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Abstract. Quantifying how different factors affect bike-sharing demand is a critical problem. 

Most research investigated this problem from a holistic view using regression models, where 

the coefficients are the same for all bicycle stations. However, a global regression model 

ignores the local spatial effects of different factors. To address this problem, we develop a 

regression model with spatially varying coefficients to investigate how land use, social-

demographic, and transportation infrastructure affect the bike-sharing demand at different 

stations. Unlike existing geographically weighted models, we define station-specific 

regression and use a graph structure to encourage nearby stations to have similar 

coefficients. Using the bike-sharing data from the BIXI service in Montreal, we showcase 

the spatially-varying patterns in the regression coefficients and highlight areas that are more 

sensitive to the marginal change of a certain factor. The proposed model also exhibits 

superior out-of-sample prediction power compared with traditional machine learning models 

and geostatistical models. 
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1. Introduction

Growing concerns about urban sustainability and climate change have led to increasing interest in green
transportation solutions such as bike-sharing (Shaheen et al., 2010). Bike-sharing systems can reduce air
pollution and natural resource consumption (Cai et al., 2019), improve public health (Fishman et al., 2013),
and support for multimodal transport connections by acting as a “last mile” connection to public transport
(DeMaio, 2009). Because of these advantages, many cities have established bike-sharing systems. By 2014,
the number of cities that operate bike-sharing programs is 855, with a total of 946,000 bikes in operation
(Fishman, 2016), and the numbers have increased to over 1500 cities and 4.5 million bikes recently (Fishman
and Allan, 2019).

Most modern bike-sharing systems are station-based in which users can borrow and return bicycles at
specified docking stations (DeMaio, 2009), such as the BIXI system in Montreal, Canada. Understanding
how different factors affect user demand at a station level is important to the planning and operation
of bike-sharing service, because bike-sharing systems could be more efficient if planners better identify
the incentive/disincentive factors to users (Eren and Uz, 2020), such as weather, built environment and
land-use, public transportation, socio-demographic attributes, and temporal factors. More importantly,
comprehending the correlations between these factors and user demand can help us estimate the potential
demand of new stations in advance, which is a critical step in service planning.

Plenty of research has studied the relationship between station-level bike-sharing demand and various
factors by using regression models (Rixey, 2013; Faghih-Imani et al., 2014; El-Assi et al., 2017). However,
most existing studies used a single regression model (e.g., multivariate linear regression) with fixed coefficients
for all stations, which ignores the spatial heterogeneity of different stations (Bao et al., 2018b). Few studies
investigate how these factors impose different effects to different stations, since it is hard to establish a
regression model using the data only from one certain station. (Faghih-Imani et al., 2014).

The objective of this study is thus to investigate how influential factors contribute differently to the
bike-sharing demand at different stations. In doing so, we establish a regression model with spatially varying
coefficients. The dependent variable is the average hourly departure demand at each bicycle station, and
we analyze the demand of the morning peak and afternoon peak separately. We select ten factors related to
demographics, land-use, transportation infrastructures, and bicycle facilities as independent variables. Each
factor is aggregated by catchment areas of stations. Unlike only using the common circle buffers, we use
Thiessen polygons (Edelsbrunner and Seidel, 1986) to obtain non-overlapping catchment areas. Inspired by
the network lasso problem (Hallac et al., 2015), we design the regression model to be station-specific and
regularized by a graph/network structure. The graph regularization in the loss function thus encourages
nearby stations to have similar coefficients to each other. The model produces the spatial distribution of
the coefficients of different factors, answering which area is more sensitive to the marginal change of a
certain factor. In the meanwhile, the factor coefficients and the potential demand of new stations can also
be estimated from the known stations. Finally, we demonstrate the superior out-of-sample prediction power
of the proposed model by comparing it with traditional machine learning models and geostatistical models.

We summarize the main contributions of this work as follows:

• We analyze the effect of land-use, social-demographic, transportation infrastructure, and bicycle
facilities on bike-sharing demand at a station-level.

• We combine circle buffers and Thiessen polygons to extract factors from non-overlapping catchment
areas.

