care

In this paper, we use the OR/MS literature definition of coverage to represent the physical
accessibility to healthcare provided by a mobile clinic. Therefore, a location is covered
if the node is visited or within easy access from a visited node (Current and Schilling,
1989). Previous authors have used coverage modeling techniques to address, for example,
the delivery of medical supplies in the Netherlands (Veenstra et al., 2018), the location
of distribution centers for disaster relief (Burkart et al., 2017), the location of satellite
distribution centers (Naji-Azimi et al., 2012), and mobile clinic operations (Hodgson
et al., 1998; Doerner et al., 2007). This also makes sense in the context considering that
travel time and physical barriers could negatively impact healthcare (Martin et al., 2002;
Agyemang-Duah et al., 2019).

Continuity of care has been previously addressed in home healthcare routing and
scheduling problems (Fikar and Hirsch, 2017). Three types of continuity of care have
been highlighted, that is, management, informational, and relational (Maarsingh et al.,
2016), and authors usually consider continuity of care as the ongoing care by the same
healthcare practitioner. Commonly authors incorporate continuity of care by minimizing
the number of healthcare practitioners assigned to a patient over the planning horizon
(Nickel et al., 2012; Milburn and Spicer, 2013; Bowers et al., 2015). Carello and Lan-
zarone (2014) also suggest three types of patients (requiring hard, partial, or no continuity
of care) and minimize the cost associated with reassignments of healthcare practition-
ers. Wirnitzer et al. (2016) propose different objectives, i.e., minimizing the number of
different healthcare practitioners per patient tour, minimizing the different number of
healthcare practitioners per patient, minimizing the number of healthcare practitioners
per patient relative to their needed frequency of care, and minimizing the number of
switches between assigned healthcare practitioners per patient over the planning hori-
zon. Grenouilleau et al. (2019) maximize the score, which represents the strength of
the beneficiary-healthcare practitioner, and thus continuity of care. Cinar et al. (2019)
maximize the prize collected per patient per visit. Mosquera et al. (2019) argue that
continuity of care may be impossible to satisfy and, hence, impose a soft constraint on
the number of visits by a healthcare practitioner to a specific patient. Grenouilleau et al.
(2020) also include the time and day as part of continuity of care.

2.3 Location routing problem

The LRP is within the field of location analysis, and integrates vehicle routing decisions
with facility location (Nagy and Salhi, 2007), as considering both decisions separately
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leads to sub-optimal decisions Salhi and Rand (1989). For recent literature reviews on
the LRP please refer to Prodhon and Prins (2014) and Drexl and Schneider (2015).
Location routing implies that when selecting the locations, where goods or services will
be delivered and provided, the routes connecting all the locations are also considered.
The LRP decisions include the number, size, and location of the depots, the allocation
of demand points to depots, and the routing of vehicles (Lopes et al., 2013). Moreover,
depots and vehicles can be capacitated or uncapacitated. In general, the literature related
to the LRP has focused on minimizing costs (i.e., fixed cost, depot selection cost, and
route selection) (Prodhon and Prins, 2014). To solve the LRP, many exact algorithms
have been proposed such as branch-and-price (Berger et al., 2007) and branch-and-cut
algorithms (Belenguer et al., 2011). Tighter solution bounds are derived by Contardo
et al. (2013a) and Contardo et al. (2013b) while using exact separation procedures and
column generation. Finally, Nagy and Salhi (2007) underscore that only one fifth of
the LRP literature is application oriented and Prodhon and Prins (2014) call for further
developments and more realistic problems.

2.3.1 Location routing for humanitarian relief

To aid in the tactical planning of humanitarian relief, many location science-based ap-
proaches have been proposed. Some of the applications include the location of disaster
relief distribution centers (Balcik and Beamon, 2008), food distribution centers (Ran-
court et al., 2015), temporary hubs for disasters (Stauffer et al., 2016), and collaborative
distribution centers (Balcik et al., 2019). Similarly, many routing based approaches have
been proposed for humanitarian relief. Some applications include the delivery of medical
and non-medical supplies (Hamedi et al., 2012; Naji-Azimi et al., 2012; Balcik et al.,
2008; Parvin et al., 2018), and the evacuations after a disaster or crisis (Victoria et al.,
2015).

To the best of our knowledge, only a few studies combine location and routing deci-
sions for humanitarian relief. Yi and Özdamar (2007) propose a LRP to support health-
care operations and evacuation after a humanitarian crisis. The allocation of medical
personnel to medical centers and emergency units are taken as location decisions, whereas
the commodities needed to provide healthcare are routed from distribution centers and
wounded people are routed from affected areas. Balcik (2017) proposes to model the se-
lection of sites for evaluations of post-disaster conditions as a variant of the LRP, known
as the selective assessment routing problem. In this problem, a subset of sites must be se-
lected to conduct a needs assessment and vehicles are used to visit these sites. Cherkesly
et al. (2019) propose a location-routing approach for the network design of community
health workers in underserved areas, where the recruitment of community health workers
and supervisors are taken as location decisions, while the training of community health
workers by supervisors are modeled as routing decisions. In addition, a maximum cover-
age radius is imposed on community health workers. More recently, Arslan et al. (2019)
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propose a location routing approach for the placement of refugee camps and the delivery
of public services to refugee camps in Turkey, where refugee camps must be located and
the delivery of public services to the camps must be conducted.