• We introduce a graph regularization to a regression problem, working as a spatially varying coefficients
model.

• The proposed model can better predict the potential demand for new stations.

The remainder of this paper is organized as follows. In section 2, we review related work on bike-sharing
demand modeling and spatial regression models. Section 3 introduces the data of bicycle demand and
influential factors. Section 4 presents the regression model with spatially varying coefficients, where we use
a graph regularization to encourage nearby stations to have similar coefficients. Section 5 demonstrates the
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regression result and compares the proposed method with other models. Section 6 concludes this study and
discusses some directions for future research.

2. Literature Review

2.1. Bike-sharing demand modeling

Over the past decades, there has been a plethora of research analyzing the relationship between bicycle
demand and factors such as weather, land-use, and social demographics. We review a particular branch of
them, where a regression model was used to analyze the station-level demand in bike-sharing systems. A
comprehensive review can be found in (Eren and Uz, 2020).

Buck and Buehler (2012) inspected the effect of bike facilities, demographics, and land-use factors on
the average daily bike-sharing check-outs in Washinton D.C. by a linear regression model. Rixey (2013)
compared the effects of a set of similar factors to the average monthly bike-sharing demand in three
US cities. Faghih-Imani et al. (2014) analyzed hourly bike-sharing demand in Montreal with additional
consideration of weather and temporal factors. A linear mixed model was used to capture the dependencies
between repeated observations of the same station; a similar technique was also applied to a Toronto
bike-sharing system (El-Assi et al., 2017). Recent research began to consider spatial or temporal dependency
of bike-sharing demand. Using spatial lagged features as independent variables, Zhang et al. (2017) studied
the spatial correlations in bike-sharing demand and quantified the spatial correlation in demand between
nearby stations. Faghih-Imani and Eluru (2016) further incorporated the spatial-temporal interactions into
the bike-sharing demand modeling.

In the aforementioned research, only a single regression model was used with invariable coefficients
for all stations. However, the effect of a factor can be dissimilar for different stations. To capture the
stations’ heterogeneity, Hyland et al. (2018) clustered the bike-sharing stations based on types of trips
and built separate regression models for each cluster. A limitation of this approach is that it breaks the
connection among clusters. The most relevant research to this work is (Bao et al., 2018b), where the authors
used geographically weighted regression (GWR) to capture the spatial heterogeneity of the effect of points
of interest (POI) to bike-sharing demand. In section 5.2, we will compare the GWR approach with the
proposed model.

2.2. Regression with spatially varying coefficients

We introduce a graph regularization to a linear regression model to enable spatially varying coefficients
(SVC). There are other SVC models in the literature. The GWR proposed by Brunsdon et al. (1998) is the
most commonly used SVC model. It is a weighted local regression model where the weights are determined
by the distance between two observations. GWR has been widely used in modeling the demand of taxi
(Qian and Ukkusuri, 2015) , public transit (Cardozo et al., 2012), ride-sourcing (Bao et al., 2018a), and
bike-sharing (Bao et al., 2018b). Another type of prominent SVC model assumes coefficients follow Gaussian
Process (GP). Such as the Bayesian SCV processes (Gelfand et al., 2003), Gaussian predictive processes
(Banerjee et al., 2008), and Gaussian Markov random fields using a stochastic partial differential equation
link (Lindgren et al., 2011). These models have sound statistical definitions, but the complicated parameter
estimation methods limit their applications in large-scale data or models with many SVCs (Dambon et al.,
2020). Recent research by Murakami and Griffith (2015) extended eigenvector spatial filtering (also known
as Moran’s eigenvector mapping) to deal with SVC problem.

The SVC model in this paper is modified from the network lasso problem (Hallac et al., 2015). We
establish a graph structure on the bicycle-station network and penalize the coefficients’ difference between
two nodes connected by an edge. Compared with GP-based SVC models, our approach has a more precise
form and can scale to large problems. Moreover, the graph-based approach is more flexible to problems
involving non-Euclidean distance (Wu et al., 2020).
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3. Data

This section introduces the data applied in the research. Section 3.1 presents the bicycle demand data
obtained from BIXI, a bike-sharing system in Montreal. The bike-sharing related factors are described in
section 3.2, we will evaluate the effect of these factors on bike-sharing demand.

3.1. Bike-sharing demand

BIXI, the first large-scale bike-sharing system in North America, is located in Montreal, Canada. In
2019, there are 615 stations and 5.6 million trip records in the BIXI system. Because of the cold winter
in Montreal, BIXI only operates from April to November each year. We use the trip data of 2019 from
BIXI to obtain the bicycle ridership, and we only use data between May to October since stations are
often under adjustments in the beginning and end months of this system (Faghih-Imani et al., 2014). The
historical data recorded six attributes for each bicycle trip: origin and destination stations, departure and
arrival time, trip duration, and membership information. This data set is publicly available from BIXI
(https://bixi.com).

For most stations, bicycle demand peaks at two periods in a weekday—6:00-10:00 am and 3:00-7:00 pm.
The spatial distributions of bicycle demand are different in these two periods (Fig. 1). Therefore, we build
two models to quantify the effect of the factors on bicycle demand in the morning and afternoon peaks,
respectively. Fig. 1 shows the average hourly departure demand distributions for morning and afternoon
peaks, where each BIXI station is represented by a catchment area with 250 meters radius, and Thiessen
polygon is used to determine the boundary between overlapping catchment areas (refer to section 3.2 for
more details). In the morning, the area on the northwest side of downtown (Le Plateau-Mont-Royal) has
high departure demand; this is a residential area with high population density. In the afternoon, the center
of bicycle demand shifts towards the downtown area. Several stations along the river (such as the Old Port
of Montreal, a popular sightseeing area) and near Rosemont area with friendly ride paths have significantly
high demand. In general, the hourly departure in the afternoon is higher than that in the morning, which
conforms with the findings by Faghih-Imani et al. (2014). Another interesting observation is that the
distribution of bicycle demand is not smooth in the space; there are many demand hot spots that either
stand-alone or gather along a street. This could be caused by factors, such as metro stations, bicycle paths,
and commercial streets, around the bike stations.

3.2. Influential factors

There are numerous factors, including land-usage, transportation infrastructure, social demographics,
and weather condition, that impact bicycle usage (Rixey, 2013; Faghih-Imani et al., 2014; Zhang et al.,
2017; El-Assi et al., 2017). As in this paper, we focus on general demand level at stations, the weather and
temporal factors – which affect short-term demand fluctuation – are not considered in this study. Other
factors form independent variables in our regression model.

Most previous studies aggregated influential factors by catchment areas with a certain radius around
bicycle stations. However, the catchment areas can overlap if bicycle stations are close to each other
(Fig. 1), which leads to correlations between independent variables in nearby stations. In practice, users
tend to choose the bicycle station that is nearest to their origin/destination regardless of the distance of
other walkable stations. Therefore, we use the intersection of 250 meters circles and Thiessen polygons
(Edelsbrunner and Seidel, 1986) to obtain non-overlapping catchment areas, as shown in Fig. 1. The radius
of 250 meters has been proven to be suitable for bike-sharing demand modeling (Faghih-Imani et al., 2014).
Thiessen polygons guarantee every point within the catchment area of a station i is closest to the station i
compared with all other stations. Section 5.2 shows applying Thiessen polygons improves the regression
performance compared with circle buffer.

We then obtain independent variables by aggregating factors at each catchment area, as summarized in
Table 1. The population is estimated from the demographic data, which is obtained from 2016 Canada
census data at a dissemination block level. Land-use factors include the number of commercial points of
interest (POI), park, and university. The POI data is obtained from DMTI Enhanced Point of Interest
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Figure 1: Average hourly departures for BIXI stations in Montreal (left: morning peak, right: afternoon peak).

Table 1: Summary of independent variables (aggregated by catchment areas).