2.3.2 Multiperiod location-routing

The MLRP considers the LRP (Prodhon and Prins, 2014) over multiple periods. Hence,
at each period the selection of depots, locations, and routes can change, while not all
decisions must be reevaluated at every time period. In addition, decisions taken on the
previous periods will affect decisions on subsequent periods. Drexl and Schneider (2015)
higlight the scarcity of the MLRP literature and, to the best of our knowledge, only
three studies propose solution approaches to the MLRP. Albareda-Sambola et al. (2012)
consider a MLRP with decoupled time scales, which allows for the location decisions
to be modified at predetermined periods. The authors propose an arc-variable based
MIP model and solve it by applying a relaxation to the routing decisions. Tunalıoğlu
et al. (2016) introduce the MLRP arising from the collection of olive oil mill wastewater
and propose a adaptive large neighbourhood search metaheuristic. Finally, Moreno et al.
(2016) introduce a multi-product multimodal stochastic MLRP arising in emergency relief
logistics. They propose a heuristic based on the decomposition of decision variables into
discrete disjoint subsets by time periods, emergency scenarios, and stochastic stages, and
solving each disjoint subproblem by relaxing all variables that are not in the subproblem.

3 Problem definition and mathematical formulation

In this section, we first explain the MLRP for the context of mobile clinics in remote
regions and war zones. Then, we present the notation and formulate the problem with a
set packing formulation.

3.1 The MLRP for mobile clinics deployment

In our context, a set of villages in need of healthcare is identified. At each time period
(e.g., each day) of the finite planning horizon, each mobile clinic departs from and returns
to a potential depot, while visiting a subset of villages. Potential depots include perma-
nent healthcare facilities and warehouses that can securely hold medical equipment. They
also have a fixed opening cost and remain unchanged throughout the planning horizon.
Each route must respect the capacity of the mobile clinics which are twofold, that is a
maximal number of patients visited (treated) per time period, and a maximal duration.
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Given the capacity of the mobile clinics and the size of the fleet, not all villages can
be serviced. Covering a village also requires time to coordinate for the visits, which is
represented by a fixed coverage cost. In addition, covering each village is associated with
a fixed coverage benefit, while the number of visits (treatments) each person receives in
a covered village is associated with a variable continuity benefit. The continuity benefit
can remain constant or can decrease in time. Because medical consultations can require
follow-ups while allowing days between visits, a minimal number of days between visits to
each village is imposed, also denoted as a number of resting periods. Finally, a maximal
budget is available over our planning period to cover the fixed costs to open depots and
to service villages, as well as the variable transportation costs.

Therefore, in the MLRP for mobile clinics deployment, a homogeneous fleet of mobile
clinics is available at each time period of a finite planning horizon, and must depart from
and return to a set of potential depots (selected on the first period) while visiting a subset
of villages in need. The decisions must respect the budget contraints (i.e., costs to open
depots, costs to service village, and transportation costs), the capacity constraints (i.e.,
maximal number of patients and duration per mobile clinic), and the resting periods
between visits. The objective consists of maximizing the total benefits which include
coverage and continuity benefits.

3.2 Notation and mathematical model

The MLRP for mobile clinics is defined on a graph G = (N e ∪N c,A), whereN e is the set
of nodes representing the potential depots, N c is the set of nodes representing the villages
to service, andA is the arc set. Each village i ∈ N c is associated with a population pi ≥ 0.
The fixed cost of operating a depot i ∈ N e or servicing a village i ∈ N c is given by ci.
Let V be the set of visit frequencies, i.e., the number of times a patient may be visited.
The benefit is composed of a fixed coverage benefit βi, associated with servicing village
i ∈ N c, and of a variable continuity benefit βvi associated with servicing a patient at
village i exactly v ∈ V times. The arc set is defined as A = {(i, j) : {i, j ∈ N e ∪N c}}
and each arc (i, j) ∈ A is associated with a distance dij.

A homogeneous fleet of m capacitated mobile clinics is available, where the capacity
Q of a mobile clinic is defined as the number of patients it can service in a time period.
Let T be the set of successive time periods making up the planning horizon. The total
costs of the deployment may not exceed the budget B and there are η resting periods
between visits to each village.

Let R be the set of feasible routes, with R = ∪t∈TRt, where Rt is the set of feasible
routes at time period t ∈ T . Each route r ∈ R is defined by an ordered vector of vertices
(i1, i2, ..., in−1, in), ik ∈ N e ∪ N c, k = 1, . . . , n. Two types of routes are considered and
included in R, regular and repositioning routes. The former start and end at the same

7

Mobile Clinics Deployment for Humanitarian Relief: A Multi-Period Location-Routing Problem

CIRRELT-2020-39



depot, i.e., i1 = in ∈ N e, and visit a subset of villages {i2, . . . , in−1} ∈ N c. The later
represent the possibility for mobile clinics to change depots during the planning horizon.
These routes contain only two nodes (n = 2), i.e., i1 and i2 = in, start and end at different
depots, i.e., i1, i2 ∈ N e and i1 6= i2, and visit no villages.

Each route r ∈ R is thus defined by a binary vector a, where air = 1, if route r ∈ R
visits node i ∈ N e ∪ N c, and zero otherwise. Each route is characterized by a total
activity time, which includes the travel time, the setup time at each village θ, and the
patient service time in each village (with γ representing the time to service a patient),
and which respects the maximum duration allowed δ. Routes are further characterized
by the number of patients served at each location, Gir, and a cost, cr, representing the
transportation costs.

The MLRP is formulated as a set-packing formulation that seeks to maximize the
total benefits. To formulate the problem, we use binary variables xi equal to one if
village i ∈ N c is selected, yi equal to one if depot i ∈ N e is selected, λtr equal to one if
route r ∈ Rt,∀t ∈ T , is selected, and ωvi equal to one if all the population at location
i ∈ N c has been covered at least v times. The formulation also uses continuous variables
πvi defined between zero and one that indicate the percentage of people covered at village
i ∈ N c at least v times. The MLRP can then be modeled as

maximize
∑
i∈N c

βixi +
∑
i∈N c

∑
v∈V

βvi piπ
v
i (1)

s.t.
∑
i∈N e

ciyi +
∑
i∈N c

cixi +
∑
t∈T

∑
r∈Rt

crλ
t
r ≤ B, (2)∑

r∈Rt

λtr ≤ m, ∀t ∈ T , (3)

airλ
t
r ≤ yi, ∀i ∈ N e, t ∈ T , r ∈ Rt, (4)∑

r∈Rt

airλ
t
r =

∑
r∈Rt+1

airλ
t+1
r , ∀i ∈ N e,∀t ∈ T , (5)

πvi ≤ xi, ∀i ∈ N c, v = 1, (6)∑
r∈Rt

airλ
t
r +

t′≤t+η∑
t′=t+1

∑
r∈Rt′

airλ
t+1
r ≤ 1, ∀i ∈ N c, t ∈ T , t ≤ |T | − 1 (7)∑

t∈T
∑

r∈Rt Girλ
t
r

pi
≥
∑
v∈V

πvi , ∀i ∈ N c, v ∈ V , (8)

πvi ≥ ωvi , ∀i ∈ N c, v ∈ V , (9)

ωvi ≥ πv+1
i , ∀i ∈ N c, v ≤ |V| − 1, (10)

xi ∈ {0, 1}, ∀i ∈ N c, (11)

πvi ≥ 0, ∀i ∈ N c, v ∈ V , (12)

πvi ≤ 1, ∀i ∈ N c, v ∈ V , (13)
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yi ∈ {0, 1}, ∀i ∈ N e, (14)

λtr ∈ {0, 1}, ∀r ∈ Rt, t ∈ T , (15)

ωvi ∈ {0, 1}, ∀i ∈ N c, v ∈ V . (16)

The objective function (1) maximizes the total benefit computed as the sum of the
coverage and individual continuity benefits. Constraint (2) imposes the budget available
for the deployment during the planning horizon. Constraints (3) ensure that at most
the number of mobile clinics available are used for the deployment. Constraints (4)
are linking constraints imposing that a route must start and end at open depots only.
Constraints (5) represent flow conservation constraints at each depot, i.e., they ensure
that the number of mobile clinics that depart from a depot equals the number of mobile
clinics that returned to that depot on the previous period. Constraints (6) impose that
each visited village must also be covered. Constraints (7) ensure that there are η resting
periods between visits to each village. Constraints (8) link the route variables with the
percentage of the population covered v times. Constraints (9) and (10) ensure that
patients can be serviced v times only if all patients in that village are serviced v − 1
times. Constraints (11)–(16) define the variable domain.

4 Computational results

We present the results of the numerical experiments and sensitivity analyses conducted
to evaluate the impact on coverage and continuity of care of the methodology we propose
for the deployment of mobile clinics. For increase realism and relevance, the experiments
were conducted on data inspired by a project undertaken by our partner in Iraq. The
implementation details and the Iraq network are explained in Section 4.1. Section 4.2
describes the proposed performance indicators. Computational results and managerial
insights are presented in Section 4.3, while sensitivity analyses are conducted in Section
4.4.

4.1 Implementation details and characteristics of the network

The mathematical model was implemented on AMPL Version 20200110 and solved with
CPLEX 12.9.0.0. All tests were performed on a Linux computer equipped with an Intel
Core i7-3770 (3.40GHz) and 8Gb of RAM.
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4.1.1 Characteristics of the network

Our problem was inspired by an ongoing collaboration with Première Urgence Interna-
tionale, an international NGO that deploys mobile clinics around the world. The data for
testing the proposed model and analyzing the base case was derived from a deployment
in Iraq consisting of 50 villages and 12 potential depots, shown in Figure 1. Bing Maps
Distance Matrix API was used to compute the real-life distance in kilometers. Statistics,
minimal (Min), maximal (Max), average (Average) and standard deviation (St. dev.),
on road distances between villages as well as between depots and villages are presented
in Table 1.

Figure 1: Location of potential depots
and the villages to service
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Figure 2: Location of potential depots
(•) and ten clusters of villages to service
(one symbol per cluster)

Table 1: Distance between villages and depots in km

Distance between Min Max Average St. dev.

Villages (dij,∀i, j ∈ N c) 0.0 402.5 98.9 90.9
Depots and villages (dij,∀i ∈ N e, j ∈ N c) 0.9 413.5 138.0 101.1

A team composed of medical and logistics personnel conducts a needs assessment in
each village. This assessment reports the estimated population, the presence of chronic
diseases, the presence of vulnerable groups (e.g., pregnant women, children, elderly), the
access to vital resources (e.g., food and water), and the presence of humanitarian relief
or access to aid. Using an assessment tool developed by our partner, this information is
converted to a health score, denoted by si,∀i ∈ N c. Table 2 presents the characteristics
of the villages. We report minimal, maximal, average and standard deviation values
for the population, as well as the score computed by our partner. These characteristics
show that the villages are heterogeneous in terms of size (i.e., population), but that their
healthcare needs are relatively similar. In fact, the data does not show a trend linking
the size and the score of the villages.
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Table 2: Characteristics of the villages

Cluster Min Max Average St. dev.

pi 70 28,000 1,640.2 4,080.1
si 174 370 294.7 32.7

We considered the geography and the sparsity of the network, and identified ten
clusters of villages (see Figure 2) by implementing a k-means algorithm using as input
the latitude and longitude coordinates of the villages (see Appendix A for additional
implementation details). When solving the MLRP, not all villages are covered. On the
other hand, it is reasonable to assume that people from the non-covered villages could
have access to healthcare in a nearby covered village (i.e., within reasonable walking
distance). Therefore, clusters are used as a basis for geographical coverage. Table 3
presents for each cluster the number of villages, the minimal (Min.), maximal (Max.)
and average (Average) distances, as well as the standard deviation (St. dev.), between
the pairs of villages in each cluster.