Factors Description Min Max Mean

Population Total residential population. 0 4042 1073.88
POI The number of commercial POI (e.g., wholesale trade). 0 89 14.94
Park The proportion of parks in the catchment area. 0 1 0.08
University A binary variable for university. 0 1 0.013
Road
length

Total length of roads (in meters). 133.27 4824.40 1934.93

Walkscore A measure of walkability on a scale from 0 to 100. 7 99 79.28
Metro A binary variable for metro station. 0 1 0.13
Bus route log( number of bus routes + 1). 0 3.3 1.281
Cycle path The proportion of roads with cycle path. 0 1 0.227567
Capacity The number of docks of a BIXI station. 11 105 23.1

(DMTI Spatial Inc., 2019), we take into account all commercial POI (wholesale trade and retail trade)
based on standard industrial classification. Factors related to transportation infrastructures include road
length, walkscore (Walk Score, 2020), metro station, and bus route, where walkscore is an index scale
from 0 to 100 measuring the walkability to neighboring amenities. Note that we use the logarithm of the
bus route number because of its long tail feature. Finally, we use the cycle path and station capacity as
two bicycle-related factors. Due to the giant difference in magnitude, we normalize all variables and user
demand to 0 to 1 before applying them to the regression model.

Modeling Bike-Sharing Demand Using a Regression Model with Spatially Varying Coefficients
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4. Model

4.1. Regression with graph regularization

Let N be the total number of bicycle stations. For station i (i ∈ {1, . . . , N}), yi denotes its bike-sharing
demand, which is the dependent variable. Denote a vector of independent variables by xi = [1, xi1, . . . , xim]>

for station i, where m is the number of factors (as shown in Table 1). The regression model with spatially
varying coefficients is described as:

yi = x>i βi + εi, i = 1, . . . , N, (1)

where βi = [βi0, βi1, . . . , βim]> is a coefficient vector for station i, εi is the error term. We can estimate the
coefficients for all the stations by minimizing the sum of squared errors:

min
N∑
i=1

(
yi − x>i βi

)2
. (2)

If coefficient vectors βi are the same for all stations, Eq. (1) becomes a simple linear regression model
and Eq. (2) is the least square problem. However, we study the factors’ effect at a station-level and assume
coefficient vectors are varying over stations. In this situation, Eq. (1) is not identifiable since the number of
unknown coefficients N × (m+ 1) are much larger than the number of equations N ; one can find many sets
of βi that minimizes Eq. (2) (to zero). One solution for addressing the problem is that we can impose some
constraints on βi to make the regression model solvable.

A fundamental assumption in modeling the spatial effects is that nearby stations have similar coefficients.
Following this assumption, we introduce a graph structure similar to the network lasso problem (Hallac
et al., 2015). Consider the bike-sharing stations on a graph G = (V, E), where V and E are the set of
nodes and edges, respectively. Each node represents a bicycle station (|V| = N), and an edge represents a
connection between two nodes. Instead of a fully connected graph, we assume each station is connected to
its K nearest stations with undirected edges, where K controls the number of adjacent stations. By doing
so, the specific local information of each station is incorporated into the model, and the computation time
can also be substantially reduced.

The linear regression model for each station with a graph regularization term, which penalizes the
difference between βi in adjacent nodes, is proposed in:

min
N∑
i=1

(
yi − x>i βi

)2
+ λ

∑
(i,j)∈E

wij ||βi − βj ||22, λ ≥ 0, (3)

where the parameter λ balances the regression error and the difference between coefficients in adjacent nodes,
wij is the weight of the edge (i, j), which is a decaying function of distance. Here we apply wij(α) = d−αij
with α > 0, where dij is the distance between node i and j, and α controls the decaying speed. When
λ = 0, each node has its own optimization without considering other nodes. Increasing λ encourages the
neighboring nodes to have similar coefficients. With a sufficiently large λ, Eq. (3) degrades to one (or
several) linear regression model(s) with all stations in each connected component1 of the graph sharing the
same coefficients.

Eq. (3) is a convex optimization problem and can be efficiently solved by the commonly used optimization
software, such as CVXPY. For large-scale problems, the Alternating Direction Method of Multipliers
(ADMM) can be used to solve the problem in a distributed and scalable manner (Hallac et al., 2015).