Table 3: Characteristics of the clusters

Cluster |N c| Distance in km

Min Max Average St. dev.

1 7 0.7 9.1 5.8 2.4
2 5 5.6 23.3 11.8 6.7
3 4 0.0 7.8 3.4 2.4
4 9 0.1 35.8 12.8 9.7
5 1 0.0 0.0 0.0 0.0
6 1 0.0 0.0 0.0 0.0
7 6 0.5 23.3 14.3 9.7
8 6 1.7 19.3 8.8 4.9
9 4 2.9 13.5 7.2 3.6
10 (X) 7 0.2 27.6 13.2 8.0

4.1.2 Base case

The base case is defined by setting the parameter values to those used by our partner.
In terms of operations, a two-week (ten days, |T | = 10) schedule is repeated over a two-
month period. The fleet is composed of five mobile clinics (m = 5). A mobile clinic with
a single doctor must provide services each work day to 50 beneficiaries (Q = 50). This
capacity is imposed by our partner as well as by the Ministry of Health. Our partner also
imposes a two-day resting period (η = 2) between visits to a given village. A maximum
budget of $5,000 for each two-week planning period (B = 5000) is available to cover

11

Mobile Clinics Deployment for Humanitarian Relief: A Multi-Period Location-Routing Problem

CIRRELT-2020-39



transportation costs, the costs of servicing a village, and the costs of using a depot.
Moreover, if a mobile clinic visits more than one village, its capacity Q is divided equally
according to the number of stops, denoted as equal proportion. For example, given Q = 50
and a route covering two villages, 25 people will be serviced in each village. Historical
data shows that the minimum service time for a single beneficiary is five minutes (γ = 5).
Given that each work day lasts six hours and that 50 people must be serviced, this leaves
110 minutes for setting up the mobile clinic at each village and traveling between villages
and depots. Considering that the estimated set up time at each location is 30 minutes
(θ = 30), at most three villages can be visited by a single mobile clinic. A total of 2,711
feasible routes were generated for each time period.

The coverage benefit for the base case is measured by testing fixed values of βi from
0 to 700, in increments of 50. Note that after discussions with our partner, their current
coverage benefit is βi = 0. The continuity benefit is computed as βvi = (αv−αv−1)(si/pi),
where the individual score obtained through the needs assessment is multiplied by a
percentage (αv − αv−1) for the incremental value of servicing a beneficiary v times. Our
partner uses linear marginal benefits computed as

αv = v
1

|V|
,

which implies that each visit is of equal importance.

4.2 Performance indicators

We propose a number of relevant performance indicators to analyze the results obtained
with our solution approach for mobile clinics deployment in remote regions and war zones.
These performance indicators are grouped in two categories, coverage and continuity, and
defined in Table 4. We measure coverage of care through geographical coverage, commu-
nity coverage, and population coverage. To measure geographical coverage, we compute
the number of covered clusters. To measure community coverage, we compute the num-
ber of covered villages. To measure population coverage, we compute the percentage of
people visited at least once in covered villages. A continuity of care indicator, on the
other hand, should allow to measure if people are visited more than once to better mon-
itor patients’ health. Continuity of care is thus measured with the percentage of people
visited at least v times in covered villages, with v ≥ 2.

4.3 Results for the base case

We present in this section the detailed results obtained for the base case data set and
derive managerial insights. Detailed computational results are reported in Appendix B.
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Table 4: Performance indicators

Name Description

Coverage performance indicators
COV-C Number of covered clusters
COV-V Number of covered villages
COV-1 Percentage of people visited at least once in covered villages

Continuity performance indicators
CNT-v Percentage of people visited at least v times in covered villages

All solutions are found between 14 to 390 seconds, with an average computational time
of 163 seconds. When increasing βi, a higher importance is given to coverage (rather
than continuity). Our analysis allows to find solutions which offer a good compromise
between coverage and continuity of care.

First, we analyzed the number of covered clusters. Out of the ten clusters, eight
clusters are covered with βi = 0 and nine with βi ≥ 50. One cluster containing exactly
one village remains non-covered in all the solutions and this makes sense in practice as
the cluster is the furthest away from all other clusters. Note that more than 25% and
more than 38% of the non-covered villages are within 5km and 7.5km of their nearest
covered village, and the maximal distance is 20.7km. This suggests that people living in
non-covered villages could walk (or use another mode of transport) within a reasonable
time to their nearest covered village to receive healthcare if needed.
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Figure 4: Average proportion of the
population visited at least once (base
case)

Second, we analyzed the number of covered villages as well as the average proportion
of the population visited at least once, see Figures 3 and 4, respectively. Out of the
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population visited at least twice (base
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Figure 6: Average proportion of the
population visited at least thrice (base
case)

50 villages, 15 to 44 villages can be covered and more villages are covered as the value
of βi increases. In addition, the average proportion of people visited at least once in
the set of covered villages ranges from 22% to 69%, and decreases when βi increases.
More precisely, when βi = 0, only 15 villages are covered and an average of 69% of
the population in these villages is visited at least once, while the maximum number of
covered villages is reached when βi ≥ 400 with 22% of the population covered at least
once on average. Therefore, increasing the value of βi allows to cover more villages while
the proportion of people visited at least once decreases.