For a new station p with unknown bike-sharing demand, we can estimate its factor coefficients βp by
interpolating the coefficients β? from known stations and then achieve demand prediction of station p. Let

1A connected component of an undirected graph is a subgraph in which any two nodes are connected to each other by paths,
and which is not connected to nodes other than this component.
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Nei(p) denote the K nearest stations of station p, and we want to find a βp that minimizes the difference
between the coefficients of neighbors, leading to the following optimization:

min
∑

q∈Nei(p)

wpq||βp − β?q ||22. (4)

Eq. (4) can also be efficiently solved by convex optimization and the prediction ability of a model can
work as an indicator measuring the performance of the model.

4.2. Hyper-parameter tuning

The regression with graph regularization model has three hyper-parameters, λ determines the intensity
of the graph regularization term, K is the number of neighbors of a node, and α controls the weight
decaying of edges. We use 10-fold cross-validation to search the optimal values of hyper-parameters. First,
all stations are randomly partitioned into 10 equal-sized groups. In each iteration of the cross-validation,
retain one group as the validation set Vvalidate, the remaining stations belong to the training set Vtrain. For
a given combination of hyper-parameters, the coefficients of training stations are estimated by Eq. (3),
and the coefficients of test stations are obtained by Eq. (4). Then, the root mean square error (RMSE) is
calculated by the demand prediction on the validation set Vvalidate:

RMSE =

√∑
i∈Vvalidate (yi − ŷi)2

|Vvalidate|
, (5)

where ŷi = x>i β
?
i is the predicted bike-sharing demand for station i. Repeat the cross-validation process

for 10 times and the performance of a hyper-parameter setting is evaluated by the average RMSE of the
10-fold cross-validation. The general procedure of 10-fold cross-validation of searching optimal regularization
parameters is summarized in Algorithm 1.

Algorithm 1 10-fold cross-validation for searching optimal hyper-parameters

Input: Normalized factor data X ∈ RN×M+1, normalized bike-sharing demand y ∈ RN , regularization
parameters set λset, link weight parameter set αset, number of neighbors set Kset.

Output: Optimal regularization parameters λ?, optimal link weight parameter α?, optimal neighbor
number K?

1: Split the data set D = {X,y} into 10 equal-sized groups;
2: for each λ ∈ λset, α ∈ αset and K ∈ Kset do
3: for each j = 1, . . . , 10 do
4: VValidation = the j th group data of D;
5: VTrain = the remaining data of D;
6: Apply CVXPY on VTrain in Eq. (3) to get β?train;
7: Apply CVXPY on VValidation in Eq. (4) to get β?validation;
8: Get prediction ŷ on VValidation in Eq. (1);
9: εj ← RMSE in Eq. (5).

10: end for
11: Eλ,α,K ←

∑10
j=1 εj/10.

12: end for
13: λ?, α?,K? ← arg min{Eλ,α,K}.
14: return λ?, α? and K?

To determine the search scope of hyper-parameters, we first discuss the effect of each hyper-parameter.
Fig. 2 illustrates the effect of λ from one round cross-validation, where we use the afternoon peak data and
set K = 4 and α = 1. It can be seen that when λ is close to 10−3, the RMSE on the training set is almost 0
because each node is optimized independently. However, apparently the model is over-fitted and generalizes
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poorly to the validation set. When λ is very large, the impact of graph regularization is much stronger,
which means the model reduces to a global regression with invariant coefficients. As a consequence, large λ
increases the RMSE for both the training and validation sets. To get the best performance on the validation
set, we need to find a λ that properly balances the regression error and the difference between neighbors, as
marked by the circle with the minimal RMSE on the validation set in Fig. 2.
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Figure 2: The effect of λ to the RMSE of training and validation set, using demand of afternoon peak, K = 4, α = 1.

K determines the number of neighbors of a node. When K is very small (1 or 2), the graph may have
too many disconnected components, which impedes information to be shared among stations and even
results in an ill-posed problem. A too large K (e.g., K ≈ N) is also inappropriate since it connects far away
(less relevant) stations and also increases the computational burden. Based on the experimental results, a
proper interval for K in this problem is between 3 and 7.