Third, we analyzed the average proportion of the population visited twice and thrice,
see Figures 5 and 6, respectively. In the set of covered villages, the average proportion
of people visited at least twice and thrice ranges from 5% to 15%, and from 4% to 11%,
respectively. In addition, most people visited twice are also visited thrice. Therefore, a
reasonable value for continuity of care seems to be reached when 200 ≤ βi ≤ 300. For
these values, the average population visited at least twice and thrice varies from 6% to
9%, and from 5% to 6%, respectively.

Our results show that a reasonable compromise between continuity and coverage
seems to be reached when 200 ≤ βi ≤ 300. For these values, the number of covered
villages ranges from 26 to 37, while the average population visited at least once, twice,
and thrice varies from 27% to 40%, from 6% to 9%, and from 5% to 6%, respectively.
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4.4 Sensitivity analyses

In this section, we first analyze how adding and removing mobile clinics impact coverage
and continuity of care. Given that the number of mobile clinics depends on donors, this
analysis allows for a discussion with our partner and its donors to better understand
how the program could benefit from additional mobile clinics. Second, we analyze how
the marginal benefit function and the number of visited individuals per route impacts
the solutions. The goal is to validate the initial parameters set by our partner and
the robustness of the solutions relative to changes in these parameters. For these two
analyses, we compute the impact on the number of covered villages and the average
proportion of the population visited at least once, twice, and thrice. The impact on the
number of covered villages is computed as (COV-Vα − COV-V)/COV-V, where COV-
Vα is the number of covered villages for a given setting and COV-V is the number of
covered villages for the base case. The impact on the percentage of people visited at
least once and more than once are computed as (COV-1α − COV-1)/COV-1, (CNT-vα
− CNT-v)/CNT-v, respectively, where COV-1α and CNT-vα are the average proportions
of population visited at least once and at least v times (v ≥ 2) for a given setting, and
where COV-1 and CNT-v are the average proportions of population visited at least
once and at least v times (v ≥ 2) for the base case. Detailed computational results are
reported in Appendix B.

4.4.1 Impact of the number of mobile clinics

The impact of the number of mobile clinics on system performance was analyzed by
removing the budget constraint (B = ∞) and increasing the number of mobile clinics
from m = 1 to m = 30. Because the current number of mobile clinics (i.e., m = 5) used
by our partner depends on funding, this analysis aims to show how an increase in funding
could improve coverage and continuity of care. For conciseness reasons, we only report
the results with βi = {0, 100, 200, 300, 400}, as similar results were obtained with the
other tested values of βi. All solutions are found within 1,500 seconds, with an average
of 35 seconds.

First, we analyzed the impact on the number of covered clusters. Independently on
the value of βi, when increasing the number of mobile clinics, more clusters are covered.
For our network, the maximal number of covered clusters is reached when m ≥ 5. In
addition, at most 50% of the clusters are covered when m ≤ 3. Therefore, while adding
mobile clinics (i.e., m ≥ 6) does not increase the number of covered clusters, removing
some (i.e., m ≤ 4) will significantly decrease the number of covered clusters and the
geographical coverage of the program.

Second, we analyzed the impact on the number of covered villages as well as the
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Figure 7: Number of covered villages
(B =∞)
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Figure 8: Average proportion of the
population visited at least once (B =
∞)

average proportion of the population visited at least once, see Figures 7 and 8, respec-
tively. Our results show that the number of covered villages increases as the number
of mobile clinics increases, and this increase is larger for higher values of βi. With all
values of βi, the maximal number of covered villages is reached with 18 mobile clinics,
while at least 40 villages are covered with 14 mobile clinics. Given the current number
of mobile clinics (i.e., m = 5), an increase of one mobile clinic usually allows to cover one
or two additional villages, while an increase of two mobile clinics has a higher marginal
impact on the number of covered villages. Removing mobile clinics on the other hand
decreases the community coverage of the program, and at most ten villages are covered
when m ≤ 3. As the number of covered villages increases, the average proportion of the
population visited at least once decreases, but it stabilizes at around 40% with at least
14 mobile clinics. This decrease does not imply that the number of people visited once
decreases. On the contrary, when the number of mobile clinics increase, the total visited
population increases. Given possible additional funding, increasing the number of clinics
to 6 or 7 (one or two additional clinics) would allow for a significant better coverage.

Third, we analyzed the impact on the average proportion of the population visited
twice and thrice, see Figures 9 and 10, respectively. Our results show that with a lower
number of mobile clinics, the population covered twice and thrice is the highest which
can be explained by the fact that very few villages are covered. On the other hand, when
m ≥ 10, it stabilizes.

Considering this analysis, when increasing the number of mobile clinics the geograph-
ical and community coverage increase, while the population coverage tends to decrease
even though the number of visited people increases. We believe that given the limited
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Figure 9: Average proportion of the
population visited at least twice (B =
∞)
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Figure 10: Average proportion of the
population visited at least thrice (B =
∞)

funding, an addition of one or two mobile clinics should allow a better community and
people coverage, while also allowing a reasonable continuity of care. We also believe that
decreasing the funding would worsen dramatically the potential impact of the program.

4.4.2 Impact of the marginal benefit function

As indicated in Section 4.1.2, our partner models the continuity benefit with a linear
marginal benefit function. Such a function implies, however, that all visits are of equal
importance, while, in practice, the first visit is often the most critical. We thus aim to
explore the impact on the system behavior and performance of different benefit functions,
which represent the larger benefit of the first visit relative to subsequent ones. For this
analysis, the value of βvi ,∀i ∈ N c, v ∈ V , varies according to the function selected.

Two alternative benefit functions are proposed: highly diminishing and smoothly di-
minishing marginal benefits. These functions are inspired from modern economic theory
of subjective value, also know as utility or marginal utility. Given the presence of conti-
nuity, an individual’s rational preference can be represented mathematically by an utility
function (Baumol, 1972; Mas-Colell et al., 1995), a diminishing marginal utility being
usually assumed (Dittmer, 2005). For example, a child in need of vaccination could
have a diminishing continuity benefit as the visit when the shot is administered is of
greater importance than subsequent visits. With highly diminishing marginal benefits,
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the continuity benefit is computed as

αv =


ah if v = 1

0.5− 0.5αv−1 + αv−1 1 < v < |V|
1 v = |V|.

With smoothly diminishing marginal benefits, the continuity benefit is computed as

αv =


as if v = 1

min{1, 0.5
√
v + c} 1 < v < |V|

1 v = |V|.

The values of ah and as are set to impose a higher importance for the first visit, and c is set
to determine the rate at which the benefit diminishes. With highly diminishing marginal
benefits, the first visit has a weight of ah = 0.8, and, therefore, the remainder, i.e., 0.2, is
distributed in the subsequent visits. With smoothly diminishing marginal benefits, the
first visit has a weight of as = 0.5, which is lower than with highly diminishing marginal
benefits, i.e., as ≤ ah, thus allowing for a higher weight for the second visit. For our
computational study, we set c = 0.1. Given ah = 0.8, as = 0.5, and c = 0.1, Figures
11 and 12 present the behavior of the three marginal benefit functions according to two
values for the maximal number of visits, i.e., |V| = {3, 5}.
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Figure 11: Marginal benefit functions,
|V| = 3
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Figure 12: Marginal benefit functions,
|V| = 5

First, we analyzed the impact on the number of covered clusters. Out of the ten clus-
ters, nine clusters are covered with highly and smoothly diminishing marginal benefits,
independently of the value of βi. Compared to linear marginal benefits, one additional
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Figure 13: Impact on the number of
covered villages when considering highly
and smoothly diminishing marginal
benefits (m = 5, B = 5000)
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Figure 14: Average proportion of
the population visited at least once
with highly and smoothly diminishing
marginal benefits (m = 5, B = 5000)

cluster is covered when βi = 0, but the same clusters are covered when βi ≥ 50. There-
fore, modifying the marginal benefit function does not seem to impact the number of
covered clusters and allows for similar geographical coverage.

Second, we analyzed the impact on the number of covered villages and the average
proportion of the population visited at least once, see Figures 13 and 14, respectively. Out
of the 50 villages, the number of covered villages ranges from 18 to 30 and from 17 to 41,
with highly diminishing and with smoothly diminishing marginal benefits, respectively.
More villages are covered when βi ≤ 50, i.e., with highly diminishing marginal benefits
three additional villages are covered when βi = 0 and one additional village when βi = 50,
while with smoothly diminishing marginal benefits, two additional villages are covered
when βi = 0. When βi ≥ 100, linear marginal benefits provide a better coverage of the
villages. In addition, for both highly and smoothly diminishing marginal benefits, there
is an increase in the population covered at least once, which can be explained by the
lower number of covered villages. Therefore, while the impact seems limited, a higher
community coverage is obtained with linear marginal benefits, and a higher population
coverage is obtained with highly diminishing marginal benefits.

Third, we analyzed the impact on the average proportion of the population visited
twice and thrice, see Figures 15 and 16, respectively. With smoothly diminishing marginal
benefits, our results show an increase in the average proportion of population covered
at least twice when βi ≥ 100. The impact is at its highest when βi = 400 considering
the lower number of covered villages (27 and 44 covered villages with smoothly dimin-
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Figure 15: Average proportion of
the population visited at least twice
with highly and smoothly diminishing
marginal benefits (m = 5, B = 5000)
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Figure 16: Average proportion of
the population visited at least thrice
with highly and smoothly diminishing
marginal benefits (m = 5, B = 5000)

ishing marginal benefits and with linear marginal benefits, respectively). With smoothly
diminishing marginal benefits, there is a decrease of at least 75% for the percentage of
the population covered thrice, while with highly diminishing marginal benefits, no one
is covered thrice and there is a decrease of a least 95% for the percentage of the popula-
tion covered twice. Therefore, compared to highly diminishing and smoothly diminishing
marginal benefits, linear marginal benefits offer a better continuity of care.

Our results indicate that when setting a higher value for the first visit, compared
to the subsequent visits, a higher community coverage is reached with low values of βi,
i.e., with βi ≤ 50. On the other hand, with higher values of βi, a higher population
coverage is reached, while community coverage is decreased. In addition, linear marginal
benefits seem to provide a better continuity of care. Therefore, the initial assumption
of our partner of using linear marginal benefits allows a better continuity of care as
well as a better community coverage. In addition, it is easier to compute as it requires
less parametrization. Finally, our solution approach is not time sensitive with highly
diminishing marginal benefits, i.e., all solutions are found within 187 seconds, with an
average of 88 seconds. With smoothly diminishing marginal benefits, it is more sensitive
as the maximal computational time is 4,769 seconds (one instance only is solved in
more than 2,000 seconds), with an average of 747 seconds. We can thus conclude that
using linear marginal benefits, which is easier to model, allows for robust solutions in a
reasonable time.
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4.4.3 Impact of the number of individuals visited per route

In its current program, our partner divides the number of visits equally in each route
(see Section 4.1.2), which implies that all villages are of equal importance. In practice,
villages are heterogeneous according to their population, their need of healthcare, their
vulnerability score, and their accessibility to healthcare. In this section, we aim to
examine if alternative ways of dividing the number of visits impact the solution.