Compared with λ and K, α is a less important parameter. The effect of α on the RMSE of the validation
set is marginal and can be compensated by tuning a proper λ, because these two hyper-parameters
together determine the graph regularization term. We also test exponential-type weight decaying function
wij(α) = exp (−αdij) with α > 0, similar observations are found. This is different to models like GWR,
where the bandwidth – controls the speed of weight decaying – plays an important role. A possible
explanation could be: the graph regularization is a local constraint, and the edges between a node and its
neighbors are of similar distances (small variance); therefore, when α changes, the weights of edges of a
node change near proportionally.

Based on the above analysis, we set α = 1 and perform a grid search on λ from 0.5 to 10 at 0.5
interval, K ∈ {3, 4, 5, 6, 7} by 10-fold cross-validation. We select λ = 2,K = 4 for the morning peak and
λ = 2.5,K = 4 for the afternoon peak, when the minimal average RMSE of the 10-fold cross-validation is
achieved.

5. Results

5.1. The effect of factors on bike-sharing demand

Using the proposed model, the factor coefficients are estimated based on the optimal hyper-parameters
from section 4.2. The numerical distribution for each coefficient in our model is shown as the box plots
in Fig. 3, along with a global linear regression model shown by a red line. While the proposed model has
varying coefficients, the general result (sign and scale of coefficients) is consistent with the linear regression.
Actually, linear regression is a special case of our model when the graph is fully connected and λ is large
enough. Note that there are some outliers in the coefficient distributions, which are caused by a small
group of disconnected remote stations in the graph, whose bike-sharing demands are very low.

Firstly, we want to clarify the meaning of a coefficient value. It represents how many changes will be in
the demand when there is a marginal change in the corresponding factor. For simplicity, we refer to this as

Modeling Bike-Sharing Demand Using a Regression Model with Spatially Varying Coefficients
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Figure 3: The box plot of factor coefficients for morning peak (left) and afternoon peak (right).

the importance/effect of this factor to the bike-sharing demand. According to Fig. 3, the proposed model
shows that the population is the dominating factor for the bike-sharing demand in the morning, while the
station capacity has the most dominant effect on the demand in the afternoon. This is easy to understand
for the morning since most people depart from their home in the morning. For the afternoon, the relation
between demand and capacity is more complex. On the one hand, the demand in the afternoon is much
larger than which in the morning (Fig. 1); therefore, a shortage of supply may occur and the real demand
could be constrained by the capacity (Gammelli et al., 2020). On the other hand, the station capacity is
designed to satisfy the demand pattern, and therefore exhibits a high correlation to the demand in the
afternoon peak.

Besides population and capacity, the coefficient of commercial POI also has an evident difference between
the morning and the afternoon. Specifically, the coefficient is larger in the afternoon than that in the
morning. It can be explained by more users go for commercial activity (e.g., shopping, entertainment) in
late time.

We also visualize the spatial distributions for coefficients in the morning and the afternoon peaks by
Fig. 4 and Fig. 5, where red markers mean positive values and green markers mean negative values. The
coefficient distribution of university is not shown, because there are only 8 (1.3%) stations near a university.
Therefore, the university factor has little effect for most stations (xuni = 0), but the numerical values for
the coefficients of university can be found in Fig. 3.

In the morning, the Pointe-Saint-Charles area, a lively community with many parks, bike paths, and
new housing units, has the largest coefficient of population. In the Plateau-Mont-Royal area and a part of
Rosemont-La Petite-Patrie area, POI, bus routes, walkscore are more important. These areas are famous
for its commercial streets, delightful parks and attractive culture. Specifically, the La Fontaine Park, a
large compound park has the highest park coefficient. The cycle path factor (defined as the proportion
of roads with cycle path) has a positive effect on the demand, while the road length has a negative effect.
This indicates that the automobile-oriented road design is not friendly to bicycles.

On the other side, the factor coefficients can also be used to detect “unusual stations”. For example,
there are two unusual points for the metro coefficients shown in Fig. 4, one is next to the metro station
Laurier, another is next to the metro station Vendôme. These two stations have significantly higher metro
coefficients than their neighbors. This is because both stations are the transport hub and serve the Orange
Line, and the result is consistent with their extremely high metro coefficients and bus route coefficients.