Four alternative ways to determine the number of individuals visited per route have
been considered, i.e., dividing the capacity: 1) proportional to the population of the
villages, denoted as population proportion (Pop.); 2) proportional to the health score
of the villages, denoted as score proportion (Score); 3) proportional to the vulnerability
score (e.g., pregnant women, children, and elderly) of the villages, denoted as vulnerability
proportion (Vul.); and 4) proportional to the accessibility to healthcare score of the
villages, denoted as accessibility proportion (Acc.). For example, given the capacity Q, a
route r1 which covers exactly two villages i1, j1 ∈ N c, the number of people visited per
village will vary according to the way we compute the number of people visited. With
population proportion, the number of people visited will be

Gi1,r1 =

⌊
Q

pi1
pi1 + pj1

⌋
and Gj1,r1 =

⌊
Q

pj1
pi1 + pj1

⌋
.

With score proportion, the number of people visited will be

Gi1,r1 =

⌊
Q

si1
si1 + sj1

⌋
and Gj1,r1 =

⌊
Q

sj1
si1 + sj1

⌋
.

With vulnerability proportion, the number of people visited will be

Gi1,r1 =

⌊
Q

s1i1
s1i1 + s1j1

⌋
and Gj1,r1 =

⌊
Q

s1j1
s1i1 + s1j1

⌋
,

where s1i ,∀i ∈ Vc is the vulnerability score of village i computed by our partner. With
accessibility proportion, the number of people visited will be

Gi1,r1 =

⌊
Q

s2i1
s2i1 + s2j1

⌋
and Gj1,r1 =

⌊
Q

s2j1
s2i1 + s2j1

⌋
,

where s2i ,∀i ∈ N c is the accessibility score of village i computed by our partner.

First, we analyzed the impact on the number of covered clusters. When βi ≥ 50, nine
clusters are covered, while seven to nine clusters are covered when βi = 0. Compared
to equal proportion, when βi ≥ 50, the same clusters are covered which shows that
geographical coverage remains constant independently on how the number of visits are
computed.
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Figure 17: Impact on the number of
covered villages when considering the
number of visits in a route (m = 5,
B = 5000)
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Figure 18: Average proportion of the
population visited at least once when
considering the number of visits in a
route (m = 5, B = 5000)

0 200 400 600

−20

0

20

βi

Im
p
ac

t
on

th
e

av
er

ag
e

v
is

it
ed

p
op

u
la

ti
on

p
er

co
ve

re
d

v
il
la

ge
(%

)

Pop. Score Vul. Acc.

Figure 19: Average proportion of the
population visited at least twice when
considering the number of visits in a
route (m = 5, B = 5000)
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Figure 20: Average proportion of the
population visited at least thrice when
considering the number of visits in a
route (m = 5, B = 5000)

Second, we analyzed the impact on the number of covered villages as well as the aver-
age proportion of the population visited at least once, see Figures 17 and 18, respectively.
When βi = 0, 15 to 22 villages are covered according to how the number of visits are
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determined. This increase in the number of covered villages can be explained by the
fact that more than one optimal solution exists. When βi ≤ 50, the number of covered
villages remains relatively similar independently on the number of visited individuals per
route. In addition, the population covered at least once remains relatively constant, with
the only exception of when βi = 0, which is explained by the higher number of visited
villages. Therefore, how the number of individuals are computed does not seem to have
an impact on community and population coverage.

Third, we analyzed the impact on the average proportion of the population visited
twice and thrice, see Figures 19 and 20, respectively. Our results show that the population
covered at least twice and thrice remains relatively constant. On the other hand, when
βi = 0 the average population covered more than once decreases due to the increase in
the number of covered villages. We can also notice a slight increase in the population
covered more than once when 250 ≤ βi ≤ 400 due to the decrease in the number of
covered villages.

Considering this analysis, we can see that when modifying how the number of visits
are computed, the performance indicators as well as the solutions remain similar. In
addition, the total computational time is not affected; all solutions are found within 260
seconds with an average of 100 seconds. Therefore, the initial rule to equally divide the
number of visits, which is the simplest in practice, is the most efficient.

5 Conclusions

In this paper, we have introduced a set packing formulation for the MLRP for the deploy-
ment of mobile clinics for humanitarian relief. Our model seeks to maximize the total
benefit, divided between coverage and continuity benefits. We have also proposed appro-
priate coverage performance indicators (number of covered clusters, number of covered
villages, and percentage of people visited at least once in covered villages) and continuity
performance indicators (percentage of people visited at least v times in covered villages).

Our solution approach was tested with real data from our partner, for a mobile clinic
deployment in Iraq, and our results have allowed us to derive managerial insights in that
context. Using our collaborators needs assessment scoring tool to derive the coverage
and continuity benefits, we tested fixed values of the coverage benefit βi from 0 to 700,
in increments of 50. We observed that as βi is increased the number of villages covered
by the deployment of mobile clinics increases. However, the proportion of people visited
at least once decreases as βi increases. Our computational results show that a reasonable
compromise between coverage and continuity is reached when 200 ≤ βi ≤ 300. We
conducted sensitivity analyses on the number of mobile clinics, on the choice of marginal
benefit function, and on the way to determine the number of individuals visited per route.
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Our results show that increasing the available budget for mobile clinics, and thus the
number of mobile clinics, allows to cover more villages and more clusters. On the other
hand, decreasing the number of mobile clinics from the current number in the program
(five) would significantly decrease geographical coverage. In addition, we show that the
choice of marginal benefit function does not seem to have a significant impact on the
proposed solution, and therefore solutions obtained with linear marginal benefits seem
robust. Similarly, the different policies to determine the number of individuals visited
per route have very limited impact on the performance of the deployment. Hence, an
equal division between all villages is recommended and is simpler in practice.

This paper fills a gap in the literature. Solving this problem and analyzing perfor-
mance indicators contributes to a better understanding of the impact of strategical and
tactical decisions on the deployment of mobile clinics for humanitarian relief. Our study
will serve as a guide for practitioners when deciding how to incorporate continuity and
coverage for the deployment of mobile clinics. Also, our analyses aid practitioners in
justifying the number of clinics on the deployment based on the impact it can have on
the coverage and continuity offered to the beneficiaries. This study will help our collab-
orator, as well as practitioners in the field, better justify strategic decisions that impact
the tactical planning of mobile clinic deployment.
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A Clusters

Considering the sparsity of our network and to determine the geographical coverage of
our solutions, we implemented a k-means algorithm to cluster the villages based on their
geographical coordinates (latitude and longitude). The algorithm randomly selects k
villages as centroids and assigns each remaining village to its closest centroid. Once each
village is assigned, the latitude and longitude coordinates of each cluster’s centroid is
computed as the mean of the latitude and longitude of its associated villages. Given the
new centroids, the villages are reassigned to their closest centroid, and this process is
repeated 300 times. For each value of k, we do this process 10 times, each time starting
with a different centroid seed. We also use the elbow method to determine the most
appropriate number of clusters for our data set. Figure 21 shows the obtained elbow
graph with the sum of normalized square distances. We can see that when setting k ≥ 8,
this seems to represent a good value. After carefully considering the geography and to
make sure to properly represent geographical coverage, we have selected 10 clusters.
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Figure 21: Elbow graph for k-means algorithm

B Detailed computational results

Table 5 contains the detailed computational results when fixing m = 5 and B = 5000
with equal division of population in routes, and for the three marginal benefit functions
(linear, highly diminishing and smoothly diminishing). Then, for each marginal benefit
function, we present: the optimal solution value (z∗); and the total computational time
in seconds (Sec.). The results are presented for each value of βi tested, i.e., between 0 and
700 with increments of 50. Note that when βi = 0 and with linear marginal benefits, the
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obtained solution represents the one implemented by our partner. In addition, for a given
marginal benefit function, because the value of βvi ,∀i ∈ N c, v ∈ V (i.e., the continuity
benefit) remains constant, the increase in the objective function is expected. Finally,
comparing the objective function between the different marginal benefit functions is not
possible as the value of βvi ,∀i ∈ N c, v ∈ V varies according to each function.

Table 5: Detailed computational results m = 5, B = 5000 and equal division of popula-
tion in routes

Linear Highly Smoothly
βi z∗ Sec. z∗ Sec. z∗ Sec.

0 108,250 128 279,851 62 186,117 1,821
50 109,104 21 280,776 74 186,992 84
100 110,166 14 281,776 187 187,967 107
150 111,316 95 282,801 45 189,075 17
200 112,562 189 283,927 128 190,235 263
250 113,932 248 285,127 70 191,435 35
300 115,589 55 286,327 75 192,635 1,114
350 117,596 390 287,571 75 193,927 437
400 119,742 216 288,821 73 195,277 143
450 121,942 60 290,071 114 196,665 4,769
500 124,142 230 291,339 47 198,151 1,208
550 126,342 193 292,739 31 199,831 165
600 128,542 274 294,139 113 201,649 731
650 130,742 158 295,539 124 203,639 70
700 132,942 167 297,001 99 205,683 242

Table 6 contains the detailed computational results when fixing m = 5 and B = 5000
with linear marginal benefits for population proportion, score proportion, vulnerability
proportion, and accessibility proportion. Note that the results for equal proportion have
been presented in Table 5. The first column contains the coverage benefit per location
i (βi). Then, for each way to divide the number of people in a route, we present: the
optimal solution value (z∗); and the total computational time in seconds (Sec.).
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Table 6: Detailed computational results m = 5, B = 5000, and linear marginal benefits

Population Score Vulnerability Accessibility
βi z∗ Sec. z∗ Sec. z∗ Sec. z∗ Sec.

0 108,250 26 108,250 27 108,250 27 108,250 206
50 109,119 14 109,102 64 109,100 91 109,103 101
100 110,193 69 110,204 27 110,199 21 110,210 29
150 111,343 73 111,354 18 111,349 64 111,360 51
200 112,591 170 112,644 44 112,627 148 112,606 152
250 113,933 236 114,009 22 114,047 125 113,991 125
300 115,483 132 115,676 117 115,762 149 115,682 34
350 117,372 112 117,663 82 117,860 139 117,672 160
400 119,415 119 119,784 42 120,054 49 119,795 183
450 121,590 63 121,984 99 122,260 94 121,995 166
500 123,790 54 124,184 177 124,460 166 124,195 152
550 125,990 111 126,384 79 126,660 114 126,395 206
600 128,190 28 128,584 147 128,854 153 128,595 47
650 130,390 133 130,784 260 131,060 109 130,795 43
700 132,590 68 132,984 93 133,260 32 132,995 171
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