Fig. 5 shows the spatial distributions for factor coefficients in the afternoon peak. Compared with
coefficients of the morning, except road length, the number of residential population and bus route also
show a negative correlation to the departure demand in the afternoon, which means more these two factors
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Figure 4: The factor coefficients distribution of morning peak with optimal parameters λ = 2, α = 1 and K = 4.

would have less bicycle demand. This may indicate an inconsistent distribution of the residential and work
areas in Montreal. In the afternoon, the POI, walkscore and cycle path still have the great positive impact
on the Plateau-Mont-Royal area and a part of Rosemont-La Petite-Patrie area.

The stations near Parc Jean-Drapeau and the Old Port are two special stations in the afternoon. Parc
Jean-Drapeau, an isolated island situated to the east of downtown Montreal, has many attractions including
an amusement park, casinos, environmental museum, etc. The metro station Jean-Drapeau is the main
entrance to enter the island except driving. It is reasonable that this station has a high park coefficient and
metro coefficient. The Old Port of Montreal is one of the most popular tourist resorts, attracting millions
of people to visit here. So the capacity of bike stations is quite important for the demand at this location.

5.2. Out-of-sample prediction

The ability to predict the potential demand of new stations is essential in measuring the goodness of a
regression model. It is also of practical significance in predicting the demand of new stations in advance.
Therefore, we evaluate the out-of-sample prediction power of the proposed model by reserving 20% randomly
selected stations as a test set. The coefficients of the test set can be estimated based on Eq. (4). To
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Figure 5: The factor coefficients distribution of afternoon peak with optimal parameters λ = 2.5, α = 1 and K = 4.

avoid randomness, we repeat the test 20 times with different training and test set separations, and the
hyper-parameter setting is fixed for all the tests based on the result of section 4.2. We use the RMSE in
Eq. (5) and the R2 in Eq. (6) to measure the goodness of the prediction in the test set.

R2 = 1−
∑

i∈Vtest(yi − ŷi)
2∑

i∈Vtest(yi − ȳ)2
, (6)

where ȳ is the average of the real demand yi, and a larger R2 means a higher correlation between the real
and the predicted demand.

We compare the proposed model with the following benchmark models in the out-of-sample prediction:

• Random forest : randomly construct and merge a multitude of decision trees to predict the demand.
• SVM regression: extend support vector machines to solve a regression problem.
• KNN : predict the demand based on K nearest factor vectors in the training set.
• Nearest neighbors average: the average demand of K nearest neighbors
• Linear regression: a global linear regression with invariant factor coefficients.
• Regression kriging : apply an ordinary kriging on the residuals of a linear regression model.
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• Geographically weighted regression (GWR): a weighted linear regression model with the weight
determined by the distance between two observations.

• Graph regularization with circle buffer : use 250 meter circle buffers to aggregate factors and apply
the proposed method.

Random forest, SVM regression, and KNN are classical machine learning models; they are achieved
by the scikit-learn package in Python and the key hyper-parameters are determined by a grid search
and cross-validation. Regression kriging and GWR are geostatistical models; they are achieved by two R
packages automap and GWmodel, respectively.

Table 2 shows the prediction results of the proposed method and benchmarks models, where the RMSE
and the R2 are shown by the average value with the standard deviation in parentheses. Note that we
multiply RMSE by ten to for a better display effect. Overall, geostatistical models perform better than
machine learning models, which indicates the importance of the geographic information in predicting the
bike-sharing demand. The proposed model is comparable to the two geostatistical models and performs
the best in predicting the afternoon demand. The regression kriging exhibits the best performance in
predicting bike-sharing demand at morning rush hours. The performance of regression kriging is affected by
the spatial correlation of the demand. As shown in Fig. 1, the spatial distribution of the demand in the
afternoon is less smooth (weak spatial autocorrelation) than that in the morning. In this situation, the
regression kriging is not as good as the proposed graph regularization method. In addition, compared with
the proposed model, the factor coefficients in regression kriging are invariant for different stations, which
cannot explain the varying effects of a factor to different stations.

The linear regression model shows a relatively poor performance compared with other methods. Because
the linear regression is a global model without considering the spatial heterogeneity of stations. We also
apply the proposed graph regularization on the factors extracted from 250 meter circle buffers around
stations. One shortcoming of the circular buffer is that the catchment areas could overlap and thus leads
to inaccurate factor extraction. As expected, using the catchment areas based on Thiessen polygons has
better performance than using circle buffers.

Table 2: The RMSE and R2 in the prediction problem.

AM departures PM departures

RMSE×10 R2 RMSE×10 R2

Linear regression 1.041 (0.117) 0.300 (0.066) 1.016 (0.096) 0.494 (0.070)
Random forest 0.970 (0.119) 0.392 (0.075) 1.071 (0.147) 0.443 (0.080)
SVM regression 0.995 (0.126) 0.362 (0.070) 1.053 (0.140) 0.461 (0.076)
KNN 1.032 (0.110) 0.310 (0.072) 1.124 (0.152) 0.390 (0.061)
Nearest neighbors average 0.938 (0.122) 0.431 (0.077) 1.209 (0.169) 0.294 (0.083)
Regression kriging 0.809 (0.101) 0.567 (0.050) 0.956 (0.106) 0.535 (0.078)
GWR 0.854 (0.103) 0.514 (0.081) 0.959 (0.100) 0.525 (0.121)
Graph regularization (circle buffer) 0.871 (0.111) 0.510 (0.063) 1.014 (0.107) 0.498 (0.068)
Graph regularization (proposed) 0.831 (0.104) 0.554 (0.051) 0.949 (0.096) 0.560 (0.059)

6. Conclusion and Discussion

In this paper, we develop a regression model with spatially varying coefficients by using a graph
regularization. The model can not only quantify the effect of factors on bike-sharing demand at a
station level but also predict the demand of new bike-sharing stations. Specifically, we build a linear
regression model for each station to obtain its unique factor coefficients and assume the neighboring stations
have similar factor coefficients imposed by a graph regularization term. By doing so, the strong spatial
correlations/dependencies in of bike-sharing can be well-incorporated into the model. Under the same
assumption, the potential demand of unknown stations can also be estimated. In addition, the proposed
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model can also be used for clustering and anomaly detection when applying lasso term
∑

(i,j)∈E wij ||βi−βj ||2
as the graph regularization, in which the single-element cluster can be regarded as an anomaly since its
coefficients are significantly different from its neighbors.

The bike-sharing data collected from BIXI with other urban data are applied in the case study to
demonstrate the performance of the model. We divide the BIXI data into the morning peak (AM) and the
afternoon peak (PM) to illustrate the temporal characteristic of the factors. From the spatial distributions
of factor coefficients, we find the population and the station capacity are the dominating factors for the
bike-sharing demand in the morning and in the afternoon, respectively. Specifically, the Pointe-saint-charles
area shows the largest coefficient of popularity, and the Old Port, a famous sightseeing/commercial area, is
highly affected by the bike capacity. Our method also outperforms other baselines on prediction tasks.

Although the model has various applications, one limitation is that the current model does not consider
temporal factors, such as weather, time of day, and thus cannot work on the short-term prediction task.
Another limitation is that the model purely assumes the smoothness of coefficients between nearby stations,
while does not fully exploit the spatial correlation of the dependent variable itself. As a result, it is still
possible to exist (minor) spatial correlation in the regression residuals.

There are several directions for future research. (i) We define the link weight as the function of the
distance between two stations and study the prediction performance with different link weight parameter α.
In the future work, we can also explore different types of link weight functions, such as considering the
correlation between origin and destination (Chai et al., 2018). (ii) We can also investigate the effects of
temporal factors, such as weather, under the similar framework. For example, turning the factor coefficient
β into a time-varying version βt by imposing a temporal smoothness assumption. (iii) Lastly, the regression
model with the graph regularization can be applied to a broader transportation context, such as public
transit and urban planning.
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